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Abstract: Until recently obtaining data on populations of networks was typically rare. However,
with the advancement of automatic monitoring devices and the growing social and scientific interest
in networks, such data has become more widely available. From sociological experiments involving
cognitive social structures to fMRI scans revealing large-scale brain networks of groups of patients,
there is a growing awareness that we urgently need tools to analyse populations of networks and
particularly to model the variation between networks due to covariates. We propose a model-based
clustering method based on mixtures of generalized linear (mixed) models that can be employed to
describe the joint distribution of a populations of networks in a parsimonious manner and to identify
subpopulations of networks that share certain topological properties of interest (degree distribution,
community structure, effect of covariates on the presence of an edge, etc.). Maximum likelihood
estimation for the proposed model can be efficiently carried out with an implementation of the EM
algorithm. We assess the performance of this method on simulated data and conclude with an example
application on advice networks in a small business.

Key words: cognitive social structure, EM algorithm, graph, mixture of generalized linear models,
model-based clustering, network modelling, population of networks

1 Introduction

The last decades have witnessed growing interest in the analysis of relational data.
Typically, these data come in the form of a network that displays relations between
individuals or objects, and they are represented by means of a graph wherein
nodes (i.e., individuals or objects) are connected by edges (i.e., relations). In some
applications, especially in genetics, relations cannot be observed directly and the main
task is to infer them or their strength from the data (Friedman et al., 2008; Abegaz
and Wit, 2013; Vujačić et al., 2015). In this article, we are interested in cases where
relations between individuals or objects are observed and the networks themselves
are the data.
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10 Signorelli and Wit

For a long time, network science was almost exclusively concerned with the
analysis of a single network, mainly because of the difficulty in collecting relational
data and of limited computing capacity. Statistical modelling of a single network
(Snijders, 2011) has typically focused on certain aspects of network topology, such
as degree distribution, network statistics or the presence of community structures.
This has resulted into the development of a range of statistical network models that
include the p1 and p2 models (Holland and Leinhardt, 1981; van Duijn et al., 2004),
stochastic blockmodels (Holland et al., 1983; Snijders and Nowicki, 1997), ERGMs
(Frank and Strauss, 1986), latent space models (Hoff et al., 2002) and the family of
loglinear models proposed by Perry and Wolfe (2012).

More recently, increased computing capacities, alongside with technological
advances such as the development of sensor-based measurements, the diffusion
of functional magnetic resonance imaging, the invention of high-throughput
technologies in biology and the advent of social media, have multiplied the availability
of relational data, spurring the analysis not only of larger networks, but also of several
instances of the “same” network. The latter includes multilayer networks, dynamic
networks and populations of networks. The availability of such collections of several
networks poses new modelling challenges. Clearly, when data on several networks
are available, modelling each network separately would be inefficient: irrespective
of whether we are dealing with multilayer networks, longitudinal networks, or
populations of networks, we expect networks therein to be similar to a certain
degree; if this is indeed the case, analysing each network separately would not only
be cumbersome, but also failing to use the statistical power of the ensemble. Instead,
the specification of a joint model for the collection of networks makes it possible to
achieve a more parsimonious representation of the data and to borrow information
across networks in the estimation process; moreover, such a model may also be
employed to identify groups of similar networks. Below, we briefly review some of
the solutions that to date have been proposed to tackle this problem in the presence
of dynamic networks, multilayer networks or populations of networks.

Dynamic networks allow to represent the evolution of a network system over
time. Snijders (2001) proposed a stochastic actor-oriented model where the decision
to create or dissolve an edge is based on some covariates, as well as on the current
state of the network itself. Hanneke et al. (2010) introduced a dynamic extension
of ERGMs, known as temporal ERGM (TERGM). An extension of the latent space
models for dynamic networks has been proposed by Sewell and Chen (2015). Matias
and Miele (2017), instead, developed a dynamic stochastic blockmodel that allows
group membership of units to vary over time.

Multilayer networks are collections of networks that represent different types of
relationships (multiple layers) between a group of subjects. Two statistical models
that allow to model jointly the layers of those networks are, among others, those of
Stanley et al. (2016) and Paul et al. (2016). Stanley et al. (2016) proposed a multilayer
stochastic blockmodel that assumes the existence of groups of networks, called strata,
that share the same community structure. Paul et al. (2016), instead, introduced a
multilayer stochastic blockmodel that assumes that the communities are the same in
all layers but allows different block-interaction probabilities in each layer.

Statistical Modelling 2020; 20(1): 9–29



Model-based clustering for populations of networks 11

Finally, a population of networks can be defined as a collection of independent
graphs, each of which corresponds to a different statistical unit. Populations of
networks arise, from example, when different individuals are asked to provide their
view of relationships within a social network (Krackhardt, 1987) or when brain
networks are compared across groups of patients (Taya et al., 2016). Recently, there
has been a growing interest in statistical modelling of populations of networks.
Sweet et al. (2014) proposed a hierarchical stochastic blockmodel that aims to infer
clusters of nodes that are shared across networks. Similarly, Reyes and Rodriguez
(2016) introduced a stochastic blockmodel for populations of networks that attempts
to identify a unique community structure which is shared across networks. Durante
et al. (2017), instead, extended the latent space model approach of Hoff et al. (2002)
to populations of networks by proposing a mixture model that describes the joint
density of networks in the population using few components, each of which has
a different latent-space representation. Finally, Mukherjee et al. (2017) proposed
to cluster graphs within a population of networks through a spectral clustering
algorithm that is applied to a distance matrix that measures the distances between
the graphon estimates of the graphs.

In this article, we focus on the problem of finding and characterizing clusters of
graphs that are similar with respect to the effect of certain covariates of interest
on the presence or absence of edges in a population of networks. Towards this
aim, we propose to model the population of networks with a mixture model
whose components can be any statistical network model that can be specified as
a generalized linear model (GLM) or a generalized linear mixed model (GLMM);
this includes, for example, the p1 and p2 models, degree-corrected stochastic
blockmodels a priori and the loglinear network models of Perry and Wolfe (2012).
The advantages of this methodological framework are that it makes it possible to
describe populations of networks using some statistical models that are popular
in social network analysis, it can flexibly handle the inclusion of different types
(monadic, dyadic and graph-specific) of covariates and it furthermore allows to
detect subpopulations of networks (if any). In Section 2, we introduce and formalize
our mixture of network models and we elaborate on the specification of the
components of the mixture. Model estimation is considered in Section 3, where
we discuss how the proposed model can be estimated with an implementation of the
expectation–maximization (EM) algorithm. In Section 4 we assess the performance
of our method on simulated data, and in Section 5, we present an example
application to data on advice relationships in a small manufacturing firm described
by Krackhardt (1987).

2 Model specification

We consider a sample of K graphs {G1,G2, . . . ,GK}, where each graph Gk = (V,Ek)
comprises a set of edges Ek between a set of v vertices V, from a population of
networks S. We represent {G1,G2, . . . ,GK} with an array Y of dimension v × v ×K,
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12 Signorelli and Wit

where each horizontal slice Yk is the adjacency matrix of graph Gk. Therefore, an
entry Yk

ij in Y refers to the presence (and strength) or absence of edge (i, j) in the kth
graph Gk. If the graphs in S are undirected, each Yk is symmetric and we can restrict
our attention to the upper triangle of Yk.

In principle, one could imagine that each graph Gk is drawn from a different
distribution f(Y∣θk), k ∈ {1, . . . ,K} with parameter vector θk:

Yk ∼ f (Y∣θk) .

In the presence of many networks, however, this would result in a cumbersome
modelling exercise, yielding K different models obtained from separate analyses of
each graph. Since each graph is defined on the same set of vertices, it is natural to
consider models with additional structure.

2.1 Specification of the mixture model

In this article, we consider the existence of clusters of graphs with similar f (Y∣θk):
if any such cluster exists, we would like to borrow information among graphs
within that cluster, so as to estimate a joint model for graphs belonging to that
cluster rather than many separate network models. As a result, we assume that the
population of networks S arises from M ≤ K subpopulations S1, . . . ,SM of graph
models, each with probability density function f (Y∣θm) , m ∈ {1, . . . ,M}. We denote
by Zk ∈ {1, . . . ,M} the label that identifies the subpopulation of graph Gk, such
that Zk =m if Yk ∼ f (Y∣θm) (i.e., Zk =m if Gk ∈ Sm). Since in real problems it will
typically be unknown which graph belongs to which subpopulation, the vector of
identifying labels Z = (Z1, . . . ,ZK) is a latent variable. Therefore, we view each
graph in the sequence as a random draw from a mixture model whose components
are the probability density functions f (Y∣θm):

Yk ∼
M

∑
m=1

πmf (Y∣θm) , (2.1)

with mixing proportions πm = Pr(Zk =m) denoting the prior probabilities that a
graph belongs to the mth subpopulation Sm. Clearly, we assume πm ≥ 0 ∀m ∈

{1, . . . ,M} and ∑M
m=1 πm = 1. If we let 2 = (θ1, . . . , θM), the likelihood of model

(2.1) is thus

L(2∣Y,Z) = Pr(Y,Z∣2) =
K

∏
k=1

Pr(Yk∣Zk,2)Pr(Zk∣2)

=
K

∏
k=1

πZk
f (Yk∣θZk

) .

(2.2)

Statistical Modelling 2020; 20(1): 9–29
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This likelihood suffers from the usual identifiability issues when considering
mixture models. Each of the K components can be permuted without altering the
likelihood. So, as there are K! possible permutations, there exists K! symmetries in
the likelihood. Moreover, the possibility of empty components raises the possibility
that certain parameters θk are not identifiable. As our aim is to find the maximum
likelihood estimate (MLE), we will be satisfied with finding one of the K! equivalent
MLEs. The issue of empty (or near-empty) components is dealt with via information
criteria to select the number of components. Although not providing any theoretical
guarantees, (near) empty components will be discouraged due to the unnecessary
numbers of parameters they introduce.

2.2 Specification of the components of the mixture

The way in which the probability density functions f (Y∣θm) in Equations (2.1) and
(2.2) can be specified depends on the properties that are deemed relevant for the
analysis of the networks at hand. If, for example, interest lies in clustering a sequence
of binary graphs based on similarities in their degree distributions, f (Y∣θm) can be
specified as a p1 or p2 model (Holland and Leinhardt, 1981; van Duijn et al., 2004).
If a partition of vertices into groups or communities is available and the probabilities
of interaction between vertices are believed to depend on group memberships, a
stochastic blockmodel (Holland et al., 1983) can be employed to specify f . If both
the degree distribution and community structure are deemed relevant, different types
of degree-corrected stochastic blockmodels (Wang and Wong, 1987; Signorelli, 2017)
can be considered. If one would like to cluster graphs based on the values of network
statistics that reflect socially relevant patterns of interaction (e.g., transitivity), they
could consider ERGMs (Frank and Strauss, 1986).

In this article, we focus our attention on network models that assume edges
to be independent conditionally on the model parameters (and, potentially, on a
set of unobserved random effects), so that their likelihood can be specified as
that of a generalized linear (mixed) model. The motivation behind this choice
is threefold. Firstly, a wide range of popular network models (among which are
the p1 and p2 models, stochastic blockmodels a priori, degree-corrected stochastic
blockmodels a priori, the family of models considered by Perry and Wolfe
(2012) and the unconstrained model that we introduce in Section 2.2.3, but not
ERGMs) can be specified as GLMs (McCullagh and Nelder, 1989))or as GLMMs
(Breslow and Clayton, 1993). Moreover, the GLM(M) framework enables us to
easily incorporate monadic, dyadic and graph-specific covariates into the network
generative models. Finally, mixtures of GLM(M)s can be estimated efficiently and this
ensures computational efficiency in the estimation of mixtures of network models,
which we will base on an iterative algorithm that may require several iterations and,
thus, could otherwise become computationally burdensome.

Therefore, we shall specify the mixture model in (2.1) as a mixture of GLMs
(Grün and Leisch, 2008) by assuming that the value of each edge ykij is drawn from
an exponential family distribution and that a transformation of the conditional
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expectation of Yk
ij is linear in the parameters:

g [E (Yk
ij ∣xijk, θ,Zk =m)] = xT

ijkθm,

where g is a link function and xijk is a vector associated to θm that can contain monadic
(i.e., node-specific) covariates for nodes i and j, dyadic (i.e., edge-specific) covariates
for edge (i, j) and graph-specific covariates for graph Gk. Extensions to mixtures
of GLMMs are straightforward and will be used in the application. The density of
graph Gk can then be obtained as f (Yk∣θzk) =∏i<j f (y

k
ij ∣θzk) if Gk is undirected, or

as f (Yk∣θzk) =∏i≠j f (y
k
ij ∣θzk) if it is directed. Hereinafter, we shortly introduce three

network models that we will use in Section 4 to illustrate our method.

2.2.1 p1 model
In social network analysis, the popularity of individuals is often regarded as one of
the possible determinants of the formation of relations in a network. This reflects the
idea that in certain social settings, individuals may be more likely to relate to popular
individuals than to isolated ones: for example, if you live in a small village in the heart
of the Alps, you are more likely to interact with popular figures such as the mayor
and the priest, rather than with a woodsman who lives in a remote cottage in the
middle of the woods. This idea is at the basis of the p1 model (Holland and Leinhardt,
1981), a simple network model that assumes that the probability of an edge between
any two nodes i and j depends (only) on the expected degrees of the two nodes. If, for
example, a population of binary undirected networks is considered, we can specify a
mixture of p1 models by letting ykij ∣zk ∼ Bern (π

zk
ij ), where logit (πzkij ) = θ

zk + α
zk
i + α

zk
j

and ∑v
i=1 α

zk
i = 0.

2.2.2 Stochastic blockmodel
Besides popularity, group membership of nodes is another factor that can shape
the way in which relations are formed. Real networks often feature the presence of
communities of nodes whose members are highly connected with each other and tend
to form sporadic connections with members from other communities. For example,
it has been shown that parliamentarians tend to collaborate more frequently with
members from their own parliamentary group rather than with those from other
political groups (Signorelli and Wit, 2018). In general, group membership typically
induces a so-called community structure in networks, wherein nodes from the same
community are closely tied to each other and sporadically linked to nodes from other
communities. The effect of community membership on the formation of relations
is usually modelled with stochastic blockmodels (Holland et al., 1983; Snijders and
Nowicki, 1997). Let P denote a partition of V into p < v groups and denote by
C ∶ V → P a community-assignment function, so thatC(i) is the community that node
i belongs to. In stochastic blockmodels, the probability of an edge between nodes i
and j depends on the communities that the two nodes belong to: ykij ∣zk ∼ Bern (π

zk
ij ),

Statistical Modelling 2020; 20(1): 9–29
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where

logit (πzkij ) = θ
zk
C(i)C(j). (2.3)

Depending on whether the community-assignment function is known or not, it
is possible to distinguish stochastic blockmodels a priori (Holland et al., 1983),
wherein community labels are known and interest lies in the reconstruction
of relationships between communities, from stochastic blockmodels a posteriori
(Snijders and Nowicki, 1997). In this work, we focus on the simpler a priori stochastic
blockmodel, which is computationally cheap and, thus, can be easily incorporated
into the iterative estimation procedure proposed in Section 3.1. Mixtures of stochastic
blockmodels a posteriori, instead, are considered in the works of Stanley et al. (2016)
and Reyes and Rodriguez (2016).

2.2.3 Unconstrained network model
The p1 model and stochastic blockmodel described above are two examples of
simple and thrifty statistical network models that can be employed to model
commonly observed features of real networks such as heterogeneity in node degrees
and community structure. These models comprise a number of parameters that is
considerably lower than the number of nodes pairs and, thus, they allow a very
parsimonious description of networks; however, in reality these models are likely to
be often too simplistic. It may thus be desirable to consider more complex statistical
models, which can improve model fit and enable a more realistic description of
the complex structure of a network. For example, it is possible to combine the
aforementioned models into a degree-corrected stochastic blockmodel (Wang and
Wong, 1987) that can account for degree heterogeneity and community structure at
the same time, or to incorporate covariates into stochastic blockmodels (Signorelli
and Wit, 2018). A further example of how to combine different statistical network
models into a more realistic one can be found in the example application that we
provide in Section 5, where we will specify a network model that combines features
of the p2 model and of the stochastic blockmodel, and that furthermore accounts for
the effect of some monadic covariates on the formation of advice relationships.

Clearly, more realistic network models may require a larger set of parameters
and this could increase the complexity of maximum likelihood estimation for model
(2.1) and computing time. To illustrate this, we consider the extreme scenario of a
mixture of saturated network models, where the number of parameters is equal to the
number of edge pairs multiplied by the number of subpopulations of graphs, namely
Mv(v − 1)/2 in undirected graphs and Mv(v − 1) in directed graphs. This model
simply assumes that ykij ∣zk ∼ Bern (π

zk
ij ), leaving the probabilities πzkij unconstrained.

It represents the most complex model that can be specified to model relations within
a population of networks with M ≤ K subpopulations, and it does not make any
restrictive assumption about which factors affect the creation of edges. As such,
in practice this model may represent a useful starting point in the analysis of the
population of networks: in particular, its generality can be exploited at an initial
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stage of the analysis to choose the number of subpopulations M in the mixture
and to identify some important patterns in the data; information gathered from this
complex model could then be exploited to further refine the analysis by specifying a
simpler network model that accounts for the most important effects that are believed
to affect the presence of edges. We provide an example of this modelling approach
in Section 5.

3 Model estimation

We propose to estimate the unknown parameter vector2 of the mixtures of network
models described in Section 2 with maximum likelihood. Since the likelihood function
L(2∣Y,Z) in Equation (2.2) depends both on the observed graphs Y and on the
unobserved vector Z, such likelihood can be maximized by implementing the EM
algorithm as illustrated below.

3.1 EM algorithm

The EM algorithm (Dempster et al., 1977) represents a popular choice for the
estimation of mixture models. The algorithm allows the maximization of a likelihood
L(θ∣y, z) that depends both on observed data y and on latent data z, and it
consists of successive iterations of two steps, respectively called expectation (E) and
maximization (M). The expectation step requires the computation of the conditional
expectation of the likelihood L(θ∣y, z) given the current estimate of θ and the
observed data y, whereas the maximization step updates the parameter estimates
by maximizing the expected likelihood determined in the E step. We propose the
following implementation of the EM algorithm for the maximization of (2.2):

1. Choose a starting point for the algorithm made by the initial probabilities p0
km =

Pr(Zk =m) ∈ [0,1] for k ∈ {1, . . . ,K} and m ∈ {1, . . . ,M}, with ∑M
m=1 p

0
km =

1 ∀k. Denote by P0 the K ×M matrix which collects these probabilities;
2. Given P0, estimate the parameters of the mixture of GLMs with weights given

by (p0
1m, . . . ,p

0
Km) for the mth component, and obtain 2̂0 = (θ̂0

1, . . . , θ̂
0
M);

3. For t = 1,2,3, . . . until convergence is reached:

a. E step. Given 2̂t−1, derive Pt as

ptkm =
f(Yk∣θ̂

t−1
m )

∑
M
j=1 f(Yk∣θ̂

t−1
j )

.

b. M step. Given Pt, estimate a mixture of GLMs with weights given by
(pt1m, . . . ,p

t
Km) for the mth component, and obtain 2̂t.

Statistical Modelling 2020; 20(1): 9–29
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In principle, it is possible to initialize the EM algorithm introduced above with
any matrix of initial probabilities P0. However, it is possible to reduce the number of
iterations and facilitate convergence to the true MLE by considering multiple sensible
initial guesses of the cluster memberships. Therefore, we consider three different
cluster initializations by means of three network similarity measures combined with
the partition around medoids (PAM) clustering method (Reynolds et al., 2006). The
first similarity measure is the Jaccard index (Jaccard, 1912). The second is given by
the L1 distance between the adjacency matrices (note that for binary graphs, this
is equivalent to the L2 distance). The third similarity measure is obtained by first
computing the Laplacian matrix of each graph (defined as L =D −A, where A is the
adjacency matrix of the graph and D a diagonal matrix with the degrees of each node
as diagonal entries) and then taking the L1 distance between the Laplacian matrices
rather than between the adjacency matrices. Once a distance matrix has been obtained
with one of the aforementioned methods, we apply the PAM clustering algorithm
with number of clusters equal to M and derive P0 accordingly.

3.2 Selection of the number of components

In practice, the number of subpopulations M that form the mixture is typically
unknown and it needs to be estimated. The estimation of the number of components
M can be performed by minimizing model selection criteria such as the Akaike
information criteria (AIC) and the Bayesian information criteria (BIC). The choice of
the effective sample size to be used for the computation of BIC is particularly crucial
for multivariate data (Berger et al., 2014) and it is selected to be equal to K for this
purpose. We assess the performance of AIC and BIC on simulated data in Section 4.2.

4 Simulations

In this section, we first evaluate the accuracy of the proposed clustering method with
respect to network size (represented by the number of nodes v), to the number of
networks K and to the number of subpopulations M on simulated data. Then, we
assess the capacity of the selection criteria introduced in Section 3.2 to correctly
identify the true number of subpopulations M. We conclude discussing the scalability
of the proposed method to large populations of networks and to populations of large
networks. The R code to simulate the data and to perform model-based clustering
of populations of networks can be found at http://www.statmod.org/smij/
archive.html.

4.1 Clustering accuracy

We begin the assessment of the performance of the proposed method with nine
simulations (A-I) where we study the clustering accuracy of our method with respect
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Table 1 Synthetic overview of simulations A-I. We consider two parsimonious models, the p1 model
(Section 2.2.1) and the stochastic blockmodel (SBM) a priori (Section 2.2.2), and a more general,
unconstrained network model (Section 2.2.3) that contains as many parameters as edge pairs. In
simulations A, D and G we increase v , keeping K and M fixed. In simulations B, E and H we increase K ,
keeping v and M fixed. In simulations C, F and I we increase the number of subpopulations M while
keeping v fixed; each subpopulation consists of 10 graphs (hence, K = 10 ⋅M).

Simulation Network model v K M

A p1 model from 10 to 40 50 2
B p1 model 20 from 12 to 60 2
C p1 model 30 10 ⋅M from 2 to 7
D SBM a priori from 10 to 40 50 2
E SBM a priori 20 from 12 to 60 2
F SBM a priori 30 10 ⋅M from 2 to 7
G unconstrained from 10 to 40 50 2
H unconstrained 15 from 12 to 60 2
I unconstrained 15 10 ⋅M from 2 to 7

to the three network models introduced in Section 2.2 as v, K or M increases. We
focus on how the purity (Schütze et al., 2008) of the clusters is affected by these
parameters. Purity is a measure of clustering accuracy that attains value 1 if perfect
classification is achieved; for M equally sized (true) subpopulations, the worst-case
purity value is 1/M.

Table 1 summarizes the features of the mixtures of networks considered in each
simulation. Within each simulation, we compute 50 repetitions for each combination
of (v,K,M) considered; we consider 10 different initializations for the EM, 3 of
which are obtained as described in Section 3.1 and the remaining 7 are obtained
from the previous 3 starting points by randomly replacing the initial probabilities of
30% of the graphs. A more detailed description of the parameters involved in each
simulation can be found in Section 1 of the supplementary material.

The distribution of purity across repetitions for the p1 model is illustrated in
Figure 1. Purity quickly increases with respect to the number of nodes present in
a graph (panel A); this steep increase is mainly due to the fact that the number of
edge pairs increases quadratically with v, making prediction for populations of larger
graphs a much easier task. Panel B shows that purity is already fairly high with a small
number of graphs, but is highly variable; a larger K results in reduced variability for
the purity, which is more concentrated around its median value. Finally, simulation C
shows that purity decreases with the number of subpopulations considered; this result
is intuitive, since a larger number of subpopulations produce a harder classification
problem; nevertheless, even for larger values of M there is an evident improvement
over random allocation of graphs to subpopulations (panel C).

Similar observations hold for the simulations (D, E and F) with the stochastic
blockmodel a priori (Supplementary Figure 1) and for those (G, H and I) with the
unconstrained network model (Supplementary Figure 2).

Statistical Modelling 2020; 20(1): 9–29
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Figure 1 Purity in simulations A, B, C. Each boxplot represents the distribution of purity over 50
repetitions, whereas the squares denote the value of purity that corresponds to a random assignment of
graphs to clusters (i.e., 1/M).

4.2 Selection of the number of subpopulations

In order to assess the performance of the model selection criteria introduced in
Section 3.2, in simulation J we repeatedly sample K networks from a mixture of
unconstrained network models (defined in Section 2.2.3) with M = 3 subpopulations
of equal size (more details can be found in Section 1 of the supplementary material).
We fix v = 20 and let K ∈ {30,90,180,300}. We repeat each simulation 100 times,
computing the MLEs of the mixture model parameters for M ∈ {1,2,3,4,5}. Then,
we compute AIC and BIC and derive the optimal number of subpopulations according
to each criterion.

Figure 2 shows the distribution of the optimal number of subpopulations obtained
with AIC and BIC for the different values of K considered. We note that as expected,
both AIC and BIC can accurately select the correct number of subpopulations (M = 3)
when a sufficiently large number of graphs K is available. When K is small, however,
BIC tends to systematically underestimate M and it is thus outperformed by AIC.

4.3 Scalability of method to large and many graphs

In Section 4.1, we have considered simulation scenarios with a relatively small
number of graphs of moderate size. This has allowed us to show how the
proposed approach can achieve a good accuracy in allocating graphs to their correct
subpopulation already in problems where v or K are relatively small. Here, we
consider two simulations with larger v and K to illustrate the scalability of our
approach, focusing on how the computing time is affected by the number of networks
K as well as by the size of the networks. In general, we see that the computing time
increases linearly with K and M, and super-linearly with v.

In simulation K, we simulate data from a mixture of stochastic blockmodels a
priori with five blocks, setting v = 50, M = 2, and we let K increase from 100 to
1 000. Figure 3 shows that the median computing time is linear in the number of
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Figure 2 Distribution of the optimal number of subpopulations in simulation J according to AIC and BIC,
for different values of K . The true number of populations is equal to 3.

200 400 600 800 1000

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5

0

Number of graphs (K)

M
e
d
ia

n
 c

o
m

p
u
ti
n

g
 t

im
e
 (

s
e
c
o
n
d
s
)

Figure 3 Relationship between number of graphs and median computing time in simulation K. It can be
observed that computing time is approximately linear in the number of graphs. Computations were
performed using a processor with 2.3 GHz CPU.

graphs, and it increases from 36.5 seconds when K = 100 up to 363 seconds when
K = 1 000.

In simulation L, we simulate data from a mixture of stochastic blockmodels a
priori with five blocks, setting K = 50, M = 2, and we let v increase from 100 to
1 000. Figure 4 shows that the median computing time is quadratic in the number
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Figure 4 Relationship between graph size and median computing time in simulation L. It can be observed
that computing time is approximately quadratic in the number of vertices v , and linear in the number of
edge pairs v(v − 1)/2. Computations were performed using a processor with 2.3 GHz CPU.

of vertices v and linear in the number of node pairs v(v − 1)/2, increasing from 35.1
seconds when v = 100 to 3 089 seconds when v = 1 000.

5 Application

In this section, we illustrate an application of our model-based network clustering
method to a population of networks on advice relationships within a small business
collected by Krackhardt (1987), whose aim was to find ways to summarize the
reconstructions of an unobserved social network reported by different perceivers.
In this study, 21 employees of a high-tech US company were asked to fill in
a questionnaire where, among other questions, each employee was requested to
reconstruct advice relationships between the 21 employees. From the answers to
this questionnaire, Krackhardt (1987) derived a population of K = 21 directed
advice networks, wherein each network is the reconstruction of advice relationships
according to a different employee. Given the difficulty to analyse data within
the resulting three-dimensional array, which he called cognitive social structure,
Krackhardt (1987) proposed three simple aggregation techniques to reduce the
dimensionality of the problem and simplify interpretation. Alternatively, we show
here how a suitably defined mixture of network models may be employed to highlight
important patterns in Krackhardt’s population of networks.

Because each employee attempted to reconstruct the actual network of advice
relationships within the firm, which is unobserved, we may expect that not only
different perceivers would reconstruct advice relationships in a different manner
but also some perceivers may provide substantially similar reconstructions of the
advice network. In other words, it seems reasonable to hypothesize the presence
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Figure 5 Value of the AIC for mixtures of unconstrained network models with increasing number of
subpopulations M. The minimum AIC is attained when M = 2.

of different clusters of networks, corresponding to groups of employees who have
similar perceptions of advice relationships within the firm.

We begin our analysis in an exploratory manner by considering at first a mixture
of M unconstrained network models: we do not make any assumption on how each
arrow is formed, thus leaving the probabilities to observe an arrow from node i
to node j (i ≠ j) unconstrained. The aim of this first analysis is twofold: first, we
want to find an appropriate number of clusters, unconfounded by a too restrictive
network model; secondly, we aim to exploit patterns in the estimated probabilities of
observing an arrow in each subpopulation to further refine the analysis. Later in this
section, we will use this information to define a more parsimonious network model
where we will let these probabilities depend on a set of covariates.

The first model that we consider simply assumes that ykij ∣zk ∼ Bern (π
zk
ij ), with

zk ∈ {1, . . . ,M} and i ≠ j. We estimate the optimal number of subpopulations M̂
following the approach outlined in Section 3.2, using AIC as model selection criterion
based on the results presented in Section 4.2. As Figure 5 shows, AIC attains a
minimum when M = 2, so we set M̂ = 2. Estimation of the mixture model with M = 2
components leads to the detection of a first cluster that comprises six perceivers,
namely employees 1, 3, 4, 5, 10 and 21, and of a further cluster comprising the
other 15 employees. In Figure 6 we show the predicted probabilities of observing
advice relationships from sender i to receiver j in each subpopulation, that is, π̂mij ,
with m ∈ {1,2} and i ≠ j.

Graphical inspection of Figure 6 clearly reveals that graphs in the first
subpopulation are denser than graphs in the second subpopulation; moreover, in both
subpopulations we can intuitively observe that department affiliation seems to have a
strong influence on the predicted probabilities of advice relationships. However, the
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Figure 6 Predicted probabilities to observe an arrow from individual i (x-axis) to individual j (y-axis) in
the two subpopulations. On both axes, nodes are ordered by department, and horizontal and vertical lines
separate employees into the four departments the firm is divided into (so, e.g., employees 6, 8, 12, 17 and
21 belong to department 1; note that employee 7, the CEO, doesn’t belong to any department). It is
apparent that graphs within the first subpopulation are denser, and that in both subpopulations
department affiliation induces a community structure wherein advice relationships are typically more
frequent within the same department than between different departments.

large number of parameters (840) employed by the mixture of unconstrained models
makes it difficult to draw any further conclusion on similarities and differences
between the two subpopulations, and to relate those to any other known feature of
the employees. Therefore, we now consider a more parsimonious model where we
try to relate the presence of an arrow to such features. Krackhardt (1987) collected
the following additional information about the employees:

• age and length of service (tenure) of each employee;
• position occupied by each employee in the firm; one employee is the CEO, two

are vice-presidents and the remaining 18 have supervision roles; here, we consider
a binary distinction between CEO and vice-presidents on the one hand, and the
other 18 employees on the other;

• the department that each employee belonged to; in total, the firm comprises four
departments.

We incorporate these covariates into the analysis by considering a network model
where we combine features of the p2 model (van Duijn et al., 2004) and of the
stochastic blockmodel a priori (Holland et al., 1983), and we furthermore let arrows
depend on the available set of monadic covariates (Signorelli and Wit, 2018). Such
a model can be regarded as a degree-corrected stochastic blockmodel a priori with
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Table 2 MLEs and standard errors for βm, m ∈ {1,2} in model (5.1), and MLEs of σm and τm. Asterisks (∗)
denote regression coefficients that are significantly different from 0 (H0 ∶ βm

j = 0) at α = 5% level. The last
column contains the p-value of the test for equality of each parameter in the two subpopulations
(H0 ∶ β1

j = β
2
j )

Parameter θ̂1 θ̂2 SE(θ̂1) SE(θ̂2) p-value (θ1 = θ2)

β0 0.809 −1.997∗ 0.671 0.439 0.000
β1 (age sender) −0.014 −0.006 0.012 0.010 0.972
β2 (tenure sender) −0.035∗ −0.016 0.017 0.009 0.930

β3 (sender in lead pos.) 0.014 0.008 0.016 0.013 0.977
β4 (perceiver = sender) 1.128∗ 1.020∗ 0.231 0.146 0.675

β5 (age receiver) 0.034 0.044∗ 0.022 0.012 0.964
β6 (tenure receiver) 0.543∗ 0.582∗ 0.214 0.170 0.876

β7 (receiver in lead pos.) 1.407∗ 2.058∗ 0.287 0.150 0.017
β8 (perceiver = receiver) 1.353∗ 1.354∗ 0.231 0.149 0.998
σ (rand. int. sender) 0.329 0.267
τ (rand. int. receiver) 0.472 0.232

covariates, where the blocks are given by the four departments in the company, the
(in- and out-) degree-correction is carried out using random effects and where we
furthermore account for the effect of several monadic covariates. LetAi and Ti denote
the age and tenure of node i, let Li be a binary variable distinguishing individuals in
leadership positions that is 1 if i is either the CEO or a vice-president and 0 otherwise,
and let I(i = k) and I(j = k) be binary variables that are 1 if, respectively, the perceiver
(k) is sender (i) or receiver (j), and 0 otherwise. Furthermore, let Di ∈ {1,2,3,4}
denote the department that individual i is affiliated to. We consider the following
mixture model: ykij ∣ (zk,u

zk
i ,v

zk
i ) ∼ Bern (π

zk
ij ), where

logit(πzkij ) = β
zk
0 + u

zk
i + v

zk
j + β

zk
1 Ai + β

zk
2 Ti + β

zk
3 Li + β

zk
4 I(i = k)

+β
zk
5 Aj + β

zk
6 Tj + β

zk
7 Lj + β

zk
8 I(j = k)

+
4

∑
r=1
γzkr I[Di = r] +

4

∑
s=1
δzks I[Dj = s] +

4

∑
r=1

4

∑
s=1
ξzkrs I[Di = r]I[Dj = s],

(5.1)

u
zk
i ∼N [0, (σzk)2] and v

zk
j ∼N [0, (τzk)2] are random intercepts that allow to model

parsimoniously the in- and out-degree distributions, and γmr , δms and ξmrs are
blockmodel main effects and interactions subject to the constraints that ∑4

r=1 γ
m
r = 0,

∑
4
s=1 δ

m
s = 0 and ∑4

r=1∑
4
s=1 ξ

m
rs = 0 for every m ∈ {1,2}.

We remark that not only model (5.1) is considerably thriftier than the
unconstrained mixture model previously considered (the former comprises 54
parameters, the latter 840), but it is also more interpretable as it enables us to
study how the advice relationships reconstructed by the employees could have been
affected by individual (age and tenure) and organizational (department and leading
roles) features of the employees and firm.
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Figure 7 Predicted random intercepts for sender (ûi ) and receiver (v̂j ) in subpopulations 1 (x-axis) and 2
(y-axis)

Table 2 contains the MLEs of the fixed effects βm0 , . . . , β
m
8 , m ∈ {1,2} and of the

standard deviation of the random effects in model (5.1). In both subpopulations we
observe that the perceiver tends to report more ingoing and outgoing relationships
that involve him (β̂4 > 0 and β̂8 > 0). Moreover, there is a common tendency to
seek advice from employees with longer tenure within the firm (β̂6 > 0) and from
the CEO and the vice-presidents (β̂7 > 0). As concerns differences between the two
subpopulations, not only it is apparent that graphs in the first subpopulation are
significantly denser than those in the second (β̂1

0 > β̂
2
0), but we also observe that in the

second subpopulation the tendency to seek advice from the CEO and vice-presidents
is significantly stronger than in the first one (β̂2

7 > β̂
1
7). Furthermore, τ̂1 > τ̂2 indicates

a less heterogeneous distribution of out-degrees in the second subpopulation (i.e., in
subpopulation 1 advice requests tend to be more concentrated on fewer employees).

Figure 7 shows the distribution of the predicted random effects for sender and
receiver in model (5.1). In the left-hand-side plot, which displays the sender effect,
most points fall in the first and third quadrant; this is an indication that perceivers
in the two subpopulations have similar ideas on how many colleagues a certain
individual seeks advice from. For example, individual 17 has the highest in-degree
correction ûi in both subpopulations. Similar observations can be made for the
right-hand-side plot; moreover, here we clearly see the different magnitude of the
out-degree correction in the two subpopulations, which we already inferred from
Table 2.

Table 3 summarizes the significance and sign of the estimated block-interaction
parameters ξzkrs in model (5.1) (more details on γzkr , δzks and ξzkrs are provided in Table 1
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Table 3 Sign and significance of the block-interaction parameters ξzk
rs in cluster 1 (left) and cluster 2 (right).

⊕ and ⊖ denote parameters significantly different from 0 (p < 0.05), + and − parameters with p > 0.05. The
value and significance of all γzk

r , δzk
s and ξzk

rs can be found in Table 1 of the supplementary material.

Subpopulation 1

Dept. receiver

Dept. sender 1 2 3 4

1 ⊕ ⊖ ⊖ −
2 ⊖ ⊕ + ⊖
3 ⊖ ⊕ ⊕ +
4 − ⊖ − ⊕

Subpopulation 2

Dept. receiver

Dept. sender 1 2 3 4

1 ⊕ ⊖ ⊖ −
2 ⊖ ⊕ + ⊖
3 ⊖ + ⊕ ⊖
4 − ⊖ − ⊕

of the supplementary material). In both clusters we find evidence of a rather strong
community structure induced by department affiliation, which results in employees
seeking advice from members of the same department more frequently (ξ̂mrr > 0 ∀r ∈
{1,2,3,4} ∧ ∀m ∈ {1,2}). All the other block-interactions are typically negative or
non-significant, with the exception of advice relationships from department 3 to
department 2 in cluster 1 (ξ̂1

32 > 0). Overall, the two subpopulations appear to have
a similar, but not identical, view of the intensity of advice relationships occurring
between members from different departments.

6 Discussion

We have developed a model-based clustering approach for populations of networks
that specifies a joint statistical model for all graphs in the population and that is
capable of identifying subpopulations of graphs which share a similar generative
model, but which may still look like quite different networks in edge-space. Building
on the fact that GLMs and GLMMs represent a flexible and efficient tool for
modelling and estimating a wide variety of generative processes, we have proposed
to employ mixtures of GLMs or GLMMs to perform model-based clustering of
networks. Estimation of the proposed mixtures of network models can be efficiently
carried out by an EM algorithm. The identification of the number of subpopulations
that form the mixture has been performed with standard model selection criteria.

Evaluation of the proposed method on simulated data shows that the accuracy of
the clustering method strongly depends on the size of the graphs and on the number of
clusters, and much less on the number of graphs in the population. In particular, the
accuracy increases quickly with the number of vertices and it decreases, as expected,
with the number of clusters. The estimation of the number of subpopulations M can
be based on the minimization of model selection criteria such as AIC and BIC. As
illustrated in Section 4.2, the performance of AIC and BIC appears to be similar when
a relatively large number of graphs is available; however, for small K, BIC tends to
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systematically underestimate M, so we recommend the use of AIC when dealing with 
a small number of networks.

The approach presented in this article is able to consider mixtures of network 
models that make conditional independence assumptions on the probability of 
existence of edges. Examples of such models include the p1 model of Holland and 
Leinhardt (1981), the p2 model of van Duijn et al. (2004), different types of stochastic 
blockmodels a priori (Holland et al., 1983; Wang and Wong, 1987; Signorelli 
and Wit, 2018), the loglinear models proposed by Wolfe and Olhede (2013), the 
unconstrained model illustrated in Section 2.2.3 and any feasible combination of 
these models, like the one that we have employed in Equation (5.1). We note that 
ERGMs (Frank and Strauss, 1986) fall outside this class of models as they violate 
the conditional independence assumption, although quasi-likelihood estimation via 
a GLM is possible (van Duijn et al., 2009). We have made an attempt to implement 
this, but the results were not cleared and therefore we do not recommend it in general.
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