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Abstract

Low prosocial behavior in childhood has been consistently linked to later psychopa-

thology, with evidence supporting the influence of both genetic and environmental

factors on its development. Although neonatal DNA methylation (DNAm) has been
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found to prospectively associate with a range of psychological traits in childhood, its

potential role in prosocial development has yet to be investigated. This study investi-

gated prospective associations between cord blood DNAm at birth and low prosocial

behavior within and across four longitudinal birth cohorts from the Pregnancy And

Childhood Epigenetics (PACE) Consortium. We examined (a) developmental trajecto-

ries of “chronic-low” versus “typical” prosocial behavior across childhood in a case–

control design (N = 2,095), and (b) continuous “low prosocial” scores at comparable

cross-cohort time-points (N = 2,121). Meta-analyses were performed to examine dif-

ferentially methylated positions and regions. At the cohort-specific level, three CpGs

were found to associate with chronic low prosocial behavior; however, none of these

associations was replicated in another cohort. Meta-analysis revealed no epigenome-

wide significant CpGs or regions. Overall, we found no evidence for associations

between DNAm patterns at birth and low prosocial behavior across childhood. Find-

ings highlight the importance of employing multi-cohort approaches to replicate epi-

genetic associations and reduce the risk of false positive discoveries.

K E YWORD S

cord blood, DNA methylation, epigenome-wide association study, meta-analysis, prosocial
behavior

1 | INTRODUCTION

Prosocial behavior, defined as voluntary behavior intended to benefit

others (e.g., helping, sharing, and comforting), provides a foundation

for social competence and moral development (Eisenberg, Fabes, &

Spinrad, 2006). Typically emerging early in childhood, higher levels of

expressed prosociality are consistently linked with greater self-

esteem, peer acceptance, and academic success in young people

(Caprara, Barbaranelli, Pastorelli, Bandura, & Zimbardo, 2000; Layous,

Nelson, Oberle, Schonert-Reichl, & Lyubomirsky, 2012). However,

levels of prosocial expression vary considerably between individuals.

Notably, at the opposite end of the prosocial continuum, young peo-

ple who follow developmental trajectories denoted by persistently

low levels of prosociality display elevated levels of externalizing

behaviors, such as aggression and delinquency (Flynn, Ehrenreich,

Beron, & Underwood, 2015; Kokko, Tremblay, Lacourse, Nagin, &

Vitaro, 2006), and—albeit less consistently—internalizing problems

(Nantel-Vivier, Pihl, Cote, & Tremblay, 2014).

Etiological research consistently reports both genetic and envi-

ronmental contributions to prosocial development (Knafo-Noam, Ver-

tsberger, & Israel, 2018). From twin designs, heritability estimates for

observed prosocial actions range between 23 and 69%, with most

studies also identifying substantial shared environment effects

(Gregory, Light-Häusermann, Rijsdijk, & Eley, 2009; Knafo-Noam,

Israel, & Ebstein, 2011; Knafo-Noam, Uzefovsky, Israel, Davidov, &

Zahn-Waxler, 2015). These heritability estimates have also been
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shown to increase during childhood, while shared environmental influ-

ences diminish over time (Knafo-Noam & Plomin, 2006). However,

efforts to elucidate the specific biological processes underpinning this

heritability by examining associations between specific candidate

genes and various domains of prosocial behavior have yielded very

small meta-analytic effect sizes (Bakermans-Kranenburg & Van

IJzendoorn, 2014). Furthermore, no hypothesis-free study of genetic

variation across the entire genome has been published for this pheno-

type to date (Knafo-Noam et al., 2018). At the same time, exposure to

prenatal (e.g., maternal stress, androgen exposure) and postnatal

adversity (e.g., parenting, family functioning, neighborhood depriva-

tion) has been linked to less prosocial behavior in children, suggesting

some etiological role for the early environment (Horn, Hungerlander,

Windhager, Bugnyar, & Massen, 2018; Jambon, Madigan, Pla-

mondon, & Jenkins, 2019; Loomans et al., 2011; Safra et al., 2016).

Although more research has begun to consider the potential

interplay between genetic and environmental influences on prosocial

development (Knafo-Noam et al., 2011; Sasaki et al., 2013), the

underlying molecular mechanisms remain unclear. In recent years,

DNA methylation (DNAm), an epigenetic process that regulates gene

expression in response to both genetic and environmental signals, has

emerged as a potential mechanism of interest through which the early

environment, in combination with genetic predispositions, can

increase biological vulnerability for psychopathology (Barker, Wal-

ton, & Cecil, 2018). Specifically, DNAm involves the addition of a

methyl group to DNA base pairs—mainly, cytosine–guanine (CpG)

dinucleotides (McGowan & Roth, 2015)—which can disrupt the bind-

ing of transcription factors (Zhang & Meaney, 2010). DNAm has been

shown to regulate numerous neurobiological and developmental pro-

cesses, with alterations in DNAm linked to psychological and psychiat-

ric outcomes (Barker, Walton, Cecil, Rowe, et al., 2018; Cecil

et al., 2014; Rijlaarsdam et al., 2017; Walton et al., 2017). It has also

been suggested that DNAm may act as a noncausal biomarker

indexing vulnerability for psychopathology, in a similar way to the

approach that has been used in cancer risk and prognosis (Ladd-

Acosta & Fallin, 2016). Thus, it may be possible to identify a consis-

tent profile of DNAm that characterizes persistently “low prosocial”
youth.

To date, no study has examined DNAm patterns associated with

low prosocial behavior, although some research has been carried out

on closely related phenotypes. For example, callous-unemotional

(CU) traits are defined by a lack of prosocial emotions such as empa-

thy and remorse, and represent a significant risk factor for aggressive

and antisocial behaviors (Marsh, 2019). Within clinical samples of boys

with conduct problems, higher CU traits have been associated with

increased DNAm in OXTR gene promoter (Dadds et al., 2014) and

reduced DNAm of the promoter region of the serotonin 1B receptor

gene (HTR1B; Moul, Dobson-Stone, Brennan, Hawes, & Dadds, 2015).

However, these approaches are limited in two main ways. First, single

candidate genes are not likely to explain the majority of variance of

more complex, multi-determined psychiatric traits and disorders,

whose exact pathophysiology is not yet known (Salvatore &

Dick, 2018). Second, these studies only examined DNAm for specific

genes selected based on hypothesized biological or functional rele-

vance, precluding their ability to detect novel biological associations.

In light of these research gaps, this study drew on four indepen-

dent yet highly compatible birth cohorts to investigate epigenome-

wide, prospective associations between DNAm at birth and low

prosocial behavior during childhood. Focusing on methylation levels

at birth (i.e., before manifestation of later behavioral or psychiatric

symptoms) enabled us to separate the direction of the association, an

important step for establishing whether detected epigenetic modifica-

tions may serve as potential predictive markers, as opposed to sec-

ondary effects of the “disease” process itself (Rakyan, Down,

Balding, & Beck, 2011). Moreover, existing longitudinal studies com-

paring the stability of DNAm associations across childhood have

found that DNAm patterns are (a) highly dynamic over time (Mulder

et al., 2021), and (b) more strongly predictive (at birth) of neu-

rodevelopmental and behavioral outcomes related to prosocial behav-

ior in children, including conduct problems (Cecil et al., 2018), CU

traits (Cecil et al., 2014), and social communication deficits

(Rijlaarsdam, Cecil, Relton, & Barker, 2021), compared to DNAm pat-

terns examined later in childhood. However, it is not known whether

such findings at birth extend to prosocial behavior itself. First, in line

with previous research (Nantel-Vivier et al., 2014), we identified

developmental trajectories characterized by persistently low prosocial

behavior across childhood. We then ran an epigenome-wide associa-

tion study (EWAS) to identify DNAm sites within each cohort that dif-

fered between trajectories. Second, as all cohorts featured

comparable time-points and identical measures of prosocial behavior,

we meta-analyzed results to maximize our power to detect small

effects and reduce the risk of false positives. Furthermore, we used

region discovery methods to identify potentially differentially methyl-

ated regions (DMRs) associated with low prosocial behavior across

cohorts. Finally, previous studies of other psychiatric traits suggest

that the influence of genetic and environmental risk factors may be

best observed across a continuum of severity (Thapar, Langley,

O'Donovan, & Owen, 2006). Thus, we adopted a dimensional

approach to complement our trajectory-based analyses, repeating all

steps using continuous prosocial scores assessed at comparable time-

points (6–7 years of age) within each cohort.

2 | METHODS

2.1 | Participants

Four prospective birth cohorts within the Pregnancy And Childhood

Epigenetics (PACE) Consortium (Felix et al., 2018) had information on

DNAm in cord blood and prosocial behavior in childhood: the Avon

Longitudinal Study of Parents and Children (ALSPAC; Fraser

et al., 2013), Generation R (GENR; Kooijman et al., 2016), INfancia y

Medio Ambiente (INMA; Guxens et al., 2012), and the Lifestyle and

environmental factors and their Influence on Newborns Allergy risk

(LINA; Herberth et al., 2011). Full cohort descriptions are provided in

Supporting Information Methods. In brief, all included participants
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were of European ancestry, with combined sample sizes of 2,095–

2,121 in the current study. Ethical approval for each study was

obtained by local committees and consent to use their data

was obtained for all participants.

2.2 | Measures

2.2.1 | DNA methylation

DNAm in cord blood was measured using the Illumina Infinium

HumanMethylation450K BeadChip (Illumina Inc., San Diego). Full

information on sample processing, quality control, and normalization

procedures within each cohort is described in Appendix S1 of

Supporting Information. Methylation levels were characterized by a

“beta” (β) value ranging from 0 (no methylation) to 1 (full methylation).

CpG sites with values outside the 25th percentile – 3 � interquartile

range (IQR) and the 75th percentile + 3 � IQR of the distribution

were identified as outliers and winsorized.

2.2.2 | Prosocial behavior

In all cohorts, prosocial behavior was repeatedly assessed using

maternal ratings on the “prosocial” subscale of the Strengths and Dif-

ficulties Questionnaire (SDQ), a widely used screening instrument

with established reliability and validity (Goodman, 2001). Five items

assessed the presence of the following behaviors “in the past six

months” along a three-point scale (0 = “not true”; 1 = “somewhat

true”; 2 = “certainly true”): (a) “considerate of other's feelings”;
(b) “shares readily with other children”; (c) “helpful if someone is hurt,

upset, or ill”; (d) “kind to younger children”; and (e) “volunteers to help

others”. Prosocial behavior was assessed in ALSPAC when children

were aged 4, 7, 8, 10, 12, and 13 years, in GENR when children were

aged 6 and 9 years, in INMA when children were aged 7 and 11 years,

and in LINA when children were aged 7 and 10 years.

Latent profile analysis (LPA) was performed using Mplus version

7.11 (Muthén & Muthén, 2012) to classify ALSPAC children into

developmental trajectories based on their levels of prosocial behavior

across childhood. A type of latent variable mixture model, LPA is a

person-centered technique that identifies discrete subgroups within

a population based on a series of observed indicators—in this case,

repeated measures of the SDQ prosocial subscale at six time-points

(Oberski, 2016). We estimated two-class to five-class solutions and

used several fit indices (Bayesian Information Criterion; Akaike Infor-

mation Criterion; Lo–Mendell–Rubin test; entropy) to determine the

optimal number of classes (see Table S1, Panel A and accompanying

note for details). Based on these metrics, a three-class solution pro-

vided the best fit for these data. Within this three-class model, one

trajectory subgroup, termed “chronic-low” (n = 75, bottom 10% of

sample), identified children with consistently low levels of prosocial

behavior from age 4–13 years. The two remaining trajectories differed

significantly from this chronic-low trajectory, as well as from each

other. However, average levels of prosocial behavior among these

two trajectory groups (M = 9.0 and 7.3) fell well within the “norma-

tive” or “average” scoring band (≥6), based on the original cut-offs for

the parent-reported SDQ (Goodman, 1997). This contrasted with the

chronic-low prosocial group, where the grand mean for prosocial

behavior across all six time-points fell within the clinical threshold for

“low” prosocial behavior (M = 5.6). As the present study sought to

compare persistently low prosocial youth with more typical levels of

prosociality in a case–control approach, we combined the two

remaining trajectories, hereafter referred to as the “typical” group

(n = 673, 89.96%). The resulting dichotomous variable (i.e., “typical”
vs. “chronic-low”) was found to significantly associate with several

established correlates of prosocial behavior, including empathy,

social-cognitive difficulties, and CU traits (rs = �0.27–0.32, p < .001;

see Table S1, Panel B).

To enable cross-cohort comparison and meta-analysis, we sought

to establish an equivalent case–control design for all cohorts by repli-

cating the clinically significant “bottom 10%” cut-off observed from

trajectory-based analyses in ALSPAC. However, as GENR, INMA, and

LINA each had only two repeated measures of prosocial behavior,

which was insufficient to perform LPA, we instead standardized

prosocial scores for each age and then calculated an average over

both ages. Values below the 10th percentile for this average score

(i.e., “bottom 10%” cut-off) were classed as “chronic-low” prosocial

behavior across both ages, in contrast to the remainder of the sample

(i.e., typical group). Having identified these groups in children who had

available prosocial scores at both ages, our final sample within each

cohort consisted of those who also had DNAm data available at birth.

Table 1 presents the number and proportion of children in each of

these chronic-low trajectories. In all three cohorts, “grand mean”
prosocial scores in the defined chronic-low (GENR: M = 5.4;

SD = 1.7; INMA: M = 5.3; SD = 1.2; LINA: M = 5.5; SD = 1.3) and

typical groups (GENR: M = 8.8; SD = 1.3; INMA: M = 8.7; SD = 1.4;

LINA: M = 8.5; SD = 1.3) were comparable to those observed within

the two ALSPAC trajectory groups (chronic-low: M = 5.6; typical:

M = 8.2) and thus in line with clinical definitions for “low” and “aver-
age” levels of prosocial behavior, respectively.

In a complementary strategy to account for the dimensionality of

prosocial behavior and identify DNAm differences associated with the

severity (as opposed to chronicity) of low prosociality, we repeated all

analyses using continuous measures of low prosocial behavior (rather

than trajectory groups) at the closest-corresponding time-points at

age 6–7 years across all cohorts. These continuous scores were nega-

tively skewed (i.e., indicating that most children exhibit higher levels

of prosocial behavior) in all cohorts, which is a common occurrence in

general-population samples. As square root and log transformation of

the scores did not correct for this skewness, as well as the fact that

transformed scores would complicate interpretation of the results,

robust linear regression analyses were performed. Scale scores were

reversed to be consistent with trajectory coding and facilitate inter-

pretation, with higher scores representing lower prosocial behavior.
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2.2.3 | Covariates

We adjusted for child sex, maternal age at delivery (in years), smoking

during pregnancy (binary categorization of “no smoking/quit in early

pregnancy” vs. “smoked throughout pregnancy”), gestational age at

delivery (in weeks), child age at the outcome assessment (in years),

maternal education (binary categorization of “below university

degree” vs. “university degree and above”), and technical covariates

(e.g., batch or surrogate variables). We also adjusted for estimated cell

type proportions calculated from a cord blood cell type reference

panel (Gervin et al., 2019). Finally, we included mothers' experience of

depression and anxiety as a covariate (see Appendix S1 of Supporting

Information for full details of measures used), as a caregiver

experiencing these symptoms may perceive and rate their child's

behavior as more problematic than one who is not, potentially biasing

observed associations between methylation and low prosociality.

2.3 | Statistical Analyses

Analyses proceeded in two main steps:

2.3.1 | Step 1: Epigenome-wide association study
(EWAS) and meta-analysis

Based on a predefined analysis plan, cohort-level EWAS between

DNAm at birth and prosocial trajectories during childhood was

performed using linear regression models. Cohorts excluded individ-

uals with known chromosomal abnormalities, multiple births, and one

random sibling per sibling pair.

After performing quality control on cohort-specific summary

statistics, we combined results in a fixed-effects inverse variance-

weighted meta-analysis using the metafor R package

(Viechtbauer, 2010). We excluded probes mapped to X/Y chromo-

somes, polymorphic CpGs (overlapping with known single-nucleo-

tide-polymorphisms; Min, Hemani, Smith, Relton, &

Suderman, 2018), and control or cross-reactive probes (targeting

repetitive sequences/co-hybridizing to alternate sequences; Chen

et al., 2013; McCartney et al., 2016), resulting in 364,659 autoso-

mal CpG sites in the meta-analysis. Probes were annotated using

the meffil R package (Min et al., 2018), enhanced by use of the Uni-

versity of California Santa Cruz Genome Browser (including data

from the RefSeq and Ensembl databases). All annotations were

based on genome build hg19. Genome-wide significance was

defined based on a looser 450k array p-value threshold of

p < 2.4 � 10�7 (Saffari et al., 2018), suggestive significance at

p < 5 � 10�5, and nominal significance at p < .05.

We performed several additional analyses. First, we repeated ana-

lyses using “low prosocial” continuous scores at age 6–7 years, using

robust linear regression in the MASS R package. Second, a candidate

gene follow-up analysis was performed on results extracted from the

meta-analysis for CpG sites annotated to OXTR, in order to examine

associations with DNAm at this previously implicated gene. The signif-

icance threshold was set at a Bonferroni gene-level corrected p-value

of 4.17 � 10�3 (n = 12 CpGs).

TABLE 1 Descriptive statistics across the four included cohorts (Ntotal = 2,095–2,121)

Cohort (sample size)a

Avon Longitudinal Study
of Parents and Children
(ALSPAC; n = 748)

Generation R
(GENR; n = 891)

INfancia y Medio
Ambiente
(INMA; n = 270)

Lifestyle and environmental
factors and their Influence on
Newborns Allergy risk
(LINA; n = 186)

Child characteristics

Sex, % female 48.4 49.6 48.9 48.1

Gestational age in weeks, mean (SD) 39.6 (1.5) 40.2 (1.4) 39.8 (1.3) 39.8 (1.4)

Child prosocial behavior

Chronic-low prosocial trajectory, n (%) 75 (10.0) 100 (11.2) 31 (11.5) 20 (10.8)

Continuous prosocial score

(age 6–7 years), mean (SD)

1.8 (1.7) 1.7 (1.8) 1.7 (1.7) 1.9 (1.7)

Age in years, mean (SD) 6.7 (0.1) 6.0 (0.3) 6.7 (0.4) 7.1 (0.3)

Maternal characteristics

Age at intake/delivery in years, mean (SD) 29.6 (4.4) 32.1 (3.9) 30.6 (4) 30.8 (4.6)

Sustained smoking during pregnancy, % 9.7 9.8 12.6 1.6

Educational level, %

Lower (below university degree) 79.2 29.8 68.1 36.5

Higher (university degree and above) 20.8 70.3 31.9 63.5

Psychopathology, mean (SD) 14.3, % yesb 0.1 (0.2) 0.7 (0.5) 2.1 (0.5)

aReported sample sizes are drawn from prosocial trajectory analyses. For analyses of continuous “low prosocial” scores at age 6–7 years, sample sizes

were as follows: NALSPAC = 689; NGENR = 976; NINMA = 270; NLINA = 186.
bIn ALSPAC, the presence of maternal anxiety/depression was coded as a binary variable (1 = yes vs. 0 = no).
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2.3.2 | Step 2: Differentially methylated regions
(DMRs) and meta-analysis

To account for the correlated structure of DNAm patterns, we next

performed a regional analysis to identify regions that are differentially

methylated in relation to low prosocial behavior. In contrast to site-

specific EWAS analyses, which focus on individual CpG sites, regional

analyses attenuate the burden of multiple testing and can also detect

weaker signals that may be spread over wider regions. Regional ana-

lyses were first performed in each cohort and then meta-analyzed

using the dmrffR package (Suderman et al., 2018). First, this method

selects potentially DMRs by identifying genomic regions spanned by

nominally significant CpG sites at most 500 bp apart. Second, EWAS

summary statistics of all CpGs in the region are combined, while

adjusting for correlations between sites in order to avoid inflating

regional statistics. DMRs are then defined as having at least two spa-

tially contiguous CpG sites. p-values for each region are adjusted for

multiple tests using Bonferroni adjusted p < 0.05. As for the site-

specific EWAS analyses, regional analyses were also repeated using

“low prosocial” continuous scores at age 6–7 years.

3 | RESULTS

3.1 | Sample characteristics

In the main analyses, complete data for DNAm and the prosocial tra-

jectories were available for 748 children (48.4% female) in ALSPAC,

891 children (49.6% female) in Generation R, 270 children (48.9%

female) in INMA, and 186 children (48.1% female) in LINA. Detailed

sample characteristics are presented in Table 1.

3.2 | Epigenome-wide association analysis and
meta-analysis

Meta-analysis of the four cohorts (Ntotal = 2,095) did not identify sig-

nificant associations between DNAm of 364,659 CpG sites in cord

blood and chronic-low prosocial trajectories (p < 2.4 � 10�7;

Figure 1). The most significant association (β = �0.004, SE = 0.001,

p = 8.37 � 10�7) was found for cg03160045 annotated to RBX1, a

gene previously associated with cognitive ability (Lee et al., 2018) and

psychiatric disorders including anxiety, depression, and schizophrenia

(Baselmans et al., 2019; Goes et al., 2015; Wu et al., 2020). In Table 2,

we list the 24 CpG sites that were most strongly associated with

prosocial trajectories at the suggestive level (p < 5 � 10�5). The direc-

tion of effect estimates was consistent across all cohorts for 20 of

these sites. There was evidence for some genomic inflation

(lambda = 1.25; see Figure 1b for quantile–quantile plot).

Table S3, Panel A shows the lambda and number of cohort-level,

genome-wide significant (p < 2.4 � 10�7) hits for typical versus

chronic-low trajectories. We observed three significant cohort-level

associations between DNAm and prosocial trajectories. These sites

(cg22599122 [HMGB4/CSMD2] in INMA; cg03436478 [SGCE/PEG10]

in ALSPAC; cg21552290 [GABBR1] in LINA) mapped to genes associ-

ated with neurodevelopmental and mental health-related phenotypes

(see Table S3 and accompanying note for full details); however, none

of the three hits overlapped with other cohorts.

Similar to the main trajectory-based analyses, no genome-wide

associations were observed in meta-analysis of continuous “low
prosocial” scores at age 6–7 years, with the most significant associa-

tion (β = 5.80, SE = 1.22, p = 1.92 � 10�6) found for cg13899097 on

the RARRES3 gene (see Table S2), which is differentially expressed in

autism (Seno et al., 2011). We found seven cohort-level associations

between DNAm and continuous “low prosocial” scores (Table S3,

F IGURE 1 Manhattan (a) and quantile–quantile (QQ) plots
(b) showing meta-analytic associations between cord blood DNA
methylation and chronic-low prosocial trajectory membership
(Ntotal = 2,095). For Panel (a), the horizontal line indicates a genome-
wide significance threshold of 2.4 � 10�7). For Panel (b), λ = 1.25
[Color figure can be viewed at wileyonlinelibrary.com]
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Panel C); three of which (cg06643156, cg09509433, and

cg21144158) showed a consistent direction of effects across all

cohorts. We found no evidence of genomic inflation for continuous

analyses (lambda = 1.06; quantile–quantile plot in Figure S1).

In candidate gene follow-up analysis, none of the CpGs annotated

to OXTR reached gene-level Bonferroni significance (Table S4). Of

note, although effect sizes were trivial, most CpG sites showed the

same directions of effect as previous studies examining related phe-

notypes (e.g., CU traits), in that higher OXTR methylation at birth was

associated with lower prosociality.

3.3 | Differentially methylated regions (DMRs)
analysis

We identified no DMRs associated with “chronic-low prosocial” tra-

jectory membership in the meta-analysis (Table 3). The top DMR asso-

ciated with the chronic-low trajectory was located on chromosome

19:35,630,106–35,630,355 (β = �.01, SE = 0.002, p = 2.5 � 10�6),

nearest to genes FXYD1 and LGI4. We repeated the same analyses

with “low prosocial” continuous scores. Again, no DMRs reached

epigenome-wide significance in the meta-analysis, with a top DMR

located on chromosome 9:132,805,739–132,805,979 (β = �6.85,

SE = 1.45, p = 2.3 � 10�6; nearest gene FNBP1). DMRs that were

suggestively associated with the severity of low prosocial behavior

(based on continuous scores) are presented in Table S5.

3.4 | Power calculation

We performed a power calculation with a maximum effect estimate of

0.02 and alpha set at the 450k array significance threshold,

p < 2.4 � 10�7. Results suggested that we had poor power (0.37) to

detect the effect size observed given the current sample size

(N = 2,095). Thus, it appears that larger sample sizes are needed to

detect CpG sites associated with low prosocial trajectory membership.

TABLE 2 Cord blood CpG sites most strongly associated with prosocial trajectories (typical vs. chronic-low) within meta-analysis

CpG site Chr Position Nearest gene Effect SE p-value Direction I2 Heterogeneity p-value

cg03160045 22 41,345,978 RBX1 �0.004 0.001 8.37E-07 ���� 42 .16

cg00979307 3 47,889,555 DHX30; MIR1226 �0.008 0.002 2.37E-06 ���� 43 .15

cg01402746 6 30,616,468 C6orf136 0.004 0.001 2.62E-06 +++� 0 .66

cg14931071 6 12,717,776 PHACTR1 �0.008 0.002 4.20E-06 ���� 54 .09

cg11495494 4 140,358,384 RAB33Ba �0.004 0.001 5.71E-06 ���� 0 .69

cg16811988 3 42,103,138 TRAK1a �0.004 0.001 8.43E-06 ���� 0 .72

cg18278596 14 105,915,860 MTA1 0.004 0.001 9.95E-06 +++� 32 .22

cg22117637 2 223,285,495 SGPP2a �0.007 0.002 1.02E-05 ���� 25 .26

cg07572052 1 149,821,168 HIST2H2AA4; HIST2H2AA3 0.014 0.003 1.23E-05 ++++ 1 .39

cg19508437 13 35,517,410 NBEA �0.001 0.000 1.38E-05 ���+ 0 .63

cg10182355 2 101,768,491 TBC1D8 0.003 0.001 1.76E-05 ++++ 0 .67

cg17394129 12 71,829,267 LGR5a �0.011 0.002 1.83E-05 ���� 0 .51

cg00932677 4 187,776,068 FAT1a �0.008 0.002 2.17E-05 ���� 0 .66

cg02007434 10 98,210,804 TLL2 �0.010 0.002 2.32E-05 ���� 38 .19

cg20397078 7 28,966,605 CREB, TRIL, CPVLa 0.004 0.001 2.39E-05 ++++ 0 .79

cg07129067 2 180,451,222 ZNF385B �0.005 0.001 2.41E-05 ���� 0 .62

cg20313969 2 112,939,562 FBLN7 �0.012 0.003 3.05E-05 ���� 56 .08

cg01825355 6 168,812,152 SMOC2a 0.005 0.001 3.48E-05 �+++ 27 .25

cg06850924 7 129,691,279 ZC3HC1 �0.002 0.000 3.48E-05 ���� 20 .29

cg02074728 5 50,259,086 PARP8a 0.003 0.001 3.52E-05 ++++ 0 .80

cg21165255 9 93,712,460 SYKa �0.009 0.002 3.78E-05 ���� 0 .42

cg14818546 7 69,296,381 AUTS2 �0.005 0.001 3.82E-05 ���� 0 .74

cg24341770 6 105,148,882 HACE1a �0.009 0.002 4.05E-05 ���� 0 .52

cg15727390 3 149,700,905 PFN2, LOC646903a 0.010 0.002 4.75E-05 ++++ 0 .71

Note: Maximum N = 2,095; meta-analytic p-value <5 � 10�5. The full model is adjusted for batch effects, estimated cell-type proportions, child sex,

gestational age, maternal age in take/delivery, maternal smoking during pregnancy, maternal education, and maternal psychopathology. Chr: chromosome;

Direction: direction of effect per cohort, where + and – signify positive and negative effect estimates, respectively (cohorts are listed in alphabetical order:

Avon Longitudinal Study of Parents and Children [ALSPAC]; Generation R [GENR]; INfancia y Medio Ambiente [INMA]; Lifestyle and environmental

factors and their [LINA]); I2: heterogeneity statistic describing variation attributable to heterogeneity across studies; high I2 values suggest high

heterogeneity.
aAnnotation based on University of California Santa Cruz Known Gene fills in the nearest gene within 10 MB.
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Our power calculation also indicated that, based on the effect sizes

and significance thresholds in the current study, a minimum sample

size of 2,985 would be required to achieve 80% power. We did not

perform this power calculation for the continuous score analysis as

these power estimates would have been inflated by the large coeffi-

cient estimates of DNAm that were weighted from robust regression

(the maximum effect size was 18.82).

4 | DISCUSSION

The current study examined whether DNAm patterns at birth pro-

spectively associate with persistently low levels of prosocial behavior

across childhood, using highly comparable data from four independent

cohort studies. Although we identified three CpG sites from cord

blood that differentiated persistently “low prosocial” children from

their more typically developing peers within individual cohorts, none

of these associations were replicated in another sample. Moreover,

our EWAS meta-analysis (N = 2,095) did not identify any significant

associations across the four cohorts at a 450k genome-wide level.

This was true when examining both developmental trajectories of

chronic-low versus typical prosocial behavior, as well as dimensional

scores at similar time-points for all cohorts. We confirmed our find-

ings using follow-up regional analyses to address non-independence

between CpG sites, which yielded no meta-analytical DMRs following

multiple testing corrections. Overall, our findings do not support an

association between neonatal DNAm and low prosocial behavior in

childhood.

It is important to consider the negative findings of the present

study in the context of its considerable methodological strengths.

First, our analyses drew on four independent large-scale cohorts with

prospective designs. Second, availability of repeated measures of

prosocial behavior enabled us to characterize participants based on

sustained levels of low prosociality across childhood, capturing a dis-

crete group of children at elevated risk for a range of psychiatric disor-

ders (Flynn et al., 2015; Nantel-Vivier et al., 2014). This longitudinal

approach was supplemented with dimension-based analyses (i.e., total

scores) to explore associations across the entire continuum of

prosocial behavior in the general population. Third, comprehensive

harmonization between the four cohorts, in terms of both

normalization of DNAm data and phenotypic measurement, was per-

formed to reduce study heterogeneity and maximize comparability for

replication efforts and the meta-analysis. Fourth, our analytic strategy

featured both site-specific and regional analyses, which can improve

power and detect functionally relevant findings across genomic

regions (Michels et al., 2013).

Despite the strengths of our design and analysis, we did not iden-

tify any genome-wide associations between neonatal DNAm and

childhood low prosocial behavior. We offer several potential explana-

tions for our negative findings, which also consider a number of key

study limitations. First, it appears from our power analysis that, even

with the large sample size offered by these combined datasets, our

analyses were underpowered to detect what appear to be reasonably

small associations, particularly given the relatively low numbers of

participants classified as “chronic-low prosocial.” However, our

dimensional analyses involving continuous low prosocial scores across

the entire sample showed similarly negative results. More generally,

there may be insufficient individual variation within our data to detect

differences in DNAm patterns in relation to prosocial behavior. For

example, the interquartile ranges of low prosocial behavior at age 6–

7 years were identical in all cohorts (median = 1; inter-quartile range:

0–3), indicating that most individuals show moderate to high levels of

prosocial behavior (Figure S2). However, we found that these chronic-

low and typical groups did differ on many behavioral outcomes

(i.e., empathy, social-cognitive difficulties, and CU traits) that are

known to associate with prosociality.

Second, the lack of associations could be the result of methodo-

logical differences across cohorts, despite the application of stringent

harmonization standards to both phenotypic and DNAm data. Specifi-

cally, low prosocial behavior was assessed by the same reporting

source (i.e., mothers), with the same instrument, and at comparable

time-points in all samples. Nonetheless, we cannot rule out percep-

tional biases due to single informants or situation-specificity that may

have influenced the results of this study. The use of mother reports

allowed us to model prosocial behavior starting in early childhood,

when child self-reports are not reliable. However, the inclusion of

multiple informants (e.g., teacher report, child self-report) in future

research may help to provide greater differentiation of the child's

prosocial behavior across different contexts. Moreover, differences in

quality control, environmental exposures, and other unknown factors

TABLE 3 Differentially methylated regions associated with prosocial trajectories (typical vs. chronic-low) based on a suggestive threshold
(p < 5 � 10�5)

Chr Start End N of sites Effect SE p-value Nearest gene

19 35,630,106 35,630,355 5 �0.008 0.002 2.50E-06 FXYD1, LGI4

2 180,451,203 180,451,222 2 �0.006 0.001 8.03E-06 ZNF385B

11 3,876,513 3,876,808 7 0.000 0.000 1.92E-05 STIM1

11 3,647,365 3,647,654 3 �0.006 0.001 3.05E-05 TRPC2

8 142,316,216 142,316,861 3 �0.004 0.001 3.99E-05 SLC45A4

19 55,996,543 55,996,566 2 0.000 0.000 4.37E-05 NAT14

Abbreviation: Chr, chromosome.
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could still contribute to cohort-specific methylation patterns and con-

sequently dilute potential associations during meta-analysis (Joubert

et al., 2016).

Third, our operationalization of prosocial behavior using a rela-

tively brief measure may be overly broad. Our use of trajectory-based

and dimensional approaches enabled us to examine associations for

both a discrete group of “persistently low prosocial” children, as well

as across a broader continuum of severity. Although the SDQ's

prosocial scale has been shown to robustly associate with psychoso-

cial and functional outcomes (Meehan, Maughan, & Barker, 2019), it

may be too nonspecific to reliably detect a unified underlying biologi-

cal substrate. Moreover, prosocial behavior is increasingly viewed as a

multi-faceted phenotype (Van IJzendoorn & Bakermans-

Kranenburg, 2014) that incorporates, and interacts with, a range of

motivational, cognitive, and affective processes, including altruism,

perspective-taking, Theory of Mind, and empathic concern, as well as

contextual factors (e.g., Imuta, Henry, Slaughter, Selcuk, &

Ruffman, 2016; Preckel, Kanske, & Singer, 2018; Van der Graaff,

Carlo, Crocetti, Koot, & Branje, 2018). Although it has been suggested

that genetic associations with broader measures of constructs tend to

be stronger (Dawson et al., 2002; Thapar et al., 2006), phenotypic het-

erogeneity within the measure, such as helping versus comforting

(Paulus, Kuhn-Popp, Licata, Sodian, & Meinhardt, 2013), may differ in

their developmental course and epigenetic patterns. Therefore, a mea-

sure capturing more granular components of this multidimensional

construct may better elucidate specific associations with individual

biological markers.

Fourth, we chose to focus on the potential effects of DNAm at

birth (cord blood). This was informed by several previous epigenetic

studies in birth cohorts, including ALSPAC and Generation R, which

have found prospective associations between DNAm at birth

(vs. later in childhood) and outcomes related to prosocial behavior

such as CU traits (Cecil et al., 2014), conduct problems (Cecil

et al., 2018), and social communication deficits (Rijlaarsdam

et al., 2021). Furthermore, DNAm patterns at birth—but not in

childhood—may mediate risk for psychiatric problems in later life; for

example, DNAm alterations at birth may impact early neuro-

development and downstream phenotypes that persist despite

changes in DNAm patterns per se. Given our prospective study

design, this focus on birth DNAm also allowed us to disentangle the

directionality of observed effects (i.e., examining DNAm pre-

manifestation of prosocial behavior), while also maximizing the avail-

able analytic sample. However, we cannot exclude the possibility of

time-specific associations later in life. Of particular note, prosocial

development is influenced by environmental processes in early child-

hood, most notably parental socialization (Eisenberg, Spinrad, &

Knafo-Noam, 2015; Paulus, 2014), whose effects may not be

reflected in DNAm at birth, but could engender changes in a child's

epigenetic profile that are only evidenced later in development. For

example, Barker, Cecil, et al. (2018) found that postnatal environ-

mental adversity was associated with age-7 DNAm, which then

affected a subsequent vulnerability for internalizing problems in late

childhood. It will be of interest in the future to utilize repeated

measures of DNAm to explore potential associations with postnatal

environmental influences and capture dynamic changes across the

lifespan.

DNAm is also highly tissue-specific (Davies et al., 2012; Dempster

et al., 2014) and, like other epigenetic studies, our ability to detect

effects for brain-related behavior traits may therefore be limited by a

reliance on blood-based samples. Although blood samples can be

reflective of DNAm in other tissue-relevant samples, including the

brain (Hannon, Lunnon, Schalkwyk, & Mill, 2015; Qi et al., 2018), with

some epigenetic findings successfully replicated across tissues

(Kaminsky et al., 2012), the extent to which these reflect changes in

the brain, as well as the functional consequences of these changes for

gene expression, remains unclear. Incorporating additional tissue

sources (e.g., blood, brain, and saliva) may better reveal common and

differential patterns of methylation in relation to low prosociality;

however, this is often not feasible in population-based cohorts.

Finally, the 450k array only covers 1.7% of the total number of CpGs

in the human genome, and selected CpG sites are substantially biased

toward promoter and gene body regions, which limits the capacity to

detect potential associations between DNAm at other, unmeasured,

CpGs with prosocial behavior.

Although not replicated in other cohorts, we note that one site

(cg03436478), annotated to SGCE and PEG10 genes, showed signifi-

cant differences in birth DNAm between chronic-low and typical

prosocial trajectories in ALSPAC, as well as the same direction of

effect across all cohorts. Both SGCE and PEG10, as imprinted genes,

are highly expressed during embryonic development, which is a crucial

period for establishing and maintaining methylation profiles (Kainz

et al., 2007). With specific regard to mental health, SGCE has previ-

ously been linked to anxiety, mood disorders, and schizophrenia in

genetic studies (Lam et al., 2019; Peall et al., 2013), while DNAm in

the vicinity of PEG10 has been related to maternal depression during

pregnancy (Liu et al., 2012) and increased risk for child maltreatment

(Yang et al., 2013). Furthermore, differential methylation in these two

imprinted genes has been associated with neurobehavioral outcomes

in a sex-specific manner: increased methylation of SGCE/PEG10 was

associated with increased risk of atypical behavior in boys, but

decreased risk in girls (House et al., 2018). In this study, we did find

evidence of sex differences between prosocial trajectories; specifi-

cally, boys were more prevalent in the chronic-low prosocial groups

and showed lower prosocial behavior at age 6–7 years. However, due

to the size of our analytic sample(s), we had insufficient power to per-

form epigenome-wide stratified and interaction analyses by sex. In

future research with larger samples, it would be worthwhile to analyze

whether DNAm was differentially associated with prosocial behavior

between boys and girls.

Finally, our findings did not replicate candidate genes previously

implicated in prosocial-related phenotypes, namely OXTR. One previ-

ous ALSPAC study reported prospective associations between a

higher level of OXTR DNAm at birth and adolescent CU traits at age

13 (Cecil et al., 2014). Of note, while CU traits are strongly correlated

with lower levels of prosocial behavior (Barker, Oliver, Viding,

Salekin, & Maughan, 2011), recent factor analyses have shown that
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the broader “low prosocial” phenotype denotes some unique variance

over and above that shared with CU traits, and is therefore likely to

be characterized by a distinct pathophysiological profile (Meehan,

Hawes, Salekin, & Barker, 2019).

In summary, this study is the first to examine the association

between 450k genome-wide DNAm at birth and childhood prosocial

behavior, using data from four independent longitudinal birth cohorts.

We also found no differentially methylated positions or regions that

were associated with low prosocial behavior at an epigenome-wide

significant threshold (based on examination of longitudinal trajectories

and dimensional “low prosocial” scores at a single time-point).

Together these findings suggest that, at least at birth and based on

the current sample size, there is no robust evidence for a prospective

association between birth DNAm and childhood prosocial behavior.

Overall, the current study highlights the importance of multi-cohort

approaches to replicate epigenetic associations and reduce the risk of

false positive discoveries (Rijlaarsdam et al., 2016). Future research

with larger sample sizes, more detailed phenotype definitions, and

additional epigenetic time-points will help to clarify the relation

between DNAm and low prosocial behavior in childhood.
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