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Methods  Alternative to using the original metabolite val-
ues, the total information is decomposed by utilizing a linear 
regression model and the part relevant to �

m
 is further used. 

For two datasets, two different network estimation methods 
are considered. The first is weighted gene co-expression net-
work analysis based on correlation coefficients. The second 
method is graphical LASSO based on partial correlations.
Results  We observed that when using the parts related to 
the specific covariable of interest, resulting estimated net-
works display higher interconnectedness. Additionally, sev-
eral groups of biologically associated metabolites (very large 
density lipoproteins, lipoproteins, etc.) were identified in the 
human data example.
Conclusions  This work demonstrates how information on 
the study design can be incorporated to estimate metabolite 
networks. As a result, sets of interconnected metabolites 
can be clustered together with respect to their relation to a 
covariable of interest.

Keywords  Network reconstruction · Incorporating 
relevant information · Metabolites · Study design

1  Introduction

In recent years, network analysis of biological datasets has 
become an increasingly popular tool for studying the rela-
tionships between large numbers of variables that occur in 
omics research on transcripts, metabolites, proteins and 
others. In networks, variables are represented by nodes and 
their relationships, direct and indirect interactions (physi-
cal or functional), are represented by edges or links. One is 
often interested in the joint distribution of a set of variables 
conditional on a particular covariable. For example, one 
may want to study the relations between a set of metabolites 

Abstract 
Introduction  In systems biology, where a main goal is 
acquiring knowledge of biological systems, one of the chal-
lenges is inferring biochemical interactions from different 
molecular entities such as metabolites. In this area, the 
metabolome possesses a unique place for reflecting “true 
exposure” by being sensitive to variation coming from 
genetics, time, and environmental stimuli. While influenced 
by many different reactions, often the research interest needs 
to be focused on variation coming from a certain source, i.e. 
a certain covariable �

m
.

Objective  Here, we use network analysis methods to 
recover a set of metabolite relationships, by finding metabo-
lites sharing a similar relation to �

m
. Metabolite values are 

based on information coming from individuals’ �
m

 status 
which might interact with other covariables.
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with regard to body mass index (BMI). As an illustration, in 
Fig. 1 we show the concentrations of eight very large density 
lipoprotein (VLDL) particles that are associated with BMI 
and gender in a similar way, i.e. males have higher VLDL 
concentrations than women; low VLDL concentrations are 
associated to low and medium BMI categories, and high 
VLDL concentrations to high BMI. The aim of the current 
paper is to detect these groups of metabolites with similar 
relationships by using network analysis.

For network estimation, networks with different features 
are typically used for representing networks, i.e. undirected 
or directed networks. In undirected networks, edges connect-
ing two nodes do not have a direction indicating a symmetric 
relationship between them. In biology, undirected network 
estimation methods based on correlation are often preferred. 
These methods perform well with large numbers of sam-
ples and variables. However, little is known about their per-
formance in a small sample setting. Therefore, estimating, 
describing, visualizing and comparing networks for rela-
tively small samples is an ongoing topic of research (Kol-
aczyk and Krivitsky 2015). We will consider two methods 

of estimating undirected networks. The first is weighted 
gene co-expression network analysis (WGCNA) based on 
correlation (Zhang and Horvath 2005; Langfelder and Hor-
vath 2008; Zhao et al. 2010). While WGCNA was mainly 
developed for analysis of gene-expression data, applications 
on metabolite data have been reported as well (DiLeo et al. 
2011; Zhang et al. 2013). WGCNA is based on the concept 
of scale free networks implying the existence of a few highly 
connected nodes (hubs) participating in a very large num-
ber of metabolic reactions (Zhao et al. 2010). In WGCNA, 
the strength of the connection between nodes is typically 
dictated by a similarity measure (Zhao et al. 2010). The sec-
ond method is the graphical LASSO (GL) (Friedman et al. 
2001, 2008) based on partial correlations. For this Gaussian 
graphical model (GGM) based method, for two nodes not 
sharing a direct edge in a network the implication is that they 
are conditionally independent given all other variables. To 
obtain a sparse network an L1 penalty can be used. The pen-
alty can be determined using a stability selection algorithm 
(StARS) (Liu et al. 2010) to select a stable set of edges.

Fig. 1   Barplots representing the metabolite concentrations in humans by BMI class and sex for metabolites belonging in the VLDL module
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For describing and comparing the estimated networks using 
the two methods above, we first characterize the topology of 
the networks by measuring three types of network concepts 
Dong and Horvath (2007), Horvath and Dong (2008), i.e. den-
sity, centralization, and heterogeneity.

We will consider two different data applications for estimat-
ing metabolite networks. In the first application, the metabo-
lites are coming from an experiment with seeds in which the 
desiccation tolerance of these seeds was investigated as a func-
tion of genotype and a managed environment condition, or 
treatment. Seeds from two genotypes of the well-known plant 
Arabidopsis thaliana, the genotype Columbia-0 (Col-0) and 
the abscisic acid deficient mutant 2–1 (aba2–1) were selected. 
Germinated seeds at radicle protrusion were selected and 
either frozen in liquid nitrogen and stored at −80 °C directly 
or after 3d of incubation in −2.5 MPa polyethylene glycol 
(PEG), 5 μM ABA (ABA) or a combination of −2.5 MPa PEG 
+ 1 μM ABA (PEG + ABA). Therefore, four treatments for 
metabolic profiling have been considered here: (i) no treatment 
(control), (ii) PEG, (iii) ABA or (iv) both PEG and ABA. In 
this paper, we focus on estimating metabolite networks based 
on genotype-related information.

The second application concerns serum metabolites of 
unrelated individuals coming from the capital region of Fin-
land. In this observational study our specific interest lies in 
estimating networks of metabolites, conditioned on the indi-
viduals’ BMI status which might interact with individuals’ sex 
and age.

The rest of the paper is organized as follows. In Sect. 2, 
we propose our method for selecting information relevant to 
a certain covariable prior to network estimation. Addition-
ally we review some existing network estimation methods. In 
Sect. 3, we demonstrate our network estimation approaches 
on metabolite data coming from plants and humans, and we 
conclude with a Discussion in Sect. 4.

2 � Methods

A network consists of a set of nodes (or vertices) connected by 
a set of edges (or links). In this paper we consider undirected 
networks of metabolites, where the nodes correspond to the 
metabolites, and the edges between metabolites represent their 
relationship. For a network of P nodes, the network structure 
can be represented by the P × P adjacency matrix �. For undi-
rected networks, the elements aij of the adjacency matrix are 
defined as follows:

Note that the adjacency matrix � is symmetric and has 
zeros on the diagonal. The degree or connectivity ki of a 
node i is defined as ki =

∑
j≠i aij: i.e. ki equals the number 

aij =

{
1, if there is an edge between node j and node i

0, otherwise.

of neighbors of node i in the network. In addition to the 
adjacency matrix we typically consider a P × P intensity 
matrix � where the elements wij represent the strength of 
the relationship between node i and j. If nodes i and j are not 
linked, the weight wij is equal to zero. Popular choices for 
the weights wij are Pearson’s correlation coefficient, mutual 
information, Euclidean distance, partial correlation and 
topological overlap.

We will consider absolute Pearson’s correlation coeffi-
cient and partial correlations with no self-edges (wii = 0). 
Analogously to the degree of a node i

(
ki
)
, the strength or 

weighted degree is defined as si =
∑

j≠i wij. The strength of 
a node takes into account both the connectivity as well as 
the weights of the edges.

2.1 � Identifying the specific parts of metabolic 
concentrations relevant to a covariable

The weights represent the relationships between the metabo-
lite concentrations. In addition one might be interested in 
the relationships between specific parts of the metabolite 
concentrations: for example the part which is related to 
a covariable of interest. The idea is that metabolites with 
similar relationships with this covariable will tend to be 
close to each other in the network (see for example Fig. 1). 
The parts of the metabolite concentration concerning this 
specific covariable can be obtained by fitting linear regres-
sion models (or ANOVA) to the metabolic variables. Let 
� =

(
�

(1),… ,�(P)
)
 be the concentrations of P metabo-

lites and let �(p) be the vector of concentrations for the pth 
metabolite. Assume that � follows a multivariate Gaussian 
distribution � ∼ NP(�,�). From m covariables let �m be the 
categorical covariable of main interest. The remaining m − 1 
covariables are denoted as �(−m) =

{
�1,�2,… ,�m−1

}
.

Now we propose the following regression model:

where �p ∼ N
(
0, �2

(p)

)
 represents the random noise, � is the 

space with elements all vectors of length m − 1 with all com-
binations of zeros and ones, except all zeros, i.e. 
� = {(1, 0,… , 0), (0, 1,… , 0),… , (1, 1,… , 1)}, and ◦ is the 
Hadamard product. The term 

∑
�∈� ��

∏m−1

j=1
�

�j

j
 models all 

main effects and second and higher order interaction terms 
of covariables in �(−m). For example, for m − 1 = 2, ∑

�∈� ��
∏2

j=1
�

�j

j
= �10�1 + �01�2 + �11�1◦�2. Similarly, 

the term 
∑

�∈� ���m◦
∏m−1

j=1
�

�j

j
 models all terms interacting 

with �m. To ensure identifiability of all parameters a level 
of the covariable is used as reference category.

(1)

�
(p) = �

(p)

0
+ �

(p)

1
�m +

∑

�∈�

�
(p)

�

m−1∏

j=1

�
�j

j
+
∑

�∈�

�
(p)

�
�m◦

m−1∏

j=1

�
�j

j
+ �(p),
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The relevant information for the pth metabolite with regard 
to the categorical covariable �m is given by:

Now the edge between node p and q in a network can be 
based on correlation between �̂(p) and �̂(q).

2.2 � Network estimation methods

We consider two network approaches, namely WGCNA based 
on pairwise correlations between metabolites and GL based 
on partial correlations.

2.2.1 � Weighted gene co‑expression network analysis 
(WGCNA)

WGCNA (Horvath and Dong 2008; Zhang and Horvath 
2005; Langfelder and Horvath 2008) has been developed to 
efficiently analyze the correlation patterns among genes using 
gene expression data from microarray experiments. Network 
construction with WGCNA is typically followed by identifying 
clusters (modules) of highly correlated genes.

Estimation of networks—modeling the intensity matrix 
Complex networks may display non-trivial topological fea-
tures, such as a heavy tail in the empirical distribution of the 
degree of the nodes (the number of edges connected to a node). 
In biology, often networks with many low degree nodes and a 
few high degree nodes are of interest. Such networks are called 
scale free. To determine whether a network is scale free the 
log of the degree frequency (log(P(k))) is plotted against the 
logarithm of the degree (log(k)). A linear relationship indicates 
that the network is scale-free. A scale-free degree distribution 
can be expressed as P(k) ∝ k� and in a weighted case, i.e. in 
the context of WGCNA, the intensity wij can be written on a 
logarithmic scale, logwij = � log

|||cor
(
yi, yj

)||| for 𝛾 > 1. The 

threshold parameter � might be chosen in a way such that the 
network approximately satisfies the scale-free topology 
criterion.

In our experience, however, not all biological datasets yield 
scale free networks. If the network is not scale free � will be 
determined by the amount of noise in the dataset. For two 
Gaussian random variables, the magnitude of random noise for 
correlation coefficients from N samples is 1∕

√
N. In order to 

sufficiently suppress low correlations due to noise, we take the 
smallest value for � in such a way that the total noise is smaller 
than one (personal communication with Peter Langfelder):

(2)�̂
(p) = �̂

(p)

1
�m +

∑

�∈�

�̂
(p)

�
�m◦

m−1∏

j=1

�
�j

j
.

(3)
P(P − 1)

2(
√
N)𝛾

< 1.

Module identification A network might consist of a set of 
modules of closely interconnected metabolites. Average 
linkage hierarchical clustering based on a dissimilarity 
measure is a popular method to define a dendrogram of the 
network. The modules are obtained by cutting this tree (the 
two-step dynamic hybrid algorithm) (Langfelder et al. 2008). 
Here, we will use the following dissimilarity measure:

2.2.2 � Graphical LASSO (GL)

GL is another popular approach to obtain a network for 
a set of variables. Assume that the metabolite concentra-
tions (N by P data matrix �) follow a multivariate Gaussian 
distribution with mean vector � and variance-covariance 
matrix �. For simplicity we can assume that the data are 
centered, i.e. � = �. The inverse covariance matrix �−1 is the 
precision matrix. When its elements are equal to zero, the 
pair of metabolites is conditionally independent given the 
other metabolites. A Gaussian graphical model (Lauritzen 
1996) is a network based on these conditional independence 
relationships.

To estimate �−1 a penalized log-likelihood approach can 
be used. Define the precision matrix � = �

−1. Under the 
Gaussian model, the log-likelihood function is given by (up 
to a constant):

where � = �
⊤
�∕N is the sample covariance matrix. Maxi-

mizing expression 5 with respect to � leads to the maximum 
likelihood estimate �̂. Note that the elements of �̂ are in 
general not exactly equal to zero. Further in the high-dimen-
sional setting (P > N), � is singular and cannot be inverted 
to obtain �̂.

Therefore a penalized version of the log likelihood is typi-
cally maximized (Friedman et al. 2008; Hastie et al. 2009; 
Friedman et al. 2001; Rothman et al. 2008; Yuan and Lin 
2006). For the Lasso penalty the log likelihood function is 
as follows:

where � is a non-negative tuning parameter. For � = 0, the 
resulting network will be fully connected. While � increases, 
sparsity is induced to the estimated �̂ and the network starts 
to lose edges to the point that no more edges are left. Conse-
quently, elements of the resulting estimated precision matrix 
will be exactly equal to zero.

The tuning parameter � can be chosen so that the num-
ber of edges are biologically relevant and straightforward to 
interpret. A statistical approach for choosing � can be based 
on Akaike’s information criterion (AIC), Bayesian informa-
tion criterion (BIC), or K-fold cross-validation. To obtain 

(4)Diss
(
wij

)
= 1 −

|||wij
|||.

(5)�(�) ∼ log |�| − tr (��),

(6)��(�) ∼ log |�| − tr (��) − �||�||1,
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a stable edge set with a low false discovery rate, stability 
approach for regularization selection (StARS) (Liu et al. 
2010) is an attractive approach. It provides a penalty cor-
responding to the least amount of regularization that simul-
taneously makes a network sparse and is replicable under 
random sampling. GL with StARS is implemented in the 
huge R package (Zhao et al. 2012).

2.3 � Network evaluation

We now consider several measures to describe a specific 
network or a subset of a network and to compare networks, 
namely density, centralization and heterogeneity (Dong 
and Horvath 2007). Let � be the weights of the edges of 
the nodes in a network, i.e. � is the P × P matrix � for 
WGCNA after suppressing low correlations due to noise or 
the stability matrix estimated by StARS for GL.

The network density of � is the mean of these weights 
and is estimated by:

where s̄ is the mean of s. A value close to one indicates high 
interconnectedness.

The centralization is the difference between the strength 
of the most connected node in the network with respect to 
the average network and is given by

This measure is large when the network is a star, i.e. the 
network contains one highly connected node.

Finally the variation of the strength of the nodes might be 
of interest. Heterogeneity equals the coefficient of variation 
of the strength distribution:

These measures can be computed for a total network and for 
subnetworks or modules.

3 � Application to data

We will now analyze, describe and visualize the correlation 
structure of two metabolites datasets by using the described 

(7)Density (�) =
∑

i

∑

j≠i

wij

P(P − 1)
=

s̄

(P − 1)
,

(8)

Centralization (�) =
P

P − 2

(
max (s)

P − 1
− density

)

=
P

(P − 1)(P − 2)
(max (s) − s̄)

≈
1

P
(max (s) − s̄).

(9)Heterogeneity (�) =

√
var (s)

s̄
.

network approaches. The datasets are from an experiment 
aimed to study desiccation tolerance in germinated Arabi-
dopsis seeds (Maia et al. 2014) and from an epidemiological 
cohort which studies the relationship between dietary, life-
style, and genetic determinants and obesity and metabolic 
syndrome (DILGOM), which is a subset of the Finrisk 2007 
survey (Inouye et al. 2010; Kettunen et al. 2012). The studies 
differ in the types of subjects (plants vs. human), the study 
designs [experimental design (completely randomized) vs. 
random sample of the population] and in sizes (27 vs. 419). 
For both studies about the same number of metabolites are 
available, namely 56 and 58 metabolites for the experiment 
and epidemiological studies, respectively.

3.1 � Experimental design

Desiccation tolerance (DT) is the ability of certain organ-
isms to lose most of their cellular water content and become 
extremely dry and re-hydrate without the accumulation of 
lethal damage. DT is common in seeds of land plants. Such 
seeds acquire DT during development and become sensitive 
again to extreme dehydration around the point of visible 
germination. Yet, if confronted with suboptimal conditions, 
such as osmotic stress, germinated desiccation sensitive 
seeds are able to activate global changes in gene expression 
and metabolite composition to re-establish DT (Maia et al. 
2011). Here, we are interested in the network structure of 
the metabolic phenotype of two Arabidopsis genotypes, a 
Wild type, Col-0, and an abscisic acid-insensitive (aba2–1 
mutant). Germinated seeds were subjected to a set of treat-
ments including the application of osmotic stress by polyeth-
ylene glycol (PEG) and abscisic acid (ABA) to re-establish 
DT. In addition to the network structure of the observed 
metabolite concentrations also the network structure with 
regard to the relationship between the metabolites and the 
genotype (wild type and aba2–1 mutant) will be studied.

In total 56 metabolites were measured for 15 samples of 
Arabidosis wildtype seeds and 12 samples of aba2–1 mutant 
seeds. In Table 1, the number of samples for each combina-
tion of genotypes (Col-0, aba2–1) and treatment (control or 
no treatment), −2.5 MPa polyethylene glycol (PEG), 5 μM 
Abscisic acid (ABA) or both (PEG+ABA) are given.

Table 1   Experimental design for plant data

Cell counts denote the number of samples obtained per combination 
of treatment and Genotype

No ABA Yes ABA

No PEG Yes PEG No PEG Yes PEG

Col-0 3 6 3 3
aba2–1 3 3 3 3
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To obtain the genotypic part of the metabolites we fit-
ted Eq. 2 to the data where �m = � represents the geno-
type; the four treatment levels were represented by two 
dummy variables denoting the administration of PEG and 
ABA. Thus, �(−m) = (���,���). Specifically for the pth 
metabolite, the concentration associated with the seed’s 
genotype is given by:

Only significant variables were included in the models. Here 
we applied a hierarchical approach: if the highest order inter-
action was significant, all terms were included in the model. 
If the highest order interaction was not significant it was 
removed from the model and the significance of the consecu-
tive highest order interaction terms was checked. Finally if 
the genetic effect was not significant, the metabolite was dis-
carded from further analysis. 48 metabolites were used for 
the network analysis of genotype related metabolic variation.

Hereafter we will denote networks of metabolites con-
taining the original metabolite values 

(
�

(p)
)
 as O and net-

works containing the genotype related values 
(
�̃

(p)
)
 as G.

(10)
�̃

(p) = �̂
(p)

1
� + �̂

(p)

10
�◦��� + �̂

(p)

01
�◦��� + �̂

(p)

11
�◦���◦���.

3.1.1 � Networks estimated by WGCNA

For estimation of the intensity matrix � we first tried to 
find the soft thresholding parameter � corresponding to a 
scale free topology. However it appeared that for reasonable 
powers (� being <12) both networks (O and G) were not 
scale-free. Therefore based on the sample size (N = 27) and 
the number of metabolites (P = 54 for O and P = 48 for 
G), � = 5 was chosen for suppressing low correlations due 
to noise (see Sect. 2.2.1).

In Fig.  2, the intensity matrices �O
 and �G

 are 
depicted together with their corresponding dendrograms 
obtained by average linkage hierarchical clustering. The 
visualization of the heatmaps reveals higher correlations 
(deeper red colors) between the genotype related metabolite 
values in (G) compared to the original metabolite values 
(O).

As seen in Table 2, the density and centralization of the 
complete networks are relatively low. The network G has 
a density of 0.21 and centralization of 0.16. The network 
O has a density of 0.06 and a centralization of 0.04. With 
regard to heterogeneity the two networks are similar (G 
0.44 and O 0.45). The two most dense modules of G 
have a moderate density of 0.62 and 0.53, but still small 

Fig. 2   Heatmap plots for plant metabolites. Heatmaps were esti-
mated for a 

O
 when the original metabolite values were used, and 

b 
G

 when using the metabolite information related to the Genotype. 
Deep red colors high values of absolute correlation between pairs of 
metabolites, while lighter colors correspond to weaker correlations. 

Dendrograms were obtained using hierarchical clustering while mod-
ules correspond to square blocks along the diagonal. Interconnected 
modules are color coded by using the color bands beneath the dis-
played dendrograms
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centralizations (0.15 and 0.26). The modules of O have 
small densities, namely smaller than 0.33.

In Fig. 3, the top 5% of the strongest edges are visualized 
for the network O and G. Here, a threshold of 0.36 for 
O and of 0.73 for G was used for keeping the top 5% of 
the edges.

3.1.2 � Networks estimated by GL

Next we consider the GL approach for estimation of net-
works. The regularization parameter � controlling the net-
work’s sparsity was selected by using StARS (Liu et al. 
2010). We randomly draw 100 subsamples of size 22 for 
estimating �. A disagreement allowance of 5%, gave a �O

 
of 0.82 and a �G

 of 0.94. In Fig. 4, the results are depicted. 

Here, the edges’ thickness and transparency denotes the 
edge’s stability i.e. frequency of edge occurrence in the 100 
datasets. With regard to density, centralization and heter-
ogeneity (Table 3) the two networks gave similar values. 
However, there was not much overlap between the identified 
modules of G and O obtained by the GL approach. Addi-
tionally, there does not seem to be much overlap between the 
modules obtained by different network estimation methods 
(WGCNA vs. GL).

Top connected plant metabolites:  In Table 4, the top con-
nected plant metabolites for the O and G networks which 
were estimated by WGCNA or GL are given. In general, 
the GL approach yielded higher degrees of the metabolites 
for the G than for the O network. This was not the case 
when the network was estimated by using WGCNA. Apart 

Table 2   Network statistics 
when using WGCNA (density, 
centralization, heterogeneity) 
for modules and network as 
whole in plant data

a Network using the original metabolite values
b Module 1: fructose, fructose-6-phosphate, glucose, glucose-6-phosphate, glyceric-acid, xylose
c Module 2: 2-aminoadipic-acid, glutamine, isoleucine, lysine, nicotinic-acid, phenylalanine, proline, pyro-
glutamic-acid, threonine, tyrosine, valine
d Module 3: 5-aminocarboxy-4,6-dihydroxypyrimidine, ascorbic-acid, glutamate, glycerol, hexonic-acid, 
monothylphosphate, phosphoric-acid, threonate, urea
e Module 4: aspartate, beta-alanine, citrate, ethanolamine, maltose, serine, tryptophan
f Module 5: alpha-ketoglutaric acid, allantoine, asparagine, fucose, galactinol, glycine, leucine, malate, raf-
finose , suberyl-glycine, succinic acid
g Module 6: alanine, methionine, myo-inositol, pentonic acid, sucrose
h Module 7: anhydroglucose, benzoic acid, fumarate, trans-sinapinic acid, xylofuranose
i Network using genotypic-related information
j Module 8: alanine, fructose, fructose-6-phosphate, fumarate, glucose-6-phosphate, threonate, trans-sinap-
inic acid, tyrosine
k Module 9: 2-aminoadipic-acid, anhydroglucose, benzoic-acid, maltose, xylofuranose
l Module 10: ascorbic-acid, aspartate, glucose, glutamine, glyceric-acid, isoleucine, leucine, lysine, raffi-
nose, methionine, monomethylphosphate, phenylalanine, serine, threonine, tryptophan, valine, xylose
m Module 11: 5-aminocarboxy-4,6-dihydroxypyrimidine, allantoine, asparagine, citrate, galactinol, glycerol, 
glycine, hexonic acid, malate, myo-inosytol, pentonic acid, phosphoric acid, proline, pyroglutamic acid, 
suberyl-glycine, succinic acid, sucrose, urea

Module Density Centralization Heterogeneity Nr nodes Color coded


O

a

 Module 1b 0.33 0.20 0.33 6 Green
 Module 2c 0.30 0.18 0.35 11 Turquoise
 Module 3d 0.27 0.14 0.41 9 Brown
 Module 4e 0.23 0.22 0.56 7 Yellow
 Module 5f 0.20 0.12 0.31 11 Blue
 Module 6g 0.19 0.13 0.41 5 Black
 Module 7h 0.18 0.17 0.30 5 Red
 Complete 0.06 0.04 0.45 54


G

i

 Module 8j 0.62 0.15 0.17 8 Brown
 Module 9k 0.53 0.26 0.30 5 Yellow
 Module 10l 0.42 0.17 0.31 17 Blue
 Module 11m 0.38 0.19 0.33 18 Turquoise
 Complete 0.21 0.16 0.44 48
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from small differences, the two methods (WGCNA and 
GL) appeared to give similar lists of top connected metabo-
lites but the order was different. Additionally, the top con-
nected metabolites of G were different from the ones of 
O in both WGCNA and GL cases. These results were also 
observed in Figs. 3 and 4.

3.2 � Epidemiological study (DILGOM)

The other metabolomics dataset used has been measured in 
the epidemiological cohort DILGOM. A detailed description 
of the study and of the metabolomic dataset can be found in 
Inouye et al. (2010) and Kettunen et al. (2012). We excluded 
subjects who were diagnosed with diabetes, who received 
cholesterol medication, or who had outlying values for fast-
ing glucose levels (>10 mmol/l). In addition only subjects 
with complete data were considered. After excluding these 
samples, we had 419 subjects (202 males and 217 females) 
aged between 25 and 74 years (median 53). The metabo-
lomic data were measured by nuclear magnetic resonance 
(1H NMR) and comprise absolute quantitative measurements 
on 137 serum metabolites. Because of high correlation we 

removed 78 lipid particle subfractions and only the total 
lipid concentrations per particle size were used. Addition-
ally, one more metabolite (FALEN) was excluded since its 
measurements were not completely trusted. Our final dataset 
consisted of P = 58 metabolites: 25 lipoproteins, 13 lipids 
and fatty acids, 9 amino acids and 11 other small metabo-
lites, e.g. involved in glycolysis. We adjusted all the metabo-
lites for diastolic blood pressure (DBP) and blood pressure 
medication (BPM) (binary) by linear regression. In the rest 
of this section we will denote these adjusted metabolites as 
metabolites. We are interested in the network of metabolite 
concentrations and in the part of the metabolite concentra-
tions related to BMI.

Since the metabolites and BMI depend on age and sex, 
these variables were included in model 2 as 

(
�1,�2

)
. The 

continuous BMI values were categorized into three equally 
sized classes (1st thirtile = 24.38, 2nd thirtile = 27.56). Thus 
in Eq. 2, the total number of covariables is m = 3 and the 
variable �3 represents the indicator variables for the three 
BMI categories. The model 2 includes the main effects, 
first and second order interactions. Specifically for the pth 
metabolite, the following equation was used,

Table 3   Characterization of 
modules and network when 
estimating networks by GL and 
by using density, centralization 
and heterogeneity (edges’ 
stability has been used as 
weight) in plant data

a Network using the original metabolite values
b Module 1: glutamine, isoleucine, lysine, pyroglutamic acid, threonine, tyrosine, valine
c Module 2: allantoine, galactinol, glycine, leucine, raffinose , succinic acid
d Module 3: 2-aminoadipic acid, alanine, aspartate, beta-alanine, citrate, methionine, phenylalanine, proline, 
perine, tryptophan
e Module 4: 5-aminocarboxy-4,6-dihydroxypyrimidine, ascorbic acid, fructose, fructose-6-phospate, glu-
cose-6-phosphate, glyceric acid, glycerol, monomethylphosphate, pentonic acid, phosphoric acid, sucrose, 
threonate, urea
f Network using genotypic-related information
g Module 5: glutamine, glyceric acid, isoleucine, leucine, monomethylphosphate, valine, xylose
h Module 6: ascorbic-acid, aspartate, glycine, phenylalanine, proline, pyroglutamic acid, raffinose, serine, 
succinic acid
i Module 7: alanine, fructose-6-phospate, fumarate, glucose-6-phosphate, lysine, threonate, threonine, tyros-
ine
j Module 8: allantoine, asparagine, galactinol, glycerol, pentonic acid, phosphoric acid, suberyl-glycine, 
sucrose, urea

Module Density Centralization Heterogeneity Nr nodes Color coded


O

a

 Module 1b 0.51 0.33 0.37 7 Brown
 Module 2c 0.39 0.25 0.40 6 Yellow
 Module 3d 0.23 0.19 0.48 10 Blue
 Module 4e 0.22 0.19 0.46 10 Turquoise
 Complete 0.05 0.07 0.71 54


G

f

 Module 5g 0.49 0.33 0.41 7 Yellow
 Module 6h 0.37 0.23 0.31 9 Turquoise
 Module 7i 0.29 0.33 0.48 8 Brown
 Module 8j 0.25 0.21 0.44 9 Blue
 Complete 0.05 0.07 0.77 48
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Analogously to the plant application, networks of 
metabolites containing the original metabolite values (
�

(p)
)
 are denoted by O, and networks of metabolites 

containing the relevant information on BMI 
(
�̃

(p)
)
 by B.

(11)

�̃
(p) = �̂

(p)

1
��� + �̂

(p)

10
���◦��� + �̂

(p)

01
���◦���

+ �̂
(p)

11
���◦���◦���.

3.2.1 � Networks estimated by WGCNA

For estimation of the intensity matrix, we first tried to deter-
mine a soft-thresholding parameter � for which the network 
had a scale free topology. For both networks (the original 
and BMI related metabolite values), the scale-free topology 

Fig. 3   Sparse plant metabolite networks estimated by WGCNA with 
a the original metabolite values and b the Genotype related metabo-
lite values. Modules have been color coded as indicated by column 
“Color Coded” in Table 2 in their corresponding network (

O
 or 

G

). Colors have been selected by the two-step dynamic hybrid algo-
rithm implemented in the R-package WGCNA

Fig. 4   Estimated metabolite networks for plant data based on GL. In 
a, the estimated network is based on the original metabolite values, 
whereas in b Genotype related metabolite values have been used. Dif-
ferent modules have been color coded by the colors pinpointed in col-
umn ”Color Coded” of Table 3. The colors selection was guided by 
the two-step dynamic hybrid algorithm implemented in the R-pack-
age WGCNA
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did not hold for reasonable powers, i.e. � <12. Therefore, 
� = 3 was chosen based on the sample size (n = 419) and the 
number of metabolites (P = 58) as described in Sect. 2.2.1. 
The absolute values of Pearson’s correlation coefficients are 
visualized in Fig. 5; darker red colors represent strong cor-
relations, and lighter colors weaker correlations. The heat-
map of B shows several larger blocks of highly correlated 

metabolites while the heatmap of O shows several small 
and distinct clusters.

For visualizing and depicting edges in both networks 
we used the following thresholds: 0.22 for O and 0.66 
for B. These thresholds correspond to the top 10% of the 
edges (Fig. 6). For identifying interconnected modules, we 
applied average linkage hierarchical clustering and obtained 

Table 4   List of top connected plant metabolites for network estimation using WGCNA and GL

Results are displayed for the 
O
 and 

G
 networks. Italic denotes that the metabolite appears in both 

O
 and 

G
 networks. Bold is for metabo-

lites that appear only in the list of 
O
 network and bolditalic for metabolites that appear only in the list of the 

G
 network

a 
O
 network using the original metabolite values

b 
G

 network using genotypic-related information

WGCNA


O

a 
G

b

Metabolite Degree Metabolite Degree

Lysine 8 Threonate 6
Threonine 7 Succinic-acid 6
Threonate 7 Isoleucine 6
Valine 6 Ascorbic-acid 6
Phenylalanine 6 Sucrose 5
Isoleucine 6 Proline 5
Urea 5 Pentonic-acid 5
Monomethylophosphate 5 Glycine 5
Glycerol 5 Glutamine 5
Fructose-6-phosphate 5 Valine 4
5-Aminocarboxy-4,6-dihydroxypyrimidine 5 Pyroglutamic-acid 4
Tryptophan 4 Monomethylophosphate 4
Serine 4 Raffinose 4
Phosphoric-acid 4 Leucine 4
Raffinose 4 Allantoine 4

GL

 a

O
 b

G

Metabolite Degree Metabolite Degree

Valine 6 Threonate 6
Threonine 5 Succinic-acid 6
Threonate 5 Proline 6
Phenylalanine 5 Isoleucine 6
Monomethylophosphate 5 Ascorbic-acid 6
Lysine 5 Valine 5
Isoleucine 5 Sucrose 5
Glycerol 5 Pentonic-acid 5
Urea 4 Glycine 5
Tryptophan 4 Glutamine 5
Serine 4 Pyroglutamic-acid 4
Glutamine 4 Monomethylophosphate 4
Aspartate 4 Raffinose 4
Succinic-acid 3 Leucine 4
Proline 3 Glycerol 4
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dendograms. Modules were defined as branches of the den-
dogram and were identified using the two-step dynamic 
hybrid algorithm. The descriptives of the two networks are 
given in Table 5. The complete network B has a larger 
density (0.23 vs. 0.07) and centralization (0.17 vs. 0.11) and 
a lower heterogeneity value (0.50 vs. 0.76) than the complete 
network O. The first three modules of B are more dense 
than the modules of NO (0.63–0.77 vs. 0.15–0.32). The cen-
tralization and the heterogeneity of the modules of NG are 
smaller than of the modules of NO. In both cases, centraliza-
tion exhibits relatively low values denoting that there is not 
a dominant metabolite in each of the modules.

3.2.2 � Networks estimated by GL

Next we considered the GL approach. The penalty parameter 
� was selected by using StARS (Liu et al. 2010). We used 
a size for the subsamples of 205 (almost 50% of the total 
sample size) and a disagreement allowance of 2% across the 
networks. After subsampling 100 times, we obtained a �O

 
of 0.68 and �B

 of 0.91. Fig. 7 depicts the results. Here the 
edge thickness represent the stability of the estimated edges. 
The evaluation measures are also calculated based on stabil-
ity (Table 6). The density, centralization, and heterogeneity 
was very similar for both networks. The first modules of 
each network contained exactly the same metabolites and 

had also very similar properties. Interestingly the second 
dense module of G (VLDL) and third of the O (BCAA/
VLDL) had a large overlap with regard to VLDL parti-
cles. Note that VLDL particles were also identified by the 
WGCNA approach as a module. In Fig. 1 metabolite con-
centrations stratified by BMI and Sex are depicted for the 
VLDL module. It appeared that all these eight metabolites 
had a high value in obese men. For females the values were 
much lower for these metabolites except for alanine. Note 
that alanine is also on the border of the cluster (Figs. 6b,  7b) 
and shares connections with metabolites from other mod-
ules. Finally, the third densest module in B (FA) identified 
by GL exhibits a relatively high centralization. This denotes 
that some metabolite(s) had higher than average degree (hub 
metabolite(s)). The metabolite with the highest strength 
(6.99) and degree (7) as measured by the stability in GL 
within the module is monounsaturated fatty acids (MUFA). 
MUFA being connected to all metabolites in the FA module 
(only pyruvate is not a direct connection) indicates that it 
might have the most representative metabolite profile among 
the rest. LLDLL (total lipids of large LDL particles), with 
eight connections and strength 7.98 is the metabolite with 
the most connections within the Lipoproteins module. In 
the VLDL module, LVLDLL has the most connections (six 
connections) with strength of 5.98.

Fig. 5   Correlation matrix plot. The plots were generated for a 
O
 

using the original metabolite values, and b 
B
 using BMI informa-

tion. Dendrograms were obtained by ordering metabolites using 
hierarchical clustering. Modules of interconnected metabolites cor-
respond to square blocks along the diagonal, while deep red colors 

denote strong correlations (on absolute value). Metabolites belonging 
in the same module are color coded by the colors (coming from the 
two-step dynamic hybrid algorithm) that are indicated by the color 
band below each dendrogram
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Top connected metabolites In Table 7 the top 15 metab-
olites are given for combinations of the two approaches 
(WGCNA and GL) and two types of correlation structures 
(metabolites and BMI specific metabolites). The degree k of 
the metabolites was higher for WGCNA than for GL. The 
same conclusion holds when comparing Figs. 6b,  7b.

4 � Discussion

In this paper we studied and visualized the correlation 
structure of two datasets of metabolomics coming from 
two different studies. The studies differ in types of subjects, 
study designs and sizes. We considered two methodologi-
cal approaches to estimate the networks: namely WGCNA 
based on correlation and GL based on partial correlation. 
The methods were applied to the metabolite values and to 
parts of the metabolite values which incorporate the effect of 
a covariable of interest, e.g. genotype or BMI. We compared 
the obtained networks in terms of density, centralization and 
heterogeneity of the relationships between the nodes.

The density of the networks based on the covariable spe-
cific part of the metabolites had larger or similar values than 
the density of the networks based on the metabolites itself. 
Interestingly, for the metabolites measured in the epidemio-
logical study, a number of lipoproteins (i.e. IDLC, IDLL, 
LDLC, LLDLL, SERUMC, SLDLL, SM, XSVLDLL) was 
clustered together when keeping the original or the BMI-spe-
cific metabolite values in both network estimation methods. 
In addition, for the BMI specific part both approaches iden-
tified exactly the same module consisting mainly of VLDL 
particles with a density of 0.77 using Pearson correlation, 
and a density of 0.61 using stability in the GL approach. 
This module is characterized by high values for obese men. 
The relationship between BMI and VLDL concentrations 
is known. In several studies it has been found that obese 
people have elevated VLDL concentrations (almost by 50%; 
Magkos et al. 2008) compared to lean individuals (Mitten-
dorfer et al. 2003; Chan et al. 2004; Goff et al. 2005; Mag-
kos et al. 2008; Magkos and Mittendorfer 2009). This can 
be attributed to the hepatic overproduction of VLDL parti-
cles (Chan et al. 2004; Ooi et al. 2005) which characterizes 

Table 5   Characterization of 
modules and network in humans 
with WGCNA using density, 
centralization and heterogeneity

a Network using the original metabolite values
b FA/LDL: APOB, DHA, FAW3, FAW3FA, FAW6,IDLC, IDLL, LA, LDLC, LLDLL, MLDLL, PC, 
SERUMC, SLDLL, SM, TOTPG, XSVLDLL
c HDL: ALB, APOA1, HDL2C, HDLC, LHDLL, MHDLL, SHDLL, XLHDLL
d VLDL/AA: ALA, FAW6FA, GLC, GP, HDL3C, ILE, LAC, LDLD, LEU, LVLDLL, MUFA, MVLDLL, 
PHE, PYR, SERUMTG, SVLDLL, TOTFA, TYR, VAL, VLDLD, XLVLDLL, XXLVLDLL
e Network using BMI-related information
f VLDL: ALA, LVLDLL, MVLDLL, SERUMTG, SVLDLL, VLDLD, XLVLDLL, XXLVLDLL
g HDL: ACACE, APOA1, BOHBUT, HDL2C, HDLC
h IDL/LDL: ACE, IDLC, IDLL, LDLC, LEU, LLDLL, MLDLL, SERUMC, SLDLL, SM, XSVLDLL
i FA/lipids: APOB, FAW3FA, FAW6, GLOL, LA, LAC, LDLD, MUFA, PC, PYR, SHDLL, TOTFA, 
TOTPG
j FA/others: GLC, GP, HDLD, ILE, LHDLL, PHE, TYR, VAL, XLHDLL
k FA: CIT, DHA, FAW3, FAW6FA, GLN, MHDLL
l AA/lipoproteins: ALB, CREA, GLY, HDL3C, HIS, UREA

Module Density Centralization Heterogeneity Nr nodes Color coded


O

a

 FA/LDLb 0.32 0.19 0.45 17 Blue
 HDLc 0.31 0.23 0.55 9 Brown
 VLDL/AAd 0.15 0.19 0.72 22 Turquoise
 Complete 0.07 0.11 0.76 58


B

b

 VLDLe 0.77 0.11 0.11 8 Yellow
 HDLg 0.67 0.15 0.15 5 Black
 LDL/IDLh 0.63 0.18 0.35 11 Blue
 FA/lipidsi 0.59 0.16 0.19 13 Turquoise
 FA/othersj 0.54 0.15 0.27 9 Brown
 FAk 0.20 0.20 0.42 6 Green
 AA/lipoproteinsl 0.19 0.16 0.38 6 Red
 Complete 0.23 0.17 0.50 58
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obesity. Hepatic overproduction of VLDL particles is also 
stimulated by atherogenic dislipidemia (which is commonly 
present in obese people) and promoted by increased liver 
fat (Grundy 2004; Klop et al. 2013), also common in obese 
people. Finally, abdominal fat (known as visceral adipose 
tissue) and BMI have been found to be positively associated 
to VLDL particle concentrations and size suggesting again 
the association between obesity and high levels of VLDL 
(Sam et al. 2008).

The results for the data from the Arabidopsis desicca-
tion tolerance experiments were harder to interpret. In 
general, the densities and centralizations of the networks 
were smaller. This might be the result of the small sample 
size. Indeed the � parameter to shrink small values in the 
WGCNA approach is larger for the experimental than for 
the epidemiological design (five and three respectively). 
However for the GL approach there was less difference in 
the shrinkage, namely the shrinkage parameter was 0.68 and 
0.91 for NO and NB in the epidemiology study and 0.82 and 
0.94 for NO and NG in the experimental design. While in the 
epidemiological study the network specific to BMI provided 
interesting results, this was less the case for the desiccation 
tolerance data. One reason may be that the main effect of 
the genotype on the metabolite variation was smaller than 
the main effect of the treatment. We presented a treatment 
corrected metabolic network reconstrution in which the 
wild type and mutant type genotypes are compared across 

treatments. This is a sensible analysis in plant genetics 
(Eeuwijk et al. 2010). However, from a seed physiological 
perspective an analysis correcting for genotype and compar-
ing the treatments across the two genotypes may be more 
interesting. We will present the results of such an analysis 
elsewhere.

WGCNA and GL are complementary approaches for 
metabolite inference since the former recovers meaningful 
modules and the latter recovers meaningful edges, e.g. for 
the DILGOM study MUFA is the dominant metabolite in 
the FA module when GL is used. WGCNA is based on the 
correlation structure, and the obtained results are therefore 
straightforward to interpret. To reduce the noise in the data, 
a soft threshold is often applied to sufficiently shrink small 
correlations to zero. WGCNA allows detection of modules 
with high density. GL is based on Gaussian graphical mod-
els, in which the conditional independence is inferred by 
the zero entries in the precision matrix. In order to induce 
sparsity to the precision matrix and to estimate stable sets 
of edges with a low false discovery rate, a stability selection 
approach, StARS, was applied. This can lead to detection 
of modules with high centralization. For both approaches 
modules are selected by constructing a dendogram based on 
average linkage and cutting the branches.

In both cases, WGCNA and GL, the user has to choose 
specific tuning parameters: the soft threshold in WGCNA 
and the disagreement allowance and the number of the 

Table 6   Characterization of 
modules and network in GL 
using density, centralization and 
heterogeneity (edges stability 
has been used as weight) in 
humans

a Network using the original metabolite values
b LDL/IDL: IDLC, IDLL, LDLC, LLDLL, MLDLL, SERUMC, SLDLL, SM, XSVLDLL
c FA: APOB, FAW6, LA, MUFA, SVLDLL, TOTFA
d BCAA/VLDL: ILE, LEU, LVLDLL, MVLDLL, SERUMTG, VAL, VLDLD, XLVLDLL, XXLVLDLL
e HDL: APOA1, HDL2C, HDLC, HDLD, LHDLL, MHDLL, PC, TOTPG, XLHDLL
f Network using BMI-related information
g LDL/IDL: IDLC, IDLL, LDLC, LLDLL, MLDLL, SERUMC, SLDLL, SM, XSVLDLL
h VLDL: ALA, LVLDLL, MVLDLL, SERUMTG, SVLDLL, VLDLD, XLVLDLL, XXLVLDLL
i FA: APOB, FAW6, LA, LAC, MUFA, PC, PYR, TOTFA, TOTPG
j Lipids/HDL: ACACE, BOHBUT, GP, HDL2C, HDLC, HDLD, ILE, LHDLL, PHE, XLHDLL

Module Density Centralization Heterogeneity Nr nodes Color coded


O

a

 LDL/IDLb 0.71 0.31 0.34 9 Blue
 FAc 0.65 0.45 0.28 6 Yellow
 BCAA/VLDLd 0.56 0.23 0.38 9 Turquoise

  HDLe 0.45 0.27 0.45 6 Brown
 Complete 0.07 0.17 0.98 58


B

f

 LDL/IDLg 0.79 0.27 0.24 9 Blue
 VLDLh 0.61 0.30 0.35 8 Yellow
 FAi 0.44 0.56 0.45 9 Brown
 Lipids/HDLj 0.30 0.31 0.42 10 Turquoise
 Complete 0.05 0.11 0.98 58
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subsamples for GL with StARS. For a large dataset, StARS 
might not be needed and the penalty parameter might be 
chosen based on cross validation making the procedure 
to be data driven. The impact of the tuning parameters 
in WGCNA and GL is high; so data driven methods for 
selecting them would be ideal.

For clear visualization of the constructed networks using 
WGCNA, arbitrary thresholds were applied to depict the 
top 5% of the edges in the experimental design and 10% in 

the human data. These numbers were selected together with 
plant biologists and epidemiologists so that a set of mean-
ingful edges was recovered by the data. The disagreement 
allowance parameter in GL was set to 5% in the experimental 

Fig. 6   Estimated sparse metabolite networks in humans based on 
WGCNA. In a, the network is based on the original metabolite val-
ues. In b the BMI related metabolite network is displayed. Metabo-
lites have been colored by the color of the module they belong to. 
Information on the color of each module can be found in Table  5. 
Colors were selected based on the two-step dynamic hybrid algorithm 
implemented in the R-package WGCNA Fig. 7   Sparse metabolite networks estimated by GL. The networks 

were constructed a using the original metabolite values, and b using 
the metabolite values driven by variation originating from BMI. 
Metabolites were colored based on the module they belong to. Infor-
mation on the membership of each metabolite and on the color they 
have been colored can be found in Table 6
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design and 2% in the epidemiological data for the same 
reason.

Apart from the two considered methods for estimating 
networks of metabolites, other well established methods 
have been used in practice based on conditional independ-
ence using regression techniques, ridge regularization and 
partial correlation. First, a simple approach for estimating 

sparse networks using regression techniques is by estimat-
ing the edge set for each variable by fitting a Lasso model 
to each variable using the remaining variables as predic-
tors (Meinshausen and Bühlmann 2006). The non-zero 
Lasso coefficients identify the adjacent nodes to which each 
variable is connected to. The shortcoming of this method 
compared to GL which estimates the network structure 

Table 7   List of top connected plant metabolites for network estimation using WGCNA and GL

Results are displayed for the 
O
 and 

G
 networks. Italic denotes that the metabolite appears in both 

O
 and 

G
 networks. Bold is for metabo-

lites that appear only in the list of 
O
 network and Bolditalic for metabolites that appear only in the list of the 

G
 network

a Network using the original metabolite values
b Network using BMI-related information

WGCNA


O

a 
B

b

Metabolite Degree Metabolite Degree

TOTFA 16 TOTFA 17
FAW6 16 SVLDLL 15
APOB 15 APOB 15
SVLDLL 14 SERUMTG 14
SERUMC 14 SLDLL 14
LA 14 FAW6 14
MUFA 14 MLDLL 12
XSVLDLL 12 MUFA 12
MLDLL 12 ALA 11
SLDLL 12 LVLDLL 10
SERUMTG 12 MVLDLL 10
MVLDLL 11 XSVLDLL 10
IDLL 11 XLVLDLL 9
LLDLL 11 IDLL 9
IDLC 11 ILE 9

GL


O

a 
B

b

Metabolite Degree Metabolite Degree

APOB 13 LLDLL 9
SERUMC 12 MLDLL 9
SERUMTG 10 APOB 9
TOTFA 10 SVLDLL 8
LVLDLL 9 IDLL 8
MVLDLL 9 LDLC 8
LLDLL 9 SERUMTG 8
MLDLL 9 SLDLL 7
SLDLL 9 IDLC 7
IDLC 9 SERUMC 7
XLVLDLL 8 FAW6 7
IDLL 8 TOTFA 7
LDLC 8 MUFA 7
FAW6 8 LVLDLL 6
LA 8 MVLDLL 5
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simultaneously, is that an edge between two nodes (p and 
q) might be estimated from p to q but not vice versa. For 
overcoming this, an AND or an OR rule can be applied. This 
method asymptotically estimates the set of non zero ele-
ments of the precision matrix, but it does not yield the maxi-
mum likelihood estimator (Banerjee et al. 2008). In contrast 
to Lasso penalty in GL which estimates entries in the pre-
cision matrix (and subsequently in the adjacency matrix) 
exactly equal to zero, a ridge penalty can also be used in the 
penalized log likelihood (Ha and Sun 2014). The elements 
in the precision matrix will shrink, but will not be exactly 
zero unless a threshold is chosen for having exactly zeros 
(Efron 2004). In this case, GL seems to be advantageous due 
to the sparsity that is preferred for interpreting the results. 
Also, by applying a threshold in the ridge-based method, a 
second parameter should be estimated on top of the ridge 
penalty � ridge. This usually involves a two-dimensional grid 
search approach that can be time-consuming and the opti-
mization problem might not be convex as well. Finally, the 
edges of the network can be chosen by estimating Pearson’s 
partial correlation coefficient for any given pair of variables 
directly. Partial correlation eliminates edges that appear 
from indirect effects which is a desired characteristic (Krum-
siek et al. 2011). The shortcoming of the method is that it is 
not applicable in the high dimensional setting. In this case, 
partial correlation cannot be estimated by either using the 
linear regression, or the matrix inversion methods. Using a 
recursive formula is also not possible and is computation-
ally expensive. Therefore, here we used WGCNA which is 
a commonly used approach and is based on observed cor-
relations which are easy to interpret. GL is also used since it 
has all desirable features (sparsity, computational speed, can 
be used in high-dimensional setting) that the other methods 
fall short of.

For identifying and selecting modules in this paper, the 
two-step dynamic hybrid algorithm was used with 1−wij as 
a dissimilarity measure in WGCNA and one minus stabil-
ity of the edges (number of edges occurrences from the 
subsampling scheme) in GL. Another popular clustering 
method is the modularity optimization. Dividing a network 
in modules so that the modularity is optimal, will result 
in many edges within the modules and few edges between 
modules (Newman and Girvan 2004). Module identifica-
tion by using modularity optimization is a known data-
driven approach, which is used without specifying any 
arbitrary parameters. Here the dynamic hybrid algorithm 
was used instead, because while it takes the modular struc-
ture into account (through the dendrogram), it additionally 
does not have a constant cut-off height, so is able to iden-
tify nested clusters by using the cluster shape.

Some issues still need to be addressed. For example 
network estimation methods should thoroughly be investi-
gated on the sample size sensitivity (large vs. small sample 

sizes) and in changes on tuning parameters (soft-threshold 
in WGCNA, disagreement allowance in GL). Further work 
for repeated measurements of the metabolites over time 
should be considered.

The regression framework to study specific parts of the 
metabolite concentrations worked well for the epidemio-
logical dataset. We recovered sets of metabolites that are 
associated to a categorical covariable of interest in the same 
way. By using a network approach coupled with a module 
identification method, sets of metabolites which regulate the 
covariable of interest in the same way can be detected.
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