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History is full of favorable annotations towards obesity, after all, it reflects one’s ability to feed

themselves well, it reflects prosperity. However, the ever increasing prevalence of obesity in

modern society also revealed strong associations with diseases such as type 2 diabetes mellitus

(T2DM), non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). CVDs

are currently the leading cause of death worldwide, and pharmacological treatment options to

lower atherosclerotic CVD (asCVD) risk are mostly limited to cholesterol-lowering medication,

which only prevents one-third of all atherosclerotic cardiovascular events.

It is increasingly acknowledged that triglycerides (TGs) and TG-rich lipoprotein (TRL) remnants

contribute to asCVD risk [1, 2]. Although life-style changes such as increasing physical activity

and reducing caloric intake would be the preferred strategy to lower TGs, it is not always

feasible and long-term adherence appears challenging. Novel therapeutic approaches are

thus required to sustainably improve TG metabolism in order to attenuate atherosclerosis

development. In this thesis, I therefore explored the potential of various therapeutic strategies

to improve TG metabolism and cardiometabolic health, with special attention for an appropriate

experimental design. The results of these studies are discussed in the current chapter.

Targeting adipose tissue to attenuate dyslipidemia

White adipose tissue (WAT) plays an important role in lipid metabolism. It can store nutritional

energy in the form of TGs for use during fasting, but also acts as a buffer for postprandial TGs.

Specifically, upon nutrient ingestion lipoprotein lipase (LPL) translocates from adipocytes to

the luminal membrane of endothelial cells lining the adipose tissue, thereby increasing the

uptake of TG-derived fatty acids (FAs) from TRLs by adipocytes for temporary storage. In the

fasted state, intracellularly stored TGs are hydrolyzed and released as FAs into the blood for

use by other tissues. This adaptive response of WAT to feeding status is essential for metabolic

health and contributes to an anti-atherogenic metabolic profile [3].

In addition to WAT, the human body also contains brown adipose tissue (BAT). Compared to

WAT, the TG storage-capacity of BAT is limited. Instead, BAT primarily uses TG-derived FAs

as fuel for heat production (i.e. thermogenesis). Physiologically, cold exposure stimulates the

release of norepinephrine by sympathetic nerve termini that innervate the BAT, leading to

thermogenic activation of brown adipocytes via signaling through the β-adrenergic receptor

(AR). The lipolytic activity in BAT not only lowers plasma TGs [4], but also leads to the

formation of cholesterol-enriched TRL remnants that can be cleared by the liver, thereby

indirectly lowering plasma cholesterol levels as well [5]. Adding to this, during lipolysis of

TRLs, TRL-surface remnants intercalate into the high-density lipoprotein (HDL) pool, which

increases the capacity of HDL for reverse cholesterol transport (i.e. transport of cholesterol from

peripheral tissues towards the feces) [6]. Prolonged cold exposure or β-adrenergic agonism

furthermore induces browning of WAT, which in turn also contributes to the accelerated

lipolytic processing and hepatic clearance of TRLs. Taken together, thermogenic adipocytes are

capable of reversing dyslipidemia and lowering atherosclerosis as shown in mice [5]. Strikingly,

a negative association has recently been reported for the detectability of metabolically active

BAT and asCVD risk in humans [7].

Novel therapeutic strategies that improve the lipid buffering capacity of WAT and/or stimulate

thermogenic activity of BAT or WAT may thus be valuable to improve lipid metabolism and

ultimately attenuate asCVD risk.
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Inhibition of the endocannabinoid system

The cannabinoid type 1 receptor (CB1R) is present on adipocytes and inhibits the production

of intracellular cAMP [8], which is required for the thermogenic activation of BAT and brown-

ing of WAT upon β-adrenergic signaling. The CB1R is furthermore expressed on termini of

sympathetic nerves that innervate the adipose tissues, where its activation inhibits the release

of the neurotransmitter norepinephrine [9].

Pharmacological blockage of the CB1R has correspondingly been shown to stimulate TG-

derived FA uptake by BAT [10]. We have now shown that CB1R inhibition with rimonabant

also induces browning of WAT, and potently lowers atherosclerosis development via improv-

ing dyslipidemia in APOE*3-Leiden.CETP mice (chapter 2). Others have reported that CB1R

inhibition also lowers atherosclerosis development in apolipoprotein E (ApoE) deficient and

low-density lipoprotein receptor (LDLr) deficient mice through a direct effect on immune cells

resulting in lowered inflammation [11, 12]. Together, these findings implicate that inhibition

of the endocannabinoid system (ECS) can lower asCVD risk both via improving dyslipidemia

and via reducing inflammation. Interestingly, Krott et al. [13] reported that β3-AR agonism

increases the levels of endocannabinoids in BAT of mice suggesting the existence of a neg-

ative feedback loop to prevent excessive thermogenic activation. This implicates that ECS

inhibition might potentiate the effects of cold exposure or a sympathomimetic. In addition,

we recently showed that high-fat diet feeding of mice acutely raises the circulating levels of

endocannabinoids, coinciding with elevated expression of their synthesis enzymes in BAT and

WAT [14]. Given the observed positive association between endocannabinoid tonus and obesity

in humans [15], this suggests that targeting the ECS may also be useful to attenuate at least

part of the consequences of obesity.

In humans, inverse agonism of the CB1R by rimonabant has shown great potential in lowering

adiposity and attenuating dyslipidemia [16, 17], but unfortunately also led to psychiatric side

effects within the central nervous system (CNS), resulting in its withdrawal from the market.

For this reason, second generation CB1R inverse agonists and antagonists with less brain

penetrance have been developed. Although at least some of the effects of rimonabant may

be mediated by the CNS via lowering food intake, our group showed that the peripherally-

restricted CB1R antagonist AM6545 can also potently activate BAT and attenuate dyslipidemia

[10], therefore atheroprotective effects for peripherally restricted CB1R inhibitors are expected

comparable to those we have observed for rimonabant. Some of these second generation com-

pounds were also tested in humans in phase 1 clinical trials, which promisingly showed lower

CB1R occupancy in the brain compared to rimonabant [18, 19]. However, these compounds

initially did not move forward in clinical development, as may be related to difficulties in

pharmacokinetics or bioavailability after all. An alternative reason hampering the clinical

development of these compounds may be related to concerns amongst researchers regarding

the potential of CNS-related side effects on the long term, as chronic use of these antagonist

may still cause accumulation in the brain [20].

Nevertheless, the development of new therapies based on peripherally restricted CB1R inverse

agonists is still actively ongoing [21]. Recent advancements include the development of third

generation compounds with activity at two distinct receptors. For example, a hybrid CB1R

inverse agonist and inducible nitric oxide synthase (iNOS) inhibitor has been developed for

the treatment of liver fibrosis. In this combination, CB1R inhibition exerts growth-inhibitory

and proapoptotic effects on hepatic myofibroblasts [22], while iNOS inhibition lowers the

generation of proinflammatory reactive nitrogen species [23, 24], together resulting in stronger
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anti-fibrotic effects than rimonabant [23, 24].

Compounds that inhibit the synthesis of endocannabinoids themselves may also be valu-

able to modulate ECS tonus. So far, inhibitors of diacylglycerol lipase (DAGL) [25] and N-

arachidonoylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) [26] have been

developed with proven efficacy in lowering endocannabinoid levels in vivo, and in our initial

experiments their use seems to delay acute weight gain in mice as induced by a high-fat diet,

by transiently lowering food intake (unpublished observations). Long-term studies will be

needed to investigate tissue-specificity of these endocannabinoid synthesis inhibitors, as well

as their safety and potential for attenuating adiposity and atherosclerosis development.

Targeting the incretin system

Long-acting glucagon-like peptide-1 (GLP1) receptor (GLP1R) agonists, used in the clinic

as first-line treatment for T2DM [27], are currently also used as treatment for obesity as

addition to life style intervention [28]. Studies have furthermore shown that analogues of the

other main incretin hormone glucose-dependent insulinotropic polypeptide (GIP) can also

lower body weight [29], at least in part via mechanisms different from GLP1R agonism [30,

31]. In order to further improve glycemic control and lower body weight, recent advances

therefore include combining GLP1R agonism with the complementary actions of GIP receptor

(GIPR) agonism. Clinical trials with the GIPR and GLP1R agonist NNC0090-2746 (RG7697) or

tirzepatide (LY3298176; Mounjaro) in patients with T2DM showed superior glycemic control

and body weight loss as compared to single GLP1R agonism [32-35]. In fact, Mounjaro was

recently approved by the U.S. Food and Drug Administration (FDA) for improving glycemic

control in adults with type 2 diabetes, as a complement to diet and exercise [36], and was

recently admitted to an U.S. FDA Fast Track for treatment of obese or overweight adults with

weight-related comorbidities [37].

Both GIPR and GLP1R agonism have also been implicated in lipid metabolism, that is, GLP1R

agonism is capable of thermogenically activating BAT and inducing browning of WAT [38],

while GIPR agonism enhances the lipid-buffering capacity of WAT by stimulating the uptake

of lipids in the postprandial state [39-41] and increases intracellular lipolysis in the fasted state

[42, 43]. Adding GIPR agonism to GLP1R agonism may thus further improve lipid metabolism

as compared to GLP1R agonism alone by improving postprandial lipid handling, but possibly

also by further stimulating thermogenic adipocytes by inducing a flux of FAs from WAT

as fuel for combustion. Combined with the anti-inflammatory properties of both GIPR and

GLP1R agonism [44-49], which could be additive as both receptors are expressed by most

endothelial and immune cells, combined GIPR/GLP1R agonism is considered a suitable strategy

to attenuate asCVD risk. Indeed, we observed that combined GIPR/GLP1R agonism lowers

atherosclerosis severity in APOE*3-Leiden.CETP mice as related to a pronounced reduction

in plasma TG levels and decreased markers of systemic low-grade inflammation (chapter 3).

Notably, TG-lowering effects of combined GIPR/GLP1R agonism have also been reported in

the beforementioned clinical trials. However, in both mice and humans the reduction in TG

levels did not translate one-to-one to a decrease in cholesterol levels. This might be related to

an increased hepatic secretion of cholesterol within very-low-density lipoprotein (VLDL) as we

have demonstrated in mice (chapter 3). A phase 3 trial that investigates the effects of tirzepatide

on major cardiovascular outcomes in obese individuals with T2DM is currently ongoing (trial

registration no. NCT04255433), and will provide more insight into the effects of combined

GIPR/GLP1R agonism on asCVD risk in humans. It may be worthwhile to investigate whether

addition of a cholesterol-lowering agent (e.g. a statin) to combined GIPR/GLP1R agonism lowers
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cholesterol levels compared to combined GIPR/GLP1R agonism by preventing the increased

VLDL-cholesterol production and enhancing (V)LDL-cholesterol uptake by the liver.

As insulin resistance and obesity are strong risk factors for NAFLD development, combined

GIPR/GLP1R agonism is also an interesting candidate to reduce NAFLD development. Indeed,

we have demonstrated that combining GIPR and GLP1R agonism additively lowers hepatic

steatosis as related to reduced food intake, increased uptake of circulating nutrients by BAT

and increased fecal energy excretion, and also reduces hepatic inflammation in mice (chapter 4).

Interestingly, treatment of patients with T2DM with the GIPR and GLP1R agonist tirzepatide also

lowers the non-alcoholic steatohepatitis (NASH)-related biomarkers alanine aminotransferase

(ALT), aspartate aminotransferase (AST), keratin-18 (K-18) and procollagen III (Pro-C3) [50].

Together, these findings hold promise for combined GIPR/GLP1R agonism as a future treatment

modality for NAFLD and NASH in humans. Accordingly, an ongoing phase 2 trial (trial

registration no. NCT04166773) currently investigates the effects of tirzepatide on NAFLD and

hepatic fibrosis and will provide further insight into the relevance of combined GIPR/GLP1R

agonism for treatment of NAFLD and NASH in humans.

Very interestingly, recent studies in rodents have shown that adding glucagon receptor (GCGR)

agonism to combined GIPR/GLP1R agonism improves glycemic control and lowers body weight

beyond the effect of combined GIPR/GLP1R agonism, even when comparing a triple agonist

with a dual agonist at equimolar dose [51-53]. The catabolic and thermogenic properties of

GCGR agonism increases energy expenditure as an additional mechanism to lower body weight

[52, 54]. Indeed, a recent phase 1 trial in healthy individuals already showed a persistent body

weight loss of approximately 3 kg upon administration of a single dose of a GIPR/GLP1R/GCGR

agonist [53]. GCGR agonism by itself stimulates glucose release from glycogen stores in the

liver to elevate blood glucose; nonetheless the glucose-lowering effects of both GIPR and GLP1R

agonism seem to be sufficiently capable of preventing such an increase [52, 53]. Importantly,

glucagon has been shown to directly bind to the GCGR on hepatocytes to increase hepatic beta

oxidation and lower hepatic lipogenesis [55], which may help even further improving lipid

metabolism when combined with concomitant GIPR/GLP1R agonism. Investigating the effects

of concomitant GIPR/GLP1R/GCGR agonism on asCVD and NAFLD development in mice and

humans is therefore an interesting topic for future research.

Translation of observations in BAT-targeted research in

mice to humans

Choice of mouse model and experimental design

Experiments in APOE*3-Leiden.CETP mice consistently showed that improving the lipid buffer-

ing capacity of WAT and/or stimulating thermogenic activity of BAT or WAT coincides with

an anti-atherogenic lipid profile and improvements in cardiometabolic health ([5]; chapters 2

and 3). A recent large retrospective study furthermore showed a negative association between

the presence of metabolically active BAT and asCVD risk in humans [7]. The atheroprotect-

ive effects of promoting thermogenic activity in BAT and WAT are largely the result of the

accelerated formation of delipidated, cholesterol-enriched TRL remnants that can be cleared

by the liver, thereby leading to a reduction in circulating cholesterol in addition to lowered

TGs as demonstrated in APOE*3-Leiden.CETP mice. As the clearance of TRL remnants by

the liver is highly dependent on the acquisition of ApoE by the TRLs and the subsequent

interaction of ApoE with the LDLR on hepatocytes, it is not entirely unexpected that activation
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of BAT by cold [56] or by the β-adrenergic agonist mirabegron [57] in ApoE or LDLR knockout

mice results in accumulation of these pro-atherogenic TRL remnants in the circulation and

therefore aggravates atherosclerosis development in those mice. Such observations in ApoE and

LDLR deficient mice are thus the result of an artifact of the models, rather than representing a

biological effect. Indeed, we showed that a comparable treatment with mirabegron in female

APOE*3-Leiden.CETP mice that have a delayed, but functional ApoE-LDLR pathway, resulted

in a decrease in circulating cholesterol and attenuated atherosclerosis development upon BAT

activation and WAT browning (chapter 6).

The APOE*3-Leiden.CETP mouse is thus an appropriate model for studying lipid-driven ath-

erosclerosis as well as potential atheroprotective effects of interventions that improve lipid

metabolism. In fact, together with single-transgenic APOE*3-Leiden mice it is the only mouse

model that responds to lipid-lowering treatments such as statins and proprotein convertase sub-

tilisin/kexin type 9 (PCSK9) inhibitors in a human-like manner. As atherosclerosis development

in this mouse model is primarily lipid-driven, a concurring limitation is that it is challenging to

investigate inflammation-driven atherosclerosis development in this mouse model. It should

also be noted that only female APOE*3-Leiden.CETP mice develop atherosclerosis, likely be-

cause male APOE*3-Leiden.CETP mice fail to increase hepatic VLDL production in response

to a cholesterol-containing Western-type diet and typically have a higher VLDL clearance

rate when compared to their female counterparts [58]. These same properties cause male

APOE*3-Leiden.CETP mice to be susceptible to developing NAFLD when fed a diet enriched

in cholesterol and fat, making it a suitable model as also used in chapter 4 to investigate

interventions that aim to attenuate diet-induced NAFLD.

Critical attention should also be paid to aspects of experimental design beyond the choice of

animal model to ensure maximal validity of the results. This includes the use of randomization

and blinded outcome assessment. While these methods are common practice in human trials,

a worrisome two-third of preclinical studies do not report their use [59]. Implementation of

blinding and randomization, however, has been found to reduce effect sizes [59], suggesting

that results in the majority of animal studies may, at least to a certain degree, be subject to a

bias. To overcome such bias, we have developed RandoMice as a user-friendly tool that can aid

researchers in randomizing mice, and other experimental units, at the start of an experiment

(chapter 7). Using this software, users can furthermore take randomization one step further

by creating groups that are balanced for baseline variations in the outcome measures and

potential confounders as we have done in chapters 3, 4 and 6, allowing the number of animals

within an experiment to be kept at a minimum to detect an effect of a given size, which is a

necessity from an ethical point of view. As long as the use of animals is inevitable to study the

complex interactions between metabolic tissues, the use of tools such as RandoMice can add to

minimizing the need of experimental replication and validation by increasing the validity of

results (i.e. by reducing bias), leading to an overall reduction of the animals used.

The current version of RandoMice assumes that all data is continuous and normally distributed

thereby limiting distribution of experimental units based on categorical or nominal variables

or covariates (e.g. sex, tumor stage, etc.). In the future, approaches could additionally be incor-

porated to further improve group division when starting an experiment in multiple batches or

cohorts. To further aid researchers, the software could also be extended to include a convenient

method for blinded outcome assessment.
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Studying the role of human BAT in cardiometabolic health

When investigating the role of BAT or the efficacy of a BAT-targeted intervention on lowering

asCVD risk in humans, human BAT is ideally quantified using non-invasive methods. The

current gold standard for BAT visualization in humans is by quantifying glucose uptake as

traced with [
18

F]fluorodeoxyglucose (FDG) PET-CT scans. However, studies in rodents suggest

that quantifying TG-derived FA uptake better reflects metabolic BAT activity. A first underlying

reason for this is that glucose uptake via glucose transporter 4 (GLUT4) is highly dependent on

insulin signaling, therefore the labeled glucose analogue [
18

F]FDG will be taken up less upon

insulin-resistance, e.g. as a result of obesity or ageing. In addition, cold exposure has been

shown to specifically enhance the oxidation of FAs rather than glucose [60]. As an alternative

to [
18

F]FDG PET-CT scans, attempts have therefore been made to visualize BAT by FA uptake

as traced by [
18

F]fluoro-6-thia-heptadecanoic acid (FTHA) PET-CT scans [61]. Although the

uptake of these free FA tracers by metabolic tissues including BAT is not hampered by insulin

resistance, upon intravenous injection free FAs are efficiently bound by albumin for transport

to the liver thereby restricting its uptake by BAT and resulting in a strong hepatic background

signal [62]. More importantly, we previously showed in mice that BAT primarily takes up

FAs from TRL-derived TGs rather than in free form, taking advantage of the high expression

and activity of the TG hydrolyzing enzyme LPL in BAT [63]. Ongoing research in our group

therefore focuses on incorporating a PET-compatible [
18

F]TG tracer into TRL-like particles

[64] to ultimately specifically quantify TG-derived FA uptake by BAT in humans. As compared

to GLUT4-mediated glucose uptake, LPL activity and therefore TG-derived FA uptake is only

to some extent influenced by the actions of insulin. Furthermore, uptake by the brain which is

typically high in [
18

F]FDG PET-CT as the brain is strictly dependent on glucose oxidation, will be

negligible, collectively allowing for lower radioactive dosing. The use of such PET-compatible

TG tracers thus holds promise for future studies in humans to investigate TG-derived FA uptake

by BAT in comparable intervention experiments as done in mice in the current thesis (chapters

2-6), using PET-CT as visualization method.

In both mice and humans, β-AR agonism has proven to be an effective strategy to activate

thermogenesis. For example, treatment of APOE*3-Leiden.CETP mice with the highly selective

β3-AR agonist CL316,243 increases the uptake of TG-derived FAs by BAT, stimulates browning

of WAT, increases energy expenditure, and protects against atherosclerosis development [5].

Similarly in humans, use of the β3-AR agonist mirabegron, used in the clinic to treat overactive

bladder, increases energy expenditure, stimulates [
18

F]FDG uptake by BAT as measured by

PET-CT and reduces supraclavicular BAT fat fraction as measured by MRI (e.g. 65-69). However,

these effects of mirabegron were seen at the supra-pharmacological dose of 200 mg instead of

the 50 mg that is used to treat hyperactive bladder. Recent studies have subsequently revealed

that mirabegron at 50 mg does not activate BAT in humans, and that the β2-AR responsible for

BAT activation in humans [70]. The BAT-activating effects of supra-pharmacological dosing

of mirabegron are thus likely caused by off-target binding of mirabegron to the other β-ARs

[70]. As the β2-AR is more broadly expressed than the β3-AR, including in the pulmonary and

cardiovascular systems, β2-AR agonism results in unwanted side effects and is thus probably

not a feasible strategy to activate BAT if the β2-AR agonists is not specifically directed to brown

adipocytes. Other pharmacological strategies are thus required, such as those that activate

BAT via indirect modulation (e.g. GIPR/GLP1R agonism) or via mechanisms independent of

β-adrenergic signaling.
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Identifying novel pharmacological targets to stimulate BAT

thermogenesis

Given the limitations of current pharmacological targets in BAT, novel pharmacological strate-

gies are desired that ideally would specifically target BAT with minimal risk of side effects. A

recent study investigated which membrane associated Gs coupled G-protein coupled receptor

was most upregulated upon cold-exposure, which led to the identification of G-protein coupled

receptor 3 (GPR3) as a lipolysis-induced receptor with constitutive activity that can activate

thermogenesis [71], which allows for finding (pharmacological) strategies that induce expres-

sion and membrane translocation of GPR3 in BAT to activate thermogenesis. An alternative

method for revealing novel pharmacological strategies to target BAT is by identifying the

naturally occurring switches within BAT that are responsible for the strong day-night rhythm

in TG-derived FA uptake by the tissue. By studying gene expression patterns in BAT throughout

a 24-hour period by RNA-sequencing, we found that the diurnal oscillation in TG-derived FA

uptake by BAT is in synchrony with the diurnal expression of Lpl, in line with previous a report

showing a crucial role of LPL in TG-derived FA uptake by BAT [4]. Interestingly, we also found

that expression of the LPL inhibitor angiopoietin-like 4 (Angptl4) displays a strong oscillation in

a phase opposite to that of Lpl, and that ANGPTL4 plays a critical role in the diurnal regulation

of LPL on protein level (chapter 5). In fact, we demonstrated that ANGPTL4 is responsible

for regulating LPL activity within the range of its physiological day-night rhythm (chapter 5).

ANGPTL4 has indeed been considered as a target for lowering CVD risk, as loss-of-function

gene variants in humans are associated with lower plasma TG levels and attenuated CVD

risk. In fact, treatment of mice with anti-ANGPTL4 monoclonal antibodies or with antisense

oligonucleotides causally improve dyslipidemia and atherosclerosis [72-79]. It should be noted,

however, that whole body-deficiency of ANGPTL4 in mice results in high-fat diet-induced

ascites by massive macrophage activation [80], therefore approaches that target ANGPTL4

expression should probably be tissue-specific. Given high expression of ANGPTL4 in hepato-

cytes, an ongoing phase 1 clinical trial investigates the effect of liver-specific downregulation

of ANGPTL4 via antisense oligonucleotides that are targeted to the hepatocyte-specific asialo-

glycoprotein receptor [81]. In future studies that target ANGPTL4, the diurnal oscillations

in LPL activity should be taken into account, as inhibition of ANGPTL4 at the onset of the

resting phase (when expression of Angptl4 in BAT is highest) may be clinically most relevant

for stimulating TG-derived FA uptake by BAT.

We also revealed that expression of the oscillating genes in BAT that are in synchrony with

TG-derived FA uptake by the tissue were predicted to be driven by peroxisome proliferator-

activated receptor γ (PPARγ), and correspondingly, we could show oscillated binding of PPARγ

to Lpl, preceding changes in Lpl expression (chapter 5). PPARs are known to play an important

role in lipid metabolism, and in fact may function as FA sensors as (polyunsaturated) FAs are

their natural ligands [82]. PPARγ has already been considered as a pharmacological target to

improve metabolic health, and PPARγ agonists (i.e. thiazolidinediones) lower insulin resistance

in humans [83]. Given that others have demonstrated that PPARα agonists (i.e. fibrates) are

capable of improving dyslipidemia [84], which may in part be mediated via reductions in hepatic

APOC3 production [85, 86], this led to the development of combined PPARα/γ agonists, which

have been shown to effectively improve glucose and lipid homeostasis in clinical trials [87, 88].

Development of these combined PPARα/γ agonists, however, initially stalled owing to adverse

cardiovascular events [87, 88]. Since then, novel PPARα/γ agonists have been developed which

show less side effects [88]. In addition, novel developments include the linkage of a PPARα/γ
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agonist to a GLP1R agonist for GLP1R-mediated cellular delivery of the PPARα/γ agonist [89].

As the GLP1R is not expressed by adipocytes, a comparable approach may be used to link a

PPARγ agonist to a ligand of another receptor that is expressed by BAT, for example GPR3.

Moreover, further insight into the role of PPARγ in the diurnal regulation of BAT may provide

rationale for how to optimally target PPARγ in BAT. For example, the use of a short-lived

PPARγ agonist at an optimized time of the day, as opposed to long-lived PPARγ agonist with

constitutive activity, may be clinically valuable to maximize the desired response and minimize

potential side effects.

An interesting notion is that during thermogenesis brown adipocytes excrete damaged parts of

mitochondria as external vesicles to ensure efficient thermogenesis [90], and it was found that

these extracellular vesicles induce autocrine signaling leading to disrupted PPARγ signaling

[90]. Given that among the genes with the largest absolute diurnal amplitude in chapter 5 are

several mitochondrial genes, this may indicate that large diurnal changes in mitochondrial

dynamics are required throughout the day. If the content and/or excretion of those extracellu-

lar vesicles turns out to be rhythmic in future experiments, that could provide another clue

regarding the diurnal regulation of metabolic BAT activity, and may provide novel therapeutic

handles to stimulate the tissue.

Besides the potential targets within BAT, it may also be worthwhile to investigate what the

main (external) driving force behind the diurnal activity of BAT is in order to identify novel

targets. Our group has previously shown that the rhythm in glucocorticoids, that is in syn-

chrony with TG-derived FA uptake by BAT, modulates oscillating BAT activity. However, this

rhythm is likely indirect as expression of the glucocorticoid receptor in BAT itself was shown

not to be involved [91]. Possibly, modulation of sympathetic outflow towards the tissue links

glucocorticoids to oscillating BAT activity [91], and an initial stimulus from the sympathetic

nervous system may be required to stimulate intracellular lipolysis in BAT, leading to increased

thermogenesis and activation of PPARγ. It would therefore be interesting to investigate the

rhythm in LPL activity in BAT-specific inducible PPARγ-knockout models.

Overall, the strong diurnal oscillations in BAT implicate that time of the day is essential when

measuring its activity. Similarly, time of day should be taken into account when targeting

the tissue for example by ANGPTL4 inhibition or PPARγ agonism. Given that for example

shift work has been associated with an increased risk for asCVD [92], further studies are also

required to elucidate the effects of rhythm disturbances on the diurnal oscillations in BAT and

the subsequent consequences on metabolic health.

Concluding remarks and future prospectives

Over the course of the past decades, the number of obese and overweight people worldwide

has reached pandemic proportions and with that, the associated risk for disease has become

increasingly evident. This thesis has provided insights into various strategies that target the

adipose tissue to improve lipid metabolism and cardiometabolic health.

We showed that targeting the ECS reduces atherosclerosis development in a humanized mouse

model, and therefore may be a valuable strategy to lower asCVD risk in humans as well. De-

velopment of novel pharmacological strategies that target the ECS is ongoing, and focuses

on peripherally restricted CB1R inhibitors and/or inhibitors of endocannabinoid synthesis en-

zymes, possibly combined with other pharmacological strategies. Using the humanized mouse

model we also showed that combined GIPR/GLP1R agonism attenuates atherosclerosis severity

and that GIPR and GLP1R agonism additively attenuate NAFLD development. Given that a dual
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GIPR/GLP1R agonist has recently been approved for clinical use in T2DM by the U.S. Food and

Drug Administration, and multiple phase 3 trials are underway, data on the atheroprotective

and NAFLD-lowering effects of combined GIPR/GLP1R agonism in humans are expected within

the next few years. In order to further improve the efficacy of incretin-based therapies, con-

comitant GIPR/GLP1R agonism can likely be combined with other pharmacological strategies.

Current studies for example focus on the addition of GCGR agonism to combined GIPR/GLP1R

agonism to beneficially modulate energy metabolism in the liver (via the GCGR) in addition

to the brain (via the GLP1R) and adipose tissue (via the GIPR), which will likely prove to be

valuable to further improve (cardio)metabolic health in the future.

We demonstrated that the effects of BAT-targeted interventions on atherosclerosis develop-

ment and therefore also the translational value of experiments critically depends on a suitable

choice of mouse model. To ensure maximal validity of the obtained results, attention should

furthermore be paid to aspects of experimental design beyond the choice of mouse model. In

this thesis, we have therefore developed RandoMice as a user-friendly tool to aid researchers

with randomizing animals at the start of an experiment. Currently, efforts are actively made

to facilitate a transition from animal models towards alternative models, which is a necessity

from an ethical perspective. Until suitable in vitro models are available to study the complex in-

teractions between metabolic tissues in relation to (cardio)metabolic health, e.g. those mediated

via neuronal and hormonal signals, researchers should aim at minimizing the use of animals.

Specifically, critical attention should be paid to the choice of animal model and other aspects of

experimental design such as the use of randomization in order to maximize the translational

value and validity of each experiment, which will result in an overall reduction of the required

number of animals.

Finally we showed that ANGPTL4 plays a critical role in regulating LPL activity in BAT and

thereby governs the rhythm in TG-derived FA uptake by the tissue, and revealed potential

involvement of PPARγ in the regulation of diurnal gene expression. The importance of the day-

night rhythm within metabolic tissues is increasingly acknowledged by researchers. Further

insight into the regulatory mechanism behind these rhythms may yield valuable insights into

how to optimally target these tissues. Specifically, it will provide rationale for optimal timing

of existing (e.g. statins) and novel treatments (e.g. those targeting ANGPTL4), which will not

only improve their efficacy, but also reduce the risk of side effects.
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