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Chapter 2

Abstract

Propensity score analysis is a popular method to control for confounding in 
observational studies. A challenge in propensity methods is missing values in 
confounders. Several strategies for handling missing values exist, but guidance in 
choosing the best method is needed.

In this simulation study, we compared four strategies for handling missing covariate 
values in propensity matching and propensity weighting. These methods include 
complete case analysis, missing indicator method, multiple imputation, and combining 
multiple imputation and missing indicator method. Concurrently, we aimed to provide 
guidance in choosing the optimal strategy. Simulated scenarios varied regarding the 
missing mechanism, presence of effect modification, or unmeasured confounding. 
Additionally, we demonstrated how missingness graphs help clarify the missing 
structure.

When no effect modification existed, complete case analysis yielded valid causal 
treatment effects even when data were missing not at random. In some situations, 
complete case analysis was also able to partially correct for unmeasured confounding. 
Multiple imputation worked well if the data were missing (completely) at random, and 
if the imputation model was correctly specified. In the presence of effect modification, 
more complex imputation models than default options of commonly used statistical 
software were required. Multiple imputation may fail when data are missing not at 
random. Here, combining multiple imputation and the missing indicator method 
reduced the bias as the missing indicator variable can be a proxy for unobserved 
confounding.

The optimal way to handle missing values in covariates of propensity score models 
depends on the missing data structure and the presence of effect modification. When 
effect modification is present, default settings of imputation methods may yield biased 
results even if data are missing at random.
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1. Introduction

Observational studies potentially suffer from confounding. First introduced by 
Rosenbaum and Rubin [1], Propensity score methods are increasingly used in medical 
research to handle confounding [2-5]. When the observed baseline characteristics 
are sufficient to correct for confounding bias and the propensity model is correctly 
specified, propensity score analysis creates conditional exchangeability between 
persons with the same propensity score. Numerous studies provide illustrations and 
discussions on the performance of different propensity score approaches [6, 3, 4, 7-11].

Besides confounding, observational studies often have missing values in covariates. 
Missing values can occur by different mechanisms: values are missing completely at 
random (MCAR) when the probability that a value is missing is independent of observed 
and unobserved information (e.g., a lab measurement is missing, because a technician 
dropped a tube), missing at random (MAR) where the probability of missing depends 
only on observed information (e.g., lab measurements are only performed when 
other measured variables were abnormal), or missing not at random (MNAR) where the 
probability of missing depends on unobserved information (e.g., lab measurements are 
only performed when a doctor judged that a patient was in a severe condition, while 
the severity is not well-registered.) [12]. It is difficult, however, to decide on the type 
of missing mechanism, especially when distinguishing whether the data are missing 
at random or not at random [13, 14]. Especially in routinely collected data, variables are 
often selectively measured based on a patient’s characteristics which are often not 
well-specified [15]. If those ill-defined characteristics are associated with the variable 
with missing values, data is missing not at random. External knowledge or assumptions 
about the clinical setting are required to distinguish whether the missing is at random 
or not at random.

How to estimate propensity scores when there are missing values is a challenge when 
studying causal associations [16]. There are different strategies to handle missing data 
in a propensity score analysis. The simplest approach is to discard all observations with 
missing data, a so-called complete case analysis [12, 17]. Including a missing indicator 
in a statistical model is another simple method. However, various studies showed 
that the method generally introduces bias [18-21]. Multiple imputation is a standard 
method to deal with missing data. Many studies have shown the advantage of multiple 
imputation and its superiority over other methods [12, 19, 22]. In combination with 
propensity scores, however, several questions arise: Should we include the outcome in 
the imputation model? Can we use the imputation methods implemented in standard 
software? How should we combine the results of the different propensity scores 
estimated in each imputed dataset?

2
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The aim of this simulation study is to investigate how different strategies of handling 
missing values of covariates in a propensity score model can yield valid causal treatment 
effect estimates. To limit the scope of the study, we deal only with missing values in 
the baseline characteristics, a rather common situation in routinely collected data. We 
create simulation scenarios varying in their missing data mechanisms, the presence 
of heterogeneous treatment effects, and unmeasured confounding. Subsequently, the 
results are used to provide guidance in choosing an optimal strategy to handle missing 
data in the context of propensity score analysis.

2. Simulation description

We generated simulated data with missing values in one of the confounders and 
compared effect estimates obtained by using several different strategies to deal with 
missing data. In Section 2.1, we considered a situation without unmeasured confounding 
and with an equal treatment effect for all subjects. In section 2.2, we introduced a 
heterogeneous treatment effect. In Section 2.3, the simulations were extended by adding 
unmeasured confounding.

2.1. Simulation setting 1: No unmeasured confounding and a homogeneous treat-
ment effect
In this simulation series, for each subject, we generated two continuous covariates 
X1 and X2. X1 follows a normal distribution of mean 0 and standard deviation of 1. X2 
depended on X1, where for subject i,

In this way, the standard deviation of X2 is also 1 and the correlation between X1 and 
X2 is equal to 0.5. The treatment T was generated from the binomial distribution, with 
the probability for subject i to receive the treatment being equal to:

In this way about 33% of the generated subjects received treatment. A continuous 
outcome was generated with the mean linearly related to X1 and X2:

16 

 

 

Y𝑖𝑖 = X1𝑖𝑖 + X2𝑖𝑖 + 𝜀𝜀𝑖𝑖, with 𝜀𝜀𝑖𝑖~𝑁𝑁(0, 1)  

 

For ease of interpretation of the results, we assumed that treatment T had no effect on the 

outcome for any of the subjects. Missing data were generated for 50% of the X2 values in three 

different ways: 

⚫ A missing completely at random (MCAR) scenario: 50% of values are randomly set to 

missing in X2 

⚫ A missing at random (MAR) scenario: The higher the value of X1, the more likely for the 

X2 value to be missing. Denoting R as a missing indicator of X2, the probability of a 

missing X2 value was equal to: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑅𝑅𝑖𝑖 = 1)) = X1𝑖𝑖  

 

⚫ A missing not at random (MNAR) scenario: The higher the value of X2, the more likely that 

the value was missing. The probability of a missing X2 value was: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑅𝑅𝑖𝑖 = 1)) = X2𝑖𝑖  

 

Missingness-graphs (m-graph, for short) of each missing scenario are depicted in Figure 1. The 

missingness graph is a graphical tool to represent missing data, proposed by Mohan et al. [23]. 

Guidance for practical users is given in Thoemmes, Mohan [24]. These graphs are extensions to 

causal directed acyclic graphs (DAGs) where nodes indicate covariates and arrows indicate causal 

relations. When a covariate contains missing values (X2 in our simulations), it is expressed by a 

dashed rectangle around the node. The node R represents the missingness of X2, and can be 

referred to as a missing indicator of X2. The observed portion of X2 is represented as X2*. When 

R=0, X2* is identical to X2, and when R=1, X2* is missing. In our simulations, we restricted 

ourselves to the situation where missing values occur only in one covariate. However, m-graphs 

can be extended to situations with multiple covariates having missing values and, accordingly, 

with multiple missing indicator variables. 

  

For ease of interpretation of the results, we assumed that treatment T had no effect 
on the outcome for any of the subjects. Missing data were generated for 50% of the X2 
values in three different ways:

•	 A missing completely at random (MCAR) scenario: 50% of values are randomly set 
to missing in X2
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•	 A missing at random (MAR) scenario: The higher the value of X1, the more likely for 
the X2 value to be missing. Denoting R as a missing indicator of X2, the probability 
of a missing X2 value was equal to:
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•	 A missing not at random (MNAR) scenario: The higher the value of X2, the more 
likely that the value was missing. The probability of a missing X2 value was:
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Figure 1. M-graphs for Simulation setting 1: MCAR scenario (a), MAR scenario (b), and MANR 
scenario (c)
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2.2. Simulation setting 2: No unmeasured confounding and a heterogeneous treat-
ment effect
The setup of this simulation series is the same as in Simulation setting 1, but here we 
assumed effect modification by X2. That is,
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Fig 1 M-graphs for Simulation setting 1: MCAR scenario (a), MAR scenario (b), and MANR scenario (c)  
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The average treatment effect in the population was equal to null as in Simulation 
setting 1. However, due to the effect modification by X2, the average treatment effect 
was negative for subjects with X2 < 0 and positive for subjects with X2 > 0. Missing values 
were generated in the X2 variable, following the same mechanisms as in Simulation 
setting 1. The m-graphs for each scenario are depicted in Figure 2. In these m-graphs, 
there is an arrow from the treatment assignment (T) to the outcome (Y) because, for 
some subjects, the treatment has an effect on their outcome.
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Figure 2. M-graphs for Simulation setting 2: MCAR scenario (a), MAR scenario (b), and MANR 
scenario (c)

2.3. Simulation setting 3: Unmeasured confounding and a homogeneous treatment 
effect
In this series of simulations, we assumed an additional unobserved confounder U, 
normally distributed with a mean of 0 and standard deviation of 1 and independent 
from X1. X2 depended on X1 and U, where for subject i,
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Fig 2 M-graphs for Simulation setting 2: MCAR scenario (a), MAR scenario (b), and MANR scenario (c)  
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Here, we assumed a homogeneous treatment effect which was set to null. We considered two 

missing scenarios for X2, one according to the MCAR mechanism and the other MNAR 
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The probability of receiving the treatment depended on X1, X2, and U as follows:
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This way, about 33% of the generated subjects received the treatment. The outcome 
now depended on X1, X2 and U:
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Here, we assumed a homogeneous treatment effect which was set to null. We considered 
two missing scenarios for X2, one according to the MCAR mechanism and the other 
MNAR mechanism.

•	 A MCAR scenario: 50% of values are randomly set to be missing in X2

•	 A MNAR scenario: Here, we considered a common situation in routinely collected 
health care data where the missing of X2 depended on the unobserved confounder 
U. We set the value of X2 to be missing if U > 0

A MAR scenario was not considered in this simulation setting. This is because we were 
interested in comparing a situation where an unmeasured confounder U affect the 
missingness of X2 (MNAR) to a situation where it does not affect the missingness of X2 
(MCAR). The m-graphs for these scenarios are illustrated in Figure 3.
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Figure 3. M-graphs for Simulation setting 3: MCAR scenario (a), MNAR scenario (b)

2.4. Analysis of the simulated datasets
In every simulated dataset, we estimated propensity scores by logistic regression. The 
treatment effect was estimated by i) propensity matching and ii) propensity weighting. 
For the matching procedure, we matched a treated subject to an untreated subject using 
one-to-one nearest neighbour matching without replacement and 0.1 caliper distance 
on the logit scale. In propensity weighting, the so-called inverse probability weighting, 
treated subjects are weighted by 1/propensity score, and untreated subjects are weighted 
by 1/(1-propensity score). Note that causal effects estimated by propensity matching and 
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propensity weighting are different from each other. The matching estimates the average 
treatment effect in the treated population, while the weighting method estimates the 
average treatment effect in the total population. For handling missing values, we applied 
the following four different methods.

2.4.1. Complete case analysis
In this approach, only observations with complete information are used for analysis.

2.4.2. Missing indicator method
When a covariate contains missing values, they were replaced by one single value, for 
example, by the value 0. Additionally, a missing indicator variable was created, with 1 
indicating that the corresponding value is missing and 0 indicating that it is observed. 
The missing indicator variable was then added as a covariate in a propensity score 
model. When there are multiple covariates with missing values, missing indicators 
will be created for each covariate which will be all added to a propensity score model.

2.4.3. Multiple imputation
The third method considered was multiple imputation. The chained equation (MICE) 
procedure was used, a commonly used imputation method that assumes data are 
missing at random [25]. We used the default options of MICE version 3.3.0 [26] in R 
version 3.5.1: predictive mean matching via a regression model with main effects of 
X1, X2, T, and with or without Y. In this way, the simulations reflect how most applied 
researchers using R would perform multiple imputation. Predictive mean matching is 
also readily available in SAS version 9.4, Stata version 15, and IBM SPSS version 25.0, 
and it is recommended when data contains both continuous and discrete values [27, 28]. 
As a sensitivity analysis, we repeated Simulation setting 2 using MICE with Bayesian 
linear regression, since many researchers will opt for this method when covariates 
and outcomes are continuous.

In Simulation setting 2, where a heterogeneous treatment effect exists, we additionally 
used a more extensive imputation model with three interaction terms included; the 
interaction between T and X1, T and Y, and X1 and Y. Adding interaction terms between 
the variables in a multiple imputation regression model is advocated by Tilling et al. 
[29]. For every multiple imputation, ten imputed datasets were generated. A treatment 
effect was estimated within each imputed dataset using the propensity score methods. 
Using Rubin’s rule, the ten treatment effects were then combined into a single treatment 
effect. This method is referred to as the within method [30].

We explored whether the outcome should be included in the imputation model. The idea 
behind the propensity score methods is that the probability of receiving the treatment is 
modelled without knowing the outcome [16], which is why some researchers argue that 
the outcome should not be used in the imputation model [31]. The purpose of multiple 
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imputation, however, is a reconstruction of data to retain the original relationship 
between the covariates as much as possible, for which the outcome could provide 
valuable information [32-35]. This suggests that the outcome should be added to an 
imputation model.

2.4.4. Multiple imputation together with missing indicator
The fourth method was a combination of multiple imputation and the missing indicator 
method. Multiple imputation was used to impute the missing values. Afterward, both 
the imputed covariate and a missing indicator variable were added to the propensity 
score model [36]. Multiple imputation was performed following the same procedure as 
in Section 2.4.3, where the treatment effect is estimated by the within method.

2.5. Simulation summary
Each simulation run generated a thousand observations and was repeated a thousand 
times. We summarised the simulation results by calculating the mean treatment effects 
over the simulations and the standard deviation of the estimated treatment effects. As 
overall performance measures, we calculated the mean squared error, which is the 
squared distance between the estimated treatment effect and the true treatment effect 
averaged over the simulations.

In Simulation setting 1 and 3, the true treatment effect was null for all subjects, 
which means that mean estimated treatment effects deviating from 0 demonstrate 
bias has been introduced. In Simulation setting 2, the average treatment effect in the 
population; the causal effect estimated by propensity weighting, was also equal to null. 
However, due to the heterogeneous treatment effect, the average treatment effect in the 
treated; the causal effect estimated by propensity matching, differed from null. In this 
simulation setting, the treatment effect for individual i is equal to X2i, which implies the 
average treatment effect in the treated would be E[X2|T=1]. In this simulated example, 
E[X2|T=1] was equal to 0.432.

3. RESULTS

3.1. Simulation setting 1: No unmeasured confounding and a homogeneous treat-
ment effect
Figure 4 (left) displays the mean estimated effects of the propensity weighting analysis 
in Simulation setting 1 and their 5th and 95th percentile range. Table 1 shows the mean 
estimates with standard deviations and mean squared errors from the propensity 
matching and the propensity weighting. Complete case analysis yielded unbiased 
treatment effect estimates in all scenarios, even when data were missing not at random. 
The missing indicator method alone resulted in biased estimates in all scenarios. The 
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results suggested that the outcome should be included in an imputation model, because 
the imputation models not including the outcome resulted in bias. In the MCAR and 
MAR scenario, multiple imputation including the outcome yielded the smallest mean 
squared errors, and combining multiple imputation and the missing indicator method 
worked as efficiently. In the MNAR scenario, combining multiple imputation and the 
missing indicator method was slightly less biased than multiple imputation alone.

3.2. Simulation setting 2: No unmeasured confounding and a heterogeneous treat-
ment effect
Figure 4 (middle) visualises the results of the propensity weighting analysis of 
Simulation setting 2, and Table 2 summarises the results of the propensity matching and 
the propensity weighting. Here, the complete case analysis yielded negatively biased 
results in the MAR or MNAR scenarios. This is because subjects with higher X2 values, 
for whom the treatment was most beneficial, had a higher probability of being excluded 
from the analyses. The missing indicator method was still biased in all scenarios. The 
amount of bias, however, was relatively small in the MNAR scenario. We observed a 
remarkable result in the MAR scenario: the default multiple imputation method yielded 
biased effect estimates, even when the outcome was included in the imputation model 
and when a missing indicator was added to the propensity model. When more elaborate 
imputation regression models with specified interaction terms were used, the bias from 
the propensity weighting was much smaller, although a slight bias still remained (0.013).

The results of propensity matching, even in the situation without any missing 
values (0.327), deviated from the treatment effect in all treated subjects (0.432). This 
discrepancy is a general problem of propensity score matching [37-39]. A large caliper 
distance allows treated subjects with high propensity scores to be matched to untreated 
subjects with lower propensity scores, which will result in residual confounding. A 
smaller caliper distance reduces the confounding bias. However, many subjects, 
especially the subjects with a high propensity score, may not be matched. Therefore, 
the treatment effect in the treated who are matched may deviate from the treatment effect 
in all treated. The size of this discrepancy depends on the heterogeneity of the treatment 
effect. In this simulation setting, we used matching without replacement with a caliper 
distance of 0.1, which allows rather a tight matching. Thus, for some of the treated 
subjects with a high propensity score, whose treatment effect was more effective, 
no adequate untreated match could be found. As we were specifically interested in 
the additional bias under the different missing mechanisms, we used the estimate of 
propensity matching without any missing data (0.327) as a reference. Once more, we 
observed that multiple imputation with interaction terms performed best as it did in 
propensity weighting analysis.
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The results of multiple imputation with Bayesian regression methods done in a 
sensitivity analysis did not largely differ from the results of predictive mean matching 
(see Appendix  for the results in Simulation setting 2).

3.3. Simulation setting 3: Unmeasured confounding and a homogeneous treatment 
effect
Figure 4 (right) displays the results of the propensity weighting of Simulation setting 3, 
and Table 3 summarises the results of propensity matching and propensity weighting. 
Due to the unmeasured confounder U, bias remained in the propensity analyses even 
when there were no missing values. In the MNAR scenario where the missingness of X2 
depends on U, two methods were able to reduce the unmeasured confounding effect: 
the combined method and, somewhat surprisingly, the complete case analysis. The 
combined method partially adjusted for U by adding R to the propensity model; the 
complete case analysis used restriction to partially adjust for U, using only those with 
complete data. The results here were substantially less biased than the propensity 
analyses performed in complete data without missing values.

2
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Table 1. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming a homogeneous treatment effect and no unmeasured confounding. For each 
missing scenario, missing data are handled with complete case analysis, missing indicator 
method, multiple imputation, and the combination of multiple imputation and missing indicator 
(Combined method).

Homogeneous treatment effect

Propensity matching Propensity weighting

coefficient
MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 1.298 0.123 1.700 1.298 0.123 1.700

After adjustment 0.044 0.085 0.009 0.006 0.109 0.012

MCAR

Complete case analysis 0.043 0.121 0.016 0.014 0.152 0.023

Missing indicator 0.238 0.095 0.066 0.189 0.111 0.048

Multiple imputation

    with Y 0.047 0.086 0.010 0.011 0.113 0.013

    without Y 0.219 0.087 0.056 0.186 0.110 0.047

Combined method

    with Y 0.048 0.087 0.010 0.011 0.112 0.013

    without Y 0.218 0.087 0.055 0.187 0.110 0.047

MAR

Complete case analysis 0.024 0.128 0.017 0.007 0.165 0.027

Missing indicator 0.259 0.099 0.077 0.172 0.123 0.044

Multiple imputation

    with Y 0.052 0.092 0.011 0.010 0.122 0.015

    without Y 0.244 0.090 0.068 0.185 0.120 0.049

Combined method

    with Y 0.050 0.092 0.011 0.010 0.122 0.015

    without Y 0.243 0.090 0.067 0.185 0.120 0.048

MNAR

Complete case analysis 0.025 0.129 0.017 0.012 0.166 0.028

Missing indicator 0.231 0.098 0.063 0.149 0.122 0.037

Multiple imputation

    with Y 0.069 0.095 0.014 0.029 0.123 0.016

    without Y 0.248 0.091 0.070 0.215 0.118 0.060

Combined method

    with Y 0.052 0.093 0.011 0.011 0.122 0.015

    without Y 0.211 0.088 0.053 0.160 0.119 0.040

2
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Table 2. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming X2 is an effect modifier and no unmeasured confounder exists. Here, multiple 
imputation is done in two ways; the commonly used method (no interaction term) and the 
elaborated method (interaction terms included).

Heterogeneous treatment effect

Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 1.736 0.156 1.409 2.011 1.736 0.156 3.040

After adjustment 0.327 0.093 0.000 0.009 -0.003 0.152 0.023

   MCAR

Complete case analysis 0.300 0.133 -0.027 0.018 -0.003 0.219 0.048

Missing indicator 0.574 0.120 0.247 0.075 0.305 0.162 0.119

No interaction term

    Multiple imputation

      with Y 0.315 0.103 -0.012 0.011 -0.021 0.168 0.029

      without Y 0.542 0.108 0.215 0.058 0.297 0.158 0.113

    Combined method

      with Y 0.315 0.102 -0.012 0.011 -0.021 0.169 0.029

      without Y 0.541 0.110 0.214 0.058 0.297 0.158 0.113

Interaction terms

    Multiple imputation 0.316 0.103 -0.011 0.011 -0.002 0.166 0.028

    Combined method 0.316 0.104 -0.011 0.011 -0.003 0.166 0.028

   MAR

Complete case analysis 0.129 0.147 -0.198 0.061 -0.200 0.241 0.098

Missing indicator 0.620 0.122 0.293 0.101 0.272 0.179 0.106

No interaction term

    Multiple imputation

      with Y 0.251 0.107 -0.076 0.017 -0.093 0.181 0.042

      without Y 0.579 0.112 0.252 0.076 0.286 0.173 0.111

    Combined method

      with Y 0.250 0.108 -0.077 0.017 -0.092 0.182 0.042

      without Y 0.580 0.113 0.253 0.077 0.285 0.173 0.111

Interaction terms

    Multiple imputation 0.330 0.116 0.003 0.013 0.010 0.185 0.034

    Combined method 0.330 0.116 0.003 0.013 0.010 0.185 0.034
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Table 2. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming X2 is an effect modifier and no unmeasured confounder exists. Here, multiple 
imputation is done in two ways; the commonly used method (no interaction term) and the 
elaborated method (interaction terms included). (continued)

Heterogeneous treatment effect

Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd

MNAR

Complete case analysis -0.111 0.141 -0.438 0.211 -0.411 0.224 0.219

Missing indicator 0.588 0.121 0.261 0.082 0.230 0.171 0.082

No interaction term

    Multiple imputation

      with Y 0.151 0.114 -0.176 0.044 -0.238 0.207 0.100

      without Y 0.586 0.112 0.259 0.080 0.350 0.165 0.150

    Combined method

      with Y 0.140 0.111 -0.187 0.047 -0.248 0.206 0.104

      without Y 0.546 0.108 0.219 0.060 0.248 0.165 0.089

Interaction terms

    Multiple imputation 0.182 0.117 -0.145 0.035 -0.192 0.208 0.080

    Combined method 0.170 0.114 -0.157 0.038 -0.205 0.264 0.112

2
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Table 3. Results of treatment effect estimates from propensity matching and inverse probability 
weighting when an unmeasured confounding exists.

Homogeneous treatment effect 
/ Unmeasured confounding

Propensity matching Propensity weighting

coefficient
MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 2.011 0.154 4.068 2.011 0.154 4.068

After adjustment 0.377 0.111 0.154 0.328 0.168 0.136

MCAR

Complete case analysis 0.362 0.152 0.154 0.336 0.233 0.167

Missing indicator 0.870 0.138 0.776 0.774 0.171 0.628

Multiple imputation

    with Y 0.376 0.119 0.155 0.330 0.171 0.138

    without Y 0.807 0.119 0.665 0.771 0.165 0.621

Combined method

    with Y 0.375 0.119 0.155 0.330 0.171 0.138

    without Y 0.808 0.119 0.667 0.770 0.165 0.620

MNAR

Complete case analysis 0.145 0.163 0.048 0.157 0.255 0.089

Missing indicator 0.514 0.117 0.277 0.345 0.197 0.158

Multiple imputation

    with Y 0.422 0.141 0.197 0.354 0.200 0.165

    without Y 1.003 0.129 1.023 1.028 0.154 1.079

Combined method

    with Y 0.240 0.114 0.071 0.169 0.191 0.065

    without Y 0.469 0.105 0.231 0.386 0.175 0.180
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4. Guidance for the optimal strategy to handle missing values 
in baseline covariates in the context of propensity score analy-
sis

The aim of a propensity score analysis is to obtain an average treatment effect in a 
certain population. To explain, we use the following notation in which every subject 
can have two potential outcomes:

•	 Y1; the outcome if the person receives treatment 1
•	 Y0; the outcome if the person receives treatment 0

Propensity weighting aims to estimate the average treatment effect in the whole 
population (ATE), which is equal to: ATE = E[Y1-Y0].  With propensity matching, where 
treated subjects are matched to untreated subjects, the aim is to estimate the average 
treatment effect in the treated population (ATT): ATT = E[Y1-Y0[T=1]  Several standard 
causal inference conditions, such as exchangeability, consistency, and positivity, should 
hold to estimate these causal effects without bias [40]. Whether the unbiased causal 
effects can still be estimated when missing values are present in the covariates of a 
propensity score depends on several elements: type of missingness, presence of effect 
modification, and the population of interest. In the following section, we discuss under 
which criteria the four methods dealing with missing values will yield a valid causal 
treatment effect in the context of propensity score analysis.

•	 Complete case analysis, when does it work?
When there is no unmeasured confounding, and the propensity score model is well 
specified, propensity weighting using complete cases will yield a valid estimate of a 
causal treatment effect, which will be the causal treatment effect in the subjects without 
missing values:
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 When data are missing completely at random, condition (1) will hold, because the 
probability of a missing value does not depend on any observed or unobserved 
variable. This means that the covariate with missing values is independent of its own 
missing indicator variable. The m-graphs may be helpful in identifying whether this 
independency holds. In the m-graphs in Figure 1a and 2a, these conditions hold because 
X2 and R are unconditionally d-separated, meaning that there is no open path between 
X2 and R.
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When no effect modification and no unmeasured confounding is present, condition 
(1) will also hold since the treatment effect in the total population will be equal to the 
treatment effect in any subgroup regardless of the missing mechanism of data. This 
was the case in Simulation 1, where the effect of the treatment was constant across 
subjects. In this scenario, the complete case analysis yielded unbiased results even 
when the missing was not at random. Analogous arguments can be given for propensity 
matching using complete cases. The propensity matching will yield valid estimates if:
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Even when there is unmeasured confounding, complete case analysis may be a useful 
way to handle missing values. Think of a situation where the severity of a disease 
determines whether certain laboratory tests will be performed. The severity of disease 
here may be an unmeasured confounder, which determines the values of observed 
covariates (in this case, the laboratory measurements) to be missing. This is a 
comparable situation to the MNAR scenario of Simulation setting 3. Here, the complete 
case analysis yielded less biased results. By restricting the analysis to subjects with R=0 
(only the subjects with severe diseases who therefore have all lab measurements), the 
results were partially adjusted for the unmeasured confounder.

•	 Missing Indicator, when does it work?
In general, we do not recommend solely using the missing indicator method for handling 
missing values in confounders. The method is prone to bias because the information of 
the missing portion of the covariates is replaced by a dichotomous missing indicator R, 
consequently resulting in residual confounding. However, when data are missing not 
at random and the covariate with missing value is strongly associated with its missing 
indicator, the missing indicator variable in a propensity model may yield a smaller 
bias than the model without it. This was the case in the MNAR scenarios of Simulation 
setting 1 and 2. Similarly, when the missing of X2 is strongly related to an unmeasured 
confounder U, the partial effect of U can be recovered by adding R to the propensity 
model. This was seen in the MNAR scenario of Simulation 3.

•	 Multiple imputation, when does it work?
The aim of multiple imputation is to recover the joint distribution of covariates, 
treatment, and outcome by reconstructing the missing values using the information 
from observed data. When there is no unmeasured confounding, multiple imputation 
in the context of propensity score analysis will be a valid approach under the following 
conditions:

i)	 Data are missing at random or completely at random, meaning the missing values 
are recoverable from the observed data. M-graphs can be used to visually determine 
whether the missing mechanism is at random. In m-graphs, the missing at random 
mechanism means that all paths between a covariate with missing values and its 
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missing indicator can be blocked by conditioning on measured variables. In DAG 
terms, it is said; two variables are d-separated. In our study, this was the case in 
Figure 1a, 1b, 2a, and 2b. Note that in Figure 1b and 2b, the path between X2 and R 
can be blocked by conditioning on X1.

ii)	 An imputation model should be correctly specified. This requires that:
a.	 the outcome should be included in the imputation model.
b.	 interaction terms between the covariates, treatment, and outcome should 

be included in the imputation model if a heterogeneous treatment effect is 
present.

In Simulation setting 1, multiple imputation yielded unbiased results even though it 
was used to impute a non-recoverable X2. Note that the reason why multiple imputation 
worked well in this scenario was 1) the covariates, treatment, and the outcome in the 
model were linearly related, and 2) missing values in X2 were generated probabilistically, 
which means the information of higher X2 values could be gained in the data. This result 
is due to the simulation scenario we generated and should not be taken as showing 
multiple imputation can be used when data are missing not at random.

•	 What to do in situations where complete case analysis or multiple imputation 
fails?

We saw in the previous section it is important that a researcher is aware of the missing 
mechanism and whether strong heterogeneity is present. Depending on the missing 
mechanism and the heterogeneity in the treatment effect, both complete case analysis 
and multiple imputation may fail. Whether the treatment effect is heterogeneous can be 
explored by subgroup analysis and comparing the estimated effects across the groups. 
When there is a large difference across the subgroups, interaction terms should be 
specified in the multiple imputation. This was shown in Simulation setting 2.

The missing mechanism behind the data can be explored by drawing the expected 
causal structure and missing structure in an m-graph. When complete case analysis 
and multiple imputation are expected to fail, the combination of multiple imputation 
and the missing indicator method could be used to partially recover the effect of missing 
portions of covariates. For example, in the MNAR scenario of Simulation setting 3, the 
combined approach performed better than multiple imputation alone and even better 
than the analysis of the data without any missing values. When the relation between R 
and U is stronger, more of the effect of the unmeasured confounder will be recovered.

2
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5. Discussion

Our simulations showed that there is no single method to handle missing values in 
covariates of a propensity score model which would perform optimally in all situations. 
The optimal strategy depends on the missing data structure and whether there is 
effect modification or unmeasured confounding. We focussed on missing values in 
covariates, because in routinely collected data, baseline patient characteristics are 
often incomplete while prescribed treatments and important outcomes of patients will 
be more generally recorded.

Our results cannot be generalized to situations when there are missing values in the 
treatment assignment or the outcome. An example of this is that under homogenous 
treatment effect and no unmeasured confounding, complete case analysis will yield 
biased results if the outcome is missing not at random.

Propensity score analysis mimics randomized control studies by creating conditional 
exchangeability between the subjects with the same propensity score. Both propensity 
weighting and matching aim to obtain valid estimates of marginal treatment effects. 
This is different from outcome regression analysis which estimates conditional 
treatment effects. Unlike outcome regression models, no assumptions about treatment-
outcome relation and the effect of the confounders on the outcome have to be made in 
propensity score analysis; only the propensity score model has to be correctly specified. 
This is an advantage, especially when the outcome is rare, in which case fitting an 
extensive outcome model is not possible.

When using multiple imputation, the advantage of not having to formulate a treatment-
outcome relation model disappears. In our simulations, we showed that all variables 
associated with the covariates with missing values, including the outcome, should be 
included in the imputation model. Furthermore, when effect modification is present, the 
interaction terms between the variables should be correctly specified in the imputation 
model as well. The results correspond to the idea that imputation models should reflect 
the complexity of the data analysis procedure [41, 42]. When complex modelling is 
needed for multiple imputation, an alternative to propensity score analysis could be 
to use an outcome regression model with specified interaction terms. By fitting this 
outcome regression model, one can predict potential outcomes under treatment and no 
treatment for every individual. Then, the average potential outcomes can be estimated 
by integrating over the covariate distribution and used to obtain the average treatment 
effect in the population [40].

Multiple imputation is not a panacea to handle missing values and should be used 
more consciously. In our simulations, we demonstrated that a default option for 
multiple imputation in commonly used software such as SAS, Stata, SPSS, or R yielded 
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biased results (based on Simulation 2) even when data were missing at random and no 
unmeasured confounding was present.

Complete case analysis may often be a good method to deal with missing values in 
covariates. Although statistical efficiency is lost, estimated effects still have a causal 
interpretation if there is no unmeasured confounding. In these cases, it is up to the 
researcher to determine how generalizable these results are to the general population 
of interest. In the case of substantial heterogeneity of treatment effects, generalizability 
cannot be taken for granted.

When unmeasured confounding is present, all standard missing data methods fail 
to provide valid estimates. Complete case analysis, however, may reduce the bias 
by controlling the unmeasured confounding by restriction. The use of an indicator 
variable (with or without multiple imputation) may also reduce the bias, because the 
indicator variable functions as a proxy for the unmeasured confounding.

A recent systematic review on how missing data are addressed with propensity score 
methods in observational comparative effectiveness studies showed that among 167 
studies conducted from 2010 to 2017, only 86 (51%) discussed missing data issues and 
only 12 (7%) provided reasons for missingness [43]. Our simulation study showed 
that it is important to make assumptions about the expected relationship between 
the unobserved and observed covariates. This allows one to understand the expected 
missing structure of the data and to handle missing values more cautiously. We 
recommend researchers to use m-graphs to draw their assumption between the 
covariates and their missing indicator explicitly. In summary, in the context of 
propensity score analysis, we urge researchers to consciously choose missing data 
strategies while considering the missing data mechanisms, possible unmeasured 
confounding, and heterogeneity of treatment effects.

2
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Appendix 

Results of Simulation setting 2 where the multiple imputation by chained equations (MICE) 
with Bayesian linear regression is used for a sensitivity analysis.

Heterogeneous treatment effect
Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd
No adjustment 1.730 0.158 1.410 2.012 1.730 0.158 3.019

After adjustment 0.321 0.096 0.000 0.009 -0.017 0.156 0.025

No interaction term
Multiple imputation

 with Y 0.304 0.095 -0.017 0.009 -0.041 0.170 0.031

 without Y 0.536 0.101 0.215 0.056 0.292 0.142 0.105

Combined method
 with Y 0.303 0.095 -0.018 0.009 -0.042 0.172 0.031

 without Y 0.537 0.104 0.216 0.058 0.294 0.143 0.107

Interaction terms
Multiple imputation 0.315 0.094 -0.006 0.009 -0.014 0.169 0.029

Combined method 0.315 0.096 -0.006 0.009 -0.015 0.171 0.029

No interaction term
Multiple imputation

 with Y 0.220 0.103 -0.101 0.021 -0.116 0.192 0.050

 without Y 0.568 0.110 0.247 0.073 0.264 0.158 0.095

Combined method
 with Y 0.220 0.101 0.010 -0.116 0.190 0.049

 without Y 0.568 0.111 0.248 0.074 0.264 0.157 0.094

Interaction terms
Multiple imputation 0.330 0.101 0.009 0.010 0.002 0.199 0.040

Combined method 0.331 0.103 0.010 0.011 0.001 0.198 0.039

No interaction term
Multiple imputation

 with Y 0.102 0.110 -0.219 0.060 -0.269 0.213 0.118

 without Y 0.570 0.110 0.249 0.074 0.325 0.153 0.129

Combined method
with Y 0.095 0.103 -0.225 0.061 -0.275 0.211 0.120

 without Y 0.537 0.105 0.216 0.058 0.233 0.149 0.076

Interaction terms
Multiple imputation 0.173 0.101 -0.147 0.032 -0.197 0.220 0.087

Combined method 0.169 0.103 -0.151 0.034 -0.206 0.215 0.089
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