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Abstract

Measurement errors commonly occur in 24-hour hormonal data and may affect the 
outcomes of such studies. Measurement errors often appear as outliers in such datasets; 
however, no well-established method is yet available for their automatic detection.

In this study, we aimed to compare the performances of different methods for outlier 
detection in hormonal serial data. Hormones (glucose, insulin, thyroid stimulating 
hormone (TSH), cortisol, and growth hormone (GH)) were measured in blood sampled 
every 10 minutes for 24 hours in 38 participants of the Leiden Longevity Study. Four 
methods for detecting outliers were compared: i) eyeballing, ii) Tukey’s fences, iii) 
Stepwise approach, and iv) the Expectation-Maximization (EM) algorithm. Eyeballing 
detects outliers based on experts’ knowledge, and Stepwise approach incorporates 
physiological knowledge with a statistical algorithm. Tukey’s fences and the EM 
algorithm are data-driven methods, using interquartile range and a mathematical 
algorithm to identify underlying distribution, respectively. The performance of the 
methods was evaluated based on the number of outliers detected and the change in 
statistical outcomes after removing detected outliers. Eyeballing resulted in the lowest 
number of outliers detected (1.0% of all data points), followed by Tukey’s fences (2.3%), 
Stepwise approach (2.7%), and the EM algorithm (11.0%). In all methods, the mean 
hormone levels did not materially change after removing outliers. However, their 
minima were affected by outlier removal. Although removing outliers affected the 
correlation between glucose and insulin on the individual level, when averaged over 
all participants, none of the four methods influenced the correlation.

Based on our results, the EM algorithm is not recommended given the high number of 
outliers detected, even where data points are physiologically plausible. Since Tukey’s 
fences is not suitable for all types of data, and eyeballing is time-consuming, we 
recommend Stepwise approach for outlier detection which combines physiological 
knowledge and an automated process.
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1. Introduction

Many physiological parameters such as hormones or metabolites exhibit rhythmicity. 
These rhythms are regulated by different systems. The most prominent rhythm 
is the circadian rhythm, which is induced by the biological clock located in the 
suprachiasmatic nucleus of the brain. The biological clock does not only synchronize 
molecular clocks in peripheral cells, but it also orchestrates many physiological 
functions, including blood pressure, core body temperature, and hormone secretion. An 
example of a hormone that exhibits strong circadian rhythmicity is cortisol. The sleep-
wake cycle is another form of rhythm, and although similar to the circadian rhythm, 
it has other effects on hormone secretion than the biological clock. The secretion of 
growth hormone, for example, is more strongly influenced by sleep than by clock time. 
External cues, including food intake and physical activity, also can influence hormone 
secretion, such as the secretion of insulin (Oike et al., 2014).

Hormones and metabolites are measured for different purposes; e.g., in clinical settings 
to make a diagnosis or to evaluate the effect of treatment and in research settings to 
investigate how these parameters change upon interventions or differ between groups. 
Different cues can elicit changes in hormone secretion, amongst which circadian 
time, nutrient availability and food intake, physical activity, and sleep. Circulating 
concentrations of many hormones change over time, because these hormones are 
secreted in a pulsatile fashion and have a relatively short half-life (Spiga et al., 2015). 
Therefore, to obtain reliable hormonal time series data, hormones need to be measured 
in blood that is sampled frequently. For some hormones, such as insulin, the preferred 
sampling frequency is 2 minutes because of its short half-life (Porksen et al., 1997). 
Other hormones, including thyroid stimulating hormone (TSH), can be measured 
every 20 minutes to obtain reliable profiles (Odell et al., 1967; Grossmann et al., 1997). 
To take into account practical possibilities, half-lives, costs, and ethics, most studies 
investigating hormone secretion are performed with a sampling frequency of every 10 
minutes during 24 hours, as reviewed by Veldhuis et al. and Roelfsema et al. (Veldhuis 
et al., 2016; Roelfsema et al., 2017).

When measuring hormones frequently over time, measurement errors are likely to 
occur. Measurement errors can be caused by pre-analytical experimental variation 
of various sources, including sample dilution (possibly because of flushing the 
intravenous line with heparinized saline), or the presence of a blood clot in the sample. 
Measurement error can influence the outcomes of studies with serial hormonal data. 
Therefore, it is important to identify measurement errors. Measurement errors are 
likely to be outliers (Grubbs, 1969), which deviate largely from the overall trend of 
the data. The challenge is that there is no clear-cut distinction between measurement 
errors and true biological variation. The starting point to detect measurement errors, 
however, is by identifying outliers.

3
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No well-established method is yet available to automatically detect measurement 
errors. Therefore, we aimed to compare four methods to detect outliers likely due 
to measurement errors in 24-hour hormonal data: eyeballing (relying on experts’ 
opinions), Tukey’s fences (identifying outliers based on inter-quartile ranges), Stepwise 
approach (identifying outliers based on standard deviations), and the Expectation 
Maximization (EM) algorithm (using a mathematical algorithm based on disentangling 
the two different distributions of outliers and non-outliers). Furthermore, we studied 
the influence of removing the detected outliers on the assessment of statistical features 
of 24-hour hormonal data such as mean, minimum, maximum, and cross-correlation.

For this study, we used data on the pituitary hormones growth hormone (GH), 
adrenocorticotropic hormone (ACTH) and TSH, the adrenal hormone cortisol, as well 
as data on the metabolic signals insulin, and glucose, which were all measured during 
24 hours every 10 minutes in serum from 38 participants of the Switchbox Leiden Study 
(Jansen et al., 2015).

2. Methods

2.1. Data collection

Study population
The Leiden Longevity Study comprises 421 families with at least two long-lived 
Caucasian siblings fulfilling the age criteria (men ≥89 years and women ≥91 years) 
without selection on health or demographics (Westendorp et al., 2009). In the current 
study, the Switchbox Leiden Study, we included 20 offspring of long-lived families from 
the Leiden Longevity Study together with 18 partners of the offspring as environmental 
and age-matched controls. The primary aim of the Switchbox Leiden Study was to 
compare the levels and dynamics of hormones and metabolites and their interplay 
between offspring of long-lived families and controls. In- and exclusion criteria were 
described previously in detail (Jansen et al., 2015). Participants were middle-aged 
(52–76 years) and had a stable body mass index (BMI) between 18 and 34 kg/m2. The 
Switchbox Leiden Study was approved by the Medical Ethical Committee of the Leiden 
University Medical Centre and was performed according to the Helsinki declaration. 
All participants gave written informed consent for participation.

24-hour blood sampling
The 24-hour blood sampling procedure started with placing a catheter in a vein 
of the forearm of the non-dominant hand, and blood withdrawal started around 
9:00h (Akintola et al., 2015). Samples of 2 ml serum and 1.2 ml EDTA plasma were 
withdrawn every 10 min. To prevent blood clotting, heparinized saline (0.9% NaCl) 
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was continuously infused via an infusion pump at a rate of 20 ml per hour. Before each 
blood withdrawal, 5 ml of saline/heparin mixed with blood was collected (without 
disconnecting the syringe from the blood withdrawal system) to prevent contamination 
of heparin/saline in the blood samples. After blood withdrawal, this 5 ml was flushed 
back into the subject to reduce the total amount of blood that would be withdrawn. 
Participants received standardized feeding consisting of 600 kcal Nutridrink (Nutricia 
Advanced Medical Nutrition Zoetermeer, The Netherlands) at three fixed times during 
the day. Participants were not allowed to sleep during the day, and except for lavatory 
use, no physical activity was allowed during the study period. Lights were switched 
off for approximately 9 hours (circa between 23:00h to 08:00h) to allow the participants 
to sleep.

Assays
All laboratory assays were performed with fully automated equipment and diagnostics 
from Roche Diagnostics (Almere, The Netherlands) at the Department of Clinical 
Chemistry and Laboratory Medicine of the Leiden University Medical Centre in The 
Netherlands.

Thyroid-stimulating hormone (TSH), cortisol, insulin, and glucose were measured in 
the same serum tube. Growth hormone (GH) was also measured in the same serum 
tube but after one additional freeze/thaw cycle. TSH and cortisol were measured 
by ElectroChemoLuminescence ImmunoAssay (ECLIA) using a Modular E170 
Immunoanalyzer from Roche (Roche Diagnostics, Almere, The Netherlands). For 
TSH, the overall interassay coefficients of variation (CV) ranged in our study between 
1.41–4.16%, and the overall CV of cortisol ranged between 2.4–5.1%. Human GH with 
a molecular mass of 22 kDa and insulin were measured using an IMMULITE® 2000 
Xpi Immunoassay system (Siemens Healthcare diagnostics). The interassay CV of GH 
ranged between 5.4% at 5.43 mU L-1 and 7.2% at 25.0 mU L-1, and the overall CV of insulin 
ranged between 3.19–7.69%. Glucose was measured using Hitachi Modular P800 from 
Roche Diagnostics (Almere, the Netherlands), and the overall interassay CV of glucose 
ranged between 0.90–7.44%. If a measurement was below the detection limit, half of 
the lower detection limit was taken as a result.

Although ACTH was also measured, we did not take along these data in our mathematical 
models because this hormone was measured in EDTA plasma, so in another tube than 
the other hormones. However, we used ACTH data for the eyeballing, because they 
were instrumental for inspecting physiologically abnormal points in the cortisol data.

2.2. Physiological considerations
Since hormones are secreted in a pulsatile manner, a sudden increase is more likely 
to occur than a sudden decrease. Also, glucose < 2.8 mmol/L does not occur in healthy 
persons without an accompanying strong stress response (cortisol and GH pulses). 

3
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ACTH stimulates the secretion of cortisol. Therefore, cortisol should show a pulse 
following an (extreme) increase in ACTH. If an outlier is caused by sample dilution, 
then all hormones measured in that sample should be lower than expected. These 
physiological considerations could be taken into account in measurement error 
detection.

2.3. Methods of detecting outliers
In the following section, we will discuss four methods for outlier detection: i) eyeballing, 
ii) Tukey’s fences, iii) Stepwise approach, and iv) the EM algorithm. The procedures of 
these methods are visualized in Figure 1.

Figure 1. (a) Eyeballing detects outliers without fitting smooth curves. By visual inspection, in-
dividual experts detect outliers by taking into account that some hormones were measured in 
the same sample. Afterward, a consensus meeting is held, and the experts discuss all data points 
with conflicting detection results. (b) Tukey’s fences starts with fitting a moving average curve to 
per-person per-hormone data and taking residuals of all data points. Then the interquartile range 
(IQR = Q3–Q1) of the residuals is calculated. The data points lying outside the range between Q1 
− 31QR and Q3 + 3IQR are detected as outliers. (c) The stepwise approach fits the moving average 
curve to per-person per-hormone data, and standardized residuals of all data points are calcu-
lated (step 1). The data points lying outside the range between −3 and 4 standard deviations are 
detected as outliers (step 2). Then, the residuals of 5 hormones measured at the same time points 
are summed. When the sum of the residuals is smaller than −8, the data points are detected as 
outliers (step 3). Afterward, steps 1 and 3 are repeated (step 4). (d) The expectation-maximization 
(EM) algorithm first fits a smoothing curve to per-person per-hormone data, and the residuals 
are calculated. Then, all the residuals of a hormone from all 38 participants are put in the EM 
algorithm. The algorithm then identifies two distinguishable distributions and yields the prob-
ability of each data point being an outlier.
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Eyeballing
Eyeballing was based on a visual inspection of a graphical display of individual 
hormone profiles from all 38 patients. This was performed by four reviewers with 
expert knowledge in endocrinology (EvdS, FR, OMD, and DvH). Hard copies of the 
24-hour trajectories of all hormones measured per participant were provided. Three 
reviewers examined all 38 participants’ hormone profiles, and one reviewer checked 
half of the participants. Information about which hormones were measured in the 
same tube was given verbally. Reviewers were also explicitly told that dilution of the 
sample may have led to measurement errors in all hormones from the same tube. After 
reviewing the data separately, a consensus meeting was held to reach an agreement 
on data points which only one (out of three or four) or two out of four reviewers had 
marked as an outlier.

Tukey’s fences
For this algorithmic approach of outlier detection, we made the following assumptions: 
i) A hormone trajectory of a person follows a smooth general trend over 24 hours 
while measurement errors may deviate clearly from the trend, and ii) Hormone 
levels cannot abruptly decrease within 10 minutes. If a measurement is vastly distant 
from the adjacent measurements before and after, that measurement is likely to be a 
measurement error. Thus, by fitting a smooth curve to the data points and measuring 
the distance between the curve and each measurement, the algorithm can detect 
outliers expected to be measurement errors.

Tukey’s fences is a non-parametric method developed to detect observations out of 
the normal range by using interquartile ranges (Tukey, 1977), and it is often used for 
detecting outliers in various fields (Muraleedharan et al., 2016; Pham and Eggleston, 
2016; Luo et al., 2018; O’Brien et al., 2018). Before performing Tukey’s fences, the 
normality of the data was checked before fitting the curve. The distributions of insulin 
and GH data were highly skewed. Therefore, these data were log-transformed prior to 
applying the algorithm. Afterward, Tukey’s fences was implemented using the following 
two steps:

I. Hormone data were smoothened over time by fitting moving average curves for 
every hormone per-person separately. Moving average is a method commonly 
applied for smoothing time series data (Montgomery et al., 2015). The moving 
average with window size n (with n an odd number) at a certain time point is the 
average of the current, the -½(n-1) previous, and ½(n-1) subsequent measurements 
in time. In our analyses, moving averages were calculated using a window of five 
points. Residuals were calculated for all data points. We defined a residual as the 
vertical distance between an original data point and a fitted moving average curve.

3
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II.  between the first quartile and the third quartile (Q1− Q3), and the median (Q2) 
were identified. The ranges between Q2 k(Q3 Q1) and Q2+ k(Q3− Q1) are referred to as 
fences. The data points that are below the lower fence or above the higher fence 
are identified as outliers. The value k determines the width of the fences. The 
larger the value of k, the lower the number of outliers that will be detected. In our 
analyses, we set k=3, which according to the literature, implies that the data point 
is “far out” (Tukey, 1977). To use the method as it was originally suggested and 
commonly applied, we did not adjust the value of k=3 (Horn et al., 1988; Hung and 
Yang, 2006; Kimenai et al., 2016).

Stepwise approach
Stepwise approach is an automatic detection process based on an algorithm that 
incorporates physiological knowledge and statistical methods comprising three steps 
as described below. We aim to detect potential outliers within a 24-hour hormone 
trajectory in several steps. As in Tukey’s fences, the insulin and GH data were log-
transformed.

I. Step 1: Fitting smoothed curves
Likewise to Tukey’s fences, a moving average curve is fitted to each participant’s 
24-hour hormone data using a window of 5 points. By computing the distance 
between each data point and the fitted curve, residuals are acquired. The residuals 
are standardized to have a mean of 0 and a standard deviation of 1.

II. Step 2: Detecting outliers within a 24-hour hormone trajectory 
Data points with standardized residuals smaller than -3 or larger than 4 are detected 
as outliers. The cut-off of 3 standard deviations is a commonly applied empirical 
rule for detecting outliers in normally distributed data. However, asymmetrical 
cut-offs are chosen to be more liberal for the upper boundary, as hormones are 
secreted in a pulsatile fashion which makes rapid increases in hormone levels 
biologically more plausible than rapid decreases since clearance of the hormone 
will occur slower. Note that this cut-off boundary is wider than the width of Tukey’s 
fences with k=3. Furthermore, data points where glucose < 2.8 mmol/L were 
detected as outliers as discussed under Physiological considerations.

III. Step 3: The standardized residuals of all hormones measured in the same serum 
tube are added up for each participant. If the sum of the standardized residuals 
is lower than -8, all data points measured in that tube are detected as outliers. 
This means that the residuals of the five hormones are, on average, below the 5th 
percentile of standard normal distribution (1.64 standard deviation). This step 
allows detecting measurement errors due to the dilution of the samples. The 
underlying assumption is that when samples were diluted, levels of the hormones 
measured in the same sample are likely to all be lower at the same time point. In 
this step, we aim to detect these types of measurement errors which occur across 
the hormones.
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IV. Step 4: Repeat step 1 and step 3
After all outliers detected so far are removed, a new moving average curve is fitted 
and step 1 and 3 are repeated once. If already detected outliers are removed, the 
newly fitted curves will be flatter than the fitted curve from the original data, which 
will allow detecting potential outliers that were missed in the previous steps.

The EM algorithm
Another approach is to estimate the probability for a data point to reflect measurement 
error, rather than using a dichotomous division. This starts with assuming two 
distinguishable data distributions: true measurement variation and background noise 
due to measurement errors. Based on this assumption, we expect the residuals of the 
true measurements to be normally distributed with standard deviations close to 0, 
while those of the erroneous measurements would be normally distributed with a larger 
standard deviation. The expectation maximization (EM) algorithm is a method that can 
be used to identify these two distinguishable distributions. The algorithm estimates 
model parameters when data is incomplete or when the model depends on a latent 
variable; a variable that is not directly observed but can be inferred by other observed 
variables (Dempster et al., 1977), and the method was suggested for detecting outliers 
(Aitkin and Wilson, 1980). The EM algorithm was applied in R version 3.5.1, using the 
normalmixEM function of the package mixtools (Benaglia et al., 2009). In our situation, 
the latent variable of interest would be whether a data point is a true measurement or 
a measurement error. Further technical details about the EM algorithm can be found 
in Supplementary Material, Appendix 1.

The EM algorithm has the advantage that detected outliers do not have to be removed. 
Instead, the probabilities can later be used as weights for estimating outcomes, such 
as mean hormone levels or cross-correlations.

The outlier detection method using the EM algorithm followed the steps below. Again, 
insulin and GH data were log-transformed.

I. As in Tukey’s fences and Stepwise approach, a moving average curve per 24-
hour hormone profile for each participant was fitted. Afterward, residuals were 
calculated and standardized for each data point.

II. The EM algorithm was applied for each hormone with residuals of all participants 
together taken into account in one model.

2.4. Comparing methods on statistical outcomes
Since we do not know with certainty which data points reflect measurement errors, it 
is not possible to ascertain which of the four methods performed best. Therefore, we 
compared the number of outliers detected which were counted per time point and in 
total data points. In addition, the overlap in detected outliers between the four methods 

3

166454_Choi_BNW-def.indd   53166454_Choi_BNW-def.indd   53 09-05-2023   09:2109-05-2023   09:21



54

Chapter 3

was visually presented with Venn diagrams (Larsson, 2018). We chose these parameters 
since these descriptive statistics give a transparent description of the data and will give 
an insight into how removing outliers have an impact on general measures.

Furthermore, we analyzed statistical outcomes of 24-hour hormonal data before and 
after removing the outliers as detected by the four different methods. In this way, 
we could investigate whether removing outliers influenced the statistical outcome 
and how different methods may do so differently. Therefore, the 24-hour means, 
median, minima, and maxima of the five hormones were assessed, which provides a 
transparent description of the data and insights into how removing outliers impacts 
general measures. Another relevant analysis is the cross-correlation between two 
hormones. Cross-correlation estimates the temporal relationship between two 
hormonal concentrations. It is a common analysis performed with data from two 
simultaneously measured hormonal time series (Vis et al., 2014). Therefore, it could be 
of interest for researchers to know to which extent measurement error would affect the 
estimates, especially since this method might be sensitive to the presence of outliers 
that co-occur in different time series data, for example, due to the dilution of a sample. 
Two relevant outcome measures are the strongest correlation coefficient (the maximal 
correlation) and the correlation coefficient at lag time 0. For the purpose of this paper, 
we performed cross-correlation on concentrations of glucose and insulin, which are 
expected to display strong cross-correlation (Feneberg et al., 1999). When estimating the 
mean and cross-correlations after outlier removal by the EM algorithm, the weighted 
mean and weighed correlation are calculated, with the weight equal to the probability 
of each data point being an outlier. All statistical analyses were performed using the 
software program R, version 3.5.1.
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3. Results

For each of the 38 participants, blood samples were collected at 144 time points over 24 
hours, with five hormones being measured in the same serum tube. After discarding 
missing data, the total number of data points was 21,467. We counted detected outliers 
per time point and in total data points. If counted per time point, at least one outlier 
was detected in a time point among all hormones assayed in serum (i.e., glucose, 
insulin, TSH, cortisol, and growth hormone). In the case of a complete series, a single 
participant has 144 time points for each hormone. If counted in total data points, every 
data point is counted individually. In the case of a complete dataset, one participant 
has in total 720 data points, that is, 144 time points times five hormones.

3.1. Number of detected outliers
Table 1 summarizes the mean percentage of outliers detected per time point and in total 
data points. The results are averaged across 38 participants. Since the EM algorithm 
yields continuous probability as its outcome, we defined a data point in which its 
probability of being an outlier is higher than 0.9 as an outlier. For the percentage of 
detected outliers, we observed some differences between the four methods. Eyeballing 
resulted in the smallest percentage of detected outliers both per time point (mean=1.7%) 
as well as for total data points (1.0%), followed by Stepwise approach (per time points: 
5.1%, total data points: 2.7%). Tukey’s fences yielded more outliers per time point (9.3%) 
but a similar percentage in total data points (2.3%). The EM algorithm method yielded 
the largest percentage of outliers (per time points: 40.3%, total data points: 11.0%).

In Figure 2, the numbers of detected outliers for each hormone averaged over all 
participants are presented. The EM algorithm and Tukey’s fences both detected more 
outliers in cortisol and GH compared to other hormones. Eyeballing and Stepwise 
approaches detected a similar number of outliers across the different hormones.

Table 1. The percentage of time points with at least one detected outlier among the hormones 
measured, and the percentage of total data points detected as outliers among the same set of 
hormones. The mean and standard deviation of the 38 participants are given.

mean (sd); n=38

 Time points detected to contain an 
outlier (%)

Total data points detected to be 
outliers (%)

Eyeballing 1.7 (2.1) 1.0 (1.4)

Tukey’s fences 9.3 (5.6) 2.3 (1.4)

Stepwise 
approach

5.1 (1.5) 2.7 (1.5)

EM algorithm* 40.3 (7.7) 11.0 (2.8)

*For the EM algorithm results, the measurement points where the probability of being an outlier 
> 0.9 was counted.

3

166454_Choi_BNW-def.indd   55166454_Choi_BNW-def.indd   55 09-05-2023   09:2109-05-2023   09:21



56

Chapter 3
 

 

 

 

 

 

 

 

 

 

Figure 2. The mean number of data points detected per hormone per method across all participants.  

 

Figure 2. The mean number of data points detected per hormone per method across all partic-
ipants.

3.2. Overlap in detected outliers
Figure 3 displays Venn diagrams presenting the number of outliers detected by 
eyeballing, Stepwise approach, and Tukey’s fences and their overlap. We did not 
include the results of the EM algorithm in the Venn diagrams for two reasons i) the 
EM algorithm detected an implausibly large number of outliers (per time point=1,590 
and in total data points =2,728), and (ii) three sets of data is the maximum to draw a 
proportional Venn diagram in two-dimensional space. Figure 3a presents the number of 
outliers per time point, and Figure 3b presents that of the total data points. In Figure 3a, 
most of the outliers detected by eyeballing were also detected by the other two methods, 
while the overlap is larger with Stepwise approach. In Figure 3b, the overlap between 
eyeballing and Stepwise approach is again larger than the overlap between eyeballing 
and Tukey’s fences. Here, Stepwise approach and Tukey’s fences detected a similar 
number of outliers. However, the overlap is relatively small, which indicates that they 
are detecting different data points. Eyeballing detected 47 total data points, which were 
not detected by Stepwise approach or Tukey’s fences. Among outliers per time point 
detected by eyeballing, Stepwise approach, and Tukey’s fences, 95.8% overlapped with 
the outliers detected by the EM algorithm (data not shown). Additionally, 70.1% of the 
total data points detected by the three methods overlapped with the outliers detected 
by the EM algorithm (data not shown).
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Figure 3. Venn diagrams visualizing the number of measurement errors detected by each method 
(eyeballing, Stepwise approach, and Tukey’s fences) and their overlap counted in total time points 
(a) and in all data points (b). The overlap with the EM algorithm is not presented here for the 
reasons mentioned in the results section.

3.3. Representative 24-hour hormone figures presented with detected outliers
Figures 4a-d display the detected outliers in glucose, insulin, TSH, cortisol, and GH for 
eyeballing, Tukey’s fences, Stepwise approach, and the EM algorithm, respectively in 
one representative participant. By eyeballing (Figure 4a), four data points are detected 
as outliers in glucose, TSH, and cortisol, and these four outliers are all in the same time 
points. Of these four time points, outliers in insulin were detected in three time points 
and GH in one time point. Tukey’s fences (Figure 4b) detected the same outliers for 
glucose, insulin, TSH, and cortisol but detected several more than eyeballing. In both 
TSH and cortisol between time points 110 to 130, several points that are biologically 
unlikely to be measurement errors were detected. No outliers were detected in GH. 
Stepwise approach (Figure 4c) identified the same outliers as eyeballing. However, 
several extra points were detected as well. Here in several time points (42nd, 76th, and 
114th), outliers were detected in all hormones, which is a result of Step 3 of the Stepwise 
approach. The EM algorithm (Figure 4d, note that the points are only marked if the 
probability of being an outlier is higher than 0.9) resulting in many detected outliers 
in the pulses that are unlikely to be outliers. Remarkably in GH, data points close to 
detection limits were detected as outliers.

3
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Figure 4a. The results of outlier detection by eyeballing in glucose, insulin, TSH, cortisol, and 
growth hormone of participant 19. Red hollow data points indicate detected outliers.
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Figure 4b. The results of outlier detection by Tukey’s fences in glucose, insulin, TSH, cortisol, and 
growth hormone of participant 19. Red hollow data points indicate detected outliers.

3
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Figure 4c. The results of outlier detection by Stepwise approach in glucose, insulin, TSH, cortisol, 
and growth hormone of participant 19. Red hollow data points indicate detected outliers.
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Figure 4d. The results of outlier detection by the EM algorithm in glucose, insulin, TSH, cortisol, 
and growth hormone of participant 19. Red hollow data points indicate the probability of the data 
point being an outlier is higher than 0.9.
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3.4. Effects of removing outliers on statistical outcomes

Descriptive statistics: 24-hour mean, median, minimum, and maximum
The mean, median, minimum, and maximum values for every hormone were calculated 
over time before and after removing outliers detected by the four methods. This is 
shown in Table 2. Mean and median values did not change substantially after outlier 
removal. Minimum values changed for glucose and TSH after removing outliers by all 
four methods, while in insulin, the value did not change much after eyeballing. The EM 
algorithm had the largest influence on maximum values in all hormones.

Cross-correlation of glucose and insulin
In Table 3 cross-correlations between glucose and insulin are presented before and 
after removing outliers. Overall, removing outliers did not have a major influence on 
the cross-correlation of glucose and insulin, and on the lag time at the maximum cross-
correlation. Figure 5 shows the individual changes in correlation at lag time 0. In Figure 
5, we observe large differences between participants. Especially the first participant 
shows a big change in correlation after removing outliers by all methods. Overall, the 
changes after eyeballing, Tukey’s fences, and Stepwise approach were mostly small, and 
the changes were not in one direction dominantly. However, after removing outliers 
detected by the EM algorithm, cross-correlation decreased in most cases.
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Table 3. Cross correlations between glucose and insulin. Mean and standard deviation across 
38 participants.

mean (sd); n=38

Correlation at lag 
time 0

Maximum cross 
corr.

Lag time at 
maximum cross 
corr. (min)

Raw data 0.74 (0.12) 0.74 (0.12) -4.7 (7.3)

Eyeballing 0.74 (0.11) 0.75 (0.12) -5.3 (7.6)

Tukey’s fences 0.73 (0.14) 0.74 (0.14) -6.3 (8.2)

Stepwise approach 0.74 (0.12) 0.75 (0.12) -5.0 (8.0)

EM algorithm* 0.71 (0.12) 0.73 (0.17) -9.5 (9.8)

*For the EM algorithm results, weighted correlation is used.
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Figure 5. Change in correlation at lag time 0 (%) after removal of measurement errors detected 
by the four methods; eyeballing, Tukey’s fences, Stepwise approach, and the EM algorithm. Each 
bar represents an individual participant.
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4. Discussion

In this study, we aimed to evaluate and compare different methods to detect outliers 
in 24-hour hormonal data since no specific methods were routinely available for 
this purpose. We assumed that measurement errors would deviate largely from the 
physiological curves of hormones. By identifying outliers in the data, therefore, we 
expected to detect likely measurement errors. The main outcomes of this study were 
that human-judgement (eyeballing) defined fewer data points as an outlier than the 
other three automatic approaches. Among the automatic approaches, the data-driven 
methods (Tukey’s fences and the EM algorithm) were prone to detect more outliers 
likely to be true measurements than the method involving subject-specific knowledge 
(Stepwise approach). The mean, minima, and maxima of the hormones did not change 
much after removing outliers. However, the minima of glucose and TSH did change, 
and the EM algorithm had a large influence on maximum values in all hormones. The 
effect of removing outliers on the correlation between glucose and insulin can be large 
within an individual but had no major impact on a group level.

A relatively low number of outliers were detected by eyeballing. This may be an 
advantage of this method, as only truly deviating points will be discarded in the 
analysis. Another advantage of eyeballing is that the data points detected as outliers 
are based on physiological arguments and are not data-driven. This allows eyeballing 
to detect (i) a sequence of data points that was physiologically implausible to display 
the same pattern in several hormones, and (ii) outliers at the beginning or end of a 
time series. These types of outliers cannot be detected by fitting smoothing curves, 
which explains the 47 data points that were exclusively detected by eyeballing, and 
not by Stepwise approach or Tukey’s fences. However, a disadvantage of eyeballing is 
that it is time-consuming and depends on individual reviewers’ background knowledge 
and subjective decision. If the number of reviewers is large enough and a consensus 
meeting is held, the precision may increase. However, the amount of time to reach a 
unanimous decision would take longer. Also, eyeballing is a one-off process that cannot 
be generalized to other settings.

Although Tukey’s fences are advocated as a non-parametric approach, the method 
did not perform well in our case when applied with moving median curves instead of 
moving average curves. Especially when the hormone profile is mostly flat with sudden 
pulses, such as GH, Tukey’s fences with moving median curves detected a biologically 
implausible number of outliers (54.6% of the total data points). Therefore, when using 
Tukey’s fences to detect outliers, we suggest researchers to be aware of the type of their 
data and smoothing methods.

We introduced Stepwise approach as a new method to detect measurement errors 
in 24-hour hormonal data. The advantage of Stepwise approach is that by using the 

3

166454_Choi_BNW-def.indd   65166454_Choi_BNW-def.indd   65 09-05-2023   09:2109-05-2023   09:21



66

Chapter 3

standardized residuals, it facilitates the detecting of measurement errors caused by 
dilution, which may not have been identified by only looking into individual hormones. 
Additionally, it is expected to be a more objective method than eyeballing, as it explicitly 
incorporates the information from multiple hormones and applies the same cut-off 
values of standard deviations to every hormone. Furthermore, it is less time-consuming 
than eyeballing and can relatively easily be applied to different hormonal datasets. 
Compared to Tukey’s fences, Stepwise approach has more flexibility to incorporate 
physiological knowledge, such as adopting asymmetrical cut-off or removing glucose 
measurements lower than 2.8 mmol/L. However, the performance of the method may 
depend on parameters such as a time window for moving average, or cut-off points of 
standard deviations. These parameters still require decisions and need to be chosen 
with care; the decisions should also be clearly reported. Another disadvantage of 
Stepwise approach, which also applies to eyeballing and Tukey’s fences, is that we 
discard data according to a dichotomous division. Whether a data point is an outlier or 
not is often dependent on the degree of belief instead of a clear dichotomous distinction. 
Furthermore, this dichotomous distinction reduces the statistical power in further 
analyses.

The strength of the EM algorithm is that, instead of the dichotomous distinctions, 
it gives probabilities of each point being an outlier. Therefore, we acquire extra 
information which can be incorporated into further analysis, such as for probability 
weighting. Additionally, the EM algorithm requires less prior knowledge compared 
to the previously discussed methods. However, a critical disadvantage of the EM 
algorithm is that we cannot ensure whether the two identified distributions are actually 
distinguishing outliers and non-outliers. In our dataset, the detected points were often 
not plausible to be detected as outliers from a physiological perspective.

It is worth to mention the performances of Tukey’s fences, Stepwise approach, and 
the EM algorithm depend on which smoothing technique is applied. Moving average, 
which was used in the study, does not require extensive modeling and can capture 
local fluctuations of hormone concentration. However, it may smooth out the transient 
increase of hormone concentration and lead to detect true measurements as outliers. 
Stepwise approach takes this shortcoming of moving the average into account by setting 
different cut-off values for positive and negative residuals. There are more advanced 
model-based smoothing techniques, such as deconvolution analysis, which takes the 
underlying dynamics of hormone secretions into account (Brown et al., 2001; Faghih et 
al., 2014). These methods were not considered in this study as our aim was to compare 
outlier detection methods that could be easily adopted by applied researchers in a 
pre-analysis phase.

To test the efficacy of the outlier detection methods, we simulated 24-hour hormonal 
data and measurement errors as comparable as possible to real data. The advantage of 
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the simulation study is that we know which data points are true measurement errors. 
We compared the performance of Stepwise approach, Tukey’s fences, and the EM 
algorithm. The simulation description and the results are attached as an appendix (see 
Supplementary Material, Appendix 2). The EM algorithm resulted in a high percentage 
of true measurements wrongly detected as errors, especially when a simulated hormone 
has a higher variation during the day than during the night. Most methods yielded 
relatively low percentages of true error detected. This could be due to the fact that 
some simulated errors are close to fitted curves, while the methods we are comparing 
are based on detecting errors deviating from the curves. For detecting dilution errors, 
Stepwise approach performed better than other methods. This is because Stepwise 
approach could detect dilution errors that were not deviating much from the curves 
by taking the sum of the residuals from all hormones.

In this study, the effect of removing outliers on the cross-correlation between glucose 
and insulin had no major impact on a group level. Note that these results may not 
be generalized to other statistical outcomes, such as deconvolution analysis and 
approximate entropy analysis, which are also common analyses for 24-hour hormonal 
data. Furthermore, glucose and insulin are strongly cross-correlated; however, when 
two hormones are less strongly correlated, the impact of removing outliers may be 
higher.

5. Conclusions

Based on our results, we generally recommend methods that incorporate physiological 
knowledge over data-driven methods. The EM algorithm is not recommended for outlier 
detection in 24-hour hormonal data since the method seems to falsely distinguish 
true biological variations due to circadian factors, such as meal response or day-
night differences, as outliers. Tukey’s fences, the other data-driven method, is not 
recommended in 24-hour hormonal data. Since no statistical assumptions have to be 
made and fewer data points will be removed, eyeballing could be a good method for 
detecting outliers. However, since it is time-consuming (depending on the number of 
participants studied), it might not always be practical. The strengths and limitations 
of each method are presented in Table 4.

3
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Table 4. Methods for detecting measurement errors

Eyeballing Tukey’s fences Stepwise 
approach

The EM 
algorithm

Underlying 
assumptions

• Researchers’ 
expert 
knowledge is 
reliable.

• From how much standard 
deviations (or interquartile range) 
away from a smoothing curve is 
considered to be an outlier should 
be decided by researchers.

• Normal 
distributions

Efficiency and 
generalizability 
of the method

• Relatively 
time-consuming 
process.
• Different 
experts’ 
knowledge is 
required for 
different types of 
data.

• Although it needs several adjustments for different 
types of time series (e.g., parameters for smoothing 
curves), the processes can be easily applied to different 
settings.

Limitations • Explicit 
knowledge 
and clear 
physiological 
reasoning 
behind the 
detection 
process.
• Disagreement 
between experts 
may happen.

• The method is 
highly affected 
by smoothing 
techniques and 
type of data, 
especially when 
the hormone 
levels are mostly 
constant over 
time.

• Measurement 
error within 
a hormone 
and within a 
sampling method 
(serum) can both 
be detected

• Yields a 
probability
• Need a large 
sample to be able 
to distinguish 
between the 
distributions

In conclusion, we recommend Stepwise approach for detecting outliers in serial 24-
hour hormonal data since this method combines both physiological knowledge and an 
automated process. However, decisions such as which cut-offs of standard deviation 
should be applied or which hormones can be used together in the method should be 
supported by solid physiological knowledge. Stepwise approach is especially suitable 
for data of several hormone measurements from the same tube and when dilution is 
a possible cause of measurement errors. In this case, the outlier detection process 
can improve by taking along a reference measurement together with the hormonal 
measurements, whose concentration is stable over the day, such as creatinine or urea.

Although the methods showed different performances in outlier detection, this had 
little impact on the statistical outcomes. Overall, 24-hour means and cross-correlations 
did not materially change, but on an individual basis, correlations might change. The 
influence of outliers may depend on the study’s sample size and outcome of interest. 
We recommend researchers be aware of the potential influence of measurement errors 
in their study and consciously decide which method to choose for outlier detection and 
whether it is necessary to remove outliers at all.
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Appendix 1

Details on the EM algorithm to detect outliers

For each of the hormones separately, the EM algorithm was applied to the residuals 
of all subjects simultaneously, where the residual of the ith measurement of subject j 
was calculated as Rij= Yij− Ŷij  , with Yij, the observed measurement and Ŷij , the moving 
average smoothed estimate.

We assumed that there were two types of measurements: true measurements and 
erroneous measurements. We expected that the residuals of the true measurements 
had standard deviations close to 0, while erroneous measurements had a much larger 
standard deviation.

 

The (unobserved) indicator variable Z denotes whether a measurement is an error, with 
Zij=1 if the ith measurement of subject j is an error and Zij =0 if it is a true measurement. 
The proportion of erroneous measurements Pr(Zij=1) is denoted by πe . We assumed 
that residuals R of true measurements were normally distributed with mean 0 and 
standard deviation σ1 while the residuals of the erroneous measurements were normally 
distributed with mean 0 and standard deviation σ2 , with σ2 >> σ1 . The proportion of 
erroneous parameters πe and the standard deviations σ1  and σ2, can be estimated using 
maximum likelihood. The complete likelihood of the data is

𝐿𝐿( 𝜎𝜎1, 𝜎𝜎2; 𝑅𝑅, 𝑍𝑍) =  ∏ 𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖;   𝜎𝜎1)(1−𝑍𝑍𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖  𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖;   𝜎𝜎2)𝑍𝑍𝑖𝑖𝑖𝑖 , 

with f(Rij; σi) , the normal density with mean 0 and standard deviation σi . Because the 
Zij are unobserved, the EM algorithm is applied with following EM steps:

3

166454_Choi_BNW-def.indd   71166454_Choi_BNW-def.indd   71 09-05-2023   09:2109-05-2023   09:21



72

Chapter 3

E step: given current estimates pe s1 and s2 for πe σ1 and σ2 , the expected probability of 
being an error is estimated using Bayes formula:

  Pr(Zij=1| Rij) = 

M step: the likelihood function where the Zij are replaced by the expected probabilities 
that Zij is 1, is maximized.

The EM steps are repeated until convergence. The final estimates pe, s1, and s2 are filled 
in in equation (1). This yields for each measurement an estimated probability of being 
an error measurement.

The EM algorithm was applied in R version 3.5.1, using the normalmixEM function of 
the package mixtools.

Reference
Benaglia T, Chauveau D, Hunter DR, Young D (2009). mixtools: An R Package for 
Analyzing Finite Mixture Models. Journal of Statistical Software, 32(6), 1-29. URL http://
www.jstatsoft.org/v32/i06/.
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E step: given current estimates pe s1 and s2 for 𝜋𝜋𝑒𝑒  𝜎𝜎1 and  𝜎𝜎2 , the expected probability of being an 

error is estimated using Bayes formula:   

    Pr(Zij=1| Rij) =   𝑝𝑝𝑒𝑒𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖; 𝑠𝑠2)
(1−𝑝𝑝𝑒𝑒)𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖; 𝑠𝑠1)+𝑝𝑝𝑒𝑒𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖; 𝑠𝑠2)                                          (1) 

 

M step: the likelihood function where the Zij are replaced by the expected probabilities that Zij is 1, is 

maximized.  

The EM steps are repeated until convergence. The final estimates pe, s1, and s2 are filled in in 

equation (1). This yields for each measurement an estimated probability of being an error 

measurement. 

The EM algorithm was applied in R version 3.5.1, using the normalmixEM function of the package 

mixtools. 

 

 

Reference 

Benaglia T, Chauveau D, Hunter DR, Young D (2009). mixtools: An R Package for Analyzing Finite 
Mixture Models. Journal of Statistical Software, 32(6), 1-29. URL 
http://www.jstatsoft.org/v32/i06/. 
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Appendix 2

Detecting outliers in 24-hour hormonal data: a simulation study

1. Data generation

We simulate measurements for five hormones; glucose, insulin, thyroid stimulating 
hormone (TSH), cortisol, and growth hormone (GH), according to their physiological 
characteristics and the laboratory setting where our sample was drawn. This setting 
was reproduced in simulation as described below:

• 24 hours with measurements every 10 minutes, in total 144 measurements per 
hormone and person.

• Three meals at time 0, 18, 54.
• Night from time 84 to time 138.

For each hormone, we generated measurements. The mean hormone value at time t, 
Y(t) consisted of a constant baseline level and one or more peaks using an absorption/
elimination model. A peak starting at ts has the form:
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where C0 determines the minimum hormone values over time, C1 the peak value and λa and λe the 
rate of absorption and elimination of the hormone in the blood. The latter is directly related to the 
half-life of the hormone by λe=ln(2)/half-life. Random between and within-person variation was 
added to the generated mean values. The specific minimum, location and duration of peaks, and the 
random intra/inter-person variation were based on the observed patterns in our data. Specific 
features of each hormone are: 

• Glucose: Three clear peaks after meals, where the third one is slightly higher than others. At 
night, the hormone level is stable and low, and the variation is smaller. Physiologically, 
glucose levels cannot be below 2.8 mmol/L. 

• Insulin: Three clear peaks after each meal, and the hormone is highly correlated with glucose 
(corr.=0.75). At night, the hormone level is stable and low, and the variation is smaller. 

• TSH: One prominent peak, where the hormone builds up in the evening from 6 pm (t=54) 
with the highest levels at 11 pm (t=84), with large variation.  

• Cortisol: Peaks at the end of the night.  
• GH : Sharp peaks and the number of peaks varies from 0 to 20 across the individuals.   

Inter-person variation is generated by varying the highest concentration reached during peaks, 
following a normal distribution (specific parameters are provided in the table below). For TSH, 
cortisol, and GH, the location of the peaks also varies across people. In this way, we generated 24-
hour hormonal data for 38 simulated subjects. Table A1 shows the specific parameters used for 
simulating the 24-hour hormonal data of 38 individuals. 
 

  

where C0 determines the minimum hormone values over time, C1 the peak value and λa 
and λe the rate of absorption and elimination of the hormone in the blood. The latter is 
directly related to the half-life of the hormone by λe=ln(2)/half-life. Random between 
and within-person variation was added to the generated mean values. The specific 
minimum, location and duration of peaks, and the random intra/inter-person variation 
were based on the observed patterns in our data. Specific features of each hormone are:

• Glucose: Three clear peaks after meals, where the third one is slightly higher than 
others. At night, the hormone level is stable and low, and the variation is smaller. 
Physiologically, glucose levels cannot be below 2.8 mmol/L.

• Insulin: Three clear peaks after each meal, and the hormone is highly correlated 
with glucose (corr.=0.75). At night, the hormone level is stable and low, and the 
variation is smaller.

• TSH: One prominent peak, where the hormone builds up in the evening from 6 pm 
(t=54) with the highest levels at 11 pm (t=84), with large variation.

• Cortisol: Peaks at the end of the night.
• GH : Sharp peaks and the number of peaks varies from 0 to 20 across the individuals.

Inter-person variation is generated by varying the highest concentration reached during 
peaks, following a normal distribution (specific parameters are provided in the table 
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below). For TSH, cortisol, and GH, the location of the peaks also varies across people. 
In this way, we generated 24-hour hormonal data for 38 simulated subjects. Table A1 
shows the specific parameters used for simulating the 24-hour hormonal data of 38 
individuals.

In each individual, for each hormone, we generated measurement errors at 14 time 
points. To generate random measurement errors in each hormone at seven randomly 
selected time points (5% out of 144 points), we replaced the true measurement with an 
error measurement drawn from a uniform distribution with a wide range (-10 x intra-
person SD to 15 x intra-person SD). Furthermore, we generated related dilution errors 
at seven time points which were the same across all hormones for one individual. The 
dilution errors were generated by dividing the original measurement by 2.
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Table A1. Parameters for generating 24-hour glucose, insulin, TSH, cortisol and GH data

Glucose 
[mmol/L]

Insulin
[mU/L]

TSH
[mU/L]

Cortisol 
[µmol/L]

GH
[mU/L]

Starting 
value (C0)

3.8 6.6 1 0.05 1

Number 
and 
location of 
peaks

3 peaks, 
increase 
starts at 
mealtimes

3 peaks, 
increase starts 
at mealtimes

One wide 
peak, 
increase 
starts 
between t=45 
and 65

3 peaks,
Increase 
starts 
between (i) 
t=75 and 100,
(ii) between 
t=100 and 
124, and (iii) 
between 124 
and 140

0 to 20 peaks, 
increase starts 
from t=0 and 
143

Half-life 35 min 35 min 120 min 50 min 10 min

Intra-
person 
variation 
(SD)

Day 0.50, 
Night 0.25

Day 6.5
Night 3.2

0.17 0.03 0.27

Mean 
and SD 
of peaks: 
first peak 
(i), second 
peak (ii), 
third 
peak (iii), 
with inter 
person Sd

(i) 4 (0.5),
(ii) 4 (0.5),
(iii) 7 (0.7)

90 (5) 2.5 (0.5) (i) 0.3 (0.1), 
(ii) 0.4 (0.1), 
(iii) 0.5 (0.1)

15 (1)

Remarks Values <2.8 
are set to 2.8

Values <2.8 are 
set to 2.8

Values <1 are 
set to 1

Values <0.05 
are set to 0.05

Values <0.2 are 
set to 0.2

Absorption/
elimination 
rate

λa =1.1 λe λa =1.1 λe λa =1.1 λe λa =2 λe λa =1.1 λe

Comments Log 
transformation

Log 
transformation

3

166454_Choi_BNW-def.indd   75166454_Choi_BNW-def.indd   75 09-05-2023   09:2109-05-2023   09:21



76

Chapter 3

2. Simulation results

Figure A1 shows simulated 24-hour hormonal data for glucose, insulin, TSH, cortisol, 
and GH of the first two generated individuals are shown. The hormone-specific 
measurement errors are indicated by a red dot. The dilution errors are indicated by a 
green dot.

Figure A2 displays how many points are indicated as measurement errors by each 
method averaged across the 38 simulated subjects. The EM algorithm indicated the 
highest number of measurement errors, followed by the stepwise approach. Especially 
for the hormones where the intra-person variation was larger during the day than 
during the night (glucose and insulin), the EM algorithm indicated high numbers of 
measurement errors.

Table A2 shows what percentage of true errors (random errors and dilution errors) 
were detected by each method and how many non-errors were identified as errors by 
each method. When it comes to detecting a true error, the EM algorithm performed 
best. However, the EM algorithm also indicated the most non-errors as measurement 
errors. Especially for insulin, the number of true measurements falsely indicated as 
errors was extremely high. This is explained by the fact that the intra-person variation 
in insulin differed between day and night, and the insulin residuals were not normally 
distributed without log transformation. The percentage of non-error detected as 
measurement error was much lower in Stepwise approach and Tukey’s fences than in 
the EM algorithm. Stepwise approach is to be preferred when detecting dilution errors.
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Figure A1. Simulated 24-hour glucose, insulin, TSH, cortisol, and GH data of the first two gen-
erated individuals

3
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Figure A1 (cont’d)
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Figure A2. Simulated 24-hour glucose, insulin, TSH, cortisol, and GH data of the first two gen-
erated individuals

Table A2. Percentage of true errors detected and true measurement wrongly indicated as an error 
by each method stratified by random error and dilution error.

Random error Dilution error

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

Stepwise 
approach

Glucose 22.18 4.80 92.86 1.19

Insulin 4.51 2.86 49.25 0.58

TSH 18.42 2.59 53.76 0.79

Cortisol 24.06 2.67 49.62 1.36

GH 8.27 2.82 49.25 0.73

mean 15.49 3.15 58.95 0.93

Tukey’s 
fences

Glucose 34.96 1.67 29.32 1.96

Insulin 7.89 0.50 4.14 0.69

TSH 31.58 1.42 27.82 1.61

Cortisol 31.95 0.65 7.52 1.90

GH 7.89 0.71 2.63 0.98

mean 22.86 0.99 14.29 1.43
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Table A2. Percentage of true errors detected and true measurement wrongly indicated as an error 
by each method stratified by random error and dilution error. (continued)

Random error Dilution error

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

The EM 
algorithm

Glucose 60.53 8.70 90.98 7.15

Insulin 74.81 30.89 77.82 30.73

TSH 49.25 2.92 46.24 3.07

Cortisol 43.98 2.65 18.80 3.94

GH 8.65 1.31 4.14 1.54

mean 47.44 9.29 47.59 9.29
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