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A B S T R A C T

Demyelination is the key pathological process in multiple sclerosis (MS). The extent of demyelination can be
quantified with magnetic resonance imaging by assessing the myelin water fraction (MWF). However, long
computation times and high noise sensitivity hinder the translation of MWF imaging to clinical practice. In this
work, we introduce a more efficient and noise robust method to determine the MWF using a joint sparsity
constraint and a pre-computed Bþ

1 -T2 dictionary.
A single component analysis with this dictionary is used in an initial step to obtain a Bþ

1 map. The T2 distri-
bution is then determined from a reduced dictionary corresponding to the estimated Bþ

1 map using a combination
of a non-negativity and a joint sparsity constraint.

The non-negativity constraint ensures that a feasible solution with non-negative contribution of each T2

component is obtained. The joint sparsity constraint restricts the T2 distribution to a small set of T2 relaxation
times shared between all voxels and reduces the noise sensitivity.

The applied Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm can be implemented efficiently,
reducing the computation time by a factor of 50 compared to the commonly used regularized non-negative least
squares algorithm. The proposed method was validated in simulations and in 8 healthy subjects with a 3D multi-
echo gradient- and spin echo scan at 3 T. In simulations, the absolute error in the MWF decreased from 0.031 to
0.013 compared to the regularized NNLS algorithm for SNR ¼ 250. The in vivo results were consistent with values
reported in literature and improved MWF-quantification was obtained especially in the frontal white matter. The
maximum standard deviation in mean MWF in different regions of interest between subjects was smaller for the
proposed method (0.0193) compared to the regularized NNLS algorithm (0.0266). In conclusion, the proposed
method for MWF estimation is less computationally expensive and less susceptible to noise compared to state of
the art methods. These improvements might be an important step towards clinical translation of MWF
measurements.
1. Introduction

Myelination is a crucial aspect of brain development and is essential
for the functioning of the nervous system. Demyelination, on the other
hand, is a pathological process that plays an important role in certain
diseases such as multiple sclerosis (Laule et al., 2004; Faizy et al., 2016).
Accurate measurement of myelin content has the potential to increase
our insights into several disease processes. Magnetic resonance imaging
gtegaal).
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(MRI) enables imaging of features related to (de-)myelination in vivo.
Methods to do so include ultra-short echo time imaging, diffusion tensor
imaging, magnetization transfer imaging and multi-echo T2 (MET2) or T*

2
relaxometry methods (MacKay and Laule, 2016; Does, 2017). In MET2

relaxometry (Whittall and MacKay, 1989; Poon and Henkelman, 1992;
Mackay et al., 1994), a T2 distribution is determined from a multi-echo
spin-echo (MESE) acquisition. The analysis of this distribution is
ay 2020

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:m.a.nagtegaal@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117014&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117014
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117014


M. Nagtegaal et al. NeuroImage 219 (2020) 117014
normally limited to the white matter, in which the short T2 relaxation
times (10–40 ms) are considered as myelin water (MW), intermediate T2

relaxation times (40–200 ms) as intra- and extracellular water (IECW)
and longer T2 relaxation times (>1s) as free water (MacKay and Laule,
2016). The myelin water fraction (MWF) is calculated as the ratio be-
tween the signal contribution from MW to the total sum of signal con-
tributions. It was shown that the method results in reproducible MWF
maps, but these maps are dependent on methodological variability
(Levesque et al., 2010; Meyers et al., 2013).

A Gradient- and Spin-Echo (GRASE) acquisition pattern (Oshio and
Feinberg, 1991) was introduced in the field of ME T2 relaxometry to
obtain whole brain images with shorter acquisition times compared to a
regular MESE acquisition (Prasloski et al., 2012b). The outcomes of
regular MESE and multi-echo GRASE imaging are known to be highly
similar (Kumar et al., 2018; Drenthen et al., 2019a).

However, MESE and multi-echo GRASE signals are sensitive to in-
homogeneities in the B1 transmit field. In particular, these in-
homogeneities can cause refocusing pulses with flip angles very different
from 180∘, leading to secondary and stimulated echos (Hennig, 1991). As
a result, deviations from mere exponential decays can occur. To account
for B1 inhomogeneity effects, the signal for each T2 component may be
calculated based on the extended phase graph (EPG) formalism (Hennig,
1988) using the corrected flip angle. Such flip angle inhomogeneity (FAI)
correction is especially important at higher field strengths (B0 � 3T),
since in that case the B1 field becomes less homogeneous.

In addition, the inverse problem of computing a T2 distribution from
MET2 data is highly underdetermined and therefore very sensitive to
noise (Graham et al., 1996). Therefore, it is crucial to acquire data with a
high signal to noise ratio (SNR) and apply regularization in order to
obtain a stable solution. A common approach (Whittall and MacKay,
1989) is to solve the problem for every voxel independently assuming
that the T2 distribution is smooth. This smoothness is enforced by
including the first-order derivative of the T2 distribution as a penalty
term in the objective function. The resulting problem can be solved by
the regularized non-negative least squares (regNNLS) algorithm (Lawson
and Hanson, 1974). To include FAI correction, Prasloski et al. (2012a)
proposed an EPG approach using regNNLS fitting, which was solved for
different FAI. This makes it possible to find the optimal FAI value to
calculate the final T2 distribution in a voxel-wise manner. However,
including this correction increases the computational complexity leading
to very long processing times. Yoo et al. (2015) were able to reduce the
computation time by a factor 4 using CPU and GPU parallelization
leading to 10 min computation time for a dataset with matrix size 256�
256� 7 and 32 echos. Although it has been shown that this method gives
reproducible results (Lee et al., 2018; Drenthen et al., 2019b), it remains
sensitive to noise, leading to relatively large coefficients of variation. As
such, the method can benefit from improved regularization or other
techniques that better control the noise amplification.

Several other regularization approaches were proposed, either lead-
ing to simplifications of the signal model or to increased computation
times. In Hwang and Du (2009), it was proposed to include additional
(2D) spatial regularization in the regNNLS algorithm, leading to
smoother MWF maps. Similarly, 2D spatially regularized MWF mapping
with B1 inhomogeneity correction was proposed by Kumar et al. (2016)
and later extended to include spatial smoothness of the FAI map and 3D
spatial regularization (Kumar et al., 2018). Due to the complexity of the
problem, the computation time was reported to take approximately
15–16 h for MET2 data of size 80� 80� 64 with 32 echoes. While the
above mentioned methods allow for a large number of T2 components
(up to 50 or 100), Stanisz and Henkelman (1998); Raj et al. (2014); Hajj
et al. (2019) proposed a two or three compartment model, assuming that
the distribution can be described by Gaussian peaks representing MW,
intra- and extracellular water (IEW) and free water, respectively. Con-
straining these components to a predefined T2 range combined with the
restriction of having a fixed, small number of components drastically
reduces the flexibility of the model, but yields improved noise
2

robustness. In a similar way, Akhondi-Asl et al. (2014) used an inverse
Gaussian distribution for a three compartment model, which prevents a
distribution with a tail reaching to negative T2 values.

Recently, several methods were introduced that used a T2 distribution
consisting of delta peaks. Bj€ork et al. (2016) showed that the distribution
does not necessarily need to be smooth, since a Gaussian distribution or
combination of delta peaks essentially lead to the samemeasurement. For
exponential signals, this makes it possible to estimate the MWF in a
parameter-free manner, without a pre-defined T2 grid through a system
identification approach (EASI-SM algorithm) (Stoica and Babu, 2013).
However, since this algorithm is specifically designed for exponential
signals, it does not allow the correction for FAI using EPG simulations.

Drenthen et al. (2019b) recently proposed to use orthogonal match-
ing pursuit (OMP) instead of the regNNLS algorithm. They applied the
non-negative OMP algorithm proposed by Yaghoobi et al. (2015) and
Nguyen et al. (2017), which implicitly includes a non-negativity
constraint. The NNLS and NNOMP algorithm show great similarities,
but Drenthen et al. demonstrated that applying temporal regularization
in the NNLS algorithm leads to a bias in the estimated MWF. Recently,
Does et al. (2019) proposed a method based on principle component
analysis to distinguish the components contributing to the signal from
those characterizing the noise. In this manner the method provides a way
to pre-process noisy relaxometry data.

In most of these studies, the proposed algorithms were compared to
the state of the art regNNLS algorithm. In these comparisons, several
methods showed a higher MWF in the sub-cortical white matter and
major white matter tract regions, which was confirmed by the signal in
T2 weighted scans.

Most recently, dictionary-based methods have gained increased in-
terest for quantitative MR parameter mapping. Popular examples include
applying a dictionary as a signal representation for compressed sensing
image reconstruction (Doneva et al., 2010; Li et al., 2012), a grid search
for fast parameter estimation (Marques et al., 2010; Barral et al., 2010;
Ben-Eliezer et al., 2015), andMR Fingerprinting (MRF) in which multiple
tissue parameters and system parameters are estimated simultaneously
(Ma et al., 2013). In these methods, a pre-computed dictionary con-
taining simulated signal evolutions is used for tissue and/or system
parameter mapping. Specifically, the inner product is applied to identify
the best matching dictionary atom and in effect the corresponding pa-
rameters from a measured signal. The dictionary depends on the pulse
sequence and the expected range of tissue and system parameters that
need to be estimated. This dictionary is computed once for a given pulse
sequence and can be reused for all subsequent acquisitions.

Recently, several algorithms were proposed to perform a multi-
component analysis of MR Fingerprinting data (McGivney et al., 2017;
Tang et al., 2018), where components are distinguished based on T1 and
T2 values. Similarly to multi-component T2 approaches, these methods
perform the multi-component MRF (MC-MRF) analysis for each voxel
separately applying a sparsity constraint to limit the number of compo-
nents per voxel. Following on these methods, we recently proposed a new
method for MC-MRF based on the NNLS algorithm that applies a spatial
joint-sparsity constraint leading to a small number of components across
the region of interest (Nagtegaal et al., 2020). This additional constraint
enables further noise resilience of the estimated component weights and
implementation in a computationally efficient algorithm. Consequently,
it leads to significantly reduced computation time compared to the
Bayesian and reweighted ℓ1-norm approaches.

In this work, we propose a new multi-component approach to MWF
mapping, based on our previously proposed algorithm for MC-MRF,
which is extended to include FAI correction. The FAI map is initiated
by performing a voxel-by-voxel, dictionary based, single-component
parameter estimation. Subsequently, a multi-component analysis is per-
formedwith an algorithm combining a joint-sparsity constraint with non-
negativity, in which the correction for FAI effects is included. We assume
that the T2 distribution is sparse and all voxels within a region of interest
share the same T2 components. This is a crucial difference with the
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common assumption that the T2 distribution is temporally, and
(optionally) spatially smooth. We hypothesize that our approach will
reduce noise amplification in the MWF maps and allow for a computa-
tionally efficient algorithm. The proposed method is evaluated in nu-
merical simulations and in vivo measurements and compared to the
regNNLS algorithm.

2. Methods

2.1. Data model

The multi-component signal xj 2 RM measured in voxel j at M time
points for a MESE sequence is modeled as

xj ¼
Z ∞

0
S
�
aj; T2

�
cjðT2ÞdT2 þ ej (1)

where Sðaj;T2Þ 2 RM is the signal for relaxation time T2 at FAI value aj,
cjð �Þ is the T2 distribution, and ej a Gaussian noise vector. The value of
cjðT2Þ can be considered the signal contribution of a tissue with a certain
T2 time in voxel j.

The MESE signal decay Sðaj;T2Þ for non-ideal refocusing pulse flip
angles can be calculated using the EPG formalism (Hennig, 1988). The
applied sequence consists of an aj �90∘ pulse followed by M aj � 180∘
pulses.

The integral of Equation (1) might be discretized by taking NT2

T2-values and NFAI FAI values assuming that there are N ¼ NT2 � NFAI

possible signal realizations. These signals will be stored in a matrix D 2
RM�N , to which we will refer as the dictionary. A subdictionary con-
taining the signals for a specific FAI value a is indicated as Da 2 RM�NT2 .
In this matrix the rows correspond to the simulated signal and each
column to a particular T2 time.

Assuming that there is only a single FAI-value in voxel j, Equation (1)
can be written as a linear combination of NT2 signals with weights cj,
corresponding to the discretized T2 distribution values and the FAI value
aj for the given voxel:

xj ¼Dajcj þ ej; (2)

The weights of the T2 distribution are assumed to be non-negative.
Given a measured signal xj 2 RM the weights of the T2 components can
then be estimated by solving the non-negative least squares problem:

cj ¼ arg min
~cj2RN

�0

��xj � Daj~c
��
j

2

2
: (3)

Conventional methods for solving this minimization problem assume
that the vector c is either smooth or sparse. Very recently, we introduced
a different approach by imposing a joint sparsity constraint (Nagtegaal
et al., 2020). Our premise was that the measured signals in a region of
interest (ROI) could be described by a small set of T2 relaxation times,
common for all voxels in the ROI. To formalize this, let C ¼ ½c1…cJ � be the
NT2 � J sized matrix containing the contributions for all J voxels.
Furthermore, ci is taken to represent a row from this matrix, corre-
sponding to the contributions of a particular T2 signal to all voxels, so that
at the same time C ¼ ½c1T…cNT2 T �T .

This leads to the joint sparsity minimization problem:

min
C2RNT2

�J

�0

X
j¼1

��xj � Dajcj
��2

2

s:t:
XNT2

i¼1

kcki0 is small:

(4)

The term
PNT2

i¼1 kcik0 counts the number of used components, but does
not restrict this to a prescribed maximum. The joint sparsity problem
including the non-negativity constraint can be solved with different
3

algorithms. We applied the Sparsity Promoting Iterative Joint NNLS
(SPIJN) algorithm (Nagtegaal et al., 2020) for MC-MRF involving
highly-coherent signals. This approach enabled a higher noise robustness
compared to voxel-by-voxel methods and lead to easy interpretable re-
sults because of the small number of components. In this work we extend
the SPIJN algorithm to include FAI correction and investigate its appli-
cation to multi-component T2 analysis.

Algorithm 1. The Sparsity Promoting Iterative Joint NNLS (SPIJN)
algorithm to perform a multi-component analysis for MET2 data with
correction for flip angle inhomogeneities.

2.2. Fitting procedure

We propose a two-step approach to perform multi-component T2

analysis of MET2 data: (1) a FAI map is computed assuming that the
measured signal is dominated by a main component, and thus can be
modeled as a single component in each voxel; (2) a multi-component T2

analysis is performed using the estimated FAI map and applying the joint
sparsity constraint as stated in Eq. (4). The algorithm is schematically
described in Algorithm 1.

Using the EPG formalism a dictionary D was computed containing
combinations of FAI and T2-values. A fixed T1 ¼ 1 s was used in the EPG
simulations similarly to (Prasloski et al., 2012a; Kumar et al., 2018). FAIs
were simulated as a multiplicative factor modifying the prescribed flip
angle. The FAI values are modeled as a ¼ αeffective

αintended
, for a CPMG sequence the

effective signals are symmetric around a ¼ 1. The modeled FAIs ranged
from 0.75 to 1 in 140 linear steps, while T2 relaxation times were chosen
on a logarithmic scale from 10 ms to 5 s with 141 steps. The total
computation time for the dictionary was 81 s.

The dictionary was first used to perform a single component match-
ing. For each voxel, the inner product between measured signal and
(normalized) dictionary signals was used to determine the FAI- T2 com-
bination that best described the measured signal.

Subsequently, the same dictionary was applied in the SPIJN algo-
rithm for multi-component estimation and while doing so the FAI was
restricted by the value obtained through single componentmatching. The
SPIJN algorithm was based on the NNLS algorithm and used an iterative
reweighting scheme to couple the non-negative sparse solutions of the
different voxels. By applying this reweighting the solution converged to a
jointly sparse solution.

The proposed method was implemented in Python. More details on
the used convergence thresholds, the used reweighting and regulariza-
tion can be found in (Nagtegaal et al., 2020). The regularized NNLS al-
gorithm including FAI correction (Prasloski et al., 2012a) was used as a
reference method. 101 T2 values logarithmically spaced from 10ms to 5 s
and a fixed T1 of 1 s were used. The regNNLS computations were per-
formed with MATLAB 2018b (The MathWorks Inc; Natick, Massachu-
setts, USA).

2.3. Numerical simulation experiments

Two numerical experiments were performed to analyze the proposed
method. Both experiments were performed for M ¼ 48 echoes with a
spacing of ΔTE ¼ 10 ms (first echo at 10 ms). These settings were also
applied in the in vivo experiment (see below).

First, the behavior of the proposed FAI estimation was analyzed and
compared to FAI estimation with the regNNLS algorithm. Simulations
were performed based on a signal composed as the weighted sum of two
components: a short water (SW) relaxation component, with T2 ¼ 20 ms,
and a long water (LW) relaxation component with T2 times from 25ms to
3 s with 41 steps on a logarithmic scale. The SW fraction (SWF) ranged
from 0 to 1 with step size 0.05 (while LWF ¼ 1 - SWF). The FAI level
varied between 0.75 and 1 in 5 steps. Furthermore, 100 real valued
Gaussian noise realizations were added to each simulated signal, to yield
100 noisy signal versions at each setting. The Gaussian noise had a
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standard deviation defined as s0=SNR, in which s0 was the signal intensity
of the first echo. A fixed SNR of 250 was used, which was comparable to
Fig. 1. The ground truth fraction maps of the three components simulated in numeri
shows a smoothly varying fraction oscillating around 0.2 and is absent at certain loca
component present in the simulated image. The third component with T2 ¼ 1000 ms

4

the SNR of the in vivo experiment (see below). The absolute value of the
noisy signal was then analyzed with the proposed FAI estimation. The
cal experiments. The first component with mean T2 ¼ 20 ms resembles MW and
tions. The second component with T2 ¼ 70 ms resembles IECW and is the main
resembles cerebrospinal fluid and is present in two regions for 100% and 50%.
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mean residual signal error as well as the mean FAI error were calculated
for each parameter combination (SWF/FAI/LW- T2).

The mean residual signal error was computed as 1
100

P100
i¼1ks� dik2=

ksk2 where s is the ground truth noise free signal and di is the matched
dictionary signal for noise realization i. Second, the precision and accu-
racy of the calculated MWF with the proposed method was compared to
outcomes of NNLS and regNNLS algorithms. Therefore, an image was
simulated consisting of 100� 100 pixels with a mixture of three com-
ponents. These components had T2 relaxation times of 20 ms, 70 ms and
1000 ms roughly corresponding to MW, IECW and FW, respectively. The
map with the signal fractions (summing to one) of the components is
shown in Fig. 1.

The simulations were performed with two different, constant FAI
levels of 1.0 (i.e. no offset in B1 field) and 0.9. The simulations were
performed with different noise realizations, applying SNRs of 500, 250
and 100.

The MWF was computed with the unregularized NNLS and SPIJN
algorithms using the FAI map estimated in an initial single component
analysis step as described above. For the SPIJN algorithm λ ¼ 0:02 was
used. These MWF maps were compared to the MWF from the regNNLS
algorithm and to the ground truth. Relaxation times below 40 ms were
considered to correspond to the MW component.
2.4. In vivo imaging experiments

To study the practical feasibility of the proposed method, brain scans
were performed in 8 healthy subjects. Informed consent was obtained
from all subjects. Imaging was performed on a 3.0 T Ingenia scanner
(Philips, Best, The Netherlands) based on a 3D multi echo GRASE
acquisition scheme using a 13 channel head coil. The sequence param-
eters were: 48 echoes with echo spacing of ΔTE ¼ 10 ms; EPI factor of 3;
field of view 240� 205� 72 mm3; voxel sizes 1:25� 1:25� 8 mm3;
Fig. 2. Absolute mean error of the estimated FAI (top 2 rows) and mean signal appro
and T2 relaxation times for the long component. FAI errors are shown for the propose
The MW component has a fixed relaxation time of T2 ¼ 20 ms. The white box in
MW fractions.

5

repetition time TR ¼ 1:2s, resulting in a total acquisition time of 6 min
and 14 s.

A multi-component analysis of the acquired brain data was performed
using the proposed method. The proposed method was applied to all
slices simultaneously. Skull and air were masked based on their signal
intensity and other tissues not connected to the brain were also discarded
as such. Additionally, the regNNLS algorithm was applied for myelin
water mapping. For the SPIJN algorithm, the regularization parameter λ
was set to 30 for the in vivo data (see Supplementary material Figure S1
for a range of λ values). The part of the T2 distribution with a relaxation
time shorter than a preset threshold value ~T2 was attributed to MW. The

MWF was calculated as MWF ¼ P
i:Ti

2�~T2

ci=
PNT2

i¼1 ci for both methods.

Experimentally, we studied two different thresholds: ~T2 ¼ 30 ms and
~T2 ¼ 40 ms. Regions of interest (ROIs) were manually annotated: sple-
nium, thalamus and genu of the corpus callosum and parts of the frontal,
occipital and temporal white matter lobes.

The SNR of the in vivo data was calculated from the results of the
regNNLS algorithm as the ratio between the signal intensity in the white
matter structures in the first echo and the standard deviation of the
residual.

For each method, subject and ROI the mean MWF and coefficient of
variation (CoV) were calculated. A paired two-sample t-test was used to
determine the significance of the differences in MWF values and CoV per
region.

3. Results

3.1. Numerical simulation experiments

Fig. 2 summarizes the outcomes of the first, FAI estimation experi-
ment. It shows the absolute mean error of the estimated FAI and the
ximation error (bottom row) in simulations for varying FAI values, MWF values
d and regNNLS algorithm, signal approximation errors for the proposed method.
dicates the range for realistic IECW T2 relaxation times and plausible (short)



Fig. 4. T2 value distribution of components identified by the SPIJN algorithm
~
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single component signal approximation error for varying FAI, SWF and
LW-T2 relaxation times (averaged over 100 noise realizations) for the
SPIJN and regNNLS algorithm. The signal approximation error is not
shown for the regNNLS, since it was negligible (max. 5 � 10�4). The
middle row demonstrates that the error in the proposed method is largest
for a combination of a SWF between approximately 0.5 and 0.9, large
LW-T2 relaxation times and more severe flip angle inhomogeneity level
(FAI toward 0.75). Furthermore, the bottom images show that when the
SWF and LW-T2 increase, the signal estimation error increases as well
because the signal model becomes less accurate. A LW-T2 < 160 ms and
SWF � 0:2 is a realistic range for a mixture of MW and IECW, see e.g.
(MacKay and Laule, 2016). In this range, demarcated by the dotted line in
the figure, the maximum mean absolute error in the estimated FAI is
0.0266.

Compared to the regNNLS algorithm (first row) the proposed method
shows similar errors in the range of interest, but not for more extreme
combinations. The overall mean FAI error using the regNNLS algorithm
was lower (0.0158) compared to the proposed method (0.0460). How-
ever, the maximum error in the realistic range was 0.0301 with the
regNNLS method, which is higher than the error of the proposed method
(0.0266). Also, the mean error in this range was higher: 0.0146
compared to 0.0133, for regNNLS and proposed approach, respectively.

In Fig. 3 the absolute mean MWF error maps (over 100 noise re-
alizations) are shown for a FAI values of 1 and 0.9, summarizing the
second MWF estimation experiment. Above each map, the root mean
square error (RMSE) is indicated. Estimates were calculated with the
NNLS, SPIJN, and regNNLS algorithms, at SNR values of 500, 250 and
100.

The SPIJN algorithm resulted in lower MWF RMSE for all SNR values
compared to the NNLS and regNNLS algorithms. Observe that especially
for FAI ¼ 1 the RMSE were markedly lower. Particularly for SNR ¼ 250
the SPIJN algorithm achieved a 58% lower error compared to the
regNNLS algorithm.
Fig. 3. Absolute error maps of estimated MWF with the NNLS, SPIJN and regNNLS (P
different SNR. Underlying ground truth fraction maps are shown in Fig. 1. The maps o
proposed single component dictionary matching. The root mean square error (RMSE

6

3.2. In vivo imaging experiments

The mean SNR of the in vivo MET2 data sets, as defined in Section 2.4,
was 320 (maximum: 436; minimum: 254). Application of the SPIJN al-
gorithm led to 5 to 7 components. The distribution of T2-values across
identified components in the subjects is shown in Fig. 4. In general, it can
be seen that components are matched to the lower and upper bound of T2

values in the dictionary (10 ms and 5 s respectively). In between these
bounds, components are matched to T2 values around 35, 75 and 250 ms.
The fraction maps for the different components for a representative
subject (subject 2) are shown in Fig. 5.
rasloski et al., 2012a) algorithms for FAI values of 0.9 and 1 in simulations with
f the NNLS and SPIJN algorithms were computed using FAI estimations from the
) for each map is indicated on top.

for 8 subjects. The typical threshold value for MW detection (T2 ¼ 40 ms) is
marked by a red line. The distance between the light grey grid lines reflects the
dictionary step size. The size of the dots shows the relative abundance of the
different components.



Fig. 5. Fraction maps of matched components by the SPIJN algorithm for a
representative subject. Across the columns is a selection of slices; rows show
fraction maps for different components. Matched relaxation times are given on
the left.
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Fig. 6 shows representative T2 weighted images, estimated FAI maps
and MWF maps (~T2 ¼ 40 ms) for the same subject. FAI and MWF maps
were obtained with the SPIJN algorithm and the reference regNNLS al-
gorithm. The FAI maps of the two methods show good agreement. The
main difference between the regNNLS and SPIJN MWF maps can be seen
in the frontal white matter (red circle). Here, the T2 weighted images
show evidence that there is myelin present, signified by the white-grey
matter contrast. However, the regNNLS algorithm estimates very low
MWF in these regions. Fig. 5 shows that the T2 component of 36.2 ms is in
particular responsible for the higher MWF detected by the SPIJN
algorithm.

The mean MWF values across the ROIs and the subjects for the
regNNLS and SPIJN with ~T2 ¼ 30 ms and 40 ms are summarized in
Table 1. Furthermore, CoVs are collated in Table 2. For reference, liter-
ature values as measured with different algorithms are shown in Table 3.
Observe that for ~T2 ¼ 30 ms differences between the methods are not
significant. However, they are significant in most structures for ~T2 ¼ 40
ms. Only for the splenium the outcomes of the two methods are not
significantly different at this threshold. Simultaneously, note that for
~T2 ¼ 40 ms the CoVs are significantly smaller for the proposed method
compared to the regNNLS method.

The distribution of the differences between the two methods across
7

the regions for ~T2 ¼ 30 ms are plotted in Fig. 7. In most subjects the
differences are not significant; only in subjects 7 and 8 significant dif-
ferences were found at this setting. Notably, these two subjects yield
components with T2 ¼ 25 ms (see also Fig. 4), which adds to the MWF at
~T2 ¼ 30 ms.

The average computation time per slice was 1.19 s for the single
component matching and 7.00 s for the multi component matching with
the SPIJN algorithm. The average computation time per slice for the
regNNLS was 408 s.

4. Discussion

In this study the SPIJN algorithm was introduced as a new, fast
method to determine the MWF from MET2 relaxometry data through a
multi-component analysis with a correction for flip angle inhomogeneity.
The method was compared to the NNLS and state of the art regNNLS
algorithms in numerical simulations and on data from 8 subjects acquired
at 3 T.

The first simulation experiment showed that a FAI map can be
accurately estimated, especially in a realistic range of IECW relaxation
times and MWFs. The FAI-mapping method is proposed as a computa-
tionally efficient technique and relies on the presence of a dominant
tissue or small differences in T2 between different components. The
regNNLS approach (Prasloski et al., 2012a) provides a more generally
applicable method, but is computationally much more expensive. The
mean error of the estimated FAI increases (order of 20%) with increasing
FAI, MWF (> 0:4) and increased T2 of the non-MW component (> 400
ms). This could result in a biased FAI estimation e.g. in partial volume
voxels with mainly myelin and cerebrospinal fluid. However, this setting
represents a non-realistic configuration in myelinated tissue.

The second simulation experiment as shown in Fig. 3 demonstrated
that the SPIJN algorithm yields lower RMSE for MWF estimation than the
NNLS and regNNLS algorithms. The shown simulations used a signal
model with a sparse distribution of T2 values, possibly favoring SPIJN
over the regNNLS algorithm, which assumes a smooth distribution. As
such, the difference between SPIJN and NNLS, in which a sparse distri-
bution is the only assumption, particularly shows the benefit of the joint
sparsity constraint. The assumption of a jointly sparse T2 distribution
makes it possible to benefit from shared information in different regions
and large numbers of voxels. As a consequence, improved noise resilience
could be observed, especially at SNR ¼ 100. In-vivo measurements this
may be important for balancing the trade-off between resolution and
SNR. Reduced SNR caused by higher resolutions are expected to have
smaller effects on accuracy with the proposed SPIJN algorithm compared
to voxel-wise methods.

The number of resulting components enforced by the joint sparsity
constraint may be difficult to predict a priori due to the complexity of
tissue microstructure and potential natural variation. The number of
retained components is influenced by the T2 values of tissues present in
the region of interest, the sensitivity of the used MET2 sequence to these
tissue parameters and the used level of regularization. As shown in Fig. 4
the in vivo experiments yield small variations in the number of estimated
components and associated T2 relaxation times, which is probably due to
natural diversity.

In general the T2 values of the main groups of components are in
agreement with the myelin water, intra-extracellular water and free
water, as observed on a voxel basis by e.g. Whittall et al. (1997). Three
components with T2 < 40 ms were identified in 4/8 subjects, while only
two such components were obtained in the other 4/8 subjects. Fig. 5
illustrated that the additional component (T2 ¼ 20:3 ms in this case)
typically was associated with small signal fractions. In addition to these
MW components, all subjects yielded a component with T2 around 70ms,
which forms the main component in most voxels and is attributed to intra
and/or extra cellular water. The identification of two further components
with longer relaxation times is consistent with our earlier findings with



Fig. 6. T2-weighted images, FAI and MWF maps for the regNNLS and SPIJN algorithm for a representative subject. T2 � 40 ms was considered to correspond to MW.
Frontal white matter regions with increased white-grey matter contrast are annotated with red ellipses. In slice 4 an example of the manually annotated ROIs is shown.
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MC-MRF (Nagtegaal et al., 2020). The longest T2 component (T2 ¼ 5s)
can be contributed to free water and is mainly present in the locations
where free water is expected. The component around T2 ¼ 250 ms is
rather small (typically 10%), but is in confirmation with earlier obser-
vations (Whittall et al., 1997; Laule et al., 2007b) and was interpreted as
extra-axonal water (Does, 2017). A dominant component with compa-
rable relaxation times was observed in patients with MS (Laule et al.,
2007a). This component is not often reported in healthy subjects. The
appearance of this component could be caused by increased sensitivity of
the proposed algorithm to components with a low presence and thus
contain useful information. It could also be caused by the proposed
analysis method and then it has to be considered as an artifact. The in-
formation contained by this component would be of interest in further
clinical studies or in an analysis of already acquired data.
8

Underlying biological principles could also cause a slight variation of
T2 values of the same component. This would conflict with the assump-
tion of group sparsity, which determines a small basis to represent all
measured signals. Since small differences in T2 only cause a small dif-
ference in the exponential decay the effect of a slight variation on the
T2-components are minor. This was further assessed in an experiment as
described in Supplementary material Figure S2.

The focus of the rest of the paper is on the accuracy with which a
MWF map could be obtained from components reflecting low T2 times.
The values obtained with the SPIJN algorithm at ~T2 ¼ 40 ms are in
agreement with the literature values as given in Table 3. Only the mean
MWF in the genu of the corpus callosum shows a large difference with the
values as reported by Kumar et al. (2018). On the other hand, they are in
line with the results as reported by Drenthen et al. (2019b). The MWF



Table 1
MWF values for different structures with the reference method reg NNLS and
proposed SPIJN algorithm for different T2 boundary values. The mean value of
the ROI averaged MWFs among 8 different volunteers is given, with the standard
deviation among the ROI averaged MWFs.

~T2 [ms] 30 40

Method reg NNLS SPIJN reg NNLS SPIJN

Frontal lobe 0.0610 (�
0.0187)

0.0625 (�
0.0169)

0.0683 (�
0.0189)

0.1371 (�
0.0141)*

Genu of the corpus
callosum

0.0808 (�
0.0270)

0.0798 (�
0.0222)

0.0863 (�
0.0266)

0.1725 (�
0.0120)*

Occipital lobe 0.0684 (�
0.0132)

0.0799 (�
0.0078)

0.0847 (�
0.0172)

0.1119 (�
0.0193)*

Splenium of the
corpus callosum

0.1287 (�
0.0156)

0.1267 (�
0.0167)

0.1295 (�
0.0153)

0.1315 (�
0.0147)

Temporal lobe 0.0838 (�
0.0229)

0.0919 (�
0.0179)

0.0886 (�
0.0207)

0.1186 (�
0.0168)*

Thalamus 0.1248 (�
0.0235)

0.1264 (�
0.0158)

0.1467 (�
0.0139)

0.1711 (�
0.0178)*

Significant differences between the two methods (p < 0:05) are indicated by *.

Table 2
Coefficient of variation of the MWF values for different structures with the
reference method reg NNLS and proposed SPIJN algorithm for different T2

boundary values. .

~T2 [ms] 30 40

Method reg NNLS SPIJN reg NNLS SPIJN

Frontal lobe 0.488 0.513 0.406 0.221*
Genu of the corpus callosum 0.450 0.497 0.401 0.208*
Occipital lobe 0.556 0.439* 0.451 0.239*
Splenium of the corpus callosum 0.254 0.239 0.251 0.222*
Temporal lobe 0.462 0.400 0.432 0.230*
Thalamus 0.396 0.410 0.341 0.216*

Significant differences (p < 0:05) between the two methods are indicated by *.

Fig. 7. Box plots of difference between the MWF obtained for the SPIJN and
regNNLS algorithms in 7 anatomical structures across the eight subjects. T2 �
30 ms was considered to correspond to MW.
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values for the regNNLS algorithm are consistent with the values as re-
ported in (Prasloski et al., 2012b). The MWFmaps obtained by the SPIJN
algorithm showed higher fractions compared to those computed with the
regNNLS approach. This difference might be due to the smoothness
constraint on the T2 distribution imposed by regNNLS. In effect, myelin
water with a T2 around 35 ms could be smoothed into the larger IECW
pool, so that it is not identified as MW.

Notably, the shown T2 weighted images indicated that higher levels
of myelin might be expected than reflected in the regNNLS maps.
Moreover, the MWF maps obtained by the SPIJN algorithm are very
similar to MWF maps presented by Kumar et al. (2018). The main dif-
ference compared to the regNNLS algorithm can be seen in the frontal
white matter. A possible lack of sensitivity in this region was reported by
Table 3
MWF values across several brain structures as reported in literature. All methods
used ~T2 ¼ 40 ms. Studies with * were performed at 1.5 T, other studies were
performed at 3 T as the results shows in this paper.

Brain structure (Whittall
et al., 1997)*

(Levesque
et al., 2010)*

(Kumar
et al., 2018)

(Drenthen
et al., 2019b)

Frontal lobe 0.14425 �
0.00995

Genu of the
corpus
callosum

0.0986 �
0.0096

0.102 �
0.048

0.1154 �
0.0106

0.132� 0.053

Occipital lobe 0.10765 �
0.0086

Splenium of the
corpus
callosum

0.1305 �
0.0096

0.149 �
0.076

0.1533 �
0.0292

0.211� 0.056

Thalamus 0.0579 �
0.0054

0.170� 0.039
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Wiggermann et al. (2019) as well, where it was hypothesized that this
insensitivity was caused by the increased flip angle inhomogeneities in
this region. The estimation of FAI presented by us is slightly different and
combined with the improved noise resilience this could result in an
improved MWF estimation in these regions.

The work by Kumar et al. (2018) also reported MWF values in several
regions of interest that are comparable to those found with the SPIJN
algorithm. Unfortunately, only a small number of studies reported MWFs
for different structures, making a reliable comparison difficult. Possibly
the limited number of studies reporting this is because of large natural
variation in subjects. When values were reported (see e.g. (Prasloski
et al., 2012b; Kumar et al., 2018; Drenthen et al., 2019b)), this was done
as part of the introduction of new acquisition methods or algorithms,
using only a small number of subjects in a similar way as was done here.

The regularization parameter in the SPIJN algorithm (λ, see Algo-
rithm 1) was experimentally determined, but showed to be robust across
different scans from the same scanner, once the same λ was used for
processing of all scans after the value was set. Variations in the regula-
rization parameter (from 20 to 60; observe that 30 was used in the re-
sults) only had very small effects on the resulting MWF maps (less than
1%, see Supplementary material Figure S1). In the simulations a different
regularization parameter was used compared to the in vivo data. This was
necessary because the simulations were based on a different number of
tissue types and associated T2 times.

The regularization level mainly determines the number of compo-
nents and only indirectly the fractions of the different components. This
makes the SPIJN method less sensitive to the exact regularization value.
Essentially, setting lambda smaller will lead to a reduced fit error, but
simultaneously to a larger number of components. Consequently, the
regularization parameter might for example be automatically selected by
requiring that a certain minimal fit error is achieved. However, per-
forming such optimization for every scan will go at the expense of
increased computation time.

We propose to use a jointly reweighted NNLS scheme to approximate
the multi-component problem from (4). Other optimization schemes
could be considered e.g. group LASSO (Yuan and Lin, 2006) as well.
However, we experienced that the highly coherent T2 dictionary atoms
strongly affect the convergence properties of some of these methods. This
confirms findings by others that FISTA or LASSO based methods are not
always suitable choices (Wipf and Nagarajan, 2010; Tang et al., 2018).

Very recently two papers were published on the use of deep learning
networks for the calculation of MW fractions based on the regNNLS al-
gorithm (Lee et al., 2020; Liu et al., 2020). These networks are trained
based on the regNNLS algorithm and are therefore able to reproduce
these maps very well and therefore show the same level of noise sensi-
tivity as the regNNLS algorithm. Both papers applied this in a
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voxel-by-voxel manner, where the here proposed method aims to
improve the model through the addition of the joint sparsity assumption.

The proposed method was here applied on ME T2 relaxometry data.
The use of a joint-sparsity constraint could also be beneficial for other T1,
T2 or T*

2 relaxometry methods, as long as a similar multi-component
model is applicable. The here proposed method was only evaluated in
simulations and healthy subjects with GRASE acquisitions, focusing on
the differences in the normally expected signals and MWF maps. We
consider the evaluation of the method in patients a very important topic
for future research.

5. Conclusion

The SPIJN algorithm facilitates estimation of MW fractions through a
joint sparsity promoting fit of multiple T2 components to T2 relaxometry
data. The method yielded enhanced accuracy in simulations compared to
the state-of-art regularized NNLS algorithm. Furthermore, theMWFmaps
from healthy subjects showed visual improvements over the regNNLS
approach. The method was also 50 times faster than the regNNLS algo-
rithm: the average computation time per slice was 8.19 s on a standard
desktop PC.

The faster computation of MWF maps combined with improved ac-
curacy can help to increase our insights into (de)myelination and enables
reconstruction of MWF maps directly after data acquisition.
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