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Chapter 1

In this thesis, we address potential threats to the validity of observational 
epidemiological studies. Examples of these potential sources of bias are confounding, 
missing data, selection bias, and measurement error. Although various methods have 
been developed to mitigate these biases, it is often unclear which methods can be used 
in which empirical settings. It is also common that issues discussed in methodological 
studies are overlooked in clinical research. Thus, we aim to investigate problems of 
missing data, selection bias, and measurement error occurring in several specific 
observational settings and discuss how to optimally handle them.

Observational studies
Observational studies are widely used in epidemiological research. The strength of 
observational research, in contrast to a randomized control design, is that it can be 
used in settings where the manipulation of the exposure of interest by investigators 
is not feasible (1). When properly designed, observational research has the potential 
to provide evidence with greater external validity than a randomized control study. 
Especially nowadays, so-called big data collected via routine care, such as electronic 
health records or disease registry, have become increasingly available, which broaden 
the possibilities of conducting observational studies (2, 3).

Strengths and weaknesses are two sides of the same coin. Unlike in randomized control 
trials, the exposure of interest is not randomly assigned in observational studies. 
Whether it is a treatment, a lifestyle factor, or a biomarker, there are many known 
or unknown factors that affect why a certain individual has a particular exposure 
value. Often, these factors are also related to the prognosis of the person (4). This 
introduces a major well-known threat to the validity of observational research: bias 
due to confounding (5, 6). Numerous publications have discussed the mechanism of 
confounding (4, 6) and how to identify confounding factors clinically and statistically 
(7-10). Widely known methods to adjust for confounding include but are not limited to 
stratified analyses (11, 12), regression modelling (13), probability weighting (14, 15), 
propensity score analysis (16, 17), and g-methods (18).

Besides confounding, methodological and statistical challenges remain as 
epidemiological studies often face other issues that may jeopardize the validity. 
Typically, these issues are missing data, selection bias, and measurement error.

Missing data
Missing data is inevitable in medical research, and observational studies are especially 
susceptible to it (19). Missing data can occur by three different mechanisms: data are 
missing completely at random (MCAR) when the probability that a value is missing is 
independent of observed and unobserved information, missing at random (MAR) where 
the probability of missing depends only on observed information, or missing not at 
random (MNAR) where the probability of missing depends on unobserved information 
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(20, 21). Ignoring missing data compromises precision and statistical power. More 
detrimentally, it could lead to an invalid estimation of parameters due to selection 
bias (22).

Depending on the assumed missing mechanism of the data, appropriate methods to 
mitigate the missing data problem differ. Multiple imputation is a technique to impute 
missing values based on the observed data. By generating multiple datasets with 
plausible values, its strength lies in the reflection of the uncertainty of an imputation 
model (23). Many studies have shown the superiority of multiple imputation over 
other methods, such as complete case analysis or adding missing indicator variables 
in a model (20, 24-28) when data is MCAR or MAR. Although less known, maximum 
likelihood estimation (29, 30) or inverse probability weighting can also be used 
for handling data MAR (31-33). However, it is often difficult to discern the missing 
mechanism of the data, especially whether the data are MAR or MNAR (34, 35). Extra 
caution is needed when discerning missing data mechanisms in routinely collected 
data. For instance, some biomarkers may be selectively measured only when considered 
necessary by clinicians (e.g., albumin is measured only in patients with signs of liver 
or kidney diseases) (36). Results can be substantially biased when the methods for 
handling MAR are wrongly used for MNAR without tailored adjustment (19, 37).

One particular problem is missing data in the context of propensity score analysis. 
Propensity score analysis, first introduced by Rosenbaum and Rubin (38), rapidly gained 
popularity in the past decade as a method for adjusting confounding in observational 
settings (39). The method aims to mimic a randomized control study; when variables 
associated with exposure distribution are available and the propensity model is 
correctly specified, the method creates conditional exchangeability between persons 
with the same propensity score (16, 17). Missing values in covariates introduce a 
challenge in propensity score analysis as propensity scores require that all covariates 
are fully observed (40). Several studies have shown that when covariates are missing 
(completely) at random, multiple imputation performs better than complete case 
analysis or adding a missing indicator in the context of propensity score analysis 
(20, 24, 25). Yet, questions remain on how best to implement multiple imputation in 
conjunction with propensity score analysis or which methods to use when missing 
(unmeasured) confounding exist. Chapter 2 of this thesis discusses how to optimally 
handle missing data when performing propensity score analysis under different 
missing data mechanisms.

Selection bias
Selection bias broadly refers to bias introduced due to a systematic discrepancy 
between the target population and the observed population. Consequently, estimated 
associations in the selected sample will differ from the association in those initially 
targeted (41). Various terms refer to selection bias occurring for different reasons; for 
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example, healthy workers bias, Berkson’s bias, non-response bias, or loss to follow-
up bias. Although seemingly in different forms, a principal shared is that the bias 
is introduced due to conditioning on common effects (41, 42). For example, healthy 
workers bias refers to a situation where workers exposed to specific environmental 
hazards are wrongly estimated to be in better health status than the general population. 
The bias occurs when selecting the study population from the workers still working in 
the field. The problem here is that workers who were exposed to the hazards and could 
not work anymore would not be included in the study. At the same time, people in the 
general population who were unfit would have not been hired to work. Thus, selecting 
only the workers who are still at the field leads to a conditioning on comment effects 
of the exposure (environmental hazard) and the outcome (health status) of the study 
(43) and results in selection bias.

Selection bias can be seen as a particular type of missing data problem; information is 
missing for some individuals of the target population. A fundamental issue in selection 
bias and missing data problems is that information needed to describe a population 
of interest is missing from the observed data. Similar to the missing data problem, 
ignoring a selection of a particular demographic would lead to bias unless the selection 
of a study sample is a random selection of the target population. Statistical methods 
suggested to correct selection bias are the inverse probability of sampling weighting(6), 
g-formula (44), or Heckman’s sample selection model (45). The idea behind both the 
inverse probability of sampling weight and g-formula is to generate a pseudo population 
by weighting the observed individuals, where the weights are estimated from the 
representative distribution in the target population. On the other hand, Heckman’s 
sample selection model does not require data from the target population. Instead, it 
relies on a correct model specification of the outcome regression model and a selection 
model (42).

Measurement error
Measurement error, also termed misclassification bias if a categorical variable is 
measured with error, is another common source of bias in epidemiological settings 
(46-48). Measurement error can happen in any variable, whether in the exposure, other 
covariates, or the outcome. Depending on the mechanism, measurement error can be 
classified as non-differential when the error is independent of the outcome conditional to 
covariates; otherwise, differential (46). When measurement error occurs, the observed 
values fail to reflect the true underlying values correctly. Consequently, using variables 
measured with error in statistical analyses without adequately handling the error would 
likely result in bias, even when the error is non-differential (49). Statistical methods 
for handling measurement errors have been discussed extensively (46, 50-52). For 
example, simple approaches that can be used when the exposure or other covariates 
in a regression model are measured with errors are regression calibration (53) and 
simulation extrapolation (SIMEX) (54). The idea of regression calibration is to substitute 
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the error-prone values for expected values without error, which is derived from a 
validation dataset (55). SIMEX evaluates the impact of adding more error to a variable on 
the target parameter and uses this information to extrapolate the scenario without the 
error (46). More advanced methods include likelihood-based methods (56) or Bayesian 
correction methods (57). When approaching from a missing data perspective, a multiple 
imputation approach can as well be used (58); variables measured without error are 
missing and can be estimated by observed data

Not only the correction of measurement error, but identifying which measurements 
were measured with error is also a challenge. Measurement errors sometimes occur 
under specific study settings. Therefore, identifying the errors requires approaches 
tailored to the setting. Yet, methods are not always readily available, and what is the 
most suitable method is unknown. One particular example is measurement error in 
serial hormonal data. The hormonal levels of a person change throughout the day. 
Although natural variation may occur, the levels would follow an underlying smooth 
trend, which can be captured by measuring hormones regularly throughout the 24-hour 
cycle. When measuring hormones, however, errors can occur from various sources, 
including sample dilution or blood clots in the sample. Such types of measurement 
errors lead to an underreporting of the hormonal level than it would have been without 
the error. Reasonably, we may assume hormonal levels deviating largely from a smooth 
trend are results of measuring error.

Ignoring the measurement error would lead to bias. For instance, one of the statistical 
measures often used in hormonal research is cross-correlation, which assesses the 
relative strength of hormonal secretion between two simultaneously measured 
hormonal series (59). Ignoring hormone levels measured with error will distort a 
time-serial trend in hormonal secretion and consequently underestimate the cross-
correlation. Therefore, in Chapter 3, we investigate methods for random measurement 
error detection in this setting.

Measurements affected by medication use
Variables affected by medication use are often encountered in epidemiological studies 
with observational data, where the data consists of medication users and non-users. 
Medication use can be considered an intercurrent event that occurred during the follow-
up of a study. Handling intercurrent events in causal inference has recently received 
much attention (60, 61). It is emphasized that intercurrent events should be incorporated 
into the well-defined research question. If not, the estimated effect cannot be precisely 
defined (61). Accordingly, it is essential to choose a statistical method for handling 
medication use based on the target question and not to make an arbitrary decision.

When choosing which statistical method to use for handling mediation use, the problem 
can be approached from various angles. It can be viewed as a measurement error 
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problem when the research interest is in the values not affected by medication use. 
Measurements of those under medication are ‘systematically measured lower’ than the 
values if they had been observed under no medication use. Or, it can be seen as a missing 
data problem because the true underlying value of interest is not observed. Selection 
bias may also play a role, as many researchers will only select medication non-users. It 
can also be seen as a censored data problem when assuming that measurements, if not 
affected by medication, are always higher than the values observed after medication 
use. Several methodological studies have illustrated statistical methods for handling 
medication use and demonstrated that inappropriate methods might lead to substantial 
bias (62-72).

Despite the suggestions from the existing literature, however, the importance of 
incorporating medication use in one’s research question seems to be overlooked in 
a majority of clinical research. Consequently, medication use is likely inadequately 
handled in the analysis (65). Such practice would lead to an arbitrary interpretation of 
the results and undermine the scientific validity of the study. In this light, in Chapter 4 
to Chapter 7, we investigate the potential problem of variables affected by medication 
use and discuss appropriate methods from a practical analytical stage to a conceptual 
step of setting a research question.

Outline of this thesis
Chapter 2 investigates the handling of missing covariates in propensity score 
analysis. We conduct a simulation study where we vary missing data mechanisms in 
a covariate and the presence of effect heterogeneity. Based on the simulation results 
and missingness graphs, we aim to provide guidance. Chapter 3 explores how to detect 
measurement errors that appear in the form of outliers in the time-serial hormonal 
data of the Leiden Longevity Study. We compare several approaches, from fully relying 
on experts’ knowledge to automated methods, and identify the most well-performing 
method in empirical and simulated data. From Chapter 4 to Chapter 7, we aim to 
investigate the problem of variables affected by medication use. We start in Chapter 4 
by discussing how to optimally handle a measurement affected by medication use in 
an analysis by using a simulation study. We vary simulation scenarios based on which 
variable of interest is affected by medication use and compare various methods, from 
so-called naïve methods to more advanced methods. Several methods discussed in 
Chapter 4 require external knowledge of medication use. Therefore, in Chapter 5, we 
attempt to describe the patterns of fasting glucose and HbA1c measurements over 
time and estimate the effect of glucose-lowering drugs on these measurements in the 
Netherlands Epidemiology of Obesity study participants. In Chapter 6, we conducted 
a literature review on how medication use is being handled in clinical research. By 
reviewing clinical studies published in cardiology, diabetes, and epidemiological fields, 
we aim to describe which methods are being used in practice and evaluate the validity 
of the methods based on the recommendations from previous methodological studies. 
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Chapter 7 brings the discussion of handling medication use to a conceptual level. 
We address several research questions that could be of interest when data contains 
a mixture of medication users and non-users. For each question, we discuss how 
medication use is incorporated in the estimand and where the potential methodological 
challenges lie.

1
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