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Chapter 1

In this thesis, we address potential threats to the validity of observational 
epidemiological studies. Examples of these potential sources of bias are confounding, 
missing data, selection bias, and measurement error. Although various methods have 
been developed to mitigate these biases, it is often unclear which methods can be used 
in which empirical settings. It is also common that issues discussed in methodological 
studies are overlooked in clinical research. Thus, we aim to investigate problems of 
missing data, selection bias, and measurement error occurring in several specific 
observational settings and discuss how to optimally handle them.

Observational studies
Observational studies are widely used in epidemiological research. The strength of 
observational research, in contrast to a randomized control design, is that it can be 
used in settings where the manipulation of the exposure of interest by investigators 
is not feasible (1). When properly designed, observational research has the potential 
to provide evidence with greater external validity than a randomized control study. 
Especially nowadays, so-called big data collected via routine care, such as electronic 
health records or disease registry, have become increasingly available, which broaden 
the possibilities of conducting observational studies (2, 3).

Strengths and weaknesses are two sides of the same coin. Unlike in randomized control 
trials, the exposure of interest is not randomly assigned in observational studies. 
Whether it is a treatment, a lifestyle factor, or a biomarker, there are many known 
or unknown factors that affect why a certain individual has a particular exposure 
value. Often, these factors are also related to the prognosis of the person (4). This 
introduces a major well-known threat to the validity of observational research: bias 
due to confounding (5, 6). Numerous publications have discussed the mechanism of 
confounding (4, 6) and how to identify confounding factors clinically and statistically 
(7-10). Widely known methods to adjust for confounding include but are not limited to 
stratified analyses (11, 12), regression modelling (13), probability weighting (14, 15), 
propensity score analysis (16, 17), and g-methods (18).

Besides confounding, methodological and statistical challenges remain as 
epidemiological studies often face other issues that may jeopardize the validity. 
Typically, these issues are missing data, selection bias, and measurement error.

Missing data
Missing data is inevitable in medical research, and observational studies are especially 
susceptible to it (19). Missing data can occur by three different mechanisms: data are 
missing completely at random (MCAR) when the probability that a value is missing is 
independent of observed and unobserved information, missing at random (MAR) where 
the probability of missing depends only on observed information, or missing not at 
random (MNAR) where the probability of missing depends on unobserved information 
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(20, 21). Ignoring missing data compromises precision and statistical power. More 
detrimentally, it could lead to an invalid estimation of parameters due to selection 
bias (22).

Depending on the assumed missing mechanism of the data, appropriate methods to 
mitigate the missing data problem differ. Multiple imputation is a technique to impute 
missing values based on the observed data. By generating multiple datasets with 
plausible values, its strength lies in the reflection of the uncertainty of an imputation 
model (23). Many studies have shown the superiority of multiple imputation over 
other methods, such as complete case analysis or adding missing indicator variables 
in a model (20, 24-28) when data is MCAR or MAR. Although less known, maximum 
likelihood estimation (29, 30) or inverse probability weighting can also be used 
for handling data MAR (31-33). However, it is often difficult to discern the missing 
mechanism of the data, especially whether the data are MAR or MNAR (34, 35). Extra 
caution is needed when discerning missing data mechanisms in routinely collected 
data. For instance, some biomarkers may be selectively measured only when considered 
necessary by clinicians (e.g., albumin is measured only in patients with signs of liver 
or kidney diseases) (36). Results can be substantially biased when the methods for 
handling MAR are wrongly used for MNAR without tailored adjustment (19, 37).

One particular problem is missing data in the context of propensity score analysis. 
Propensity score analysis, first introduced by Rosenbaum and Rubin (38), rapidly gained 
popularity in the past decade as a method for adjusting confounding in observational 
settings (39). The method aims to mimic a randomized control study; when variables 
associated with exposure distribution are available and the propensity model is 
correctly specified, the method creates conditional exchangeability between persons 
with the same propensity score (16, 17). Missing values in covariates introduce a 
challenge in propensity score analysis as propensity scores require that all covariates 
are fully observed (40). Several studies have shown that when covariates are missing 
(completely) at random, multiple imputation performs better than complete case 
analysis or adding a missing indicator in the context of propensity score analysis 
(20, 24, 25). Yet, questions remain on how best to implement multiple imputation in 
conjunction with propensity score analysis or which methods to use when missing 
(unmeasured) confounding exist. Chapter 2 of this thesis discusses how to optimally 
handle missing data when performing propensity score analysis under different 
missing data mechanisms.

Selection bias
Selection bias broadly refers to bias introduced due to a systematic discrepancy 
between the target population and the observed population. Consequently, estimated 
associations in the selected sample will differ from the association in those initially 
targeted (41). Various terms refer to selection bias occurring for different reasons; for 

1
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example, healthy workers bias, Berkson’s bias, non-response bias, or loss to follow-
up bias. Although seemingly in different forms, a principal shared is that the bias 
is introduced due to conditioning on common effects (41, 42). For example, healthy 
workers bias refers to a situation where workers exposed to specific environmental 
hazards are wrongly estimated to be in better health status than the general population. 
The bias occurs when selecting the study population from the workers still working in 
the field. The problem here is that workers who were exposed to the hazards and could 
not work anymore would not be included in the study. At the same time, people in the 
general population who were unfit would have not been hired to work. Thus, selecting 
only the workers who are still at the field leads to a conditioning on comment effects 
of the exposure (environmental hazard) and the outcome (health status) of the study 
(43) and results in selection bias.

Selection bias can be seen as a particular type of missing data problem; information is 
missing for some individuals of the target population. A fundamental issue in selection 
bias and missing data problems is that information needed to describe a population 
of interest is missing from the observed data. Similar to the missing data problem, 
ignoring a selection of a particular demographic would lead to bias unless the selection 
of a study sample is a random selection of the target population. Statistical methods 
suggested to correct selection bias are the inverse probability of sampling weighting(6), 
g-formula (44), or Heckman’s sample selection model (45). The idea behind both the 
inverse probability of sampling weight and g-formula is to generate a pseudo population 
by weighting the observed individuals, where the weights are estimated from the 
representative distribution in the target population. On the other hand, Heckman’s 
sample selection model does not require data from the target population. Instead, it 
relies on a correct model specification of the outcome regression model and a selection 
model (42).

Measurement error
Measurement error, also termed misclassification bias if a categorical variable is 
measured with error, is another common source of bias in epidemiological settings 
(46-48). Measurement error can happen in any variable, whether in the exposure, other 
covariates, or the outcome. Depending on the mechanism, measurement error can be 
classified as non-differential when the error is independent of the outcome conditional to 
covariates; otherwise, differential (46). When measurement error occurs, the observed 
values fail to reflect the true underlying values correctly. Consequently, using variables 
measured with error in statistical analyses without adequately handling the error would 
likely result in bias, even when the error is non-differential (49). Statistical methods 
for handling measurement errors have been discussed extensively (46, 50-52). For 
example, simple approaches that can be used when the exposure or other covariates 
in a regression model are measured with errors are regression calibration (53) and 
simulation extrapolation (SIMEX) (54). The idea of regression calibration is to substitute 
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the error-prone values for expected values without error, which is derived from a 
validation dataset (55). SIMEX evaluates the impact of adding more error to a variable on 
the target parameter and uses this information to extrapolate the scenario without the 
error (46). More advanced methods include likelihood-based methods (56) or Bayesian 
correction methods (57). When approaching from a missing data perspective, a multiple 
imputation approach can as well be used (58); variables measured without error are 
missing and can be estimated by observed data

Not only the correction of measurement error, but identifying which measurements 
were measured with error is also a challenge. Measurement errors sometimes occur 
under specific study settings. Therefore, identifying the errors requires approaches 
tailored to the setting. Yet, methods are not always readily available, and what is the 
most suitable method is unknown. One particular example is measurement error in 
serial hormonal data. The hormonal levels of a person change throughout the day. 
Although natural variation may occur, the levels would follow an underlying smooth 
trend, which can be captured by measuring hormones regularly throughout the 24-hour 
cycle. When measuring hormones, however, errors can occur from various sources, 
including sample dilution or blood clots in the sample. Such types of measurement 
errors lead to an underreporting of the hormonal level than it would have been without 
the error. Reasonably, we may assume hormonal levels deviating largely from a smooth 
trend are results of measuring error.

Ignoring the measurement error would lead to bias. For instance, one of the statistical 
measures often used in hormonal research is cross-correlation, which assesses the 
relative strength of hormonal secretion between two simultaneously measured 
hormonal series (59). Ignoring hormone levels measured with error will distort a 
time-serial trend in hormonal secretion and consequently underestimate the cross-
correlation. Therefore, in Chapter 3, we investigate methods for random measurement 
error detection in this setting.

Measurements affected by medication use
Variables affected by medication use are often encountered in epidemiological studies 
with observational data, where the data consists of medication users and non-users. 
Medication use can be considered an intercurrent event that occurred during the follow-
up of a study. Handling intercurrent events in causal inference has recently received 
much attention (60, 61). It is emphasized that intercurrent events should be incorporated 
into the well-defined research question. If not, the estimated effect cannot be precisely 
defined (61). Accordingly, it is essential to choose a statistical method for handling 
medication use based on the target question and not to make an arbitrary decision.

When choosing which statistical method to use for handling mediation use, the problem 
can be approached from various angles. It can be viewed as a measurement error 

1
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problem when the research interest is in the values not affected by medication use. 
Measurements of those under medication are ‘systematically measured lower’ than the 
values if they had been observed under no medication use. Or, it can be seen as a missing 
data problem because the true underlying value of interest is not observed. Selection 
bias may also play a role, as many researchers will only select medication non-users. It 
can also be seen as a censored data problem when assuming that measurements, if not 
affected by medication, are always higher than the values observed after medication 
use. Several methodological studies have illustrated statistical methods for handling 
medication use and demonstrated that inappropriate methods might lead to substantial 
bias (62-72).

Despite the suggestions from the existing literature, however, the importance of 
incorporating medication use in one’s research question seems to be overlooked in 
a majority of clinical research. Consequently, medication use is likely inadequately 
handled in the analysis (65). Such practice would lead to an arbitrary interpretation of 
the results and undermine the scientific validity of the study. In this light, in Chapter 4 
to Chapter 7, we investigate the potential problem of variables affected by medication 
use and discuss appropriate methods from a practical analytical stage to a conceptual 
step of setting a research question.

Outline of this thesis
Chapter 2 investigates the handling of missing covariates in propensity score 
analysis. We conduct a simulation study where we vary missing data mechanisms in 
a covariate and the presence of effect heterogeneity. Based on the simulation results 
and missingness graphs, we aim to provide guidance. Chapter 3 explores how to detect 
measurement errors that appear in the form of outliers in the time-serial hormonal 
data of the Leiden Longevity Study. We compare several approaches, from fully relying 
on experts’ knowledge to automated methods, and identify the most well-performing 
method in empirical and simulated data. From Chapter 4 to Chapter 7, we aim to 
investigate the problem of variables affected by medication use. We start in Chapter 4 
by discussing how to optimally handle a measurement affected by medication use in 
an analysis by using a simulation study. We vary simulation scenarios based on which 
variable of interest is affected by medication use and compare various methods, from 
so-called naïve methods to more advanced methods. Several methods discussed in 
Chapter 4 require external knowledge of medication use. Therefore, in Chapter 5, we 
attempt to describe the patterns of fasting glucose and HbA1c measurements over 
time and estimate the effect of glucose-lowering drugs on these measurements in the 
Netherlands Epidemiology of Obesity study participants. In Chapter 6, we conducted 
a literature review on how medication use is being handled in clinical research. By 
reviewing clinical studies published in cardiology, diabetes, and epidemiological fields, 
we aim to describe which methods are being used in practice and evaluate the validity 
of the methods based on the recommendations from previous methodological studies. 
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Chapter 7 brings the discussion of handling medication use to a conceptual level. 
We address several research questions that could be of interest when data contains 
a mixture of medication users and non-users. For each question, we discuss how 
medication use is incorporated in the estimand and where the potential methodological 
challenges lie.

1
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Abstract

Propensity score analysis is a popular method to control for confounding in 
observational studies. A challenge in propensity methods is missing values in 
confounders. Several strategies for handling missing values exist, but guidance in 
choosing the best method is needed.

In this simulation study, we compared four strategies for handling missing covariate 
values in propensity matching and propensity weighting. These methods include 
complete case analysis, missing indicator method, multiple imputation, and combining 
multiple imputation and missing indicator method. Concurrently, we aimed to provide 
guidance in choosing the optimal strategy. Simulated scenarios varied regarding the 
missing mechanism, presence of effect modification, or unmeasured confounding. 
Additionally, we demonstrated how missingness graphs help clarify the missing 
structure.

When no effect modification existed, complete case analysis yielded valid causal 
treatment effects even when data were missing not at random. In some situations, 
complete case analysis was also able to partially correct for unmeasured confounding. 
Multiple imputation worked well if the data were missing (completely) at random, and 
if the imputation model was correctly specified. In the presence of effect modification, 
more complex imputation models than default options of commonly used statistical 
software were required. Multiple imputation may fail when data are missing not at 
random. Here, combining multiple imputation and the missing indicator method 
reduced the bias as the missing indicator variable can be a proxy for unobserved 
confounding.

The optimal way to handle missing values in covariates of propensity score models 
depends on the missing data structure and the presence of effect modification. When 
effect modification is present, default settings of imputation methods may yield biased 
results even if data are missing at random.
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1. Introduction

Observational studies potentially suffer from confounding. First introduced by 
Rosenbaum and Rubin [1], Propensity score methods are increasingly used in medical 
research to handle confounding [2-5]. When the observed baseline characteristics 
are sufficient to correct for confounding bias and the propensity model is correctly 
specified, propensity score analysis creates conditional exchangeability between 
persons with the same propensity score. Numerous studies provide illustrations and 
discussions on the performance of different propensity score approaches [6, 3, 4, 7-11].

Besides confounding, observational studies often have missing values in covariates. 
Missing values can occur by different mechanisms: values are missing completely at 
random (MCAR) when the probability that a value is missing is independent of observed 
and unobserved information (e.g., a lab measurement is missing, because a technician 
dropped a tube), missing at random (MAR) where the probability of missing depends 
only on observed information (e.g., lab measurements are only performed when 
other measured variables were abnormal), or missing not at random (MNAR) where the 
probability of missing depends on unobserved information (e.g., lab measurements are 
only performed when a doctor judged that a patient was in a severe condition, while 
the severity is not well-registered.) [12]. It is difficult, however, to decide on the type 
of missing mechanism, especially when distinguishing whether the data are missing 
at random or not at random [13, 14]. Especially in routinely collected data, variables are 
often selectively measured based on a patient’s characteristics which are often not 
well-specified [15]. If those ill-defined characteristics are associated with the variable 
with missing values, data is missing not at random. External knowledge or assumptions 
about the clinical setting are required to distinguish whether the missing is at random 
or not at random.

How to estimate propensity scores when there are missing values is a challenge when 
studying causal associations [16]. There are different strategies to handle missing data 
in a propensity score analysis. The simplest approach is to discard all observations with 
missing data, a so-called complete case analysis [12, 17]. Including a missing indicator 
in a statistical model is another simple method. However, various studies showed 
that the method generally introduces bias [18-21]. Multiple imputation is a standard 
method to deal with missing data. Many studies have shown the advantage of multiple 
imputation and its superiority over other methods [12, 19, 22]. In combination with 
propensity scores, however, several questions arise: Should we include the outcome in 
the imputation model? Can we use the imputation methods implemented in standard 
software? How should we combine the results of the different propensity scores 
estimated in each imputed dataset?

2
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The aim of this simulation study is to investigate how different strategies of handling 
missing values of covariates in a propensity score model can yield valid causal treatment 
effect estimates. To limit the scope of the study, we deal only with missing values in 
the baseline characteristics, a rather common situation in routinely collected data. We 
create simulation scenarios varying in their missing data mechanisms, the presence 
of heterogeneous treatment effects, and unmeasured confounding. Subsequently, the 
results are used to provide guidance in choosing an optimal strategy to handle missing 
data in the context of propensity score analysis.

2. Simulation description

We generated simulated data with missing values in one of the confounders and 
compared effect estimates obtained by using several different strategies to deal with 
missing data. In Section 2.1, we considered a situation without unmeasured confounding 
and with an equal treatment effect for all subjects. In section 2.2, we introduced a 
heterogeneous treatment effect. In Section 2.3, the simulations were extended by adding 
unmeasured confounding.

2.1. Simulation setting 1: No unmeasured confounding and a homogeneous treat-
ment effect
In this simulation series, for each subject, we generated two continuous covariates 
X1 and X2. X1 follows a normal distribution of mean 0 and standard deviation of 1. X2 
depended on X1, where for subject i,

In this way, the standard deviation of X2 is also 1 and the correlation between X1 and 
X2 is equal to 0.5. The treatment T was generated from the binomial distribution, with 
the probability for subject i to receive the treatment being equal to:

In this way about 33% of the generated subjects received treatment. A continuous 
outcome was generated with the mean linearly related to X1 and X2:
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Y𝑖𝑖 = X1𝑖𝑖 + X2𝑖𝑖 + 𝜀𝜀𝑖𝑖, with 𝜀𝜀𝑖𝑖~𝑁𝑁(0, 1)  

 

For ease of interpretation of the results, we assumed that treatment T had no effect on the 

outcome for any of the subjects. Missing data were generated for 50% of the X2 values in three 

different ways: 

⚫ A missing completely at random (MCAR) scenario: 50% of values are randomly set to 

missing in X2 

⚫ A missing at random (MAR) scenario: The higher the value of X1, the more likely for the 

X2 value to be missing. Denoting R as a missing indicator of X2, the probability of a 

missing X2 value was equal to: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑅𝑅𝑖𝑖 = 1)) = X1𝑖𝑖  

 

⚫ A missing not at random (MNAR) scenario: The higher the value of X2, the more likely that 

the value was missing. The probability of a missing X2 value was: 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑅𝑅𝑖𝑖 = 1)) = X2𝑖𝑖  

 

Missingness-graphs (m-graph, for short) of each missing scenario are depicted in Figure 1. The 

missingness graph is a graphical tool to represent missing data, proposed by Mohan et al. [23]. 

Guidance for practical users is given in Thoemmes, Mohan [24]. These graphs are extensions to 

causal directed acyclic graphs (DAGs) where nodes indicate covariates and arrows indicate causal 

relations. When a covariate contains missing values (X2 in our simulations), it is expressed by a 

dashed rectangle around the node. The node R represents the missingness of X2, and can be 

referred to as a missing indicator of X2. The observed portion of X2 is represented as X2*. When 

R=0, X2* is identical to X2, and when R=1, X2* is missing. In our simulations, we restricted 

ourselves to the situation where missing values occur only in one covariate. However, m-graphs 

can be extended to situations with multiple covariates having missing values and, accordingly, 

with multiple missing indicator variables. 

  

For ease of interpretation of the results, we assumed that treatment T had no effect 
on the outcome for any of the subjects. Missing data were generated for 50% of the X2 
values in three different ways:

•	 A missing completely at random (MCAR) scenario: 50% of values are randomly set 
to missing in X2
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•	 A missing at random (MAR) scenario: The higher the value of X1, the more likely for 
the X2 value to be missing. Denoting R as a missing indicator of X2, the probability 
of a missing X2 value was equal to:
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•	 A missing not at random (MNAR) scenario: The higher the value of X2, the more 
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Figure 1. M-graphs for Simulation setting 1: MCAR scenario (a), MAR scenario (b), and MANR 
scenario (c)
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2.2. Simulation setting 2: No unmeasured confounding and a heterogeneous treat-
ment effect
The setup of this simulation series is the same as in Simulation setting 1, but here we 
assumed effect modification by X2. That is,
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Fig 1 M-graphs for Simulation setting 1: MCAR scenario (a), MAR scenario (b), and MANR scenario (c)  
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The average treatment effect in the population was equal to null as in Simulation 
setting 1. However, due to the effect modification by X2, the average treatment effect 
was negative for subjects with X2 < 0 and positive for subjects with X2 > 0. Missing values 
were generated in the X2 variable, following the same mechanisms as in Simulation 
setting 1. The m-graphs for each scenario are depicted in Figure 2. In these m-graphs, 
there is an arrow from the treatment assignment (T) to the outcome (Y) because, for 
some subjects, the treatment has an effect on their outcome.
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Figure 2. M-graphs for Simulation setting 2: MCAR scenario (a), MAR scenario (b), and MANR 
scenario (c)

2.3. Simulation setting 3: Unmeasured confounding and a homogeneous treatment 
effect
In this series of simulations, we assumed an additional unobserved confounder U, 
normally distributed with a mean of 0 and standard deviation of 1 and independent 
from X1. X2 depended on X1 and U, where for subject i,
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Fig 2 M-graphs for Simulation setting 2: MCAR scenario (a), MAR scenario (b), and MANR scenario (c)  
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Here, we assumed a homogeneous treatment effect which was set to null. We considered two 

missing scenarios for X2, one according to the MCAR mechanism and the other MNAR 
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This way, about 33% of the generated subjects received the treatment. The outcome 
now depended on X1, X2 and U:
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Fig 2 M-graphs for Simulation setting 2: MCAR scenario (a), MAR scenario (b), and MANR scenario (c)  
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Here, we assumed a homogeneous treatment effect which was set to null. We considered 
two missing scenarios for X2, one according to the MCAR mechanism and the other 
MNAR mechanism.

•	 A MCAR scenario: 50% of values are randomly set to be missing in X2

•	 A MNAR scenario: Here, we considered a common situation in routinely collected 
health care data where the missing of X2 depended on the unobserved confounder 
U. We set the value of X2 to be missing if U > 0

A MAR scenario was not considered in this simulation setting. This is because we were 
interested in comparing a situation where an unmeasured confounder U affect the 
missingness of X2 (MNAR) to a situation where it does not affect the missingness of X2 
(MCAR). The m-graphs for these scenarios are illustrated in Figure 3.
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Figure 3. M-graphs for Simulation setting 3: MCAR scenario (a), MNAR scenario (b)

2.4. Analysis of the simulated datasets
In every simulated dataset, we estimated propensity scores by logistic regression. The 
treatment effect was estimated by i) propensity matching and ii) propensity weighting. 
For the matching procedure, we matched a treated subject to an untreated subject using 
one-to-one nearest neighbour matching without replacement and 0.1 caliper distance 
on the logit scale. In propensity weighting, the so-called inverse probability weighting, 
treated subjects are weighted by 1/propensity score, and untreated subjects are weighted 
by 1/(1-propensity score). Note that causal effects estimated by propensity matching and 
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propensity weighting are different from each other. The matching estimates the average 
treatment effect in the treated population, while the weighting method estimates the 
average treatment effect in the total population. For handling missing values, we applied 
the following four different methods.

2.4.1. Complete case analysis
In this approach, only observations with complete information are used for analysis.

2.4.2. Missing indicator method
When a covariate contains missing values, they were replaced by one single value, for 
example, by the value 0. Additionally, a missing indicator variable was created, with 1 
indicating that the corresponding value is missing and 0 indicating that it is observed. 
The missing indicator variable was then added as a covariate in a propensity score 
model. When there are multiple covariates with missing values, missing indicators 
will be created for each covariate which will be all added to a propensity score model.

2.4.3. Multiple imputation
The third method considered was multiple imputation. The chained equation (MICE) 
procedure was used, a commonly used imputation method that assumes data are 
missing at random [25]. We used the default options of MICE version 3.3.0 [26] in R 
version 3.5.1: predictive mean matching via a regression model with main effects of 
X1, X2, T, and with or without Y. In this way, the simulations reflect how most applied 
researchers using R would perform multiple imputation. Predictive mean matching is 
also readily available in SAS version 9.4, Stata version 15, and IBM SPSS version 25.0, 
and it is recommended when data contains both continuous and discrete values [27, 28]. 
As a sensitivity analysis, we repeated Simulation setting 2 using MICE with Bayesian 
linear regression, since many researchers will opt for this method when covariates 
and outcomes are continuous.

In Simulation setting 2, where a heterogeneous treatment effect exists, we additionally 
used a more extensive imputation model with three interaction terms included; the 
interaction between T and X1, T and Y, and X1 and Y. Adding interaction terms between 
the variables in a multiple imputation regression model is advocated by Tilling et al. 
[29]. For every multiple imputation, ten imputed datasets were generated. A treatment 
effect was estimated within each imputed dataset using the propensity score methods. 
Using Rubin’s rule, the ten treatment effects were then combined into a single treatment 
effect. This method is referred to as the within method [30].

We explored whether the outcome should be included in the imputation model. The idea 
behind the propensity score methods is that the probability of receiving the treatment is 
modelled without knowing the outcome [16], which is why some researchers argue that 
the outcome should not be used in the imputation model [31]. The purpose of multiple 
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imputation, however, is a reconstruction of data to retain the original relationship 
between the covariates as much as possible, for which the outcome could provide 
valuable information [32-35]. This suggests that the outcome should be added to an 
imputation model.

2.4.4. Multiple imputation together with missing indicator
The fourth method was a combination of multiple imputation and the missing indicator 
method. Multiple imputation was used to impute the missing values. Afterward, both 
the imputed covariate and a missing indicator variable were added to the propensity 
score model [36]. Multiple imputation was performed following the same procedure as 
in Section 2.4.3, where the treatment effect is estimated by the within method.

2.5. Simulation summary
Each simulation run generated a thousand observations and was repeated a thousand 
times. We summarised the simulation results by calculating the mean treatment effects 
over the simulations and the standard deviation of the estimated treatment effects. As 
overall performance measures, we calculated the mean squared error, which is the 
squared distance between the estimated treatment effect and the true treatment effect 
averaged over the simulations.

In Simulation setting 1 and 3, the true treatment effect was null for all subjects, 
which means that mean estimated treatment effects deviating from 0 demonstrate 
bias has been introduced. In Simulation setting 2, the average treatment effect in the 
population; the causal effect estimated by propensity weighting, was also equal to null. 
However, due to the heterogeneous treatment effect, the average treatment effect in the 
treated; the causal effect estimated by propensity matching, differed from null. In this 
simulation setting, the treatment effect for individual i is equal to X2i, which implies the 
average treatment effect in the treated would be E[X2|T=1]. In this simulated example, 
E[X2|T=1] was equal to 0.432.

3. RESULTS

3.1. Simulation setting 1: No unmeasured confounding and a homogeneous treat-
ment effect
Figure 4 (left) displays the mean estimated effects of the propensity weighting analysis 
in Simulation setting 1 and their 5th and 95th percentile range. Table 1 shows the mean 
estimates with standard deviations and mean squared errors from the propensity 
matching and the propensity weighting. Complete case analysis yielded unbiased 
treatment effect estimates in all scenarios, even when data were missing not at random. 
The missing indicator method alone resulted in biased estimates in all scenarios. The 
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results suggested that the outcome should be included in an imputation model, because 
the imputation models not including the outcome resulted in bias. In the MCAR and 
MAR scenario, multiple imputation including the outcome yielded the smallest mean 
squared errors, and combining multiple imputation and the missing indicator method 
worked as efficiently. In the MNAR scenario, combining multiple imputation and the 
missing indicator method was slightly less biased than multiple imputation alone.

3.2. Simulation setting 2: No unmeasured confounding and a heterogeneous treat-
ment effect
Figure 4 (middle) visualises the results of the propensity weighting analysis of 
Simulation setting 2, and Table 2 summarises the results of the propensity matching and 
the propensity weighting. Here, the complete case analysis yielded negatively biased 
results in the MAR or MNAR scenarios. This is because subjects with higher X2 values, 
for whom the treatment was most beneficial, had a higher probability of being excluded 
from the analyses. The missing indicator method was still biased in all scenarios. The 
amount of bias, however, was relatively small in the MNAR scenario. We observed a 
remarkable result in the MAR scenario: the default multiple imputation method yielded 
biased effect estimates, even when the outcome was included in the imputation model 
and when a missing indicator was added to the propensity model. When more elaborate 
imputation regression models with specified interaction terms were used, the bias from 
the propensity weighting was much smaller, although a slight bias still remained (0.013).

The results of propensity matching, even in the situation without any missing 
values (0.327), deviated from the treatment effect in all treated subjects (0.432). This 
discrepancy is a general problem of propensity score matching [37-39]. A large caliper 
distance allows treated subjects with high propensity scores to be matched to untreated 
subjects with lower propensity scores, which will result in residual confounding. A 
smaller caliper distance reduces the confounding bias. However, many subjects, 
especially the subjects with a high propensity score, may not be matched. Therefore, 
the treatment effect in the treated who are matched may deviate from the treatment effect 
in all treated. The size of this discrepancy depends on the heterogeneity of the treatment 
effect. In this simulation setting, we used matching without replacement with a caliper 
distance of 0.1, which allows rather a tight matching. Thus, for some of the treated 
subjects with a high propensity score, whose treatment effect was more effective, 
no adequate untreated match could be found. As we were specifically interested in 
the additional bias under the different missing mechanisms, we used the estimate of 
propensity matching without any missing data (0.327) as a reference. Once more, we 
observed that multiple imputation with interaction terms performed best as it did in 
propensity weighting analysis.
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The results of multiple imputation with Bayesian regression methods done in a 
sensitivity analysis did not largely differ from the results of predictive mean matching 
(see Appendix  for the results in Simulation setting 2).

3.3. Simulation setting 3: Unmeasured confounding and a homogeneous treatment 
effect
Figure 4 (right) displays the results of the propensity weighting of Simulation setting 3, 
and Table 3 summarises the results of propensity matching and propensity weighting. 
Due to the unmeasured confounder U, bias remained in the propensity analyses even 
when there were no missing values. In the MNAR scenario where the missingness of X2 
depends on U, two methods were able to reduce the unmeasured confounding effect: 
the combined method and, somewhat surprisingly, the complete case analysis. The 
combined method partially adjusted for U by adding R to the propensity model; the 
complete case analysis used restriction to partially adjust for U, using only those with 
complete data. The results here were substantially less biased than the propensity 
analyses performed in complete data without missing values.

2
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Table 1. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming a homogeneous treatment effect and no unmeasured confounding. For each 
missing scenario, missing data are handled with complete case analysis, missing indicator 
method, multiple imputation, and the combination of multiple imputation and missing indicator 
(Combined method).

Homogeneous treatment effect

Propensity matching Propensity weighting

coefficient
MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 1.298 0.123 1.700 1.298 0.123 1.700

After adjustment 0.044 0.085 0.009 0.006 0.109 0.012

MCAR

Complete case analysis 0.043 0.121 0.016 0.014 0.152 0.023

Missing indicator 0.238 0.095 0.066 0.189 0.111 0.048

Multiple imputation

    with Y 0.047 0.086 0.010 0.011 0.113 0.013

    without Y 0.219 0.087 0.056 0.186 0.110 0.047

Combined method

    with Y 0.048 0.087 0.010 0.011 0.112 0.013

    without Y 0.218 0.087 0.055 0.187 0.110 0.047

MAR

Complete case analysis 0.024 0.128 0.017 0.007 0.165 0.027

Missing indicator 0.259 0.099 0.077 0.172 0.123 0.044

Multiple imputation

    with Y 0.052 0.092 0.011 0.010 0.122 0.015

    without Y 0.244 0.090 0.068 0.185 0.120 0.049

Combined method

    with Y 0.050 0.092 0.011 0.010 0.122 0.015

    without Y 0.243 0.090 0.067 0.185 0.120 0.048

MNAR

Complete case analysis 0.025 0.129 0.017 0.012 0.166 0.028

Missing indicator 0.231 0.098 0.063 0.149 0.122 0.037

Multiple imputation

    with Y 0.069 0.095 0.014 0.029 0.123 0.016

    without Y 0.248 0.091 0.070 0.215 0.118 0.060

Combined method

    with Y 0.052 0.093 0.011 0.011 0.122 0.015

    without Y 0.211 0.088 0.053 0.160 0.119 0.040

2
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Table 2. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming X2 is an effect modifier and no unmeasured confounder exists. Here, multiple 
imputation is done in two ways; the commonly used method (no interaction term) and the 
elaborated method (interaction terms included).

Heterogeneous treatment effect

Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 1.736 0.156 1.409 2.011 1.736 0.156 3.040

After adjustment 0.327 0.093 0.000 0.009 -0.003 0.152 0.023

   MCAR

Complete case analysis 0.300 0.133 -0.027 0.018 -0.003 0.219 0.048

Missing indicator 0.574 0.120 0.247 0.075 0.305 0.162 0.119

No interaction term

    Multiple imputation

      with Y 0.315 0.103 -0.012 0.011 -0.021 0.168 0.029

      without Y 0.542 0.108 0.215 0.058 0.297 0.158 0.113

    Combined method

      with Y 0.315 0.102 -0.012 0.011 -0.021 0.169 0.029

      without Y 0.541 0.110 0.214 0.058 0.297 0.158 0.113

Interaction terms

    Multiple imputation 0.316 0.103 -0.011 0.011 -0.002 0.166 0.028

    Combined method 0.316 0.104 -0.011 0.011 -0.003 0.166 0.028

   MAR

Complete case analysis 0.129 0.147 -0.198 0.061 -0.200 0.241 0.098

Missing indicator 0.620 0.122 0.293 0.101 0.272 0.179 0.106

No interaction term

    Multiple imputation

      with Y 0.251 0.107 -0.076 0.017 -0.093 0.181 0.042

      without Y 0.579 0.112 0.252 0.076 0.286 0.173 0.111

    Combined method

      with Y 0.250 0.108 -0.077 0.017 -0.092 0.182 0.042

      without Y 0.580 0.113 0.253 0.077 0.285 0.173 0.111

Interaction terms

    Multiple imputation 0.330 0.116 0.003 0.013 0.010 0.185 0.034

    Combined method 0.330 0.116 0.003 0.013 0.010 0.185 0.034
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Table 2. Results of treatment effect estimates from propensity matching and propensity weighting 
when assuming X2 is an effect modifier and no unmeasured confounder exists. Here, multiple 
imputation is done in two ways; the commonly used method (no interaction term) and the 
elaborated method (interaction terms included). (continued)

Heterogeneous treatment effect

Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd

MNAR

Complete case analysis -0.111 0.141 -0.438 0.211 -0.411 0.224 0.219

Missing indicator 0.588 0.121 0.261 0.082 0.230 0.171 0.082

No interaction term

    Multiple imputation

      with Y 0.151 0.114 -0.176 0.044 -0.238 0.207 0.100

      without Y 0.586 0.112 0.259 0.080 0.350 0.165 0.150

    Combined method

      with Y 0.140 0.111 -0.187 0.047 -0.248 0.206 0.104

      without Y 0.546 0.108 0.219 0.060 0.248 0.165 0.089

Interaction terms

    Multiple imputation 0.182 0.117 -0.145 0.035 -0.192 0.208 0.080

    Combined method 0.170 0.114 -0.157 0.038 -0.205 0.264 0.112

2
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Table 3. Results of treatment effect estimates from propensity matching and inverse probability 
weighting when an unmeasured confounding exists.

Homogeneous treatment effect 
/ Unmeasured confounding

Propensity matching Propensity weighting

coefficient
MSE

coefficient
MSE

mean sd mean sd

No
missing

No adjustment 2.011 0.154 4.068 2.011 0.154 4.068

After adjustment 0.377 0.111 0.154 0.328 0.168 0.136

MCAR

Complete case analysis 0.362 0.152 0.154 0.336 0.233 0.167

Missing indicator 0.870 0.138 0.776 0.774 0.171 0.628

Multiple imputation

    with Y 0.376 0.119 0.155 0.330 0.171 0.138

    without Y 0.807 0.119 0.665 0.771 0.165 0.621

Combined method

    with Y 0.375 0.119 0.155 0.330 0.171 0.138

    without Y 0.808 0.119 0.667 0.770 0.165 0.620

MNAR

Complete case analysis 0.145 0.163 0.048 0.157 0.255 0.089

Missing indicator 0.514 0.117 0.277 0.345 0.197 0.158

Multiple imputation

    with Y 0.422 0.141 0.197 0.354 0.200 0.165

    without Y 1.003 0.129 1.023 1.028 0.154 1.079

Combined method

    with Y 0.240 0.114 0.071 0.169 0.191 0.065

    without Y 0.469 0.105 0.231 0.386 0.175 0.180
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4. Guidance for the optimal strategy to handle missing values 
in baseline covariates in the context of propensity score analy-
sis

The aim of a propensity score analysis is to obtain an average treatment effect in a 
certain population. To explain, we use the following notation in which every subject 
can have two potential outcomes:

•	 Y1; the outcome if the person receives treatment 1
•	 Y0; the outcome if the person receives treatment 0

Propensity weighting aims to estimate the average treatment effect in the whole 
population (ATE), which is equal to: ATE = E[Y1-Y0].  With propensity matching, where 
treated subjects are matched to untreated subjects, the aim is to estimate the average 
treatment effect in the treated population (ATT): ATT = E[Y1-Y0[T=1]  Several standard 
causal inference conditions, such as exchangeability, consistency, and positivity, should 
hold to estimate these causal effects without bias [40]. Whether the unbiased causal 
effects can still be estimated when missing values are present in the covariates of a 
propensity score depends on several elements: type of missingness, presence of effect 
modification, and the population of interest. In the following section, we discuss under 
which criteria the four methods dealing with missing values will yield a valid causal 
treatment effect in the context of propensity score analysis.

•	 Complete case analysis, when does it work?
When there is no unmeasured confounding, and the propensity score model is well 
specified, propensity weighting using complete cases will yield a valid estimate of a 
causal treatment effect, which will be the causal treatment effect in the subjects without 
missing values:

28 

 

4. Guidance for the optimal strategy to handle missing values in baseline covariates in the 

context of propensity score analysis 

The aim of a propensity score analysis is to obtain an average treatment effect in a certain 

population. To explain, we use the following notation in which every subject can have two 

potential outcomes: 

  

• Y1; the outcome if the person receives treatment 1 

• Y0; the outcome if the person receives treatment 0  

 

Propensity weighting aims to estimate the average treatment effect in the whole population 

(ATE), which is equal to: 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0]. With propensity matching, where treated subjects 

are matched to untreated subjects, the aim is to estimate the average treatment effect in the 

treated population (ATT): 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0|T = 1]. Several standard causal inference 

conditions, such as exchangeability, consistency, and positivity, should hold to estimate these 

causal effects without bias [40]. Whether the unbiased causal effects can still be estimated when 

missing values are present in the covariates of a propensity score depends on several elements: 

type of missingness, presence of effect modification, and the population of interest. In the 

following section, we discuss under which criteria the four methods dealing with missing values 

will yield a valid causal treatment effect in the context of propensity score analysis.  

 

▪ Complete case analysis, when does it work? 

When there is no unmeasured confounding, and the propensity score model is well specified, 

propensity weighting using complete cases will yield a valid estimate of a causal treatment effect, 

which will be the causal treatment effect in the subjects without missing values:  

 

𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 0] 

 

This means that propensity weighting using complete case analysis will yield valid estimates of 

the ATE in the population when the mean treatment effect in the fully observed subjects is equal 

to that of the subjects with missing values. That is:  

 

𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 0]  = 𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 1] =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0]              (1)  

 

This means that propensity weighting using complete case analysis will yield valid 
estimates of the ATE in the population when the mean treatment effect in the fully 
observed subjects is equal to that of the subjects with missing values. That is:

28 

 

4. Guidance for the optimal strategy to handle missing values in baseline covariates in the 

context of propensity score analysis 

The aim of a propensity score analysis is to obtain an average treatment effect in a certain 

population. To explain, we use the following notation in which every subject can have two 

potential outcomes: 

  

• Y1; the outcome if the person receives treatment 1 

• Y0; the outcome if the person receives treatment 0  

 

Propensity weighting aims to estimate the average treatment effect in the whole population 

(ATE), which is equal to: 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0]. With propensity matching, where treated subjects 

are matched to untreated subjects, the aim is to estimate the average treatment effect in the 

treated population (ATT): 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0|T = 1]. Several standard causal inference 

conditions, such as exchangeability, consistency, and positivity, should hold to estimate these 

causal effects without bias [40]. Whether the unbiased causal effects can still be estimated when 

missing values are present in the covariates of a propensity score depends on several elements: 

type of missingness, presence of effect modification, and the population of interest. In the 

following section, we discuss under which criteria the four methods dealing with missing values 

will yield a valid causal treatment effect in the context of propensity score analysis.  

 

▪ Complete case analysis, when does it work? 

When there is no unmeasured confounding, and the propensity score model is well specified, 

propensity weighting using complete cases will yield a valid estimate of a causal treatment effect, 

which will be the causal treatment effect in the subjects without missing values:  

 

𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 0] 

 

This means that propensity weighting using complete case analysis will yield valid estimates of 

the ATE in the population when the mean treatment effect in the fully observed subjects is equal 

to that of the subjects with missing values. That is:  

 

𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 0]  = 𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 1] =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0]              (1)  

 When data are missing completely at random, condition (1) will hold, because the 
probability of a missing value does not depend on any observed or unobserved 
variable. This means that the covariate with missing values is independent of its own 
missing indicator variable. The m-graphs may be helpful in identifying whether this 
independency holds. In the m-graphs in Figure 1a and 2a, these conditions hold because 
X2 and R are unconditionally d-separated, meaning that there is no open path between 
X2 and R.
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When no effect modification and no unmeasured confounding is present, condition 
(1) will also hold since the treatment effect in the total population will be equal to the 
treatment effect in any subgroup regardless of the missing mechanism of data. This 
was the case in Simulation 1, where the effect of the treatment was constant across 
subjects. In this scenario, the complete case analysis yielded unbiased results even 
when the missing was not at random. Analogous arguments can be given for propensity 
matching using complete cases. The propensity matching will yield valid estimates if:

29 

 

When data are missing completely at random, condition (1) will hold, because the probability of a 

missing value does not depend on any observed or unobserved variable. This means that the 

covariate with missing values is independent of its own missing indicator variable. The m-graphs 

may be helpful in identifying whether this independency holds. In the m-graphs in Figure 1a and 

2a, these conditions hold because X2 and R are unconditionally d-separated, meaning that there is 

no open path between X2 and R.  

 

When no effect modification and no unmeasured confounding is present, condition (1) will also 

hold since the treatment effect in the total population will be equal to the treatment effect in any 

subgroup regardless of the missing mechanism of data. This was the case in Simulation 1, where 

the effect of the treatment was constant across subjects. In this scenario, the complete case 

analysis yielded unbiased results even when the missing was not at random. Analogous 

arguments can be given for propensity matching using complete cases. The propensity matching 

will yield valid estimates if:  

 

𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 0, 𝑇𝑇 = 1]  = 𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0| 𝑅𝑅 = 1, 𝑇𝑇 = 1] =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0|𝑇𝑇 = 1]  (2)  

 

Even when there is unmeasured confounding, complete case analysis may be a useful way to 

handle missing values. Think of a situation where the severity of a disease determines whether 

certain laboratory tests will be performed. The severity of disease here may be an unmeasured 

confounder, which determines the values of observed covariates (in this case, the laboratory 

measurements) to be missing. This is a comparable situation to the MNAR scenario of Simulation 

setting 3. Here, the complete case analysis yielded less biased results. By restricting the analysis 

to subjects with R=0 (only the subjects with severe diseases who therefore have all lab 

measurements), the results were partially adjusted for the unmeasured confounder.  
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portion of the covariates is replaced by a dichotomous missing indicator R, consequently resulting 
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missing value is strongly associated with its missing indicator, the missing indicator variable in a 

propensity model may yield a smaller bias than the model without it. This was the case in the 

MNAR scenarios of Simulation setting 1 and 2. Similarly, when the missing of X2 is strongly related 

Even when there is unmeasured confounding, complete case analysis may be a useful 
way to handle missing values. Think of a situation where the severity of a disease 
determines whether certain laboratory tests will be performed. The severity of disease 
here may be an unmeasured confounder, which determines the values of observed 
covariates (in this case, the laboratory measurements) to be missing. This is a 
comparable situation to the MNAR scenario of Simulation setting 3. Here, the complete 
case analysis yielded less biased results. By restricting the analysis to subjects with R=0 
(only the subjects with severe diseases who therefore have all lab measurements), the 
results were partially adjusted for the unmeasured confounder.

•	 Missing Indicator, when does it work?
In general, we do not recommend solely using the missing indicator method for handling 
missing values in confounders. The method is prone to bias because the information of 
the missing portion of the covariates is replaced by a dichotomous missing indicator R, 
consequently resulting in residual confounding. However, when data are missing not 
at random and the covariate with missing value is strongly associated with its missing 
indicator, the missing indicator variable in a propensity model may yield a smaller 
bias than the model without it. This was the case in the MNAR scenarios of Simulation 
setting 1 and 2. Similarly, when the missing of X2 is strongly related to an unmeasured 
confounder U, the partial effect of U can be recovered by adding R to the propensity 
model. This was seen in the MNAR scenario of Simulation 3.

•	 Multiple imputation, when does it work?
The aim of multiple imputation is to recover the joint distribution of covariates, 
treatment, and outcome by reconstructing the missing values using the information 
from observed data. When there is no unmeasured confounding, multiple imputation 
in the context of propensity score analysis will be a valid approach under the following 
conditions:

i)	 Data are missing at random or completely at random, meaning the missing values 
are recoverable from the observed data. M-graphs can be used to visually determine 
whether the missing mechanism is at random. In m-graphs, the missing at random 
mechanism means that all paths between a covariate with missing values and its 
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missing indicator can be blocked by conditioning on measured variables. In DAG 
terms, it is said; two variables are d-separated. In our study, this was the case in 
Figure 1a, 1b, 2a, and 2b. Note that in Figure 1b and 2b, the path between X2 and R 
can be blocked by conditioning on X1.

ii)	 An imputation model should be correctly specified. This requires that:
a.	 the outcome should be included in the imputation model.
b.	 interaction terms between the covariates, treatment, and outcome should 

be included in the imputation model if a heterogeneous treatment effect is 
present.

In Simulation setting 1, multiple imputation yielded unbiased results even though it 
was used to impute a non-recoverable X2. Note that the reason why multiple imputation 
worked well in this scenario was 1) the covariates, treatment, and the outcome in the 
model were linearly related, and 2) missing values in X2 were generated probabilistically, 
which means the information of higher X2 values could be gained in the data. This result 
is due to the simulation scenario we generated and should not be taken as showing 
multiple imputation can be used when data are missing not at random.

•	 What to do in situations where complete case analysis or multiple imputation 
fails?

We saw in the previous section it is important that a researcher is aware of the missing 
mechanism and whether strong heterogeneity is present. Depending on the missing 
mechanism and the heterogeneity in the treatment effect, both complete case analysis 
and multiple imputation may fail. Whether the treatment effect is heterogeneous can be 
explored by subgroup analysis and comparing the estimated effects across the groups. 
When there is a large difference across the subgroups, interaction terms should be 
specified in the multiple imputation. This was shown in Simulation setting 2.

The missing mechanism behind the data can be explored by drawing the expected 
causal structure and missing structure in an m-graph. When complete case analysis 
and multiple imputation are expected to fail, the combination of multiple imputation 
and the missing indicator method could be used to partially recover the effect of missing 
portions of covariates. For example, in the MNAR scenario of Simulation setting 3, the 
combined approach performed better than multiple imputation alone and even better 
than the analysis of the data without any missing values. When the relation between R 
and U is stronger, more of the effect of the unmeasured confounder will be recovered.

2
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5. Discussion

Our simulations showed that there is no single method to handle missing values in 
covariates of a propensity score model which would perform optimally in all situations. 
The optimal strategy depends on the missing data structure and whether there is 
effect modification or unmeasured confounding. We focussed on missing values in 
covariates, because in routinely collected data, baseline patient characteristics are 
often incomplete while prescribed treatments and important outcomes of patients will 
be more generally recorded.

Our results cannot be generalized to situations when there are missing values in the 
treatment assignment or the outcome. An example of this is that under homogenous 
treatment effect and no unmeasured confounding, complete case analysis will yield 
biased results if the outcome is missing not at random.

Propensity score analysis mimics randomized control studies by creating conditional 
exchangeability between the subjects with the same propensity score. Both propensity 
weighting and matching aim to obtain valid estimates of marginal treatment effects. 
This is different from outcome regression analysis which estimates conditional 
treatment effects. Unlike outcome regression models, no assumptions about treatment-
outcome relation and the effect of the confounders on the outcome have to be made in 
propensity score analysis; only the propensity score model has to be correctly specified. 
This is an advantage, especially when the outcome is rare, in which case fitting an 
extensive outcome model is not possible.

When using multiple imputation, the advantage of not having to formulate a treatment-
outcome relation model disappears. In our simulations, we showed that all variables 
associated with the covariates with missing values, including the outcome, should be 
included in the imputation model. Furthermore, when effect modification is present, the 
interaction terms between the variables should be correctly specified in the imputation 
model as well. The results correspond to the idea that imputation models should reflect 
the complexity of the data analysis procedure [41, 42]. When complex modelling is 
needed for multiple imputation, an alternative to propensity score analysis could be 
to use an outcome regression model with specified interaction terms. By fitting this 
outcome regression model, one can predict potential outcomes under treatment and no 
treatment for every individual. Then, the average potential outcomes can be estimated 
by integrating over the covariate distribution and used to obtain the average treatment 
effect in the population [40].

Multiple imputation is not a panacea to handle missing values and should be used 
more consciously. In our simulations, we demonstrated that a default option for 
multiple imputation in commonly used software such as SAS, Stata, SPSS, or R yielded 
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biased results (based on Simulation 2) even when data were missing at random and no 
unmeasured confounding was present.

Complete case analysis may often be a good method to deal with missing values in 
covariates. Although statistical efficiency is lost, estimated effects still have a causal 
interpretation if there is no unmeasured confounding. In these cases, it is up to the 
researcher to determine how generalizable these results are to the general population 
of interest. In the case of substantial heterogeneity of treatment effects, generalizability 
cannot be taken for granted.

When unmeasured confounding is present, all standard missing data methods fail 
to provide valid estimates. Complete case analysis, however, may reduce the bias 
by controlling the unmeasured confounding by restriction. The use of an indicator 
variable (with or without multiple imputation) may also reduce the bias, because the 
indicator variable functions as a proxy for the unmeasured confounding.

A recent systematic review on how missing data are addressed with propensity score 
methods in observational comparative effectiveness studies showed that among 167 
studies conducted from 2010 to 2017, only 86 (51%) discussed missing data issues and 
only 12 (7%) provided reasons for missingness [43]. Our simulation study showed 
that it is important to make assumptions about the expected relationship between 
the unobserved and observed covariates. This allows one to understand the expected 
missing structure of the data and to handle missing values more cautiously. We 
recommend researchers to use m-graphs to draw their assumption between the 
covariates and their missing indicator explicitly. In summary, in the context of 
propensity score analysis, we urge researchers to consciously choose missing data 
strategies while considering the missing data mechanisms, possible unmeasured 
confounding, and heterogeneity of treatment effects.

2
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Appendix 

Results of Simulation setting 2 where the multiple imputation by chained equations (MICE) 
with Bayesian linear regression is used for a sensitivity analysis.

Heterogeneous treatment effect
Propensity matching Propensity weighting

coefficient
Bias MSE

coefficient
MSE

mean sd mean sd
No adjustment 1.730 0.158 1.410 2.012 1.730 0.158 3.019

After adjustment 0.321 0.096 0.000 0.009 -0.017 0.156 0.025

No interaction term
Multiple imputation

 with Y 0.304 0.095 -0.017 0.009 -0.041 0.170 0.031

 without Y 0.536 0.101 0.215 0.056 0.292 0.142 0.105

Combined method
 with Y 0.303 0.095 -0.018 0.009 -0.042 0.172 0.031

 without Y 0.537 0.104 0.216 0.058 0.294 0.143 0.107

Interaction terms
Multiple imputation 0.315 0.094 -0.006 0.009 -0.014 0.169 0.029

Combined method 0.315 0.096 -0.006 0.009 -0.015 0.171 0.029

No interaction term
Multiple imputation

 with Y 0.220 0.103 -0.101 0.021 -0.116 0.192 0.050

 without Y 0.568 0.110 0.247 0.073 0.264 0.158 0.095

Combined method
 with Y 0.220 0.101 0.010 -0.116 0.190 0.049

 without Y 0.568 0.111 0.248 0.074 0.264 0.157 0.094

Interaction terms
Multiple imputation 0.330 0.101 0.009 0.010 0.002 0.199 0.040

Combined method 0.331 0.103 0.010 0.011 0.001 0.198 0.039

No interaction term
Multiple imputation

 with Y 0.102 0.110 -0.219 0.060 -0.269 0.213 0.118

 without Y 0.570 0.110 0.249 0.074 0.325 0.153 0.129

Combined method
with Y 0.095 0.103 -0.225 0.061 -0.275 0.211 0.120

 without Y 0.537 0.105 0.216 0.058 0.233 0.149 0.076

Interaction terms
Multiple imputation 0.173 0.101 -0.147 0.032 -0.197 0.220 0.087

Combined method 0.169 0.103 -0.151 0.034 -0.206 0.215 0.089
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Abstract

Measurement errors commonly occur in 24-hour hormonal data and may affect the 
outcomes of such studies. Measurement errors often appear as outliers in such datasets; 
however, no well-established method is yet available for their automatic detection.

In this study, we aimed to compare the performances of different methods for outlier 
detection in hormonal serial data. Hormones (glucose, insulin, thyroid stimulating 
hormone (TSH), cortisol, and growth hormone (GH)) were measured in blood sampled 
every 10 minutes for 24 hours in 38 participants of the Leiden Longevity Study. Four 
methods for detecting outliers were compared: i) eyeballing, ii) Tukey’s fences, iii) 
Stepwise approach, and iv) the Expectation-Maximization (EM) algorithm. Eyeballing 
detects outliers based on experts’ knowledge, and Stepwise approach incorporates 
physiological knowledge with a statistical algorithm. Tukey’s fences and the EM 
algorithm are data-driven methods, using interquartile range and a mathematical 
algorithm to identify underlying distribution, respectively. The performance of the 
methods was evaluated based on the number of outliers detected and the change in 
statistical outcomes after removing detected outliers. Eyeballing resulted in the lowest 
number of outliers detected (1.0% of all data points), followed by Tukey’s fences (2.3%), 
Stepwise approach (2.7%), and the EM algorithm (11.0%). In all methods, the mean 
hormone levels did not materially change after removing outliers. However, their 
minima were affected by outlier removal. Although removing outliers affected the 
correlation between glucose and insulin on the individual level, when averaged over 
all participants, none of the four methods influenced the correlation.

Based on our results, the EM algorithm is not recommended given the high number of 
outliers detected, even where data points are physiologically plausible. Since Tukey’s 
fences is not suitable for all types of data, and eyeballing is time-consuming, we 
recommend Stepwise approach for outlier detection which combines physiological 
knowledge and an automated process.
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1. Introduction

Many physiological parameters such as hormones or metabolites exhibit rhythmicity. 
These rhythms are regulated by different systems. The most prominent rhythm 
is the circadian rhythm, which is induced by the biological clock located in the 
suprachiasmatic nucleus of the brain. The biological clock does not only synchronize 
molecular clocks in peripheral cells, but it also orchestrates many physiological 
functions, including blood pressure, core body temperature, and hormone secretion. An 
example of a hormone that exhibits strong circadian rhythmicity is cortisol. The sleep-
wake cycle is another form of rhythm, and although similar to the circadian rhythm, 
it has other effects on hormone secretion than the biological clock. The secretion of 
growth hormone, for example, is more strongly influenced by sleep than by clock time. 
External cues, including food intake and physical activity, also can influence hormone 
secretion, such as the secretion of insulin (Oike et al., 2014).

Hormones and metabolites are measured for different purposes; e.g., in clinical settings 
to make a diagnosis or to evaluate the effect of treatment and in research settings to 
investigate how these parameters change upon interventions or differ between groups. 
Different cues can elicit changes in hormone secretion, amongst which circadian 
time, nutrient availability and food intake, physical activity, and sleep. Circulating 
concentrations of many hormones change over time, because these hormones are 
secreted in a pulsatile fashion and have a relatively short half-life (Spiga et al., 2015). 
Therefore, to obtain reliable hormonal time series data, hormones need to be measured 
in blood that is sampled frequently. For some hormones, such as insulin, the preferred 
sampling frequency is 2 minutes because of its short half-life (Porksen et al., 1997). 
Other hormones, including thyroid stimulating hormone (TSH), can be measured 
every 20 minutes to obtain reliable profiles (Odell et al., 1967; Grossmann et al., 1997). 
To take into account practical possibilities, half-lives, costs, and ethics, most studies 
investigating hormone secretion are performed with a sampling frequency of every 10 
minutes during 24 hours, as reviewed by Veldhuis et al. and Roelfsema et al. (Veldhuis 
et al., 2016; Roelfsema et al., 2017).

When measuring hormones frequently over time, measurement errors are likely to 
occur. Measurement errors can be caused by pre-analytical experimental variation 
of various sources, including sample dilution (possibly because of flushing the 
intravenous line with heparinized saline), or the presence of a blood clot in the sample. 
Measurement error can influence the outcomes of studies with serial hormonal data. 
Therefore, it is important to identify measurement errors. Measurement errors are 
likely to be outliers (Grubbs, 1969), which deviate largely from the overall trend of 
the data. The challenge is that there is no clear-cut distinction between measurement 
errors and true biological variation. The starting point to detect measurement errors, 
however, is by identifying outliers.

3

166454_Choi_BNW-def.indd   47166454_Choi_BNW-def.indd   47 09-05-2023   09:2109-05-2023   09:21



48

Chapter 3

No well-established method is yet available to automatically detect measurement 
errors. Therefore, we aimed to compare four methods to detect outliers likely due 
to measurement errors in 24-hour hormonal data: eyeballing (relying on experts’ 
opinions), Tukey’s fences (identifying outliers based on inter-quartile ranges), Stepwise 
approach (identifying outliers based on standard deviations), and the Expectation 
Maximization (EM) algorithm (using a mathematical algorithm based on disentangling 
the two different distributions of outliers and non-outliers). Furthermore, we studied 
the influence of removing the detected outliers on the assessment of statistical features 
of 24-hour hormonal data such as mean, minimum, maximum, and cross-correlation.

For this study, we used data on the pituitary hormones growth hormone (GH), 
adrenocorticotropic hormone (ACTH) and TSH, the adrenal hormone cortisol, as well 
as data on the metabolic signals insulin, and glucose, which were all measured during 
24 hours every 10 minutes in serum from 38 participants of the Switchbox Leiden Study 
(Jansen et al., 2015).

2. Methods

2.1. Data collection

Study population
The Leiden Longevity Study comprises 421 families with at least two long-lived 
Caucasian siblings fulfilling the age criteria (men ≥89 years and women ≥91 years) 
without selection on health or demographics (Westendorp et al., 2009). In the current 
study, the Switchbox Leiden Study, we included 20 offspring of long-lived families from 
the Leiden Longevity Study together with 18 partners of the offspring as environmental 
and age-matched controls. The primary aim of the Switchbox Leiden Study was to 
compare the levels and dynamics of hormones and metabolites and their interplay 
between offspring of long-lived families and controls. In- and exclusion criteria were 
described previously in detail (Jansen et al., 2015). Participants were middle-aged 
(52–76 years) and had a stable body mass index (BMI) between 18 and 34 kg/m2. The 
Switchbox Leiden Study was approved by the Medical Ethical Committee of the Leiden 
University Medical Centre and was performed according to the Helsinki declaration. 
All participants gave written informed consent for participation.

24-hour blood sampling
The 24-hour blood sampling procedure started with placing a catheter in a vein 
of the forearm of the non-dominant hand, and blood withdrawal started around 
9:00h (Akintola et al., 2015). Samples of 2 ml serum and 1.2 ml EDTA plasma were 
withdrawn every 10 min. To prevent blood clotting, heparinized saline (0.9% NaCl) 
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was continuously infused via an infusion pump at a rate of 20 ml per hour. Before each 
blood withdrawal, 5 ml of saline/heparin mixed with blood was collected (without 
disconnecting the syringe from the blood withdrawal system) to prevent contamination 
of heparin/saline in the blood samples. After blood withdrawal, this 5 ml was flushed 
back into the subject to reduce the total amount of blood that would be withdrawn. 
Participants received standardized feeding consisting of 600 kcal Nutridrink (Nutricia 
Advanced Medical Nutrition Zoetermeer, The Netherlands) at three fixed times during 
the day. Participants were not allowed to sleep during the day, and except for lavatory 
use, no physical activity was allowed during the study period. Lights were switched 
off for approximately 9 hours (circa between 23:00h to 08:00h) to allow the participants 
to sleep.

Assays
All laboratory assays were performed with fully automated equipment and diagnostics 
from Roche Diagnostics (Almere, The Netherlands) at the Department of Clinical 
Chemistry and Laboratory Medicine of the Leiden University Medical Centre in The 
Netherlands.

Thyroid-stimulating hormone (TSH), cortisol, insulin, and glucose were measured in 
the same serum tube. Growth hormone (GH) was also measured in the same serum 
tube but after one additional freeze/thaw cycle. TSH and cortisol were measured 
by ElectroChemoLuminescence ImmunoAssay (ECLIA) using a Modular E170 
Immunoanalyzer from Roche (Roche Diagnostics, Almere, The Netherlands). For 
TSH, the overall interassay coefficients of variation (CV) ranged in our study between 
1.41–4.16%, and the overall CV of cortisol ranged between 2.4–5.1%. Human GH with 
a molecular mass of 22 kDa and insulin were measured using an IMMULITE® 2000 
Xpi Immunoassay system (Siemens Healthcare diagnostics). The interassay CV of GH 
ranged between 5.4% at 5.43 mU L-1 and 7.2% at 25.0 mU L-1, and the overall CV of insulin 
ranged between 3.19–7.69%. Glucose was measured using Hitachi Modular P800 from 
Roche Diagnostics (Almere, the Netherlands), and the overall interassay CV of glucose 
ranged between 0.90–7.44%. If a measurement was below the detection limit, half of 
the lower detection limit was taken as a result.

Although ACTH was also measured, we did not take along these data in our mathematical 
models because this hormone was measured in EDTA plasma, so in another tube than 
the other hormones. However, we used ACTH data for the eyeballing, because they 
were instrumental for inspecting physiologically abnormal points in the cortisol data.

2.2. Physiological considerations
Since hormones are secreted in a pulsatile manner, a sudden increase is more likely 
to occur than a sudden decrease. Also, glucose < 2.8 mmol/L does not occur in healthy 
persons without an accompanying strong stress response (cortisol and GH pulses). 

3
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ACTH stimulates the secretion of cortisol. Therefore, cortisol should show a pulse 
following an (extreme) increase in ACTH. If an outlier is caused by sample dilution, 
then all hormones measured in that sample should be lower than expected. These 
physiological considerations could be taken into account in measurement error 
detection.

2.3. Methods of detecting outliers
In the following section, we will discuss four methods for outlier detection: i) eyeballing, 
ii) Tukey’s fences, iii) Stepwise approach, and iv) the EM algorithm. The procedures of 
these methods are visualized in Figure 1.

Figure 1. (a) Eyeballing detects outliers without fitting smooth curves. By visual inspection, in-
dividual experts detect outliers by taking into account that some hormones were measured in 
the same sample. Afterward, a consensus meeting is held, and the experts discuss all data points 
with conflicting detection results. (b) Tukey’s fences starts with fitting a moving average curve to 
per-person per-hormone data and taking residuals of all data points. Then the interquartile range 
(IQR = Q3–Q1) of the residuals is calculated. The data points lying outside the range between Q1 
− 31QR and Q3 + 3IQR are detected as outliers. (c) The stepwise approach fits the moving average 
curve to per-person per-hormone data, and standardized residuals of all data points are calcu-
lated (step 1). The data points lying outside the range between −3 and 4 standard deviations are 
detected as outliers (step 2). Then, the residuals of 5 hormones measured at the same time points 
are summed. When the sum of the residuals is smaller than −8, the data points are detected as 
outliers (step 3). Afterward, steps 1 and 3 are repeated (step 4). (d) The expectation-maximization 
(EM) algorithm first fits a smoothing curve to per-person per-hormone data, and the residuals 
are calculated. Then, all the residuals of a hormone from all 38 participants are put in the EM 
algorithm. The algorithm then identifies two distinguishable distributions and yields the prob-
ability of each data point being an outlier.
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Eyeballing
Eyeballing was based on a visual inspection of a graphical display of individual 
hormone profiles from all 38 patients. This was performed by four reviewers with 
expert knowledge in endocrinology (EvdS, FR, OMD, and DvH). Hard copies of the 
24-hour trajectories of all hormones measured per participant were provided. Three 
reviewers examined all 38 participants’ hormone profiles, and one reviewer checked 
half of the participants. Information about which hormones were measured in the 
same tube was given verbally. Reviewers were also explicitly told that dilution of the 
sample may have led to measurement errors in all hormones from the same tube. After 
reviewing the data separately, a consensus meeting was held to reach an agreement 
on data points which only one (out of three or four) or two out of four reviewers had 
marked as an outlier.

Tukey’s fences
For this algorithmic approach of outlier detection, we made the following assumptions: 
i) A hormone trajectory of a person follows a smooth general trend over 24 hours 
while measurement errors may deviate clearly from the trend, and ii) Hormone 
levels cannot abruptly decrease within 10 minutes. If a measurement is vastly distant 
from the adjacent measurements before and after, that measurement is likely to be a 
measurement error. Thus, by fitting a smooth curve to the data points and measuring 
the distance between the curve and each measurement, the algorithm can detect 
outliers expected to be measurement errors.

Tukey’s fences is a non-parametric method developed to detect observations out of 
the normal range by using interquartile ranges (Tukey, 1977), and it is often used for 
detecting outliers in various fields (Muraleedharan et al., 2016; Pham and Eggleston, 
2016; Luo et al., 2018; O’Brien et al., 2018). Before performing Tukey’s fences, the 
normality of the data was checked before fitting the curve. The distributions of insulin 
and GH data were highly skewed. Therefore, these data were log-transformed prior to 
applying the algorithm. Afterward, Tukey’s fences was implemented using the following 
two steps:

I.	 Hormone data were smoothened over time by fitting moving average curves for 
every hormone per-person separately. Moving average is a method commonly 
applied for smoothing time series data (Montgomery et al., 2015). The moving 
average with window size n (with n an odd number) at a certain time point is the 
average of the current, the -½(n-1) previous, and ½(n-1) subsequent measurements 
in time. In our analyses, moving averages were calculated using a window of five 
points. Residuals were calculated for all data points. We defined a residual as the 
vertical distance between an original data point and a fitted moving average curve.

3
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II.	  between the first quartile and the third quartile (Q1− Q3), and the median (Q2) 
were identified. The ranges between Q2 k(Q3 Q1) and Q2+ k(Q3− Q1) are referred to as 
fences. The data points that are below the lower fence or above the higher fence 
are identified as outliers. The value k determines the width of the fences. The 
larger the value of k, the lower the number of outliers that will be detected. In our 
analyses, we set k=3, which according to the literature, implies that the data point 
is “far out” (Tukey, 1977). To use the method as it was originally suggested and 
commonly applied, we did not adjust the value of k=3 (Horn et al., 1988; Hung and 
Yang, 2006; Kimenai et al., 2016).

Stepwise approach
Stepwise approach is an automatic detection process based on an algorithm that 
incorporates physiological knowledge and statistical methods comprising three steps 
as described below. We aim to detect potential outliers within a 24-hour hormone 
trajectory in several steps. As in Tukey’s fences, the insulin and GH data were log-
transformed.

I.	 Step 1: Fitting smoothed curves
Likewise to Tukey’s fences, a moving average curve is fitted to each participant’s 
24-hour hormone data using a window of 5 points. By computing the distance 
between each data point and the fitted curve, residuals are acquired. The residuals 
are standardized to have a mean of 0 and a standard deviation of 1.

II.	 Step 2: Detecting outliers within a 24-hour hormone trajectory 
Data points with standardized residuals smaller than -3 or larger than 4 are detected 
as outliers. The cut-off of 3 standard deviations is a commonly applied empirical 
rule for detecting outliers in normally distributed data. However, asymmetrical 
cut-offs are chosen to be more liberal for the upper boundary, as hormones are 
secreted in a pulsatile fashion which makes rapid increases in hormone levels 
biologically more plausible than rapid decreases since clearance of the hormone 
will occur slower. Note that this cut-off boundary is wider than the width of Tukey’s 
fences with k=3. Furthermore, data points where glucose < 2.8 mmol/L were 
detected as outliers as discussed under Physiological considerations.

III.	 Step 3: The standardized residuals of all hormones measured in the same serum 
tube are added up for each participant. If the sum of the standardized residuals 
is lower than -8, all data points measured in that tube are detected as outliers. 
This means that the residuals of the five hormones are, on average, below the 5th 
percentile of standard normal distribution (1.64 standard deviation). This step 
allows detecting measurement errors due to the dilution of the samples. The 
underlying assumption is that when samples were diluted, levels of the hormones 
measured in the same sample are likely to all be lower at the same time point. In 
this step, we aim to detect these types of measurement errors which occur across 
the hormones.
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IV.	 Step 4: Repeat step 1 and step 3
After all outliers detected so far are removed, a new moving average curve is fitted 
and step 1 and 3 are repeated once. If already detected outliers are removed, the 
newly fitted curves will be flatter than the fitted curve from the original data, which 
will allow detecting potential outliers that were missed in the previous steps.

The EM algorithm
Another approach is to estimate the probability for a data point to reflect measurement 
error, rather than using a dichotomous division. This starts with assuming two 
distinguishable data distributions: true measurement variation and background noise 
due to measurement errors. Based on this assumption, we expect the residuals of the 
true measurements to be normally distributed with standard deviations close to 0, 
while those of the erroneous measurements would be normally distributed with a larger 
standard deviation. The expectation maximization (EM) algorithm is a method that can 
be used to identify these two distinguishable distributions. The algorithm estimates 
model parameters when data is incomplete or when the model depends on a latent 
variable; a variable that is not directly observed but can be inferred by other observed 
variables (Dempster et al., 1977), and the method was suggested for detecting outliers 
(Aitkin and Wilson, 1980). The EM algorithm was applied in R version 3.5.1, using the 
normalmixEM function of the package mixtools (Benaglia et al., 2009). In our situation, 
the latent variable of interest would be whether a data point is a true measurement or 
a measurement error. Further technical details about the EM algorithm can be found 
in Supplementary Material, Appendix 1.

The EM algorithm has the advantage that detected outliers do not have to be removed. 
Instead, the probabilities can later be used as weights for estimating outcomes, such 
as mean hormone levels or cross-correlations.

The outlier detection method using the EM algorithm followed the steps below. Again, 
insulin and GH data were log-transformed.

I.	 As in Tukey’s fences and Stepwise approach, a moving average curve per 24-
hour hormone profile for each participant was fitted. Afterward, residuals were 
calculated and standardized for each data point.

II.	 The EM algorithm was applied for each hormone with residuals of all participants 
together taken into account in one model.

2.4. Comparing methods on statistical outcomes
Since we do not know with certainty which data points reflect measurement errors, it 
is not possible to ascertain which of the four methods performed best. Therefore, we 
compared the number of outliers detected which were counted per time point and in 
total data points. In addition, the overlap in detected outliers between the four methods 
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was visually presented with Venn diagrams (Larsson, 2018). We chose these parameters 
since these descriptive statistics give a transparent description of the data and will give 
an insight into how removing outliers have an impact on general measures.

Furthermore, we analyzed statistical outcomes of 24-hour hormonal data before and 
after removing the outliers as detected by the four different methods. In this way, 
we could investigate whether removing outliers influenced the statistical outcome 
and how different methods may do so differently. Therefore, the 24-hour means, 
median, minima, and maxima of the five hormones were assessed, which provides a 
transparent description of the data and insights into how removing outliers impacts 
general measures. Another relevant analysis is the cross-correlation between two 
hormones. Cross-correlation estimates the temporal relationship between two 
hormonal concentrations. It is a common analysis performed with data from two 
simultaneously measured hormonal time series (Vis et al., 2014). Therefore, it could be 
of interest for researchers to know to which extent measurement error would affect the 
estimates, especially since this method might be sensitive to the presence of outliers 
that co-occur in different time series data, for example, due to the dilution of a sample. 
Two relevant outcome measures are the strongest correlation coefficient (the maximal 
correlation) and the correlation coefficient at lag time 0. For the purpose of this paper, 
we performed cross-correlation on concentrations of glucose and insulin, which are 
expected to display strong cross-correlation (Feneberg et al., 1999). When estimating the 
mean and cross-correlations after outlier removal by the EM algorithm, the weighted 
mean and weighed correlation are calculated, with the weight equal to the probability 
of each data point being an outlier. All statistical analyses were performed using the 
software program R, version 3.5.1.
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3. Results

For each of the 38 participants, blood samples were collected at 144 time points over 24 
hours, with five hormones being measured in the same serum tube. After discarding 
missing data, the total number of data points was 21,467. We counted detected outliers 
per time point and in total data points. If counted per time point, at least one outlier 
was detected in a time point among all hormones assayed in serum (i.e., glucose, 
insulin, TSH, cortisol, and growth hormone). In the case of a complete series, a single 
participant has 144 time points for each hormone. If counted in total data points, every 
data point is counted individually. In the case of a complete dataset, one participant 
has in total 720 data points, that is, 144 time points times five hormones.

3.1. Number of detected outliers
Table 1 summarizes the mean percentage of outliers detected per time point and in total 
data points. The results are averaged across 38 participants. Since the EM algorithm 
yields continuous probability as its outcome, we defined a data point in which its 
probability of being an outlier is higher than 0.9 as an outlier. For the percentage of 
detected outliers, we observed some differences between the four methods. Eyeballing 
resulted in the smallest percentage of detected outliers both per time point (mean=1.7%) 
as well as for total data points (1.0%), followed by Stepwise approach (per time points: 
5.1%, total data points: 2.7%). Tukey’s fences yielded more outliers per time point (9.3%) 
but a similar percentage in total data points (2.3%). The EM algorithm method yielded 
the largest percentage of outliers (per time points: 40.3%, total data points: 11.0%).

In Figure 2, the numbers of detected outliers for each hormone averaged over all 
participants are presented. The EM algorithm and Tukey’s fences both detected more 
outliers in cortisol and GH compared to other hormones. Eyeballing and Stepwise 
approaches detected a similar number of outliers across the different hormones.

Table 1. The percentage of time points with at least one detected outlier among the hormones 
measured, and the percentage of total data points detected as outliers among the same set of 
hormones. The mean and standard deviation of the 38 participants are given.

mean (sd); n=38

 Time points detected to contain an 
outlier (%)

Total data points detected to be 
outliers (%)

Eyeballing 1.7 (2.1) 1.0 (1.4)

Tukey’s fences 9.3 (5.6) 2.3 (1.4)

Stepwise 
approach

5.1 (1.5) 2.7 (1.5)

EM algorithm* 40.3 (7.7) 11.0 (2.8)

*For the EM algorithm results, the measurement points where the probability of being an outlier 
> 0.9 was counted.
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Figure 2. The mean number of data points detected per hormone per method across all participants.  

 

Figure 2. The mean number of data points detected per hormone per method across all partic-
ipants.

3.2. Overlap in detected outliers
Figure 3 displays Venn diagrams presenting the number of outliers detected by 
eyeballing, Stepwise approach, and Tukey’s fences and their overlap. We did not 
include the results of the EM algorithm in the Venn diagrams for two reasons i) the 
EM algorithm detected an implausibly large number of outliers (per time point=1,590 
and in total data points =2,728), and (ii) three sets of data is the maximum to draw a 
proportional Venn diagram in two-dimensional space. Figure 3a presents the number of 
outliers per time point, and Figure 3b presents that of the total data points. In Figure 3a, 
most of the outliers detected by eyeballing were also detected by the other two methods, 
while the overlap is larger with Stepwise approach. In Figure 3b, the overlap between 
eyeballing and Stepwise approach is again larger than the overlap between eyeballing 
and Tukey’s fences. Here, Stepwise approach and Tukey’s fences detected a similar 
number of outliers. However, the overlap is relatively small, which indicates that they 
are detecting different data points. Eyeballing detected 47 total data points, which were 
not detected by Stepwise approach or Tukey’s fences. Among outliers per time point 
detected by eyeballing, Stepwise approach, and Tukey’s fences, 95.8% overlapped with 
the outliers detected by the EM algorithm (data not shown). Additionally, 70.1% of the 
total data points detected by the three methods overlapped with the outliers detected 
by the EM algorithm (data not shown).
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Figure 3. Venn diagrams visualizing the number of measurement errors detected by each method 
(eyeballing, Stepwise approach, and Tukey’s fences) and their overlap counted in total time points 
(a) and in all data points (b). The overlap with the EM algorithm is not presented here for the 
reasons mentioned in the results section.

3.3. Representative 24-hour hormone figures presented with detected outliers
Figures 4a-d display the detected outliers in glucose, insulin, TSH, cortisol, and GH for 
eyeballing, Tukey’s fences, Stepwise approach, and the EM algorithm, respectively in 
one representative participant. By eyeballing (Figure 4a), four data points are detected 
as outliers in glucose, TSH, and cortisol, and these four outliers are all in the same time 
points. Of these four time points, outliers in insulin were detected in three time points 
and GH in one time point. Tukey’s fences (Figure 4b) detected the same outliers for 
glucose, insulin, TSH, and cortisol but detected several more than eyeballing. In both 
TSH and cortisol between time points 110 to 130, several points that are biologically 
unlikely to be measurement errors were detected. No outliers were detected in GH. 
Stepwise approach (Figure 4c) identified the same outliers as eyeballing. However, 
several extra points were detected as well. Here in several time points (42nd, 76th, and 
114th), outliers were detected in all hormones, which is a result of Step 3 of the Stepwise 
approach. The EM algorithm (Figure 4d, note that the points are only marked if the 
probability of being an outlier is higher than 0.9) resulting in many detected outliers 
in the pulses that are unlikely to be outliers. Remarkably in GH, data points close to 
detection limits were detected as outliers.
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Figure 4a. The results of outlier detection by eyeballing in glucose, insulin, TSH, cortisol, and 
growth hormone of participant 19. Red hollow data points indicate detected outliers.
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Figure 4b. The results of outlier detection by Tukey’s fences in glucose, insulin, TSH, cortisol, and 
growth hormone of participant 19. Red hollow data points indicate detected outliers.
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Figure 4c. The results of outlier detection by Stepwise approach in glucose, insulin, TSH, cortisol, 
and growth hormone of participant 19. Red hollow data points indicate detected outliers.
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Figure 4d. The results of outlier detection by the EM algorithm in glucose, insulin, TSH, cortisol, 
and growth hormone of participant 19. Red hollow data points indicate the probability of the data 
point being an outlier is higher than 0.9.
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3.4. Effects of removing outliers on statistical outcomes

Descriptive statistics: 24-hour mean, median, minimum, and maximum
The mean, median, minimum, and maximum values for every hormone were calculated 
over time before and after removing outliers detected by the four methods. This is 
shown in Table 2. Mean and median values did not change substantially after outlier 
removal. Minimum values changed for glucose and TSH after removing outliers by all 
four methods, while in insulin, the value did not change much after eyeballing. The EM 
algorithm had the largest influence on maximum values in all hormones.

Cross-correlation of glucose and insulin
In Table 3 cross-correlations between glucose and insulin are presented before and 
after removing outliers. Overall, removing outliers did not have a major influence on 
the cross-correlation of glucose and insulin, and on the lag time at the maximum cross-
correlation. Figure 5 shows the individual changes in correlation at lag time 0. In Figure 
5, we observe large differences between participants. Especially the first participant 
shows a big change in correlation after removing outliers by all methods. Overall, the 
changes after eyeballing, Tukey’s fences, and Stepwise approach were mostly small, and 
the changes were not in one direction dominantly. However, after removing outliers 
detected by the EM algorithm, cross-correlation decreased in most cases.
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Table 3. Cross correlations between glucose and insulin. Mean and standard deviation across 
38 participants.

mean (sd); n=38

Correlation at lag 
time 0

Maximum cross 
corr.

Lag time at 
maximum cross 
corr. (min)

Raw data 0.74 (0.12) 0.74 (0.12) -4.7 (7.3)

Eyeballing 0.74 (0.11) 0.75 (0.12) -5.3 (7.6)

Tukey’s fences 0.73 (0.14) 0.74 (0.14) -6.3 (8.2)

Stepwise approach 0.74 (0.12) 0.75 (0.12) -5.0 (8.0)

EM algorithm* 0.71 (0.12) 0.73 (0.17) -9.5 (9.8)

*For the EM algorithm results, weighted correlation is used.
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Figure 5. Change in correlation at lag time 0 (%) after removal of measurement errors detected 
by the four methods; eyeballing, Tukey’s fences, Stepwise approach, and the EM algorithm. Each 
bar represents an individual participant.
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4. Discussion

In this study, we aimed to evaluate and compare different methods to detect outliers 
in 24-hour hormonal data since no specific methods were routinely available for 
this purpose. We assumed that measurement errors would deviate largely from the 
physiological curves of hormones. By identifying outliers in the data, therefore, we 
expected to detect likely measurement errors. The main outcomes of this study were 
that human-judgement (eyeballing) defined fewer data points as an outlier than the 
other three automatic approaches. Among the automatic approaches, the data-driven 
methods (Tukey’s fences and the EM algorithm) were prone to detect more outliers 
likely to be true measurements than the method involving subject-specific knowledge 
(Stepwise approach). The mean, minima, and maxima of the hormones did not change 
much after removing outliers. However, the minima of glucose and TSH did change, 
and the EM algorithm had a large influence on maximum values in all hormones. The 
effect of removing outliers on the correlation between glucose and insulin can be large 
within an individual but had no major impact on a group level.

A relatively low number of outliers were detected by eyeballing. This may be an 
advantage of this method, as only truly deviating points will be discarded in the 
analysis. Another advantage of eyeballing is that the data points detected as outliers 
are based on physiological arguments and are not data-driven. This allows eyeballing 
to detect (i) a sequence of data points that was physiologically implausible to display 
the same pattern in several hormones, and (ii) outliers at the beginning or end of a 
time series. These types of outliers cannot be detected by fitting smoothing curves, 
which explains the 47 data points that were exclusively detected by eyeballing, and 
not by Stepwise approach or Tukey’s fences. However, a disadvantage of eyeballing is 
that it is time-consuming and depends on individual reviewers’ background knowledge 
and subjective decision. If the number of reviewers is large enough and a consensus 
meeting is held, the precision may increase. However, the amount of time to reach a 
unanimous decision would take longer. Also, eyeballing is a one-off process that cannot 
be generalized to other settings.

Although Tukey’s fences are advocated as a non-parametric approach, the method 
did not perform well in our case when applied with moving median curves instead of 
moving average curves. Especially when the hormone profile is mostly flat with sudden 
pulses, such as GH, Tukey’s fences with moving median curves detected a biologically 
implausible number of outliers (54.6% of the total data points). Therefore, when using 
Tukey’s fences to detect outliers, we suggest researchers to be aware of the type of their 
data and smoothing methods.

We introduced Stepwise approach as a new method to detect measurement errors 
in 24-hour hormonal data. The advantage of Stepwise approach is that by using the 

3
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standardized residuals, it facilitates the detecting of measurement errors caused by 
dilution, which may not have been identified by only looking into individual hormones. 
Additionally, it is expected to be a more objective method than eyeballing, as it explicitly 
incorporates the information from multiple hormones and applies the same cut-off 
values of standard deviations to every hormone. Furthermore, it is less time-consuming 
than eyeballing and can relatively easily be applied to different hormonal datasets. 
Compared to Tukey’s fences, Stepwise approach has more flexibility to incorporate 
physiological knowledge, such as adopting asymmetrical cut-off or removing glucose 
measurements lower than 2.8 mmol/L. However, the performance of the method may 
depend on parameters such as a time window for moving average, or cut-off points of 
standard deviations. These parameters still require decisions and need to be chosen 
with care; the decisions should also be clearly reported. Another disadvantage of 
Stepwise approach, which also applies to eyeballing and Tukey’s fences, is that we 
discard data according to a dichotomous division. Whether a data point is an outlier or 
not is often dependent on the degree of belief instead of a clear dichotomous distinction. 
Furthermore, this dichotomous distinction reduces the statistical power in further 
analyses.

The strength of the EM algorithm is that, instead of the dichotomous distinctions, 
it gives probabilities of each point being an outlier. Therefore, we acquire extra 
information which can be incorporated into further analysis, such as for probability 
weighting. Additionally, the EM algorithm requires less prior knowledge compared 
to the previously discussed methods. However, a critical disadvantage of the EM 
algorithm is that we cannot ensure whether the two identified distributions are actually 
distinguishing outliers and non-outliers. In our dataset, the detected points were often 
not plausible to be detected as outliers from a physiological perspective.

It is worth to mention the performances of Tukey’s fences, Stepwise approach, and 
the EM algorithm depend on which smoothing technique is applied. Moving average, 
which was used in the study, does not require extensive modeling and can capture 
local fluctuations of hormone concentration. However, it may smooth out the transient 
increase of hormone concentration and lead to detect true measurements as outliers. 
Stepwise approach takes this shortcoming of moving the average into account by setting 
different cut-off values for positive and negative residuals. There are more advanced 
model-based smoothing techniques, such as deconvolution analysis, which takes the 
underlying dynamics of hormone secretions into account (Brown et al., 2001; Faghih et 
al., 2014). These methods were not considered in this study as our aim was to compare 
outlier detection methods that could be easily adopted by applied researchers in a 
pre-analysis phase.

To test the efficacy of the outlier detection methods, we simulated 24-hour hormonal 
data and measurement errors as comparable as possible to real data. The advantage of 
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the simulation study is that we know which data points are true measurement errors. 
We compared the performance of Stepwise approach, Tukey’s fences, and the EM 
algorithm. The simulation description and the results are attached as an appendix (see 
Supplementary Material, Appendix 2). The EM algorithm resulted in a high percentage 
of true measurements wrongly detected as errors, especially when a simulated hormone 
has a higher variation during the day than during the night. Most methods yielded 
relatively low percentages of true error detected. This could be due to the fact that 
some simulated errors are close to fitted curves, while the methods we are comparing 
are based on detecting errors deviating from the curves. For detecting dilution errors, 
Stepwise approach performed better than other methods. This is because Stepwise 
approach could detect dilution errors that were not deviating much from the curves 
by taking the sum of the residuals from all hormones.

In this study, the effect of removing outliers on the cross-correlation between glucose 
and insulin had no major impact on a group level. Note that these results may not 
be generalized to other statistical outcomes, such as deconvolution analysis and 
approximate entropy analysis, which are also common analyses for 24-hour hormonal 
data. Furthermore, glucose and insulin are strongly cross-correlated; however, when 
two hormones are less strongly correlated, the impact of removing outliers may be 
higher.

5. Conclusions

Based on our results, we generally recommend methods that incorporate physiological 
knowledge over data-driven methods. The EM algorithm is not recommended for outlier 
detection in 24-hour hormonal data since the method seems to falsely distinguish 
true biological variations due to circadian factors, such as meal response or day-
night differences, as outliers. Tukey’s fences, the other data-driven method, is not 
recommended in 24-hour hormonal data. Since no statistical assumptions have to be 
made and fewer data points will be removed, eyeballing could be a good method for 
detecting outliers. However, since it is time-consuming (depending on the number of 
participants studied), it might not always be practical. The strengths and limitations 
of each method are presented in Table 4.

3
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Table 4. Methods for detecting measurement errors

Eyeballing Tukey’s fences Stepwise 
approach

The EM 
algorithm

Underlying 
assumptions

• Researchers’ 
expert 
knowledge is 
reliable.

• From how much standard 
deviations (or interquartile range) 
away from a smoothing curve is 
considered to be an outlier should 
be decided by researchers.

• Normal 
distributions

Efficiency and 
generalizability 
of the method

• Relatively 
time-consuming 
process.
• Different 
experts’ 
knowledge is 
required for 
different types of 
data.

• Although it needs several adjustments for different 
types of time series (e.g., parameters for smoothing 
curves), the processes can be easily applied to different 
settings.

Limitations • Explicit 
knowledge 
and clear 
physiological 
reasoning 
behind the 
detection 
process.
• Disagreement 
between experts 
may happen.

• The method is 
highly affected 
by smoothing 
techniques and 
type of data, 
especially when 
the hormone 
levels are mostly 
constant over 
time.

• Measurement 
error within 
a hormone 
and within a 
sampling method 
(serum) can both 
be detected

• Yields a 
probability
• Need a large 
sample to be able 
to distinguish 
between the 
distributions

In conclusion, we recommend Stepwise approach for detecting outliers in serial 24-
hour hormonal data since this method combines both physiological knowledge and an 
automated process. However, decisions such as which cut-offs of standard deviation 
should be applied or which hormones can be used together in the method should be 
supported by solid physiological knowledge. Stepwise approach is especially suitable 
for data of several hormone measurements from the same tube and when dilution is 
a possible cause of measurement errors. In this case, the outlier detection process 
can improve by taking along a reference measurement together with the hormonal 
measurements, whose concentration is stable over the day, such as creatinine or urea.

Although the methods showed different performances in outlier detection, this had 
little impact on the statistical outcomes. Overall, 24-hour means and cross-correlations 
did not materially change, but on an individual basis, correlations might change. The 
influence of outliers may depend on the study’s sample size and outcome of interest. 
We recommend researchers be aware of the potential influence of measurement errors 
in their study and consciously decide which method to choose for outlier detection and 
whether it is necessary to remove outliers at all.
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Appendix 1

Details on the EM algorithm to detect outliers

For each of the hormones separately, the EM algorithm was applied to the residuals 
of all subjects simultaneously, where the residual of the ith measurement of subject j 
was calculated as Rij= Yij− Ŷij  , with Yij, the observed measurement and Ŷij , the moving 
average smoothed estimate.

We assumed that there were two types of measurements: true measurements and 
erroneous measurements. We expected that the residuals of the true measurements 
had standard deviations close to 0, while erroneous measurements had a much larger 
standard deviation.

 

The (unobserved) indicator variable Z denotes whether a measurement is an error, with 
Zij=1 if the ith measurement of subject j is an error and Zij =0 if it is a true measurement. 
The proportion of erroneous measurements Pr(Zij=1) is denoted by πe . We assumed 
that residuals R of true measurements were normally distributed with mean 0 and 
standard deviation σ1 while the residuals of the erroneous measurements were normally 
distributed with mean 0 and standard deviation σ2 , with σ2 >> σ1 . The proportion of 
erroneous parameters πe and the standard deviations σ1  and σ2, can be estimated using 
maximum likelihood. The complete likelihood of the data is

𝐿𝐿( 𝜎𝜎1, 𝜎𝜎2; 𝑅𝑅, 𝑍𝑍) =  ∏ 𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖;   𝜎𝜎1)(1−𝑍𝑍𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖  𝑓𝑓(𝑅𝑅𝑖𝑖𝑖𝑖;   𝜎𝜎2)𝑍𝑍𝑖𝑖𝑖𝑖 , 

with f(Rij; σi) , the normal density with mean 0 and standard deviation σi . Because the 
Zij are unobserved, the EM algorithm is applied with following EM steps:
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E step: given current estimates pe s1 and s2 for πe σ1 and σ2 , the expected probability of 
being an error is estimated using Bayes formula:

		  Pr(Zij=1| Rij) = 

M step: the likelihood function where the Zij are replaced by the expected probabilities 
that Zij is 1, is maximized.

The EM steps are repeated until convergence. The final estimates pe, s1, and s2 are filled 
in in equation (1). This yields for each measurement an estimated probability of being 
an error measurement.

The EM algorithm was applied in R version 3.5.1, using the normalmixEM function of 
the package mixtools.

Reference
Benaglia T, Chauveau D, Hunter DR, Young D (2009). mixtools: An R Package for 
Analyzing Finite Mixture Models. Journal of Statistical Software, 32(6), 1-29. URL http://
www.jstatsoft.org/v32/i06/.
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Reference 

Benaglia T, Chauveau D, Hunter DR, Young D (2009). mixtools: An R Package for Analyzing Finite 
Mixture Models. Journal of Statistical Software, 32(6), 1-29. URL 
http://www.jstatsoft.org/v32/i06/. 
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Appendix 2

Detecting outliers in 24-hour hormonal data: a simulation study

1. Data generation

We simulate measurements for five hormones; glucose, insulin, thyroid stimulating 
hormone (TSH), cortisol, and growth hormone (GH), according to their physiological 
characteristics and the laboratory setting where our sample was drawn. This setting 
was reproduced in simulation as described below:

•	 24 hours with measurements every 10 minutes, in total 144 measurements per 
hormone and person.

•	 Three meals at time 0, 18, 54.
•	 Night from time 84 to time 138.

For each hormone, we generated measurements. The mean hormone value at time t, 
Y(t) consisted of a constant baseline level and one or more peaks using an absorption/
elimination model. A peak starting at ts has the form:
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where C0 determines the minimum hormone values over time, C1 the peak value and λa 
and λe the rate of absorption and elimination of the hormone in the blood. The latter is 
directly related to the half-life of the hormone by λe=ln(2)/half-life. Random between 
and within-person variation was added to the generated mean values. The specific 
minimum, location and duration of peaks, and the random intra/inter-person variation 
were based on the observed patterns in our data. Specific features of each hormone are:

•	 Glucose: Three clear peaks after meals, where the third one is slightly higher than 
others. At night, the hormone level is stable and low, and the variation is smaller. 
Physiologically, glucose levels cannot be below 2.8 mmol/L.

•	 Insulin: Three clear peaks after each meal, and the hormone is highly correlated 
with glucose (corr.=0.75). At night, the hormone level is stable and low, and the 
variation is smaller.

•	 TSH: One prominent peak, where the hormone builds up in the evening from 6 pm 
(t=54) with the highest levels at 11 pm (t=84), with large variation.

•	 Cortisol: Peaks at the end of the night.
•	 GH : Sharp peaks and the number of peaks varies from 0 to 20 across the individuals.

Inter-person variation is generated by varying the highest concentration reached during 
peaks, following a normal distribution (specific parameters are provided in the table 
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below). For TSH, cortisol, and GH, the location of the peaks also varies across people. 
In this way, we generated 24-hour hormonal data for 38 simulated subjects. Table A1 
shows the specific parameters used for simulating the 24-hour hormonal data of 38 
individuals.

In each individual, for each hormone, we generated measurement errors at 14 time 
points. To generate random measurement errors in each hormone at seven randomly 
selected time points (5% out of 144 points), we replaced the true measurement with an 
error measurement drawn from a uniform distribution with a wide range (-10 x intra-
person SD to 15 x intra-person SD). Furthermore, we generated related dilution errors 
at seven time points which were the same across all hormones for one individual. The 
dilution errors were generated by dividing the original measurement by 2.
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Table A1. Parameters for generating 24-hour glucose, insulin, TSH, cortisol and GH data

Glucose 
[mmol/L]

Insulin
[mU/L]

TSH
[mU/L]

Cortisol 
[µmol/L]

GH
[mU/L]

Starting 
value (C0)

3.8 6.6 1 0.05 1

Number 
and 
location of 
peaks

3 peaks, 
increase 
starts at 
mealtimes

3 peaks, 
increase starts 
at mealtimes

One wide 
peak, 
increase 
starts 
between t=45 
and 65

3 peaks,
Increase 
starts 
between (i) 
t=75 and 100,
(ii) between 
t=100 and 
124, and (iii) 
between 124 
and 140

0 to 20 peaks, 
increase starts 
from t=0 and 
143

Half-life 35 min 35 min 120 min 50 min 10 min

Intra-
person 
variation 
(SD)

Day 0.50, 
Night 0.25

Day 6.5
Night 3.2

0.17 0.03 0.27

Mean 
and SD 
of peaks: 
first peak 
(i), second 
peak (ii), 
third 
peak (iii), 
with inter 
person Sd

(i) 4 (0.5),
(ii) 4 (0.5),
(iii) 7 (0.7)

90 (5) 2.5 (0.5) (i) 0.3 (0.1), 
(ii) 0.4 (0.1), 
(iii) 0.5 (0.1)

15 (1)

Remarks Values <2.8 
are set to 2.8

Values <2.8 are 
set to 2.8

Values <1 are 
set to 1

Values <0.05 
are set to 0.05

Values <0.2 are 
set to 0.2

Absorption/
elimination 
rate

λa =1.1 λe λa =1.1 λe λa =1.1 λe λa =2 λe λa =1.1 λe

Comments Log 
transformation

Log 
transformation

3
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2. Simulation results

Figure A1 shows simulated 24-hour hormonal data for glucose, insulin, TSH, cortisol, 
and GH of the first two generated individuals are shown. The hormone-specific 
measurement errors are indicated by a red dot. The dilution errors are indicated by a 
green dot.

Figure A2 displays how many points are indicated as measurement errors by each 
method averaged across the 38 simulated subjects. The EM algorithm indicated the 
highest number of measurement errors, followed by the stepwise approach. Especially 
for the hormones where the intra-person variation was larger during the day than 
during the night (glucose and insulin), the EM algorithm indicated high numbers of 
measurement errors.

Table A2 shows what percentage of true errors (random errors and dilution errors) 
were detected by each method and how many non-errors were identified as errors by 
each method. When it comes to detecting a true error, the EM algorithm performed 
best. However, the EM algorithm also indicated the most non-errors as measurement 
errors. Especially for insulin, the number of true measurements falsely indicated as 
errors was extremely high. This is explained by the fact that the intra-person variation 
in insulin differed between day and night, and the insulin residuals were not normally 
distributed without log transformation. The percentage of non-error detected as 
measurement error was much lower in Stepwise approach and Tukey’s fences than in 
the EM algorithm. Stepwise approach is to be preferred when detecting dilution errors.
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Figure A1. Simulated 24-hour glucose, insulin, TSH, cortisol, and GH data of the first two gen-
erated individuals

3
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Figure A1 (cont’d)
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Figure A2. Simulated 24-hour glucose, insulin, TSH, cortisol, and GH data of the first two gen-
erated individuals

Table A2. Percentage of true errors detected and true measurement wrongly indicated as an error 
by each method stratified by random error and dilution error.

Random error Dilution error

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

Stepwise 
approach

Glucose 22.18 4.80 92.86 1.19

Insulin 4.51 2.86 49.25 0.58

TSH 18.42 2.59 53.76 0.79

Cortisol 24.06 2.67 49.62 1.36

GH 8.27 2.82 49.25 0.73

mean 15.49 3.15 58.95 0.93

Tukey’s 
fences

Glucose 34.96 1.67 29.32 1.96

Insulin 7.89 0.50 4.14 0.69

TSH 31.58 1.42 27.82 1.61

Cortisol 31.95 0.65 7.52 1.90

GH 7.89 0.71 2.63 0.98

mean 22.86 0.99 14.29 1.43

3
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Table A2. Percentage of true errors detected and true measurement wrongly indicated as an error 
by each method stratified by random error and dilution error. (continued)

Random error Dilution error

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

True errors 
detected (%)

True 
measurements 
wrongly 
indicated as 
error (%)

The EM 
algorithm

Glucose 60.53 8.70 90.98 7.15

Insulin 74.81 30.89 77.82 30.73

TSH 49.25 2.92 46.24 3.07

Cortisol 43.98 2.65 18.80 3.94

GH 8.65 1.31 4.14 1.54

mean 47.44 9.29 47.59 9.29
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Abstract

In epidemiological research, it is common to encounter measurements affected by 
medication use, such as blood pressure lowered by antihypertensive drugs. When one 
is interested in the relation between the variables not affected by medication, ignoring 
medication use can cause bias. Several methods have been proposed, but the problem 
is often ignored or handled with generic methods, such as excluding individuals on 
medication or adjusting for medication use in the analysis.

This study aimed to investigate methods for handling measurements affected by 
medication use when one is interested in the relation between the unaffected variables 
and to provide guidance for how to handle the problem optimally. We focused on linear 
regression and distinguished between the situation where the affected measurement is 
an exposure, confounder, or outcome. In the Netherlands Epidemiology of Obesity study 
and several simulated settings, we compared generic and more advanced methods; 
such as substituting or adding a fixed value to the treated values, regression calibration, 
censored normal regression, Heckman’s treatment model, and multiple imputation 
methods.

For an exposure affected by medication, restricting the analysis to untreated 
individuals could yield unbiased estimates. Regression calibration is an alternative, 
but the mean and standard deviation of the medication effect should be known. For 
an outcome affected by medication, adding the mean medication effect, censored 
normal regression, and imputation using censored regression worked well. For a 
confounder affected, selecting untreated individuals worked well, as well as adjusting 
for medication use, adding mean medication effect, and censored normal regression 
imputation. In conclusion, methods for handling medication effects should be carefully 
chosen based on which variable is affected by medication and available information 
of the clinical setting.
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1. Introduction

Measurements affected by medication use are commonly encountered in 
epidemiological research. Examples are glucose levels lowered by glucose-lowering 
medications or blood pressure relieved by antihypertensive drugs. Depending on the 
research questions, these measurements can be an outcome of interest or covariates.

Although researchers often are interested in the effect of certain drugs, the relation 
between the values not affected by medication can also be the primary scientific 
interest. However, the value of a variable had an individual not been treated is often 
not available. Using the values affected by medication instead may lead to biased 
results. In clinical research, however, medication use is often ignored or handled with 
naïve methods such as excluding medication users or adjusting for medication use. For 
outcomes affected by medication use, these naïve methods may introduce bias (1-4).

Several methods have been proposed to handle measurements affected by medication 
use. Relatively simple methods are adding an expected medication effect to treated 
values or substituting the treated values for other values (1, 4, 5). More sophisticated 
methods include censored normal regression, Heckman’s treatment model, quantile 
regression, measurement error methods, or advanced imputation techniques (1, 2, 6, 
7). However, these methods are seldom used in applied research. Additionally, many 
of the suggested methods are limited to outcomes affected by medication, and little has 
been known about how to handle exposures or confounders affected by medication.

This study aims to investigate methods for handling measurements affected by 
medication use when the unaffected values are of interest. We focused on etiological 
studies where effects are estimated by linear regression. We discuss different methods 
and compare these methods in a large cross-sectional study of the Netherlands 
Epidemiology of Obesity (NEO) study and several simulation scenarios generated based 
on the NEO data. The scenarios vary on whether the exposure, confounder, or outcome 
is affected by medication use. Based on the results of the simulation study, we provide 
guidance on how to handle the medication effect optimally.

2. Methods to handle measurements affected by medication use

We will consider the situation where for some individuals a variable is affected by 
medication use (e.g., blood pressure affected by antihypertensive drugs), while the 
relation between variables when no one is affected by medication is of interest. For 
convenience, we assume that medication is taken when values are high, aiming to lower 

4
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the values. Depending on the research question, the variable affected by medication 
use can be the exposure, a confounder, or the outcome in an analysis.

The problem of measurements affected by medication can be viewed from different 
perspectives; it can be viewed as a missing data problem, because for people on 
medication, their untreated values are unobserved. It may be viewed as a measurement 
error problem, as the observed values differ systematically from the values had the 
treated individuals not been treated. It could also be viewed as a censoring problem if 
we assume that the unobserved untreated values are at least as high as the observed 
values under treatment. Depending on how one approaches the problem, methods for 
missing data, measurement error, or censored observations can be used.

Table 1 summarizes methods for handling measurements affected by medication use. 
The methods can be categorized as generic methods [M1-M5], a method for the exposure 
affected by medication [M6], methods for the outcome affected by medication [M7-M10], 
and multiple imputation approaches [M11-M13]. Detailed descriptions of each method 
and underlying assumptions are available in Appendix 1. All methods are applied to 
empirical and simulated data in the following sections.

Table 1. Overview of methods for Handling Measurements Affected by Medication use

Methods Description

Generic 
methods

[M1] Ignoring medication use Medication use is ignored.

[M2] Restricting to untreated 
individuals

The analysis is performed in the 
subgroup of individuals who are not 
receiving medication.

[M3] Binary adjustment for 
medication use

An indicator for medication use is added 
as a covariate in the regression model.

[M4] Substituting measurement 
of treated individuals with a 
fixed value

Measurements affected by medication 
are substituted with a prespecified 
value.

[M5] Adding a constant value to
observations of treated 
individuals

A prespecified treatment effect is added 
to the observed measurements of treated 
individuals.

For exposures 
affected by 
medication

[M6] Regression calibration Measurement error methods are used. 
Based on the expected mean treatment 
effect and its standard deviation, the 
observed measurements affected by 
medication are corrected.
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Table 1. Overview of methods for Handling Measurements Affected by Medication use (continued)

Methods Description

For outcomes 
affected by 
medication

[M7] Inverse probability 
weighting

Treated individuals are removed from 
the analysis, and a reweighted analysis 
is performed where more weight is 
given to individuals who are untreated 
but have a similar profile as treated 
individuals

[M8] Quantile regression The method assumes that the untreated 
values of individuals on medication 
would have been above the median, 
conditional on covariates. The median 
outcome is modelled as a function of 
covariates.

[M9] Censored normal 
regression

Measurements of treated individuals are 
considered to be censored observations, 
where the untreated values are assumed 
to be at least as high as the observed 
values affected by treatment, or in more 
complex censoring mechanisms, at least 
as high as the observed values and a 
clinical guideline at which treatment is 
prescribed.

[M10] Heckman’s treatment 
model

Treatment assignment is assumed to be 
dependent on the untreated values, and 
the treatment results in a “structural 
shift” of the mean outcome.

Multiple 
imputation 
approaches

[M11] Predictive mean 
matching

A default multiple imputation option in 
commonly used statistical software. It 
assumes that the observations of treated 
individuals are missing at random.

[M12] Censored normal 
imputation

Censored normal regression is used in 
the imputation algorithm to predict the 
untreated values of those on treatment.

[M13] Heckman’s model 
imputation

Heckman’s model is used in the 
imputation algorithm to predict the 
untreated values of those on treatment

4
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3. Example: the Netherlands Epidemiology of Obesity Study

The Netherlands Epidemiology of Obesity (NEO) study is a population-based study 
designed to investigate pathways that lead to obesity-related diseases. From 2008 
to 2012, 6,671 individuals aged 45–65 years were included in the study. Participants 
brought all medication they were using to the NEO study site, which was coded using 
the Anatomical Therapeutic Chemical Classification (8). Details can be found elsewhere 
(9). The NEO study data includes several measurements affected by medication; for 
example, 31% of the participants used antihypertensive medication, and 15% used 
lipid-lowering medication.

To illustrate the effect of different methods for handling medication use, we use data 
collected at baseline and consider three research questions:

i)	 The effect of systolic blood pressure (SBP) on the intima-media thickness (IMT), 
where the exposure is affected by medication.

ii)	 The effect of BMI on SBP, where the outcome is affected by medication.
iii)	 The effect of BMI on IMT, adjusted for SBP, where the confounder is affected by 

medication.

All methods described in Table 1 were applied to estimate the regression models 
corresponding to the three research questions stated above. The analyses were adjusted 
for potential confounders: BMI, sex, age, education level, and smoking status.

In the Netherlands, physicians prescribe blood pressure medication generally aiming 
at values below 140 mmHg (10). Therefore, we replaced treated SBP values with 150 
mmHg in the substitution method [M4] and repeated it using 170 mmHg. For adding 
medication effect [M5], we followed previous literature using the values 10 mmHg and 
15 mmHg (4, 11). For regression calibration [M6], the assumed mean treatment effect 
was 15 mmHg; SD=10 mmHg.

For inverse probability weighting [M7], logistic regression was used to estimate the 
probability of medication use based on 21 covariates (see Appendix 2 for details). The 
same covariates were used in the probit part of Heckman’s treatment model [M10] and 
in the multiple imputation approaches [M11-M13]. For quantile regression [M8], the 
values of treated individuals were replaced by 150, 170, and 190 mmHg. For censored 
regression [M9] and imputation [M12], we used 140 mmHg and 160 mmHg as a clinical 
threshold for treatment prescription. For research questions i) and iii) the outcome 
variable IMT was added to the imputation models (12). Ten imputed datasets were 
created in each imputation.
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All analyses were performed using R version 3.6.1, with packages Survival v3.1-8 for 
(13) [M9], SampleSelection v1.2-6 (function treatreg) (14) for [M10], Quantreg v5.54 (15) 
for [M11], MICE v3.7.0 (16) with default options for [M11] and miceMNAR (17) for [M13]. 
R code for [M12] is provided in Appendix 2.

Figure 1 presents effect estimates from the different methods for the three research 
questions. The results show that different methods can lead to quite different effect 
estimates in all three considered situations. This signals that choosing an appropriate 
method for handling measurements affected by medication use is essential for the 
validity of study results.

4. Simulation studies

To understand the results of the NEO study and provide recommendations, we 
performed several so-called real-life simulation studies. To mimic the NEO study as 
closely as possible, we used the baseline variables of the NEO participants (BMI, sex, 
age education, and LDL cholesterol). We simulated SBP, antihypertensive medication 
prescription, and IMT values based on the other baseline variables directly from 
the NEO study. We generated different scenarios where blood pressure could be the 
exposure (scenario 1), the outcome (scenario 2), or the confounder (scenario 3). In each 
scenario, we considered the research questions i), ii), and iii) of Section 3, respectively.

4.1 Simulation setting 1: Medication effect on the exposure
In this simulation setting, we are interested in the effect of SBP on IMT, with SBP affected 
by antihypertensive drugs in some individuals. The untreated SBP depended linearly on 
BMI, sex (man=0, women=1), age, and education (low=0, high=1), with parameter values 
closely corresponding to observed values in the NEO study:

with the residual error  normally distributed with mean 0 and SD 15.9 mmHg. The 
probability of receiving medication depended on BMI, sex, education, and the untreated 
SBP values:
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In this way, approximately 28% of the participants were treated for high SBP. For a SBP of 150 

mmHg, the probability of receiving medication was approximately 11%, while for 180 mmHg, the 

probability was 88%. The Observed SBP was lowered when medication was used: 
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where the medication effect was generated from a normal distribution (30 mmHg, SD=10 mmHg). 

The outcome, IMT was generated as: 
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with 𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼 following a normal distribution (0, SD= 9.2 mm). The relation between medication use and 

IMT is confounded by sex and BMI. 

 

4.2 Simulation setting 2: Medication effect on the outcome 

In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken directly from 

the NEO data. Untreated SBP, medication prescription, and the observed SBP were generated in the 

same way as in Simulation setting 1. 

  

4.3 Simulation setting 3: Medication effect on a confounder 

Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. Untreated and 

observed SBP, medication prescription, and IMT were generated as in Simulation setting 1.  

 

4.4 Alternative simulation scenarios 

Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) The size of the 

mean treatment effect decreased from 30 mmHg to 10 mmHg. In this simulation, 16% of the treated 

individuals’ SBP increased after medication. ii) The standard deviation of the treatment effect 

In this way, approximately 28% of the participants were treated for high SBP. For a 
SBP of 150 mmHg, the probability of receiving medication was approximately 11%, 
while for 180 mmHg, the probability was 88%. The Observed SBP was lowered when 
medication was used:

4
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4.2 Simulation setting 2: Medication effect on the outcome 

In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken directly from 

the NEO data. Untreated SBP, medication prescription, and the observed SBP were generated in the 

same way as in Simulation setting 1. 

  

4.3 Simulation setting 3: Medication effect on a confounder 

Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. Untreated and 

observed SBP, medication prescription, and IMT were generated as in Simulation setting 1.  

 

4.4 Alternative simulation scenarios 

Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) The size of the 

mean treatment effect decreased from 30 mmHg to 10 mmHg. In this simulation, 16% of the treated 

individuals’ SBP increased after medication. ii) The standard deviation of the treatment effect 

where the medication effect was generated from a normal distribution (30 mmHg, SD=10 
mmHg). The outcome, IMT was generated as:
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4.2 Simulation setting 2: Medication effect on the outcome 

In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken directly from 

the NEO data. Untreated SBP, medication prescription, and the observed SBP were generated in the 

same way as in Simulation setting 1. 

  

4.3 Simulation setting 3: Medication effect on a confounder 

Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. Untreated and 

observed SBP, medication prescription, and IMT were generated as in Simulation setting 1.  

 

4.4 Alternative simulation scenarios 

Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) The size of the 

mean treatment effect decreased from 30 mmHg to 10 mmHg. In this simulation, 16% of the treated 
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4.2 Simulation setting 2: Medication effect on the outcome 

In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken directly from 

the NEO data. Untreated SBP, medication prescription, and the observed SBP were generated in the 

same way as in Simulation setting 1. 

  

4.3 Simulation setting 3: Medication effect on a confounder 

Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. Untreated and 

observed SBP, medication prescription, and IMT were generated as in Simulation setting 1.  

 

4.4 Alternative simulation scenarios 

Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) The size of the 

mean treatment effect decreased from 30 mmHg to 10 mmHg. In this simulation, 16% of the treated 

individuals’ SBP increased after medication. ii) The standard deviation of the treatment effect 

following a normal distribution (0, SD= 9.2 mm). The relation between 
medication use and IMT is confounded by sex and BMI.

4.2 Simulation setting 2: Medication effect on the outcome
In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken 
directly from the NEO data. Untreated SBP, medication prescription, and the observed 
SBP were generated in the same way as in Simulation setting 1.

4.3 Simulation setting 3: Medication effect on a confounder
Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. 
Untreated and observed SBP, medication prescription, and IMT were generated as in 
Simulation setting 1.

4.4 Alternative simulation scenarios
Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) 
The size of the mean treatment effect decreased from 30 mmHg to 10 mmHg. In this 
simulation, 16% of the treated individuals’ SBP increased after medication. ii) The 
standard deviation of the treatment effect changed from 10 mmHg to 1 mmHg. iii) The 
percentage of individuals on medication increased from approximately 28% to 50% by 
changing the intercept of the logistic model for medication use.

4.5 Analysis
All methods [M1-M13] were applied to the simulated data sets in the same way as 
described in Section 3, except we used 20 mmHg and 30 mmHg to add to the treated 
SBP in [M5]. Analyses were adjusted for BMI, sex, age, education level, and smoking 
status. Each simulation was repeated 1000 times. The estimates obtained from using 
untreated SBP values were considered a reference. Mean bias and mean squared error 
were calculated as an overall measure of performance.
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5. Results

5.1 Simulation setting 1: Medication effect on the exposure
Figure 2 (left) and Table 2 display the results of simulation setting 1. The results show 
that medication use cannot be ignored [M1]. Restricting the analysis to untreated 
individuals [M2] yielded estimates very close to the true values. In this setting, 
medication use was affected by the exposure and several covariates, in which case 
one should adjust for all variables both affecting medication use and the outcome to 
prevent selection bias (18). Furthermore, there was no effect modification, meaning 
that the effect of SBP on the outcome in the subgroup of untreated individuals is the 
same as in the total population.

Binary adjustment for medication use [M3] did not work well. In our simulation, 
the medication effect was generated with large variability. This random variability 
in medication effect attenuated the association between SBP and IMT in the treated 
individuals and led to a bias toward the null in the overall effect. The method 
worked better when the variance of the medication effect was smaller (Appendix 3). 
Substituting treated values [M4] did not perform well in any scenarios. The method 
cannot reconstruct the original distribution of the exposure and, therefore in general, 
will yield biased results.

Adding 30 mmHg [M5], which was the true mean medication effect in our simulations, 
did not perform well either. The reason is that the medication effect was generated with 
SD=10 mmHg. Therefore, by adding 30 mmHg to all treated SBP values, we reconstruct 
untreated SBP with random measurement error. Random measurement error in 
exposures will bias the estimates in a regression model (14). The method performed 
better when the random variation of the medication effect was smaller (Appendix 3). 
Regression calibration [M6] yielded unbiased results in all our simulations scenarios, 
assuming that true medication effect and standard deviation are known.

None of the multiple imputation methods [M11-M13] yielded valid results. A possible 
explanation is that the imputation models included the outcome, which does not 
correspond to how medication use was generated in our simulations.

5.2 Simulation setting 2: Medication effect on the outcome
Figure 2 (middle) and Table 2 show the results of Simulation setting 2. Ignoring 
medication use [M1], restricting to untreated subgroup [M2], and binary adjustment 
for medication use [M3] yielded biased results. As the outcome determines medication 
use directly, adjusting or selecting based on medication use [M2 & M3] implies selection 
based on outcome values, which will generally lead to selection bias (19, 20).
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1)) = 

− 16 + 0.01 𝐵𝐵𝐵𝐵𝐵𝐵 − 0.5 𝑆𝑆𝑆𝑆𝑆𝑆 − 0.3 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 0.1 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆 

 

In this way, approximately 28% of the participants were treated for high SBP. For a SBP of 150 

mmHg, the probability of receiving medication was approximately 11%, while for 180 mmHg, the 

probability was 88%. The Observed SBP was lowered when medication was used: 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆 – 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,   𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆,    𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, 

 

where the medication effect was generated from a normal distribution (30 mmHg, SD=10 mmHg). 

The outcome, IMT was generated as: 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = 31 + 0.2 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆 + 0.3 𝐵𝐵𝐵𝐵𝐵𝐵 + 2.8 𝑆𝑆𝑆𝑆𝑆𝑆 + 0.4 𝐴𝐴𝐴𝐴𝐴𝐴 + 0.8 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼, 

 

with 𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼 following a normal distribution (0, SD= 9.2 mm). The relation between medication use and 

IMT is confounded by sex and BMI. 

 

4.2 Simulation setting 2: Medication effect on the outcome 

In Simulation setting 2, we consider the effect of BMI on untreated SBP. BMI was taken directly from 

the NEO data. Untreated SBP, medication prescription, and the observed SBP were generated in the 

same way as in Simulation setting 1. 

  

4.3 Simulation setting 3: Medication effect on a confounder 

Here, we consider the effect of BMI on IMT measurement when adjusted for SBP. Untreated and 

observed SBP, medication prescription, and IMT were generated as in Simulation setting 1.  

 

4.4 Alternative simulation scenarios 

Simulation setting 1, 2, and 3 were repeated while changing three parameters: i) The size of the 

mean treatment effect decreased from 30 mmHg to 10 mmHg. In this simulation, 16% of the treated 

individuals’ SBP increased after medication. ii) The standard deviation of the treatment effect 4
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Substituting method [M4] using 150 mmHg led to a large underestimation. It performed 
better when 170 mmHg was used, which was slightly higher than the mean untreated 
SBP in the treated individuals (164 mmHg). Regardless of the substituting values, 
however, the method cannot reconstruct the original distribution of the outcome.

Adding 30 mmHg [M5] yielded unbiased results in all simulation settings (Appendix 
4). Unlike in Simulation setting 1, adding the true mean medication effect yields valid 
results irrespective of the amount of variance in the medication effect.

Inverse probability weighting [M7] resulted in a large bias. Quantile regression [M8] 
performed poorly for all replacement values. In our simulation setting, more than 50% 
were using antihypertensive drugs among individuals with very high BMI. Therefore, 
the median SBP conditional on high BMI was affected by the substituting values.

Censored normal regression [M9] performed reasonably well when the simple censoring 
method was used or when clinical guideline set to 140 mmHg was applied. However, in 
alternative scenarios with a smaller medication effect, the results were off (Appendix 
4). One reason is that the treated SBP was sometimes higher in these scenarios than the 
untreated SBP. This violates the assumption that untreated values are at least as high as 
untreated values (1). Heckman’s treatment model [M10] performed less well in our main 
scenario, which contrasts with the results reported by Spieker et al. (2, 7). Heckman’s 
treatment model assumes that the residual variances of two linear regression models, 
one for untreated individuals and the other for treated individuals, are equal. This 
assumption was violated in our main simulation scenario, as we simulated a medication 
effect with large random variability. This reflects the reported instability of Heckman’s 
treatment (21, 22). In the scenarios with a smaller variance in the medication effect, 
Heckman’s treatment model outperformed the censored regression (Appendix 4).

Multiple imputation with predictive mean matching [M11] resulted in bias. Results 
of multiple imputation with censored regression [M12] were only slightly biased, but 
for smaller medication effects, the method performed less well. Multiple imputation 
with Heckman’s model [M13] sometimes yielded a large underestimation of the effect.

5.3 Simulation setting 3: Medication effect in a confounder
Figure 2 (right) and Table 2 show the results of Simulation setting 3. Ignoring the 
medication effect [M1] resulted in bias. Restricting to untreated individuals [M2] 
performed well, which is the same as adjusting for confounding by restriction. The 
method will yield valid estimation under the conditions as in Simulation setting 1, 
that is, with proper adjustment for variables affecting both medication use and the 
outcome. Binary adjustment for medication use [M3] yielded results close to the truth. 
Substitution methods [M4] were biased, because the distribution of untreated SBP could 
not be correctly reconstructed.
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Adding 30 mmHg [M5] yielded a very small upward bias. This is due to the random 
measurement error introduced by the method. It has been known random measurement 
error in exposures attenuates the effect, while random measurement in confounders 
can lead to overestimation (23, 24).

Multiple imputation with censored regression [M12] yielded results close to the truth, 
especially when clinical guideline information was incorporated, and performed better 
than multiple imputation with Heckman’s model [M13]. All results were consistent in 
the alternative simulation scenarios (Appendix 5).

4

166454_Choi_BNW-def.indd   93166454_Choi_BNW-def.indd   93 09-05-2023   09:2109-05-2023   09:21



94

Chapter 4

Ta
bl

e 
2.

 M
ea

n 
Co

effi
ci

en
t, 

St
an

da
rd

 D
ev

ia
tio

n,
 B

ia
s,

 a
nd

 M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

) f
or

 T
hr

ee
 M

ai
n 

Si
m

ul
at

io
n 

Se
tt

in
gs

Va
ri

ab
le

 a
ff

ec
te

d 
by

 m
ed

ic
at

io
n 

us
e:

Ex
po

su
re

 a
ff

ec
te

d1
O

ut
co

m
e 

aff
ec

te
d2

Co
nf

ou
nd

er
 a

ff
ec

te
d3

M
et

ho
ds

M
ea

n
SD

Bi
as

M
SE

x1
00

0
M

ea
n

SD
Bi

as
M

SE
x1

0
M

ea
n

SD
Bi

as
M

SE
x1

00

A
ll 

un
tr

ea
te

d 
va

lu
es

 k
no

w
n 

(t
ru

e 
co

effi
ci

en
t)

0.
20

0
0.

00
6

0.
00

0
0.

00
4

0.
80

0
0.

05
3

0.
00

0
0.

02
8

0.
29

2
0.

02
5

0.
00

0
0.

06
3

G
en

er
ic

 m
et

ho
ds

[M
1]

 Ig
no

ri
ng

 m
ed

ic
at

io
n 

us
e

0.
16

5
0.

00
7

-0
.0

35
0.

12
7

0.
48

3
0.

04
8

-0
.3

17
1.

02
8

0.
37

2
0.

02
5

0.
08

0
0.

70
3

[M
2]

 R
es

tr
ic

ti
ng

 to
 

un
tr

ea
te

d 
in

di
vi

du
al

s
0.

20
0

0.
00

8
0.

00
0

0.
00

6
0.

56
4

0.
05

4
-0

.2
36

0.
58

6
0.

29
5

0.
03

0
0.

00
3

0.
09

1

[M
3]

 B
in

ar
y 

ad
ju

st
m

en
t f

or
 

m
ed

ic
at

io
n 

us
e

0.
18

2
0.

00
7

-0
.0

18
0.

03
7

0.
53

3
0.

04
8

-0
.2

67
0.

73
6

0.
30

2
0.

02
5

0.
01

0
0.

07
3

[M
4]

 S
ub

st
it

ut
in

g 
tr

ea
te

d 
va

lu
es

to
 1

50
 m

m
H

g
0.

22
3

0.
00

7
0.

02
3

0.
05

8
0.

53
2

0.
04

0
-0

.2
68

0.
73

4
0.

33
3

0.
02

6
0.

04
1

0.
23

6

to
 1

70
 m

m
H

g
0.

18
0

0.
00

6
-0

.0
20

0.
04

4
0.

74
3

0.
05

2
-0

.0
57

0.
06

0
0.

31
8

0.
02

5
0.

02
6

0.
13

0

[M
5]

 A
dd

in
g 

a 
co

ns
ta

nt
 v

al
ue

20
 m

m
H

g
0.

20
0

0.
00

6
0.

00
0

0.
00

4
0.

69
4

0.
05

1
-0

.1
06

0.
13

8
0.

31
3

0.
02

5
0.

02
1

0.
10

7

30
 m

m
H

g 
(t

ru
e 

va
lu

e)
0.

18
7

0.
00

6
-0

.0
13

0.
02

1
0.

80
0

0.
05

6
0.

00
0

0.
03

1
0.

30
2

0.
02

5
0.

01
0

0.
07

3

M
et

ho
ds

 fo
r 

ex
po

su
re

 a
ff

ec
te

d

[M
6]

 R
eg

re
ss

io
n 

ca
li

br
at

io
n

0.
19

9
0.

00
6

-0
.0

01
0.

00
4

-
-

-
-

-
-

-
-

M
et

ho
ds

 fo
r 

ou
tc

om
e 

aff
ec

te
d

[M
7]

 In
ve

rs
e 

pr
ob

ab
il

it
y 

w
ei

gh
ti

ng
-

-
-

-
0.

52
1

0.
05

6
-0

.2
79

0.
81

0
-

-
-

-

166454_Choi_BNW-def.indd   94166454_Choi_BNW-def.indd   94 09-05-2023   09:2109-05-2023   09:21



95

Handling measurements affected by medication use

Ta
bl

e 
2.

 M
ea

n 
Co

effi
ci

en
t, 

St
an

da
rd

 D
ev

ia
tio

n,
 B

ia
s,

 a
nd

 M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

) f
or

 T
hr

ee
 M

ai
n 

Si
m

ul
at

io
n 

Se
tt

in
gs

 (c
on

ti
nu

ed
)

Va
ri

ab
le

 a
ff

ec
te

d 
by

 m
ed

ic
at

io
n 

us
e:

Ex
po

su
re

 a
ff

ec
te

d1
O

ut
co

m
e 

aff
ec

te
d2

Co
nf

ou
nd

er
 a

ff
ec

te
d3

[M
8]

 Q
ua

nt
ile

 r
eg

re
ss

io
n

k 
= 

1 5
0 

m
m

H
g

-
-

-
-

0.
42

9
0.

03
7

-0
.3

71
1.

39
0

-
-

-
-

k 
= 

17
0 

m
m

H
g

-
-

-
-

0.
94

8
0.

07
0

0.
14

8
0.

26
8

-
-

-
-

k 
= 

1 9
0 

m
m

H
g

-
-

-
-

1.
05

2
0.

10
0

0.
25

2
0.

73
5

-
-

-
-

[M
9]

 C
en

so
re

d 
no

rm
al

 r
eg

re
ss

io
n

st
an

da
rd

 c
en

so
ri

ng
-

-
-

-
0.

74
9

0.
05

4
-0

.0
51

0.
05

5
-

-
-

-

w
it

h 
gu

id
el

in
e 

at
 1

40
 

m
m

H
g

-
-

-
-

0.
75

6
0.

05
4

-0
.0

44
0.

04
9

-
-

-
-

 w
it

h 
gu

id
el

in
e 

at
 1

60
 

m
m

H
g

-
-

-
-

0.
87

9
0.

06
3

0.
07

9
0.

10
2

-
-

-
-

[M
10

] H
ec

km
an

’s 
tr

ea
tm

en
t m

od
el

-
-

-
-

0.
66

0
0.

08
3

-0
.1

40
0.

26
5

-
-

-
-

M
ul

ti
pl

e 
im

pu
ta

ti
on

 m
et

ho
ds

[M
11

] P
re

di
ct

iv
e 

m
ea

n 
m

at
ch

in
g

0.
20

8
0.

00
8

0.
00

8
0.

01
3

0.
55

5
0.

05
6

-0
.2

45
0.

63
2

0.
33

2
0.

02
6

0.
04

0
0.

22
8

[M
12

] C
en

so
re

d 
no

rm
al

 r
eg

re
ss

io
n

st
an

da
rd

 c
en

so
ri

ng
0.

22
1

0.
00

7
0.

02
1

0.
04

9
0.

75
0

0.
05

5
-0

.0
50

0.
05

5
0.

28
6

0.
02

5
-0

.0
06

0.
06

6

w
it

h 
gu

id
el

in
e 

at
 1

40
 

m
m

H
g

0.
21

2
0.

00
7

0.
01

2
0.

01
9

0.
75

6
0.

05
5

-0
.0

44
0.

05
0

0.
29

1
0.

02
5

-0
.0

01
0.

06
3

[M
13

] H
ec

km
an

’s 
m

od
el

0.
18

2
0.

00
8

-0
.0

18
0.

03
9

0.
73

7
0.

12
7

-0
.0

63
0.

20
1

0.
31

1
0.

03
0

0.
01

9
0.

12
6

1 Sc
en

ar
io

 1
: E

ffe
ct

 o
f s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e 
on

 IM
T 

m
ea

su
re

m
en

t. 
2  S

ce
na

ri
o 

2:
 E

ffe
ct

 o
f B

M
I o

n 
sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e.
 3  S

ce
na

ri
o 

3:
 E

ffe
ct

 o
f B

M
I o

n 
IM

T 
m

ea
su

re
m

en
t, 

w
he

re
 s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e 
is

 o
ne

 o
f t

he
 c

on
fo

un
de

rs
. I

n 
al

l s
ce

na
ri

os
, s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e 
w

as
 th

e 
va

ri
ab

le
 a

ffe
ct

ed
 b

y 
m

ed
ic

at
io

n.

4

166454_Choi_BNW-def.indd   95166454_Choi_BNW-def.indd   95 09-05-2023   09:2109-05-2023   09:21



96

Chapter 4

Exposurea Outcomeb Confounderc

0.050 0.075 0.100 0.5 1.0 1.5 0.20 0.25 0.30 0.35

[M13] Heckman's model

with guideline at 140 mmHg 

standard censoring 

[M12] Censored normal regression

[M11] Predictive mean matching

Multiple imputation methods

[M10] Heckman's treatment model

with guideline at 160 mmHg

with guideline at 140 mmHg

standard censoring

[M9]   Censored normal regression

k = 190 mmHg

k = 170 mmHg

k = 150 mmHg

[M8]   Quantile regression

[M7]   Inverse probability weighting

Methods for the outcome

[M6]   Regression calibration

Methods for the exposure

15 mmHg

10 mmHg

[M5]   Adding a constant value

to 170 mmHg

to 150 mmHg

[M4]   Substituting treated values

[M3]   Binary adjustment for medication use

[M2]   Restricting to untreated individuals

[M1]   Ignoring medication use

Generic methods

Mean and 95% CI

Variable affected by medication use: 

Blood pressure (mmHg)IMT (mm) IMT (mm)

Figure 1

Figure 1. Regression coe�cients and their 95% con�dence interval estimated from the NEO data using 
the di�erent methods to handle medication e�ect. In all analyses, SBP was the variable a�ected by 
medication.  ªQuestion 1: e�ect of SBP (mmHg) on IMT (mm). bQuestion 2: e�ect of BMI (kg/m2) on SBP. 
CQuestion 3: e�ect of BMI on IMT where SBP is a confounder.  
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Exposurea Outcomeb Confounderc

0.17 0.20 0.23 0.54 0.80 1.07 0.17 0.29 0.42

[M13] Heckman's model

with guideline at 140 mmHg 

standard censoring 

[M12] Censored normal regression

[M11] Predictive mean matching

Multiple imputation methods

[M10] Heckman's treatment model

with guideline at 160 mmHg

with guideline at 140 mmHg

standard censoring

[M9]   Censored normal regression

k = 190 mmHg

k = 170 mmHg

k = 150 mmHg

[M8]   Quantile regression

[M7]   Inverse probability weighting

Methods for the outcome

[M6]   Regression calibration

Methods for the exposure

30 mmHg

20 mmHg

[M5]   Adding a constant value

to 170 mmHg

to 150 mmHg

[M4]   Substituting treated values

[M3]   Binary adjustment for medication use

[M2]   Restricting to untreated individuals

[M1]   Ignoring medication use

Genric methods

All untreated values known (true coefficient)

5th and 95th percentile

Variable affected by medication use: 

Blood pressure (mmHg)IMT (mm) IMT (mm)

Figure 2

 
Figure 2. Regression coe�cients and their 5th and 95th percentile estimated from simulation setting 1, 
2 and 3. Results are standardized based on the mean and standard deviation of the true coe�cients 
in each simulation setting. One grid unit represents 2.5 standard deviation. In all scenarios, SBP was 
the variable a�ected by medication use. aQuestion 1: e�ect of SBP (mmHg) on IMT (mm). bQuestion 2: 
e�ect of BMI (kg/m2) on SBP. cQuestion 3: e�ect of BMI on IMT where SBP is a confounder. 
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6. Guidance on how to optimally handle measurements affect-
ed by medication use

When interest is in the relation between the unaffected variables, ignoring medication 
use will in general yield biased results regardless of whether the exposure, outcome, 
or confounder is affected by medication. To obtain valid estimates, adequate methods 
for handling medication use are needed.

What to do when exposure is affected by medication?
·	 Performing analysis on the untreated individuals [M2] is a valid approach and will 

not lead to a large loss in power if the number of treated individuals is relatively 
low. However, there are two things to consider when applying this method: i) One 
should adjust for variables that both affect medication use and the outcome. ii) The 
result cannot be generalized to the total population if the effect of the exposure on 
the outcome is heterogeneous.

·	 Regression calibration [M6] may be used but requires an external estimate of the 
medication effect with its standard deviation.

What to do when the outcome is affected by medication?
·	 When an estimate of the mean medication effect is available, it could be added to 

the measurements of treated individuals. This method was also advocated by Tobin 
et al. (1). Like them, we also highly recommend performing sensitivity analysis 
with several different values to determine the stability of effect estimates.

·	 Quantile (median) regression [M8] can be used when less than 50% of the 
individuals are treated at any value of the exposure. The method does not require 
knowledge of the medication effect and can yield robust estimates but with lower 
power (6) than other methods.

·	 The advantage of censored normal regression [M9] or multiple imputation 
with censored normal regression [M12] is that no treatment effect needs to be 
specified. However, the method assumes that the observed values are lower than 
the untreated values, which could be violated when the treatment is ineffective. 
Furthermore, the method assumes non-informative censoring, which is likely to 
be violated in most clinical settings. In our simulation, we relaxed this assumption 
by incorporating knowledge from a clinical guideline into a censoring mechanism. 
Both in the study of Tobin et al. and in our main simulation study, the method was 
rather robust against the violation of the non-informative censoring assumption.

·	 Heckman’s treatment model works well only if the treatment effect has a small 
variance.
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What to do when the confounder is affected by medication?
·	 Restricting the analysis to untreated individuals [M2] is a valid approach with the 

same considerations as for the exposure affected by treatment.
·	 Using a binary indicator [M3] is a reasonable solution.
·	 Adding the true mean medication effect to the treated individuals [M5] performs 

relatively well.

7. Discussion

Our simulation study showed that the problem of variables affected by medication use 
should not be ignored, and proper methods are needed to avoid potential bias. Different 
methods are needed depending on whether the exposure, the outcome, or a confounder 
is affected by medication. Additional information, such as medication prescription 
patterns in clinical settings and the presence of effect heterogeneity, should also be 
considered carefully. Accordingly, all methods need to be used with caution.

One important consideration is the trade-off between the robustness of a method and 
the availability of external information. Methods that use external information on the 
medication effect, such as adding the mean medication effect or regression calibration, 
performed well when the external information was correct. However, such information 
is not always available. Other methods, such as censored regression, Heckman’s 
treatment model, or multiple imputation methods, do not require assumptions on the 
medication effect. However, these methods rely on other assumptions and can perform 
suboptimally if the assumptions are violated.

We aimed our simulation scenarios to resemble realistic clinical situations instead 
of creating an ideal scenario for a particular method. Likely, assumptions required 
for statistical methods will not all be met in clinical data. Therefore, knowing which 
methods are robust against violation of assumptions is relevant. We encourage 
researchers to perform real-life simulations more often, as we did when generating 
simulations based on the NEO study data.

One limitation of our study is that we did not consider situations where more than one 
variable is affected by medication. Additionally, our study focused on the methods 
applicable to cross-sectional analyses. Other approaches may be available; for example, 
when there is an interaction by medication (25), when effect modifiers are associated 
with medication use (7), in longitudinal settings (26), or in the presence of interaction 
or mediation by time-varying treatment (27). Furthermore, we focussed on linear 
regression models, but our recommendations for exposures and confounders will also 
hold for regression models with a binary or survival outcome.

4
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In summary, the optimal strategy for handling measurements affected by medication 
depends on whether the medication effect is on the exposure, the outcome, or a 
confounder. When deciding which strategy to use, we urge researchers to critically 
consider the processes of medication prescription and what information on medication 
effects is available.
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Appendix 1 

Detailed description of methods for handling medication effect

We consider the situation where a linear relationship between variables when no 
one is affected by medication is of interest and a variable is affected by medication 
use (e.g., blood pressure affected by antihypertensive drugs) for some individuals. 
For convenience, we assume people take medication when values are high, aiming 
to lower the values. Depending on the research question, the variable(s) affected by 
medication use can be the exposure, a confounder, or the outcome in an analysis. 
The different methods to handle medication use are :

NAÏVE METHODS
M1.	 Ignoring medication use
Measurements affected by medication are used in the analysis as they are observed.

M2.	 Selecting untreated individuals
Only the individuals who are not receiving medication are included in the analysis.

M3.	 Adjusting for medication use by adding a binary indicator variable to the 
regression model
An indicator for medication use is added as a covariate in the regression model.

M4.	 Substituting measurements of treated individuals with a fixed value
As Hunt et al. (1) suggested, measurements affected by medication are substituted with 
a pre-specified value. For example, when guidelines indicate that antihypertensive 
durgs should be prescribed for blood pressures over 140 mmHg, a value higher than 
140 mmHg can be used as a substitution.

M5.	 Adding a constant value to observations of treated individuals
When the effect of medication on the variable of interest is approximately known, 
the mean treatment effect can be added to the observed measurements of treated 
individuals (2, 3). For blood pressure, for example, some authors added 10 mmHg to the 
systolic blood pressure and 5 mmHg to the diastolic blood pressure when individuals are 
using antihypertensive medication (4, 5). These values were based on known average 
treatment effects from a clinical trial (6). However, this is not a set rule and could be 
adapted

METHODS FOR A MEDICATION EFFECT ON EXPOSURE
M6.	 Regression calibration
A vast amount of literature addresses measurement error in the covariates of a 
regression model (7, 8). A simple method is regression calibration, where the untreated 

4
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values of the treated individuals (thus, unobserved) replace the measurements affected 
by medication. The untreated values are estimated by the observed values and other 
covariates. The method needs an educated guess of the mean and standard deviation 
of the medication effect. These may be obtained from previous clinical trials or 
observational studies where the effect of treatment is studied.

For individuals on medication, their observed measurement X is replaced by 
λ(X−X)+ X + mean medication effect ; with X, the mean value of X for those using 
medication and λ, so-called reliability ratio (9). The reliability ratio is equal to 

95 

 

95 

 

A vast amount of literature addresses measurement error in the covariates of a regression model (7, 

8). A simple method is regression calibration, where the untreated values of the treated individuals 

(thus, unobserved) replace the measurements affected by medication. The untreated values are 

estimated by the observed values and other covariates. The method needs an educated guess of the 

mean and standard deviation of the medication effect. These may be obtained from previous clinical 

trials or observational studies where the effect of treatment is studied.  

 

For individuals on medication, their observed measurement X is replaced by 𝜆𝜆(𝑋𝑋 − 𝑋̅𝑋) +
𝑋̅𝑋 + mean medication effect; with 𝑋̅𝑋, the mean value of X for those using medication and λ, so-called 

reliability ratio (9). The reliability ratio is equal to 𝜆𝜆 = 1 − 𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚)2/𝑆𝑆𝑆𝑆(𝑋𝑋|𝑍𝑍)2; with SD(med), the 

standard deviation of the medication effect and SD(X|Z), the standard deviation of X for the 

medication users adjusted for Z, a set of other covariates in the regression model.  

  

METHODS FOR A MEDICATION EFFECT ON THE OUTCOME 

M7. Inverse probability weighting (Sampling weights)  

In this approach, treated individuals are removed from the analysis, and more weight is given to 

untreated individuals with a similar profile (10, 11). First, the probability of receiving medication for 

each individual is estimated by logistic regression. Then the untreated individuals are weighted by 

1/(1-probability to receive medication). This creates a pseudo-population with the same 

characteristics as the original population but where no one is treated. 

M8. Quantile regression 

White et al. (12) proposed to use quantile regression for outcomes affected by medication use. In 

this approach, the median outcome is modeled as a function of covariates. The method assumes the 

untreated values would have been above the median conditional on covariates for individuals on 

medication. The treated individuals' outcome values are replaced by k, that is, any value higher than 

the conditional median, after which a median regression model can be fitted. 

M9. Censored normal regression 

An alternative approach is to use methods for censored outcomes (2, 3), such as censored normal 

regression, which assumes a normal underlying distribution of the untreated outcome. This method 

is also known as tobit regression. Measurements of treated individuals are considered to be 

censored observations, where the untreated values are assumed to be at least as high as the 

observed values affected by treatment. An advantage of this method is that no assumptions on the 

treatment effect size are needed. However, non-informative censoring is assumed. The non-

; with SD(med), the standard deviation of the medication 
effect and SD(X|Z), the standard deviation of X for the medication users adjusted for Z, 
a set of other covariates in the regression model.

METHODS FOR A MEDICATION EFFECT ON THE OUTCOME
M7.	 Inverse probability weighting (Sampling weights)
In this approach, treated individuals are removed from the analysis, and more weight 
is given to untreated individuals with a similar profile (10, 11). First, the probability 
of receiving medication for each individual is estimated by logistic regression. Then 
the untreated individuals are weighted by 1/(1-probability to receive medication). This 
creates a pseudo-population with the same characteristics as the original population 
but where no one is treated.

M8.	 Quantile regression
White et al. (12) proposed to use quantile regression for outcomes affected by medication 
use. In this approach, the median outcome is modeled as a function of covariates. The 
method assumes the untreated values would have been above the median conditional 
on covariates for individuals on medication. The treated individuals’ outcome values 
are replaced by k, that is, any value higher than the conditional median, after which a 
median regression model can be fitted.

M9.	 Censored normal regression
An alternative approach is to use methods for censored outcomes (2, 3), such as censored 
normal regression, which assumes a normal underlying distribution of the untreated 
outcome. This method is also known as tobit regression. Measurements of treated 
individuals are considered to be censored observations, where the untreated values 
are assumed to be at least as high as the observed values affected by treatment. An 
advantage of this method is that no assumptions on the treatment effect size are needed. 
However, non-informative censoring is assumed. The non-informative censoring 
implies that conditional on covariates, the probability of receiving treatment does not 
depend on the untreated values. This assumption is likely to be invalid, as individuals 
with higher values are more likely to be treated. Previous simulations showed good 
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performance in realistic scenarios (2). However, recent literature showed that the 
method performed poorly under certain scenarios (13).

More complex censoring mechanisms can also be used to resemble realistic clinical 
settings. For example, when a clinical guideline suggests starting treatment for values 
above a certain threshold δ this information can be incorporated. In this case, the 
untreated values are assumed to be higher than the observed measurements and higher 
than the threshold. That is, for the treated observations, we assume that:

The threshold value of δ is obtained using external knowledge of the clinical setting.

M10. 	 Heckman’s treatment effects model
Heckman’s treatment effects model originates from economics and can account for 
non-random sample selection (13-15). Spieker et al. (13, 15) used this model for handling 
outcomes affected by medication use. This model assumes that treatment assignment 
depends on the untreated values where higher values are more likely to be treated and 
treatment results in a “structural shift” of the mean outcome. In the standard treatment 
effect model, this treatment effect does not depend on covariates (13), but it is possible 
to extend this model to incorporate effect modification (15).

Technically, the method assumes that there is an unobserved latent variable that 
determines treatment. If its value is above 0, treatment is prescribed. The latent variable 
is correlated with the original untreated values, so people with higher untreated values 
are more likely to be treated. Parameters are estimated by joint modeling of i) a linear 
regression model for the effect of exposure on the untreated blood pressure, ii) the same 
linear regression model for the effect of exposure on the treated blood pressure, with 
a lower constant term which reflects the effect of treatment and iii) a probit model for 
the probability of medication prescription (13, 15). Both the linear regression model 
and the probit model may depend on other covariates.

MULTIPLE IMPUTATION APPROACHES
Untreated values of individuals on treatment can be considered missing, and multiple 
imputation methods can be used to handle these missing values. The method can be 
applied in many different ways under different assumptions. We considered three 
multiple imputation approaches that are based on various assumptions.

M11.	 Multiple imputation with predictive mean matching via a linear regression 
model
For a numerical variable with missing values, the default multiple imputation option is 
chained equations with predictive mean matching via a linear regression model with 

4
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the main effects of the covariates. This imputation method is readily available in many 
standard statistical software packages. Note that the method assumes that the data is 
missing at random.

M12.	 Multiple imputation with censored normal regression
Instead of using linear regression as imputation model, censored normal regression 
may be used to predict missing values (16). This may be done under the different 
censoring mechanisms we discussed in [M9]. A regular censored normal regression can 
only be used when medication effect is on the outcome. However, multiple imputation 
with censored normal regression does not have this restriction.

M13.	 Multiple imputation with Heckman’s model
Galimard et al. developed an imputation approach for missing not at random data using 
Heckman’s model (17). Again, the multiple imputation approach can be used regardless 
of whether the outcome, exposure, or a confounder is affected.
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Appendix 2

Detailed application of the methods

1) Covariates used for inverse probability weighting [M7] and the imputation 
methods [M11-M13]
Sex, age, BMI, total body fat, waist circumference, hip circumference, education level, 
income, smoking status, ethnicity, alcohol intake, the total amount of leisure, glucose, 
insulin, glycated hemoglobulin A1C, triglycerides, HDL cholesterol, LDL cholesterol 
and medication use for glucose, lipid, and depression.

2) R syntax for censored normal imputation [M12]

99 
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Appendix 2. Detailed application of the methods 
 

1) Covariates used for inverse probability weighting [M7] and the imputation methods [M11-M13] 

Sex, age, BMI, total body fat, waist circumference, hip circumference, education level, income, 

smoking status, ethnicity, alcohol intake, the total amount of leisure, glucose, insulin, glycated 

hemoglobulin A1C, triglycerides, HDL cholesterol, LDL cholesterol and medication use for glucose, 

lipid, and depression.  

 

2) R syntax for censored normal imputation [M12] 
# Function to draw from a truncated normal distribution, range lwb-upb 

rnorm.trunc <- function(n,mean,sd, low=-Inf, upp=Inf) 

{U <- runif(n,0,1) 

qnorm(pnorm(low, mean = mean, sd = sd)+ 

        (pnorm(upp, mean = mean, sd = sd)-pnorm(low, mean = mean, sd = sd))*U, mean = mean, sd 

= sd) 

} 

 

# impute censored normal 

mice.impute.censnorm <- 

  function (y, ry, x, wy = NULL,ycens, ...)  

  { 

    #1 prepare data 

    wy <- !ry # wy= TRUE indicates that value should be imputed 

    x <-  as.matrix(x) 

    m <- ncol(x)+1 

     

    # 2. estimate coefficients censored model 

    fit <- survreg(Surv(ycens, ry) ~ x, dist='gaussian') 

    beta <- coefficients(fit) 

    sigma <- fit$scale 

    #    print(fit) 

     

    #3. generate new beta and sigma for bayesian drawings 

    df <- max(length(y[ry]) - ncol(x), 1) 

    rv <- t(chol((vcov(fit)[1:m,1:m]))) 

    beta.star <- beta + rv %*% rnorm(ncol(rv)) 

    sigma.star <- sqrt(df*sigma^2/rchisq(1, df)) 

     

    #4. Draw new observations 

    mean.star <- cbind(1,x[wy, , drop = FALSE]) %*% beta.star 

    vec<- rnorm.trunc(nrow(mean.star),mean.star,sd=sigma.star, low=ycens[wy]) 

    return(vec) 

  } 
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Abstract

Background	
Measurements affected by medication use, such as glucose levels alleviated after 
glucose-lowering medication, are commonly encountered in epidemiological studies. 
Potential methods for validly handling these measurements affected by medication 
use are incorporating the information of the mean medication effect and, sometimes, 
its standard deviation. In this study, we aim to describe changes in blood glucose and 
HbA1c levels after glucose-lowering medication prescription from routinely collected 
data.

Method
Participants from the Netherlands Epidemiology of Obesity (NEO) study who developed 
type 2 diabetes during the follow-up period were included. The patients were identified 
using general practitioners’ Electronic Patient Records (EPR). The EPRs were also used 
to obtain repeated measurements of blood glucose and HbA1c. We fitted linear mixed 
models with glucose and HbA1c as the outcomes. Time as a categorical variable was 
added as a fixed effect and random effect.

Results
In total, 127 incident diabetes cases were included in the analyses. In general, we 
observed a sharp increase in glucose and HbA1c levels shortly before the medication 
prescription. After the prescription, levels of both decreased. The lowest values were 
observed at 6-12 months after prescription, which were 1.76 mmol/L lower in glucose 
[CI: -2.54, -0.99] and 0.80% lower in HbA1c [CI: -1.61, -0.45] than 6-12 months before 
prescription. After one year, glucose and HbA1c levels increased, but even after two 
years, levels were significantly lower than before starting medication. Variation in 
medication effect between individuals was large.

Conclusion
The sharp increase in glucose and HbA1c shortly before medication prescription 
likely reflects random high values. Considering a longer period before the medication 
prescription is needed to obtain a better estimate of the medication effect. The 
estimated medication effects were smaller than observed in RCTs, yet on average, 
treatment remained effective for more than two years after prescription. Routinely 
collected data can provide insights into medication effects in the real-world which may 
not be easily obtained from RCTs.
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1. Introduction

Population-based observational studies are often used to provide insight into the 
real-world relationships between clinical measurements and the effects of various 
treatments. Population-based studies, by their nature, include a wide range of 
individuals with various clinical features. Thus, in a population-based cohort, it is 
common to encounter that some measurements are affected by medication use in 
a subgroup of the study population. Examples are cholesterol levels controlled by 
cholesterol-lowering medication or blood pressure levels lowered by antihypertensive 
medication.

Glucose-lowering medication is a commonly used treatment for (pre)diabetes to 
regulate blood glucose levels. It was recently reported that 10.2% of the US population 
had diabetes (1). From 2007 to 2010, 88% of people aged ≥ 20 years with diagnosed 
diabetes were reported to be treated with insulin and/or oral medications (2). In the 
database of the UK Biobank, a widely known prospective cohort recruited from the 
general UK population aged 40–69 years (3), approximately 4% reported using glucose-
lowering medication for type 2 diabetes (T2D) (4).

Medication use is not of concern when one is interested in measurements as observed 
regardless of whether medication is used. Sometimes, however, researchers may be 
interested in the measurements if untreated so that the estimated result would reflect 
the natural relationship between the variables of interest. However, the untreated 
values cannot be observed for those who are on medication. Consequently, appropriate 
methods to correctly adjust for medication effects would be needed.

Several studies have shown that effect estimates can be substantially biased if the 
measurements affected by medication use are handled with invalid methods (5-8). 
When the affected measurement is an outcome variable, adding an estimated mean 
medication effect to the treated values is an appropriate method (5, 7). When the 
exposure is affected, a valid method could be a regression calibration approach (7). 
To apply these methods, information on the mean (and standard deviation) of the 
medication effect, acquired from external information, is needed.

The mean medication effect and standard deviation may be acquired from randomized 
controlled trials (RCTs). Meta-analyses of RCTs on glucose-lowering medication showed 
that using a single type of medication reduced HbA1c levels by, on average, 0.66% to 
1.11% (values aligned to the assay used in the Diabetes Control and Complication Trial; 
DCCT), depending on the drug classes (9) or approximately 1% over the course of the 
studies (10, 11). Trials on glucose-lowering medication found an effect of 2-4 mmol/L 
lowering blood glucose on average (12-14).

5
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Although the effects of glucose-lowering medication are known from RCTs, these may 
not reflect how blood glucose and HbA1c levels change before and after medication 
prescription in real-world settings. Populations eligible for trials may not represent 
the population of interest in an observational cohort study. Eligibility criteria and 
the recruitment process of population-based cohort studies could be vastly different 
from RCTs, where study participants are usually recruited in a restrictive manner. 
Furthermore, randomization of treatment by no means reflects how medications are 
prescribed and administered in real-world settings. Additionally, follow-up in RCTs 
generally starts shortly before or at the start of the prescription, and the follow-up 
period is often less than one year (10), providing limited information on long-term 
medication effects. A possible approach to circumvent these issues is to estimate the 
medication effect directly from the population of interest in a real-world setting.

In this study, we explore how observational routinely collected data can be used to 
describe and estimate changes in blood glucose and HbA1c levels change over time 
before and after glucose-lowering medication prescription. Therefore, we use data 
from the Netherlands Epidemiology of Obesity (NEO) study and its follow-up data 
routinely collected by general practitioners. Using these data, we estimate the effect 
of medication use on blood glucose and HbA1c levels and discuss the results and the 
advantages and pitfalls of using observational routinely collected data to estimate the 
effect of glucose-lowering treatments.

2. Method

Study population
The Netherlands Epidemiology of Obesity (NEO) study is a population-based prospective 
cohort study designed to investigate pathways leading to obesity-related conditions and 
diseases. The study recruited men and women aged 45 to 65 years living in the greater 
area of Leiden, the Netherlands, with an oversampling of individuals with a BMI of 27 
kg/m2 or higher. Details of the design and inclusion criteria of the NEO study can be 
found elsewhere (15). The first wave of data collection started in September 2008 and 
was completed in September 2012.

Follow-up of the NEO study participants
During the follow-up of the NEO study participants, clinical endpoints were collected 
thorough electronic patient records (EPR) of general practitioners (GP). The EPR 
contains basic data of care provided and recorded by general practitioners, such as 
disease diagnosis, treatment prescription, test results, and referrals. The records are 
encoded with International Classification of Primary Care (ICPC) codes. Medication 
prescriptions are coded according to the Anatomical Therapeutic Chemical (ATC) 
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classification. We used the EPRs extracted in October 2017 - May 2018 to obtain repeated 
measurements of blood glucose and HbA1 and diagnosis of T2D of the NEO study 
participants.

From the EPR, those who were not diagnosed with T2D at the first NEO visit but 
were diagnosed during the follow-up (i.e., incident diabetes cases) were identified. 
Ascertainment of T2D was performed based on three components: 1) the presence 
of ICPC code T90 or T90.02, and/or 2) a prescription of glucose-lowering medication, 
defined by ATC codes starting with A10, and/or 3) the presence of keywords for glucose-
lowering medication, such as insulin, metformin, or any generic names in free text 
(complete list of keywords is provided in a Appendix 1). The general practitioner 
was contacted if it remained unclear whether a participant was correctly diagnosed 
with T2D. We then excluded participants i) whose medication prescription date was 
unknown, ii) who did not have blood test results for glucose or HbA1c, or iii) whose 
blood test results were only available more than 12 months before the first medication 
prescription date.

Statistical analysis
HbA1c levels were standardized to HbA1c DCCT (%) values. Biologically unrealistic 
low values (HbA1c < 4% or blood glucose=0 mmol/L) were set to be missing. Time was 
centralized to the first prescription date of the antidiabetic treatment (time 0: date of 
the first prescription).

Descriptive statistics of the participants’ characteristics at the NEO visit were presented 
as the mean and standard deviation for continuous variables and frequencies for 
categorical variables. To explore the change in glucose and HbA1c over time, we used 
spaghetti plots to display individual-level data and box plots to visualize all data.

We fitted linear mixed models to estimate changes in glucose and HbA1c levels over time 
after starting medication. Dependent variables were repeated blood glucose and HbA1c 
measurements. Time was added as a fixed effect with the following categorization: (up 
and until) 6 to (less than) 12 months before the first prescription/ 3 to 6 months before/ 
0 (including the date of a first prescription) to 3 months before/ (more than) 0 to (up an 
until) 3 months after/ 3 to 6 months after/ 6 to 12 months after/ 12 to 24 months after/ 
more than 24 months after. Categorization was done such that the mean value at each 
time category contrasts with the mean value at 6 to 12 months before the prescription. 
As random effects, we added a random person effect plus a random effect for different 
periods after medication prescription categorized as follows: (more than) 0 to 3 (up and 
until) months after the first prescription/ 3 to 6 months after/ 6 to 12 months after/ 12 to 24 
months after/ more than 24 months after. Figure 1 visualizes the timeline of the glucose 
and HBA1c measurements and the NEO visit.

5
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We further explored whether the mean changes in glucose and HbA1c after medication 
prescription were dependent on age, BMI, or sex. For this, we fitted three models, 
where we respectively added BMI at the NEO visit (continuous), sex, or age at the first 
prescription date (continuous) as fixed effects, with an interaction term with medication 
prescription.

Figure 1. Timeline of the glucose and HBA1c measurements and the NEO visit. Time 0 is the date 
of the first prescription. The date of the first NEO visit, which was before time 0, varies between 
individuals (for some individuals, it was less than 12 months before the first prescription). In the 
analyses, glucose and HbA1c measures from 12 months before the first prescription were used.

3. Results

In total, 6671 individuals were included in the NEO study. Among the participants 
who did not use any antidiabetic medication at the NEO visit, 297 participants were 
identified as incident type 2 diabetes cases from the EPR. Participants who did not 
have information on the medication prescription date (n=126), did not have laboratory 
measurements for glucose or HbA1c (n=41), or had only laboratory measurements more 
than 12 months before the medication prescription (n=3) were excluded. In total, 127 
individuals remained. The mean number of repeated measurements for blood glucose 
was 12 (IQR: [7, 20]; maximum: 105), and for HbA1c was eight (IQR: [5, 14]; maximum: 
58). Figure 2 illustrates a flow chart of the selection of the study sample.

Figure 2. Sample selection process and the number of individuals included in the analyses
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Table 1 summarizes the general characteristics of the 127 individuals measured at the 
first visit of the NEO study. Mean fasting glucose (7.0 mmol/L, SD: 1.8), HbA1c level (6.0 
%, SD: 0.9), and HOMA-IR (6.0, SD: 3.8) indicated that a large number of the included 
participants were already prediabetic, defined as fasting glucose level between 5.6–
6.9 mmol/L or HbA1c level between 5.7–6.4% (18), at the first NEO visit. The selected 
individuals also had high mean BMI (33.6 kg/m2, SD: 5.4), and many were hypertensive 
(50%). Time from first measurement to prescription varied largely between individuals 
(121 days, IQR: [7, 260]). Types of first-prescribed glucose-lowering medication are 
summarized in Table 2. Metformin was most often prescribed as the first glucose-
lowering medication.

Table 1. Participants’ characteristics at the first NEO visit. Mean and standard deviation was 
used for continuous variables [mean (sd)]. Frequency and percentage were used for categorical 
variables [N (%)]

Measurements at the NEO visit (N=127)

Sex

Male 65 (51.2%)

Age in years 56.0 (5.8)

Age in years at the date of prescription 60.6 (6.2)

Education

High 50 (39.4%)

Hypertension

Yes 63 (49.6%)

BMI (kg/m2) 33.6 (5.4)

Glucose (mmol/L) 7.0 (1.8)

Insulin (mU/L) 19.5 (11.8)

HOMA1-IR 6.0 (3.8)

HbA1c (%) 6.0 (0.9)

Total cholesterol (mmol/L) 5.7 (1.1)

Triglycerides (mmol/L) 1.9 (1.3)

HDL (mmol/L) 1.3 (0.3)

LDL (mmol/L) 3.6 (1.0)

Lipid-lowering drugs use

Yes 19 (15.0%)

Hypertension drugs use

Yes 54 (42.5%)

Time from NEO visit to prescription (days) 121 (IQR: 7, 260)

5
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Table 2. Types of medication prescribed at the first prescription date for 127 individuals

Prescribed medication types* Frequency

Gliclazide 2

Glimepiride 1

Insulin injection pen 4

Metformin 117

Sitagliptin 1

Tolbutamide 3

Others/ unknown 5

Total 133

* Six individuals have been prescribed two types of medication on their first prescription date.

Appendix 2 compares the characteristics of the individuals included (n=127) and 
excluded (n=170) from the analyses. Glucose and HbA1c levels were on average lower 
(0.4 mmol/L and 0.2%, respectively) in the excluded individuals compared to those 
included.

Figure 3 displays changes in blood glucose and HbA1c levels of 15 randomly chosen 
individuals, showing considerable variation in patterns over time. The observed overall 
means over time are visualized in Figure 4. The figures indicate that glucose and HbA1c 
levels peaked near the first medication prescription date.
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3a.

3b.

Figure 3. Spaghetti plots for glucose (a) and HbA1c (b) levels of 15 randomly chosen 
individuals

5
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4a.

4b.

Figure 4. The median and interquartile range of glucose (a) and HbA1c (b) measurements at each 
time on a monthly scale. Numbers in italic fonts represent the number of available observations 
at each point.
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Main analyses
Table 3 summarizes the results of the fitted linear mixed models. Figure 5 visualizes 
the estimated mean differences in glucose and HbA1c at each time category compared 
to the level at 6-12 months before the prescription and their confidence intervals.

For glucose, the mean level increased shortly before the first medication prescription; 
that is, the level at 0 to 3 months before prescription was 0.56 mmol/L higher [CI: 
0.03, 1.10] compared to 6-12 months before prescription. The mean level decreased 
in 0-3 months after prescription, which was 1.15 mmol/L lower [CI: -1.85, -0.46] than 
6-12 months before prescription. The decrease in glucose levels was the largest 6-12 
months after prescription; the levels were on average 1.76 mmol/L lower [CI: -2.54, -0.99] 
compared to 6-12 months before prescription. Glucose levels slightly increased after 
12 months and more than 24 months after prescription, the level was after 24 months 
1.42 mmol/L lower [CI: -2.18, -0,66] than 6-12 months before prescription. The effect 
of medication on glucose varied largely between the individuals, with the standard 
deviation equal to 2.30 mmol/L at 0-3 months after prescription and 3.09 mmol/L at more 
than 24 months after prescription. Between-individual before medication and within-
individual variability were also relatively large (SD: 3.23 mmol/L and 1.63 mmol/L, 
respectively).

The trend was similar for the HbA1c measurements. The mean level at 0-3 months before 
the prescription was 0.30% higher [CI: 0.10, 0.49] than 6-12 months before prescription. 
The HbA1c level decreased after the prescription. The largest decrease was shown at 3-6 
months after prescription, which was 0.80% lower than 6-12 months before prescription, 
[CI: -1.15, -0.45] and 6-12 months after prescription [CI: -1.16, -0.45]. The mean HbA1c 
level slightly increased at later time points. At more than 24 months after prescription, 
the mean level was 0.65% lower [CI: -1.00, -0.29] than 6-12 months before treatment. 
Variations in the prescription effect were large and tended to be larger when the follow-
up time increased.

5
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5a.

5b.

Figure 5. Change in glucose (a) and HbA1c (b) levels at each time point compared to the levels at 
6 to 12 months before medication use
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Table 3. Results of fitting linear mixed models where the outcome was glucose or the HbA1c 
measurement. Time as a categorical variable was added as a fixed effect, and medication use 
was added as a random effect

Glucose (mmol/L) HbA1c (%)

Fixed effects (estimate [CI])

Intercept (mean at time 0) 9.45 [8.71, 10.18] 7.36 [7.05, 7.67]

6 - 12m before prescription - -

3 - 6m before prescription -0.44 [-1.05, 0.18] -0.09 [-0.3, 0.12]

0 - 3m before prescription 0.56 [0.03, 1.10] 0.30 [0.10, 0.49]

0 - 3m after prescription -1.15 [-1.85, -0.46] -0.13 [-0.46, 0.21]

3 - 6m after prescription -1.71 [-2.54, -0.88] -0.80 [-1.15, -0.45]

6 - 12m after prescription -1.76 [-2.54, -0.99] -0.80 [-1.16, -0.45]

12 - 24m after prescription -1.59 [-2.34, -0.84] -0.67 [-1.01, -0.34]

More than 24m after prescription -1.42 [-2.18, -0.66] -0.65 [-1.00, -0.29]

Random effects (SD)

Between-person variation 3.23 1.45

Variation in the mean difference

at 0 - 3m after prescription 2.30 1.24

at 3 - 6m after prescription 3.30 1.52

at 6 -12m after prescription 3.06 1.61

at 12 - 24m after prescription 3.07 1.51

More than 24m after prescription 3.09 1.55

Within-person variation 1.63 0.53

Interaction effects
When adding BMI at the first visit and its interaction with medication use in the model, 
we observed that people with higher BMI at the NEO visit had a larger decrease in 
both glucose and HbA1c levels after medication prescription; 0.13 mmol/L [CI: 0.03; 
0.23] lower for glucose and 0.05% lower [CI: 0.00; 0.09] for HbA1c per 1kg/m2 increase in 
BMI. We did not observe an interaction effect between sex and medication use. When 
adding age at the first prescription date, we observed different directions of the effect 
for HbA1c and glucose; people who were older, on average, had a higher decrease in 
glucose but a smaller decrease in HbA1c after medication prescription.

5
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4. Discussion

This study explored changes in blood glucose and HbA1c levels before and after 
glucose-lowering medication prescription from observation study data. We used the 
data from the NEO study and the routinely collected electronic health record data of 
its participants. We observed that glucose and HbA1c levels sharply increased shortly 
before prescription. The decrease in the outcome levels was the largest at 6-12 months 
after prescription; on average, 1.76 mmol/L lower in glucose and 0.80% lower in HbA1c 
compared to 6-12 months before starting medication. After one year, glucose and HbA1c 
levels increased slightly. The levels of both, however, remained significantly lower 
than before medication use. Similar to previous studies, we observed considerable 
within-person variations (17). The effect of medication on glucose and HbA1c varied 
largely between the individuals. The effects of the medication were larger in people 
with higher BMI.

Our results showed that the estimated medication effect depends on the period 
before medication use is chosen as a reference. The effect of medication would seem 
larger when considering 0-3 months before medication use as the reference, because 
an increase in glucose and HbA1c levels was observed shortly before medication 
prescription. It is known that the variability of glucose is large (17), and it might have 
occurred that a randomly high measurement of blood glucose level led to a decision to 
prescribe medication for some patients. Only comparing the last measurement before 
the start of medication to the measurements after the start of medication could lead 
to a regression to the mean effect, i.e., the phenomenon that extreme observations 
are followed by observations closer to the mean (19, 20). Thus, to not overestimate the 
medication effect, it is important to consider trends in measurements over a longer 
period. In our study, HbA1c and glucose measurements in 6-12 months before the 
treatment seemed to better reflect the clinical condition of an individual compared 
to the measurements shortly before the medication prescription and thus more 
appropriate to be set as the reference.

Advantages and pitfalls of estimating the effect of medication use from observational 
data
The average reduction in glucose and HbA1c after the first prescription estimated in 
our study was somewhat lower than the medication effects obtained from RCTs, which 
varied between 2-4mmol/L lower values for glucose and 0.66-1.5% for HbA1c depending 
on medication types (10, 12-14). These discrepancies may reflect the differences between 
observational settings and RCTs.

Compared to RCTs, routinely collected data better reflects how the population of interest 
behaves in practice, which has a consequence on the effectiveness of medication in 
the real world. It is known that the adherence rate of the routinely administered oral 
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treatment for chronic diseases, such as diabetes, is low (25, 26), likely leading to a 
lower average reduction in glucose and HbA1c in this study than shown in RCTs. Such 
tendency was also, in part, reflected when looking at long-term effects. Although the 
mean levels also after the first year remained significantly below the levels before 
medication use, the levels increased after the first year of medication use. Between-
individual behavioral variations might have contributed to the large standard deviations 
in medication effect. As the variability in the real world is well-represented, routinely 
collected data may provide more realistic information about the medication effect in 
one’s population of interest.

However, several considerations should be made when utilizing routinely collected 
data. The main concern is that clinical decisions made in real-world settings are 
often not clearly known and the recording of data may have been done selectively or 
inaccurately. For instance, some individuals in our study had much more frequent 
measurements of glucose and HbA1c than others. This suggests that a selected group 
of T2D patients were much more closely monitored than others.

We also observed that many individuals did not have information on medication 
prescriptions even though they were identified as type 2 diabetes patients. This 
could indeed reflect the diagnosis and prescription process of the real world. In the 
Netherlands, for example, the initial action of a GP when a person is diagnosed with 
T2D is lifestyle intervention, where individuals are advised to change their behaviors 
by exercising or controlling their diet. The fact that the average glucose and HbA1c 
levels were lower in the individuals excluded from the analyses (see Appendix 2) may 
indicate that medication use was not needed for some of these individuals. On the 
other hand, it may be that medication prescriptions were not recorded and that the 
date of the first prescription was wrong or missing in some individuals. Discrepancies 
in medical recordings, such as omitting prescribed medication or wrongly recording 
administration timing, commonly occur (27, 28). It is challenging to know what appears 
in the data is whether a true reflection of the real world or an error in the recording 
process.

Insufficient contextual knowledge introduces challenges in knowing to what extent 
the effect estimates in our study can be generalized. Hence, more detailed knowledge 
of how GPs prescribed medication in routine care would greatly help in modelling 
medication effects and understanding the generalizability of the estimated effects.

Recommendations
The estimated changes in blood glucose and HbA1c levels after medication prescription 
can be used to account for medication use in population cohort studies when untreated 
glucose or HbA1c values are of interest. For instance, when glucose or HbA1c is used 
as the outcome in the analysis, excluding individuals on glucose-lowering medication 

5
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or adding an indicator variable for medication use would lead to selection bias (21-
23). Instead, one can add the values estimated from our study to the outcome values 
of the individuals using glucose-lowering mediation, an approach recommended in 
the literature (5, 7, 8). We suggest adding the estimated mean medication effects of 
this paper to the measurements of the individuals using medication based on their 
period of medication use. For example, for glucose, one can add 1.15 mmol/L to glucose 
measurements of the people who were on glucose-lowering medication for 0-3 months 
and 1.71 to those on medication for 3-6 months.

If glucose or HbA1c is the exposure or a confounding variable, one may either exclude 
individuals using glucose-lowering medication to estimate results among the non-
medication users. As an alternative, researchers may use regression calibration 
together with adding the mean effect of medication use (7, 24). For this, one can use 
the estimated mean changes and standard deviations in this paper.

The sample size was limited in our study; therefore, we did not further investigate 
medication effects in different subgroups. Also, the type of medication used was 
homogenous, where 90% of the first prescribed medication was metformin. Studies 
with different populations may show different trends in types of prescribed medication.

5. Conclusion

This study explored changes in blood glucose and HbA1c after glucose-lowering 
medication prescription using routinely collected electronic health records. We 
observed that mean glucose and HbA1c levels increased shortly before the first 
prescription, which may reflect random high values. The medication effects were 
largest at 6-12 months after the prescription and smaller than what was known from 
RCTs. Routinely collected observational data allow investigation of real-world effects 
of medication over a longer period which could not be easily obtained from RCTs. 
However, challenges remain as clinical decisions and data recording processes in real-
world settings are not always clearly known.
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Appendix 1

Keywords used for identifying prescription of glucose-lowering medication 

•	 Keywords used for insulin:

abasaglar; actraphane; actrapid; apidra; fiasp; humalog; humuline; insulatard; insulin; 
insuman; lantus; levemir; liprolog; mixtard; novomix; novorapid; protaphane; ryzodeg; 
semglee; suliqua; toujeo; tresiba; xultophy

•	 Keywords used for other type of glucose lowering medication:

acarbose; actos; aloglip; amaryl; amglidia; avandamet; avandia; bydureon; byetta; 
canaglif; competact; dapaglif; diamicron; diastabol; dulaglut; ebymect; edistride; 
efficib; empaglif; enyglid; eucreas; exenat; fertin; forxiga; galvus; glibencl; gliclaz; 
glidipion; glimepiride; glubrava; glucient; glucobay; glucovance; glustin; glyxambi; 
icandra; incresync; invokana; jalra; janumet; januvia; jardiance; jentadueto; 
komboglyze; linaglip; liraglut; metfocell; metform; metnova; miglitol; nateglin; 
novonorm; onglyza; ozempic; pioglit; prandin; qtern; repaglin; ristaben; ristfor; 
rosiglit; saxaglip; saxenda; semaglut; sitaglip; starlix; steglujan; synjardy; tandemact; 
tesavel; tolbutam; trajenta; trulicity; velmetia; victoza; vildaglip; vipdomet; vipidia; 
vokanamet; xelevia; xigduo; xiliarx; yalformet; zomarist
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Appendix 2

A comparison of characteristics at the first NEO visit between the individuals who 
were included and excluded from the analyses. Mean and standard deviation was 
used for continuous variables [mean (sd)]. Frequency and the percentage was used for 
categorical variables [N (%)].

Included participants (n=127) Excluded participants (n=170)

Sex

Male 65 (51.2%) 72 (42.4%)

Age in years 56.0 (5.8) 56.7 (5.5)

Education

High 50 (39.4%) 50 (29.4%)

Hypertension

Yes 63 (49.6%) 93 (54.7%)

BMI (kg/m2) 33.6 (5.4) 32.6 (4.7)

Glucose (mmol/L) 7.0 (1.8) 6.6 (1.2)

Insulin (mU/L) 19.5 (11.8) 20.8 (23.9)

HOMA1-IR 6.0 (3.8) 6.2 (8.4)

HbA1c (%) 6.0 (0.9) 5.8 (0.7)

Total cholesterol (mmol/L) 5.7 (1.1) 5.6 (1.2)

Triglycerides (mmol/L) 1.9 (1.3) 2.0 (1.2)

HDL (mmol/L) 1.3 (0.3) 1.2 (0.3)

LDL (mmol/L) 3.6 (1.0) 3.5 (1.1)

Lipid-lowering drugs use

Yes 19 (15.0%) 32 (18.8%)

Hypertension drugs use

Yes 54 (42.5%) 79 (46.5%)
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Abstract

Purpose
In epidemiological research, measurements affected by medication, e.g., blood pressure 
lowered by antihypertensives, are common. Different ways of handling medication are 
required depending on the research questions and whether the affected measurement 
is the exposure, the outcome, or a confounder. This study aimed to review the handling 
of medication use in observational research.

Methods
PubMed was searched for etiological studies published between 2015 to 2019 in fifteen 
high-ranked journals from cardiology, diabetes, and epidemiology. We selected studies 
that analyzed blood pressure, glucose, or lipid measurements (whether exposure, 
outcome, or confounder) by linear or logistic regression. Two reviewers independently 
recorded how medication use was handled and assessed whether the methods used 
were in accordance with the research aim. We reported the methods used per variable 
category (exposure, outcome, confounder).

Results
127 articles were included. Most studies did not perform any method to account for 
medication use (exposure 58%, outcome 53%, confounder 45% ). Restriction (exposure 
22%, outcome 23%, confounders 10%), or adjusting for medication use using a binary 
indicator were also used frequently (exposure: 18%, outcome: 19%, confounder: 45%). 
No advanced methods were applied. In 60% of studies, the methods’ validity could not 
be judged due to ambiguous reporting of the research aim. Invalid approaches were 
used in 28% of the studies, mostly when the affected variable was the outcome (36%).

Conclusion
Many studies ambiguously stated the research aim and used invalid methods to handle 
medication use. Researchers should consider a valid methodological approach based 
on their research question.

166454_Choi_BNW-def.indd   136166454_Choi_BNW-def.indd   136 09-05-2023   09:2109-05-2023   09:21



137

Reporting and handling of medication use in observational research: a literature reivew

Key points

•	 Methodological studies stressed the importance of adequately handling variables 
affected by medication use and showed that using invalid methods may lead to 
substantial bias. However, we found that many clinical studies did not consider 
this issue.

•	 A large proportion of the studies did not provide information on whether their 
interest was in the observed or the untreated underlying values. Without clear 
reporting on research aims, the interpretation of the results will be ambiguous.

•	 Methods that have been shown invalid, such as restricting a study population to 
non-medication users when the outcome variable was affected by medication use, 
are still often used.

•	 Justification on methods used for handling medication use was seldom given.

1. Introduction

Measurements affected by medication use are a commonly encountered feature in 
epidemiological research. For example, blood pressure is lowered by antihypertensive 
drugs or glucose levels by glucose-lowering drugs. Several methods for handling 
medication use have been proposed and compared (1-9). Studies have shown that 
different methods may lead to substantially different effect estimates (2-5, 8-10), and 
the optimal method depends on i) the research aim and ii) whether the medication 
effect is on the exposure, outcome, or a confounder (10). If the method used for handling 
medication effect does not match the research question, substantial bias can be 
introduced, and the interpretation of results will be unclear (11).

Thus, it is essential to carefully think about the research question when some individuals 
in a study population use medication that affects the variables in the dataset. In some 
situations, the research interest could be in the observed measurements, regardless 
of whether some individuals’ measurements are lowered due to antihypertensive 
medication use; for instance, when the effect of current blood pressure on the course 
of the disease for patients infected with Covid-19 is considered. In other cases, blood 
pressure values that would have been observed if the medication was not administered 
(sometimes referred to as underlying values (2, 12)) could be the primary interest, for 
example, if the effect of genetic factors on blood pressure is examined. In this instance, 
a method to correct for the medication effect should be used.

Handling medication use in epidemiological research has received attention, although 
this was mainly in methodological papers (1-9, 13, 14). There are studies that adopted 
some of the methods suggested (15, 16). However, a majority seems to overlook the 

6
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potential bias due to inadequate handling of medication use (4). To our knowledge, 
there has been no systematic review of how medication use is being handled in research 
practice. Therefore, In this literature review, we aim to investigate which methods are 
used in observational studies to handle measurements affected by medication, assess 
how often methods used correspond to the research aims stated in these studies, and 
evaluate the validity of the methods used.

2. Methods

Search strategy
Our search aimed to identify observational studies that included measurements that 
have been affected by medication use. The search covered three different journal fields; 
cardiology, diabetes, and epidemiology, thereby focusing on blood pressure, glucose, 
or lipid measurements. Five journals with the highest impact factors were selected for 
each journal field. Table 1 lists the selected journals.

To select the publications, we searched PubMed for studies published in the 15 selected 
journals between January 1st, 2015 to December 31st, 2019 that used logistic or linear 
regression. The full search strategies for this step can be found in Online supplementary 
material 1.

Table 1. List of selected journals and the number of articles returned from the PubMed search

Cardiology journals (n=258) Diabetes journals (n=331) Epidemiology journals 
(n=688)

Cardiovascular Research (4)
Circulation Research (7)
Circulation (89)
European Heart Journal (39)
Hypertension (119)

Diabetes (25)
Diabetes Care (169)
Diabetes, Obesity & 
Metabolism (35)
Diabetologia (84)
The Lancet Diabetes & 
Endocrinology (18)

American Journal of Epi. 
(212)
Epidemiology (108)
European Journal of Epi. (62)
International Journal of Epi. 
(228)
Journal of Clinical Epi. (78)

The full-text of the identified papers was screened, and papers that met the following 
inclusion criteria were selected for review: 1) observational studies in adults, 2) sample 
size larger than 100, 3) aimed to answer etiological questions, 4) performed linear or 
logistic regression (including linear mixed modelling), and 5) inclusion of any of the 
following variables: blood pressure-related measurements (e.g., systolic or diastolic 
blood pressure, pulse wave velocity), glucose-related measurements (e.g., glucose 
level, insulin level, HbA1c, HOMA index) and lipid levels (e.g., cholesterol measures, 
triglycerides). For studies on type 1 diabetes patients, glucose measurements were 
not considered because there is no variation in glucose medication use in these 
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patients as insulin treatment is mandatory and unavoidable. If blood pressure related 
measurements or lipid measurements were used, these studies could be included.

Among the studies that met the inclusion criteria, we selected a maximum of 50 articles 
to be reviewed from each field. If a specific journal (five per field) contained less than 
ten articles meeting the inclusion criteria, all articles from that journal were selected 
to be reviewed. The rest of the studies were randomly selected until the sample size per 
journal field met 50 or no more articles were left to be selected. If two or more studies 
used the same study population within a field, the latest publication was considered.

Data extraction
Data extraction for all 127 papers was independently performed by two reviewers, 
JC (a Ph.D. candidate in clinical epidemiology) and SlC (a senior statistician and 
epidemiologist). Disagreements between the two reviewers were resolved during a 
consensus meeting involving the third reviewer, OMD (a senior epidemiologist and 
endocrinologist). For each paper, the following general information was extracted:

i)	 Authors, journal, name of the study/cohort/database
ii)	 Study population and sample size
iii)	 Research question with exposure(s) and outcome of interest
iv)	 Whether linear, logistic regression, or both were performed

For information related to medication use, we extracted the following:

v)	 Measurements that may have been affected by medication use (blood pressure, 
glucose, and/or lipid). ‘Medication use’ was defined as the use of drugs that aim to 
lower blood pressure, glucose, or lipid level.

vi)	 Whether the measurement potentially affected by medication was an exposure, 
an outcome, or a confounder. We used the following rules:
a.	 When the measurement was mentioned as an ‘independent variable’ and the 

effect of the variable on the outcome was specifically discussed in the paper, 
it was coded as an exposure.

b.	 In Mendelian randomization studies, the exposures in the research questions 
are the outcomes in the corresponding regression analyses. In this case, we 
coded the variable as an outcome.

vii)	 Percentage of individuals using medication
viii)	Whether details on medication information were given (e.g., type and dose of 

medication, duration of use)
ix)	 Methods used for handling medication use for each affected variable

a.	 If different variables had the same role and were handled by the same method, 
the method was recorded once (e.g., if a study had blood pressure and glucose 

6
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level as confounding variables and medication use for both variables was 
handled by a restriction method, the method was recorded once).

b.	 When multiple models were used to evaluate the same relationship, the most 
complex model was considered (e.g., when both unadjusted and adjusted 
analyses were performed to estimate the relationship between the same 
variables, the adjusted analysis was considered).

x)	 Justification for the chosen method
xi)	 Sensitivity analyses for handling medication use

Assessment of research aims and the validity of the methods used
We evaluated the validity of methods used for handling medication use based on the 
research aims of the study and which variable was affected by medication use. Figure 
1 displays our evaluation process. In detail, the following steps were taken.

Step I: For each variable affected by medication use, we first evaluated the research aim 
as stated by the authors, which was categorized as follows:
1)	 The interest is in the observed values as they are.
2)	 The interest is in the values that would be observed if no medication was 

administered (we refer to this as ‘values if untreated’ or ‘untreated values’ in the 
further text).

3)	 The interest is ambiguously reported.

Step II: The validity of the method used for each variable was evaluated in relationship 
to the research aim and whether the affected variable was an exposure, an outcome, 
or a confounder. The assessment of whether the methods used are in general valid or 
invalid was based on recommendations from previous methodological studies (2-6, 
10, 11, 17-26). For example, restricting the study population to non-medication users 
was considered valid when the exposure or a confounder is affected by medication use 
regardless of whether the research aim is in the values as observed or if untreated. 
This is because the restriction on a proxy variable of the exposure or a confounder 
(medication use, in this case) in general would lead to a selection of a subgroup without 
introducing selection bias (21). Contrarily, the restriction method was considered 
invalid regardless of the research aim when the outcome is affected by medication 
use. Selection on medication use, an event that occurred after the follow-up started 
and related to the outcome, would introduce selection bias (2, 21, 22, 24-26). A complete 
discussion of all possible options can be found in the appendix.
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3. Results

Our search strategy in PubMed retrieved 258 articles in cardiology journals, 331 articles 
in diabetes journals, and 688 articles in epidemiology journals (see Table 1 for the 
number of papers and Figure 2 for the flowchart). After the screening process, 49 
articles in the cardiology field, 73 articles in the diabetes field, and 28 articles in the 
epidemiology field remained. For the diabetes field, a subset of 50 articles was selected, 
as described in the methods section. We included 49 articles from cardiology journals, 
50 articles from diabetes journals, and 28 articles from epidemiology journals for a 
total of 127 studies.
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Figure 2. Flow chart of the literature search and screening process 

  Journal field 
Excluded the following categories: Cardiology Diabetes Epidemiology 
Animal study 5 1 0 
Cohort profile 0 0 1 
Descriptive study 10 28 69 
Diagnostic study 8 3 0 
Different main analysis performed* 14 31 46 
Interested in medication use itself 0 5 0 
Letter 2 2 9 
Methodological study (or practice) 4 0 132 
No blood pressure, glucose, or lipid   
     measurements used in the analysis 

78 60 278 

Non-adult participants 18 35 79 
Only included patients whose    
     treatment cannot be withheld 0 2 0 

Prediction modelling 14 12 8 
Retracted 1 0 0 
Review/ Meta-analysis 2 5 23 
Sample size =< 100 6 12 1 
Trial (non-observational stage) 27 49 10 
Same study participants were used as 
another later published study 

20 15 4 

*Different main analyses includes: survival analysis, mediation analysis, 
interaction analysis, time-varying analysis, trajectory analysis and cluster 
analysis. 

Select a maximum of 50 articles for each journal field for review. If a journal contained less than ten 
articles meeting the inclusion criteria, all articles from that journal were selected to be reviewed. The 
rest of the studies were randomly selected until the sample size per journal field met 50 or no more 
articles were left to be selected. 
Cardiology journals (n=49) Diabetes journals (n=50) Epidemiology journals (28) 
Cardiovascular Research (0) Diabetes (4) American Journal of Epi. (4) 
Circulation (10) Diabetes Care (28) Epidemiology (7) 
Circulation Research (2) Diabetes, Obesity & Metabolism (3) European Journal of Epi. (4) 
European Heart Journal (3) Diabetologia (13) International Journal of Epi. (12) 
Hypertension (34) Lancet Diabetes & Endocrinology (2) Journal of Clinical Epi. (1) 

Search return from PubMed 
Cardiology journals: 258 
Diabetes journals: 331 
Epidemiology journals: 688 

Remaining articles 
Cardiology journals: 49 
Diabetes journals: 71 
Epidemiology journals: 28 

Figure 2. Flow chart of the literature search and screening process
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Summaries of reviewed articles
Online supplementary material 2 displays the complete list of the reviewed articles 
and extracted information from each article. Table 2 provides a summary of the 
included studies. Overall, the measurement affected by medication use was most 
often a confounding variable (In 56% of the studies), followed by an outcome (42%) 
and/or an exposure (35%). In the epidemiology journals, affected outcomes were 
more often present (64%). Sample sizes varied largely between the reviewed articles 
and were generally larger in the epidemiology journals. Included studies performed 
linear regression analysis (59%), logistic regression analysis (40%), and/or linear mixed 
modelling (9%).

Overall, a majority of the studies did not report the percentage of medication users 
(47%) or only reported medication use for part of the variables affected (14%). Among 
the studies which fully or partially provided information on the percentage of 
medication users, the median percentage of medication users was 32%. The percentage 
of medication users ranged from 0 to 100, because some studies restricted their study 
population to medication users or non-users. Details of medication use, such as dose 
or prescription frequency, were seldom given (7%).

6
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Table 2. Summaries of reviewed articles

Journal field

All journals
(n=127)

Cardiology
(n=49)

Diabetes
(n=50)

Epidemiology
(n=28)

Affected variables in the analysis* [n(%)]

Exposure 45 (35.4) 21 (42.9) 20 (40.0) 4 (14.3)

Outcome 53 (41.7) 17 (34.7) 18 (36.0) 18 (64.3)

Confounder 71 (55.9) 29 (59.2) 33 (66.0) 9 (32.1)

Sample size [Median 
[min, max]]

1540 1746 1147 2514

[122, 615035] [122, 615035] [122, 222773] [277, 486936]

Type of analysis* [n(%)]

Linear regression 75 (59.1) 29 (59.2) 26 (52.0) 20 (71.4)

Logistic regression 51 (40.2) 19 (38.8) 25 (50.0) 7 (25.0)

(Generalized) Linear 
mixed model

12 (9.4) 6 (12.2) 4 (8.0) 2 (7.1)

Percentage of medication use

Reported or traceable 
for all variables

49 (38.6) 24 (49.0) 19 (38.0) 6 (21.4)

Reported for some 
variables

18 (14.2) 6 (12.2) 9 (18.0) 3 (10.7)

Not reported 60 (47.2) 19 (38.8) 22 (44.0) 19 (67.9)

Medication user 
percentage among the 
reported [median [min, 
max]]

32.0
[0, 100]

22.0
[0, 91]

54.6
[0, 100]

11.7
[1.3, 59]

Details of medication 
information reported

9 (7.1) 6 (12.2) 2 (4.0) 1 (3.6)

*Exceed 100% when added up because some studies performed more than one analysis.

Methods used for handling medication use
Table 3 summarizes the methods used for handling measurements affected by 
medication use. Lists of the studies using each method can be found in Online 
supplementary material 3. A large number of studies did not use any method specifically 
for handling medication use (58% when medication use was in the exposure, 53% 
when in the outcome, and 45% when in a confounder). Restricting the analysis to a 
certain subpopulation was frequently used (for exposure: 22%, outcome: 23%, and 
confounder: 10%). Some studies restricted their study population to medication users 
or non-medication users. Others restricted the analyses to subgroups that were partly 
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defined based on medication use, such as individuals without hypertension, defined 
as people not using antihypertensive drugs and having normal blood pressure levels.

A binary covariate in a regression model was the next most used method for exposures 
(18%) and outcomes (19%). For confounders, it was one of the most used methods 
(45%). The binary variable used for the adjustment was often ‘using medication (yes/
no)’. However, one study adjusted for ‘using medication or having high value (yes/
no)’ (e.g., hypertension vs. no hypertension, while defining hypertension as taking 
antihypertensive drugs or having blood pressure above a certain level).

Adding an estimate of the mean medication effect to treated values was adopted only in 
four studies. One study used this method for handling medication use in the exposure. 
No study used any of the more advanced methods suggested in the literature, such as 
quantile regression (3), censored normal regression (2), or Heckman’s treatment model 
(4, 5).

In total, only ten studies (8%) explicitly provided justification for the chosen methods 
for handling medication use. Given justifications, however, may not reflect the validity 
of the methods used. Sensitivity analyses were performed in 21 studies (16%) in total. A 
list of methods used in the sensitivity analyses can be found in Online supplementary 
material.

6
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Assessment of research aim-analysis match and validity of the methods used
The results of the assessment of the methods used for handling medication use are 
summarized in Table 4. In a majority of the studies, it was unclear whether the research 
interest was in the values as observed or in untreated values. Thus, the validity of 
the used methods often could not be judged properly (exposure: 56%, outcome: 36%, 
confounder: 45%). Overall, no noticeable difference in performance was observed 
across the journal fields.

In all studies where the interest explicitly was in observed exposure values, medication 
use was also ignored in the analyses. When interest was in untreated exposure values 
(11 analyses), most often, the analysis was restricted to untreated individuals, which is 
considered in general a valid approach. However, in 5/11 analyses, invalid approaches 
were used; such as ignoring the treatment, adjusting for medication use as binary 
covariates, or adding a constant value. In 3/28 analyses where the research aim for the 
exposure variable was ambiguous, the study population was restricted to untreated 
individuals, which we considered a valid approach for all research aims.

When the outcome was an affected variable, we found only three out of 53 analyses 
that were undoubtedly interested in the values as observed. Among these, two analyses 
ignored medication use accordingly. However, one used a valid method which is 
adjusting for medication use as a binary covariate. More often, the studies were found 
to be interested in the outcome values if untreated. However, in most cases (19/21 
analyses), invalid approaches, such as restricting the study population or adjusting 
using a binary covariate, were used. When the research aim regarding the outcome 
variable was ambiguous, the affected outcome was often handled with methods that 
are prone to yield biased causal effects regardless of the research aim; for example, 
restricting the study population in a cross-sectional setting or adjusting using a binary 
covariate.

For confounders affected, only in eight out of 71 cases, it was clear whether interest 
was in observed values (n=4) or untreated values (n=4). Valid methods were used in 
these cases. When the aim was unclear, often (31/63) medication use was added as 
an additional covariate to the regression model. This approach is considered valid 
both when interest is in observed values (where medication use could be an extra 
confounder) and also when interest is in unaffected values (in which case adding both 
medication use and the observed value will account for most of the confounding of the 
underlying unaffected values).
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4. Discussion

In this review, we empirically assessed how variables affected by medication use are 
handled in observational etiological studies. Our review showed that a large proportion 
of the studies did not provide clear research aims stating whether their interest was in 
the observed or the untreated underlying values and methods in general considered 
invalid, such as restricting the study population to non-medication users when the 
outcome is affected by medication use, were often used. Notably, a justification for the 
chosen method was rarely given, and the number of medication users was not reported 
or insufficiently reported in more than half of the studies. These findings suggest that 
there is low awareness of potential bias by medication use.

The median percentage of medication users in our review was 31%, in which case 
the estimated effect may differ considerably depending on whether the interest is in 
the observed values or the underlying unaffected values. Even when the number of 
medication users is low, differences can still be substantial if the effect of the medication 
is large. More information on the direction and magnitude of bias when interest is 
in the underlying unaffected values can be found in several methodological studies 
(2, 3, 10). Factors that may play a role include but are not limited to, different types 
of medication and doses, heterogeneity of medication effect across the individuals, 
medication effect being cancelled/ enhanced by other interventions, or time-varying 
aspects of medication use. Such information heavily relies on content knowledge. 
Thus, we urge clinical researchers to provide and discuss relevant information on the 
medication used in their study population.

We found that invalid methods were especially prevalent when the affected variable 
was the outcome. Often the analysis was performed conditional on medication use. 
Although the bias due to selecting events related to the outcome has been discussed 
extensively in the literature (2, 21, 22, 24-26), it seemed that such consideration was 
often not taken into account. We also observed that the research aim was most often 
ambiguously reported for confounding variables affected by medication use. This is not 
surprising since confounders are mostly not the variables of main interests. However, 
inadequately handling medication use in confounding variables can lead to bias (10).

We noticed that recommendations in methodological papers were seldom applied. For 
example, Tobin et al. (2) recommended adding a constant value to measurements of 
treated values of an outcome variable when interest is in the underlying unaffected 
values and stressed the necessity of sensitivity analysis to determine the robustness of 
the particular choice of constant. In our review, none of the four studies which applied 
this method tested the robustness of their choice of constant. Additionally, no study 
was found to use any of the more advanced statistical methods previously suggested 
(2, 3, 5, 10). This may call for methodological papers in clinical journals that provide 
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practical guidelines and tutorials on when and how to apply corrections for medication 
use in applied clinical research.

We only included studies that used linear regression, logistic regression, and mixed 
linear models. However, potential bias due to measurements affected by medication 
use is present in any study where a mixed study population of medication users and 
non-users exists (14). In complex settings, such as when medication use is an effect 
modifier or a mediator or when there is time-varying medication use, extra caution 
would be needed (1, 13). Handling medication use also plays a role when continuous 
variables are being categorized. For example, when categorizing glucose values as 
high versus normal, the distinction could be made based on untreated values, where 
patients on medication are classified as high glucose even if their glucose levels are 
regulated. These approaches would be considered valid once medication users are 
classified correctly; however, the power may be lower (3, 27, 28).

5. Conclusion

Our review has shown that potential bias due to medication use is often overlooked 
and that decisions on handling medication use are frequently made without valid 
justification. We urge researchers to provide clear information on medication use, 
consciously decide on a method for handling medication use based on their research 
question, and communicate the rationale behind their decision. 6
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Appendix

Details on the assessment of the validity of used methods.

1.	 When the affected variable is an exposure
1.1.	 When the interest is in the values as observed

1.1.1.	Ignoring medication use is valid.
1.1.2.	Restricting the study population based on medication use is considered 

valid. The method can yield unbiased estimates in the selected 
subpopulation, given that variables affecting both medication use and 
the outcome are correctly adjusted (1, 2). Results cannot be extrapolated 
to the excluded population when effect heterogeneity is present.

1.1.3.	Adjusting for medication use as a binary covariate is considered valid, 
as the medication use occurs before the exposure variable is measured. 
Adjusting for medication use may be needed if it also affects the outcome, 
in which case medication use is a confounder (3).

1.1.4.	Adding a constant value (the estimated mean medication effect) to 
the treated measurements) is considered invalid. This is because the 
method does not account for the variability in medication effect between 
medication users (2, 4).

1.2.	 When the interest is in the values if untreated
1.2.1.	Ignoring medication use is invalid.
1.2.2.	Restricting the study population based on medication use is considered 

valid. The method will yield a valid estimate of the effect of the exposure 
on the outcome in the subpopulation under the same considerations as 
1.1.2.

1.2.3.	Adjusting for medication use as a binary covariate is considered invalid. 
The effect of the medication is ,in general, not the same in all individuals. 
Therefore, applying this method will likely lead to an underestimation 
of the association between the exposure and the outcome due to the fact 
that the medication effect on the exposure level cannot be completely 
accounted for (2, 4).

1.2.4.	Adding a constant value to the treatment is considered invalid, because 
the method does not account for the variability in medication effect 
between medication users. This phenomenon is described in literature 
on measurement error (see reference) (2, 4).

1.3.	 When the interest is ambiguous
1.3.1.	The validity of ignoring medication use cannot be judged.
1.3.2.	Restricting the study population based on medication use is considered 

valid, because it is a valid approach in either case where the research aim 
is in the values as observed or the values if untreated.

1.3.3.	The validity of adjustment for a binary indicator cannot be judged.
1.3.4.	Adding a constant value to the treated measurements is invalid.
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1.	
2.	 When the affected variable is an outcome

2.1.	 When the interest is in the values as observed
2.1.1.	Ignoring medication use is valid.
2.1.2.	Restricting the study population based on medication use is invalid, 

because selection on intercurrent events may lead to selection bias (1, 
5, 6).

2.1.3.	Adjusting for medication use with a binary indicator is considered 
invalid. The method may lead to selection bias (collider bias) due to 
indirect conditioning on intercurrent events and the outcome variable 
(1, 5, 6).

2.1.4.	Adding a constant value is invalid.
2.2.	 When the interest is in the values, if untreated

2.2.1.	Ignoring medication use is invalid.
2.2.2.	Restricting the study population based on medication use is invalid as 

the method introduces selection bias. (1, 7-9)
2.2.3.	Adjusting for medication use is invalid as it introduces collider bias (5, 8).
2.2.4.	Adding a constant value to the treated measurement is a valid approach 

(2, 8, 10, 11).
2.3.	  When the interest is ambiguous

2.3.1.	The validity of ignoring medication use cannot be judged.
2.3.2.	Restricting the study population based on medication use is invalid, 

because it is invalid for both when interest was in the values as observed 
or the values if untreated values.

2.3.3.	Adjusting for medication use is invalid when interest was in observed 
and in untreated values.

2.3.4.	The validity of adding a constant value to the treated measurement 
cannot be judged. 

3.	 When the affected variable is a confounder
3.1.	 When the interest is in the values as observed

3.1.1.	Ignoring medication use is valid.
3.1.2.	Restricting the study population based on medication use is considered 

valid under the same considerations as 1.1.2. The method serves as 
accounting for confounding by restriction (5).

3.1.3.	Adjusting for medication use is valid. The method is comparable to 
adjusting for a proxy confounder (5, 12).

3.1.4.	Adding a constant value to treated measurements is considered invalid.
3.2.	 When the interest is in the values, if untreated

3.2.1.	Ignoring medication use is invalid.

6
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3.2.2.	Restricting the study population based on medication use is valid for the 
same reason as 3.1.2.

3.2.3.	Adjusting for medication use is valid for the same reason as 3.1.3.
3.2.4.	Adding a constant value to the treatment measurement is considered 

valid because simulation showed that this approach would handle most 
of the confounding (2).

3.3.	 When the interest is ambiguous
3.3.1.	The validity of ignoring medication use cannot be judged.
3.3.2.	Restricting the study population based on medication use is valid for the 

same reason as 1.1.2.
3.3.3.	Adjusting for medication use is valid for the same reason as 3.1.3.
3.3.4.	The validity of adding a constant value to the treated measurement 

cannot be judged.

More advanced methods are available (not shown in Figure 1) when the study interest 
is in the underlying value that is not affected by medication use. For instance, censored 
normal regression (8), quantile regression (10), and Heckman’s treatment model (13) 
could be used under certain assumptions when the outcome is affected. Methods for 
correcting differential measurement error (e.g., regression calibration with adding 
mean treatment effect) could be used (4, 14) for an exposure affected by medication 
use. However, a judgment about the validity of these methods cannot be made if the 
study aim is ambiguous.
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Abstract

Ill-defined research questions could be particularly problematic in an epidemiological 
setting where measurements fluctuate over time due to intercurrent events, such as 
medication use. When a research question fails to specify how medication use should be 
handled methodologically, arbitrary decisions may be made during the analysis phase, 
which likely leads to a mismatch between the intended question and the performed 
analysis. The mismatch can result in vastly different or meaningless interpretations 
of estimated effects. Thus, a research question such as ‘what is the effect of X on Y?’ 
requires further elaboration, and it should consider whether and how medication use 
has affected the measurements of interest.

In our study, we will discuss how well-defined questions can be formulated when 
medication use is involved in observational studies. We will distinguish between a 
situation where an exposure is affected by medication use and where the outcome 
of interest is affected by medication use. For each setting, we will give examples of 
different research questions that could be asked depending on how medication use 
is considered in the estimand and discuss methodological considerations under each 
question.

Keywords
Research question; Medication effect; Well-defined question; Estimand; Causal 
inference;

166454_Choi_BNW-def.indd   162166454_Choi_BNW-def.indd   162 09-05-2023   09:2109-05-2023   09:21



163

Tying research question and analytical strategy

Key points

•	 An overview is given of well-defined research questions that can be formulated 
in an epidemiological study where the exposure or the outcome values may be 
affected by medication use.

•	 Different ways of handling medication use in the analysis can lead to vastly 
different estimated effects with different interpretations.

•	 Some commonly used approaches, such as deleting patients using medication 
when the outcome is affected by medication, yield estimates which do not have a 
meaningful interpretation

•	 Researchers are advised to consciously set research questions and corresponding 
analytic strategies for handling medication use based on the clinical aims of the 
study.

Introduction

A well-defined research question is the cornerstone of research. Depending on the 
research question, different theoretical considerations and statistical analyses are 
required, and most importantly, estimated effects should be interpreted differently 
[1, 2]. Unfortunately, researchers may start performing statistical analyses before 
their research question is settled with sufficient detail. Analyses are done first, and 
the meaning of the estimated effect remains vague [3].

Ill-defined research questions are particularly problematic in an epidemiological setting 
where measurements fluctuate or change over time. Medication use is one important 
cause for this change, as it is prescribed to target specific measures. A research question 
that fails to specify how medication use should be handled methodologically may lead 
to arbitrary decisions during the analysis phase, and a subsequent mismatch between 
the intended research question and the performed analysis.

Suppose that different researchers are interested in the effect of blood pressure (BP) 
on myocardial infarction (MI) risk. Some researchers may exclude individuals using 
antihypertensive drugs. The result would be interpreted as the effect of BP on MI in the 
subset of medication non-users, and it may not be transportable to medication users. 
Others may be interested in untreated BP values and take a modelling approach to 
reconstruct BP values without medication; for example, by using methods to account 
for measurement error [4]. Again, others may ignore the medication information and 
consider the effect of observed BP, which might have been lowered by medications 
in the total population. Similar problems arise when blood pressure is studied as an 
outcome. Thus, a research question such as ‘what is the effect of X on Y?’ requires 

7
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further elaboration, and it should consider whether and how medication use has 
affected the measurements of interest.

Numerous authors in causal inference have stressed that exposures should be well-
defined [5-8]. Moreover, the handling of intercurrent events in causal inference has 
recently achieved considerable attention. Young et al. have recently proposed a causal 
framework where they discuss different causal estimands under competing events. 
In the field of randomized trials, the European Medicines Agency (EMA) released a 
guideline proposing several different estimands for intercurrent events such as post-
randomization medication use [9].

As practical guidance, several authors [4, 10-12] discussed statistical methods that 
could be used when measurements are affected by medication use. However, our 
recent review of the handling of medication use in medical papers [13] demonstrated 
that a majority of studies featured vaguely formulated research questions and unclear 
research aims. Invalid methods were often used, and a justification for the chosen 
method was rarely given. Despite the efforts to raise awareness, medication use as 
intercurrent events was overlooked in majority of reviewed papers.

Therefore, in this paper, we emphasize the importance of further elaborating on 
ostensibly straightforward research questions when the exposure or the outcome 
variable is affected by medication use. We describe several types of research questions 
of interest to applied researchers; some are formulated within the framework of causal 
inference, and others are more explorative in nature. When considering a cause, we 
take a practical pluralistic perspective; not only manipulable interventions but also 
‘states’, such as having a certain level of blood pressure, can be studied as causes [14, 15]. 
We discuss how medication use is incorporated into each research question and which 
potential design considerations or methodological challenges may occur. Additionally, 
we warn against some common approaches to handling medication use that generally 
fail to yield interpretable results.

We start this paper by discussing a situation where an exposure, possibly time-varying, 
is affected by medication use by considering five different research aims. Following, 
we consider five research aims when the outcome of interest may be affected by 
medication. We conclude with a general discussion.
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Situation 1: The exposure is affected by medication use

Imagine a researcher interested in the effect of blood pressure (BP) on the severity 
of COVID-19 in patients who just tested positive for the coronavirus. The time of the 
positive test is indicated by t. The outcome, severity of COVID-19, is measured at a 
certain moment after t. Individuals’ BP levels have changed over time before time t, 
and some people have started using antihypertensive drugs at a certain moment before 
time t. Depending on research settings, BP may have been measured repeatedly before 
time t or only at t.

The initial research question, ‘the effect of BP on the severity of COVID-19’, is not well 
defined; it ignores the fact that BP varies over time and does not specify which BP 
values are of interest. For simplicity of the further discussion, let us assume three 
categories of study participants (Figure 1a). In category A, individuals had a high BP 
for a prolonged period and never used antihypertensive drugs. Individuals in category 
B also had a history of high BP but started using antihypertensive drugs before t. Thus, 
at time t, their blood pressure is lower than before taking the medication. In category 
C, individuals had normal blood pressure over time without medication. We use this 
example to discuss different possible research questions of interest. Throughout 
the paper, we assume that all confounding factors are measured and dealt with 
appropriately. Table 1 summarizes the different research questions.

Table 1. Summary of Section 1 (the exposure is affected by medication use) and Section 2 (the 
outcome is affected by medication use)

Section 1

The interest is in Research question example When or why

the currently observed 
exposure value

What is the effect of the 
currently observed BP value 
on the severity of COVID-19?

BP values observed at a 
certain time point reflect a 
patient’s health status.

 the exposure trajectory 
before time t

What is the effect of the 
history of BP on the severity 
of COVID-19?

Regardless of 
antihypertensive medication 
use, history of BP values 
manifests an accumulated 
effect on the outcome.

the untreated exposure value What is the effect of 
untreated BP at time t on the 
severity of COVID-19?

Untreated BP values at time 
t better reflect the medical 
condition than the observed 
BP after medication.

the effect of an intervention 
on the exposure

What would have happened 
if no one had been treated 
with antihypertensive drugs?

A causal effect of intervening 
on BP on the relationship 
between BP and the outcome 
is of interest.

7
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Table 1. Summary of Section 1 (the exposure is affected by medication use) and Section 2 (the 
outcome is affected by medication use) (continued)

Section 1

The interest is in Research question example When or why

the untreated population 
only

What is the effect of BP on 
the severity of COVID-19 
among people who did not 
use antihypertensive drugs?

The subpopulation of 
medication non-users is of 
interest.

Section 2

The interest is in Research question example When or why

the observed value of the 
outcome

What is the difference 
in observed BP at age 40 
between individuals born 
with and without genetic 
factor?

The total effect of gene 
A on BP that may be 
partly mediated by using 
antihypertensive drugs is of 
interest.

the outcome value unaffected 
by medication use

What is the effect of the 
genetic factor A on BP at 
age 40 if no one had used 
antihypertensive drugs?

The biological effect of gene 
A on BP is of interest, and 
antihypertensive drug use 
is considered to have altered 
the effect of interest.

medication use as part of the 
outcome

What is the effect of the 
genetic factor A on the risk of 
hypertension at age 40?

The fact that a person started 
using antihypertensive 
medication is a part of the 
outcome.

in the outcome values while 
being untreated

What is the difference in 
BP between individuals 
born with and without 
genetic factor A while being 
untreated?

Only the measurements 
before treatment may be of 
interest.
More meaningful 
in situations where 
measurement after 
intercurrent events is 
undefined; i.e., quality of life 
between the treatment group 
compared over time only in 
those still alive.

the untreated population What is the difference in BP 
between individuals born 
with and without genetic 
factor A in those untreated at 
age 40?

It resembles a per-protocol 
analysis of an RCT
Questionable whether this 
approach corresponds to 
any sensible and clinically 
relevant estimand.
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1.1 The interest is the currently observed exposure value
It may occur that BP values observed at a certain time point reflect a patient’s health 
status. In this case, one may ask: what is the effect of the currently observed BP value on the 
severity of COVID-19? This question hypothesizes that the current BP value determines 
COVID-19 severity; for example, people with higher BP values are at a higher risk (e.g., 
because of inflammation or vessel wall stress), and people with lower values (whether 
controlled naturally or by antihypertensive medication) are at a lower risk. This is 
illustrated in Figure 1a, where the BP measurements as they are observed at time t are 
used as the exposure in the analysis. The analysis here is relatively straightforward. 
In principle, medication use does not need to be added as an extra variable in the 
model unless the medication affects the outcome independently of blood pressure (i.e., 
medication use is a confounder).

1.2 The interest is the exposure trajectory before time t
Researchers may hypothesize that the history of BP values may affect a certain health 
outcome. They may be interested in whether COVID-19 patients with a history of high 
BP in the last 12 months are at greater risk than comparable patients with a history 
of lower BP. This translates into the following research question: what is the effect of 
the history of BP on the severity of COVID-19? This implies that the history of BP values, 
regardless of antihypertensive medication use, manifests an accumulated effect on the 
outcome. To address this research question, repeated measurement of BP is required 
to estimate the trajectories of BP for each individual (see Figure 1b).

Still, the “effect of the history of BP” is vaguely defined and needs to be specified. For 
example, one could be interested in the cumulative BP values during a certain period 
before t (estimated by the area under the curve), the mean value of BP in a specific 
period, or the increase in BP over a certain period. In any case, the length of the period 
of interest before time t should be well defined. Notably, medication use is not added as 
a variable in the model, but the effect of medication use is incorporated in the analysis 
through its effect on subsequent BP levels. Furthermore, in this scenario, confounders 
should be measured at the time when the follow-up starts.

1.3 The interest is the untreated exposure value
In a third scenario, it may be hypothesized that the untreated exposure values at time 
t better reflect the medical condition of interest than the observed exposure value 
after medication. For example, a history of high BP may alter vessel wall conditions. 
While antihypertensive medication may quickly alleviate one’s BP level, it takes a longer 
period for the damaged vessel wall to recover. If vessel wall condition affects COVID-
19 severity, BP values measured shortly after treatment initiation are less informative 
than pre-treatment values. In this case, for those who started treatment in a certain 
time frame before time t, BP measurements that would have been observed under no 
treatment can be a proxy for the unmeasured vessel wall difference. The corresponding 
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research question here would be: what is the effect of untreated BP at time t on the severity 
of COVID-19? The effect of an intervention on BP, directly applicable in medical decision-
making, is not under inquiry here. However, the intended research question could 
provide a valuable etiologic perspective [15].

Answering question 1.3 is not straightforward because the BP level without treatment 
at time t is unobserved for treated individuals. When repeated BP measurements are 
available, measurements before medication use could be used. For example, as depicted 
in Figure 1c, we may use the last BP measurement of person B before starting medication 
as a proxy for the untreated value at time t or extrapolate the untreated BP trajectory 
of B until time t (under the assumption that individual A and B are exchangeable with 
respect to BP trajectory). When no previous BP measurements are available, external 
information on the effect of medication and/or the prescription process is needed to 
reconstruct the untreated BP at time t. For instance, the mean and standard deviation 
of medication effect can be acquired from randomized control trials. These parameters 
can be used in a regression calibration method to reconstruct the untreated BP with 
the uncertainty around it.

If treatment started not long before t, such research questions seem especially sensible. 
Yet when there is a mixture of long-term and short-term medication users, it becomes 
more complicated; for example, the antihypertensive drug may have improved the 
vessel wall condition in long-term medication users. When this is the case, time since 
medication use should be incorporated into the analysis.

One simple solution to answer question 1.3 could be to remove individuals on 
medication from the analysis. However, when there are many medication users, the 
estimated effect may be less precise. Furthermore, if there is an effect modification by 
BP medication use or other characteristics associated with medication use, the average 
effect in the untreated subpopulation may differ from the average effect in the total 
population. Finally, one should be aware that selection bias may occur if medication 
users differ from non-users with high BP in terms of other characteristics and this 
should be properly accounted for [16].

1.4 Interest in the effect of an intervention on the exposure
The previous sections 1.2 and 1.3 are not anchored to a clear time zero, as the time of 
starting medication use may differ between patients. The questions are, therefore, not 
formulated sharply enough to fit within a causal inference framework. In this section, 
we consider how causal research questions can be formulated as interventions on BP 
before time t. For example, we may wonder what would have happened if no one had been 
treated with antihypertensive drugs. Alternatively: what would have been the effect of BP on 
COVID-19 severity if we had intervened on everyone with high BP with antihypertensive drugs? 
While Section 1.3 is interested in the (unobserved) untreated BP values at one particular 
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time point, Section 1.4 considers the effect of intervening on BP on the relationship 
between BP and the outcome.

These types of research questions consider hypothetical intervention scenarios as the 
untreated BP level at time t, and the corresponding untreated outcome is unobserved for 
treated people. Similarly, the BP level and the outcome under treatment are unobserved 
for people untreated for their high BP. These research questions can be formulated in 
a counterfactual framework using the concept of a target trial [5, 17, 18]. In a target 
trial, a study population would be defined at time t0 when the follow-up starts, and 
confounders would also be measured at time t0. In our example, t0 could be one year 
before the start of the COVID-19 epidemic. The interventions of interest may be, for 
example, “prescribe medication if BP is above a certain level” versus “prescribe no 
medication at all, even if BP is high”. People are followed until they are infected by 
COVID-19 and experience severe or less severe symptoms of COVID-19. There are 
several approaches for estimating the effect of a possible time-varying intervention (see 
Hernan and Robins[5], chapter 21 for an overview), such as the use of inverse probability 
weighting [19, 20]. Ideally, all individuals should be followed from the beginning of the 
trajectory to the final measures; otherwise, loss to follow-up should be accounted for, 
for example, by using censoring weights [20, 21].

1.5 The interest is the untreated population only
Another aim may be to estimate the effect of BP on the severity of COVID-19 among 
people who did not use antihypertensive drugs. To answer this research question, one would 
restrict the analysis to individuals without medication use, as illustrated in Figure 1e. 
While previous questions are interested in the total population, the interest here is 
the subpopulation of medication non-users. Individuals in this subpopulation might 
be under antihypertensive treatment and may be more likely to have higher BMI. The 
subpopulation could therefore have different characteristics than the total population. 
If BMI were an effect modifier for the association between BP and the severity of COVID-
19, the estimated effect would only be valid for the population untreated at time t.

Selection bias may occur if one does not adjust for confounding between medication use 
and the outcome. Individuals using antihypertensive medication could, for instance, 
be more health-conscious than individuals with untreated high BP. This implies that 
health-conscious people with high blood pressure will be underrepresented in the 
selected subpopulation of medication non-users. Therefore, health consciousness 
should be adjusted for in the analysis [16].

The appendix displays simple numerical examples of each research aim depicted in 
Section 1.1 to 1.5.
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Situation 2: The outcome is affected by medication use

Now, let us consider a scenario where we have an exposure determined at a certain 
time (t0) and a continuous outcome that could change throughout life. During follow-up, 
the outcome levels of some individuals may have been influenced by medication use. 
For this example, we pick the exposure to be genetic variant A rather than a treatment 
or another intervention to avoid confusion with the intercurrent medication use. 
The outcome is BP. In our example, the follow-up starts at adulthood (t0), and some 
individuals with high BP have started using antihypertensive drugs between time t0 
and t, t being the end of the follow-up.

As an illustration, we consider four hypothetical individuals in Table 2 and Figure 2a. 
Person a1 and b1 were both born with gene A, which causes high BP. Individual b1 starts 
using medication. Person a0 and b0 are identical to a1 and b1, respectively, except that 
they both were born without the gene and did not develop high BP. Person a0 and b0 
share identical characteristics, and the difference in Figure 2 only reflects random 
inter-variability. A summary of the research interests is given in Table 1.

Table 2. Four different hypothetical individuals under a scenario where the interest is estimating 
the effect of the gene A on blood pressure (BP) at time t, while some individuals started 
antihypertensive medication use before time t.

Individual Genetic variant BP before time t Medication use

a1 Gene A High No

b1 Gene A High Yes

a0 No gene A Low No

b0 No gene A Low No
7
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2.1 The interest is the observed value of the outcome
Firstly, the BP levels as observed can be the outcome of interest (Figure 2a). For 
example, we may want to compare observed BP levels at age 40 of individuals with 
gene A to similar individuals born without the gene. In this type of research question, 
one is interested in the total effect of the exposure on the outcome; that is, an effect that 
may be partly mediated by using antihypertensive drugs. In counterfactual notation, 
we are interested in the average total effect of A on the outcome: E[YA=1] −E[YA=0] , where 
YA=1  is the potential outcome when setting A to 1 and YA=0  is the potential outcome when 
setting A to 0. Young et al. referred to this contrast as the “effect without elimination of 
competing events”. In the clinical trial context [9], this is referred to as “treatment policy 
strategy-estimand” [9]. The principle of such analysis corresponds to an intention-to-treat 
analysis in an RCT, as the data is analyzed using the observed outcomes ignoring any 
intercurrent event or protocol deviation. Therefore, under question 2.1, medication use 
would be ignored in the analysis.

2.2. The interest is the outcome value unaffected by medication use
Alternatively, the interest could be the biological effect of gene A on BP, where 
antihypertensive drug use may alter this effect. Here we would ask research questions 
such as, what is the effect of the genetic variant A on BP at age 40 if no one would have 
used antihypertensive drugs? In counterfactual notation, we are interested in the effect:  
E[YA=1,med=0] −E[YA=0,med=0] , with YA=1,med=0 the potential outcome of Y when A is set to 1 
and no medication would have been used. This is called “the effect under elimination 
of competing events” [22]. In a clinical trial context, it is referred to as “hypothetical 
strategy-estimand” [9]. Figure 2b depicts this scenario.

Suppose repeated measurements of BP are available and all factors influencing 
medication use are measured. In that case, the estimand can be estimated using 
repeated measurement methods, such as linear mixed models or generalized estimation 
equation methods with inverse probability weighting [5, 21]. The BP levels after 
medication use will not be used in these analyses. If no repeated measurements of BP 
are available, other methods for handling an outcome variable affected by medication 
use, such as adding the mean medication effect to the treated measurements or fitting 
a censored regression model [4, 10-12, 23, 24] may be used.

2.3. Considering medication use as part of the outcome
Medication use can be incorporated into the definition of the outcome when the use 
of antihypertensive medication provides information about a person’s condition. For 
example, we may use hypertension (yes/no) as a dichotomous outcome. The research 
question then is: what is the effect of the genetic factor A on the risk of hypertension at age 
40? In this case, the outcome is dichotomized into hypertension (high BP and/or using 
antihypertensive medication) and no hypertension (normal BP and no medication use). 
This is illustrated in Figure 2c. In other scenarios, using an ordinal scale could be an 
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alternative (e.g., categorizing fasting glucose level into normal glucose, impaired glucose, 
and diabetes, where diabetes is defined as glucose level above a certain level or use of 
diabetes medication). In clinical trials, this type of scenario is called “composite variable 
strategy-estimand”.

2.4. Only interested in the outcome values while being untreated
In Section 2.2, the interest was in the effect of the gene on untreated BP measurements 
in the total population. In this section and Section 2.5, we consider two strategies that 
restrict the population based on medication use. Sometimes only the measurements 
before treatment may be of interest. In that case, one could compare outcomes between 
the exposure groups at each time point using only the individuals still untreated at that 
time. In other words, comparing different exposure groups conditionally on being 
untreated (Figure 2d). This approach may be called the “while untreated strategy”, 
analogous to the EMA guideline where the “while on treatment-estimand” and “while 
alive-estimand” are discussed.

In general, this comparison will not answer a causal research question because of 
selection bias; the comparison only involves individuals who are still untreated at the 
time of comparison. Suppose people born with the genetic variant A (exposed group) are 
more likely to use antihypertensive drugs. As time passes, more people in the exposed 
group will be excluded from the comparison, and the remaining individuals in the 
exposed and unexposed groups are no longer comparable. This issue will arise even if 
the groups are exchangeable at baseline.

However, combined with comparing the percentages of individuals starting medication, 
this comparison may still yield valuable clinical information. It provides an answer 
to a combination of two questions: i) what is the effect of the genetic factor A on the 
probability of starting antihypertensive medication, and ii) what is the difference in 
blood pressure levels effect in those still untreated at the time of comparison? These 
types of combined questions occur, for example, in quality-of-life studies in cancer 
research, where the quality-of-life measurements are compared over time only in those 
still alive at that time because the quality of life after death is undefined [25, 26].

When persons can go on and off treatment (treatment episodes), defining a “while 
untreated strategy” becomes even more complicated, as also measurements in an 
untreated period after a period of taking the drug may be considered in some instances 
as “while untreated”. The definition of “while untreated” should in this case, be carefully 
considered with the clinical context in mind.

2.5 Could the interest be only in the untreated population?
Some studies exclude all measurements of individuals who started medication during 
follow-up from their analysis, including the measurements before starting medication 
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use. A difference with Section 2.4 is that here the measurements before medication use 
are removed as well.

This approach resembles a per-protocol analysis of an RCT where only the participants 
who completed the follow-up without protocol deviation are included in the analysis 
[27]. Defining whether an individual belongs to a population of interest (i.e., people 
who are untreated at any time point) based on an event happening after the follow-up 
started (i.e., medication use) is risky. If the follow-up time increases, more people will 
start using medication and consequently be excluded from the comparisons, even for 
the time before using medication. Consequently, this approach can lead to substantial 
selection bias [28, 29]. It is questionable whether this approach corresponds to any 
sensible and clinically relevant estimand.

Discussion

Clinical measurements affected by medication use are commonly encountered in 
epidemiological research. In this paper, we discussed different research questions 
that could be of interest when the exposure or the outcome variable is affected by 
medication use. We argued that each question is driven by different assumptions and 
clinical aims. Concurrently, each requires a tailored strategy for handling medication 
use in the analysis. Even with causal inference experts emphasizing the importance 
of well-defined research questions, the role of medication use is often overlooked, 
resulting in arbitrary decisions regarding its handling in statistical analysis and vague 
interpretations of its estimated effects.

Some causal inference experts may argue that BP is not an intervention due to its nature 
of having multiple ways to be manipulated and, therefore, cannot be studied causally 
[30, 31]. In practice, however, states such as having a certain level of BP or glucose are 
frequently studied as causal risk factors, and they can provide valuable etiological 
knowledge. In this paper, therefore, we took a practical pluralistic perspective based 
in research practice and also discussed research questions that are not directly causal 
interventional.

Still, emulating a target trial can greatly help in crystallizing a research question and 
choosing a valid analytical strategy [18, 32]. A vaguely defined exposure or outcome 
variable would not be acceptable in RCTs. For RCTs, protocols are written in advance 
and demand a clear research question and a detailed statistical analysis plan. A 
definition of the treatment or the outcome would (and should) not change based on 
arbitrary decisions made during an analysis phase. Deciding how to handle medication 
use at the stage of formulating a research question applies equally to observational 
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studies. For this reason, the importance and benefits of writing a protocol and defining 
a target estimand prior to conducting observational studies have been stressed [33, 34]. 
Connecting a research question to a target trial could also contribute to identifying 
potential sources of bias. For instance, question 2.5 would be analogous to being 
interested in the effect only in the participants adhering to the protocol until the end 
of a randomized trial. Compared to an RCT setting, it becomes clear that this type of 
research question would suffer from selection bias and would rarely yield clinically 
meaningful results.

One of the estimands mentioned by the EMA is the “principal stratum-estimand”, which 
is the effect in subpopulations where a particular intercurrent event would or would 
not occur. In our example, a principal stratum could be individuals who would not use 
hypertension medication when their blood pressure would be elevated (e.g., because 
they have an aversion to medication or are not aware that their BP is too high). We 
decided not to discuss this in detail as research questions using potential medication 
use to define a subpopulation are rarely considered. The corresponding analysis is 
challenging because whether a person is a medication non-user can be observed only 
if their BP becomes high during the follow-up.

Situations with medication use can be much more complex as multiple medications 
can be used simultaneously and/or switching between medications may occur. 
It is also possible that both the exposure and the outcome measurements are 
affected by medication use. In addition to medication use, behavioral changes (e.g., 
starting exercising regularly to regulate high BP) after the baseline could also affect 
measurements of interest. Needless to say, examples are not limited to blood pressure 
and blood pressure medication but could be other measurements, such as glucose or 
lipid levels, and other types of drugs. Numerous sources of potential bias outside those 
discussed in this paper should be critically considered as well (e.g., how to properly 
adjust for confounding or ill-defined time zero of follow-up: immortal time bias) [28, 35].

The complexity of the situation, however, should not discourage tackling the problem of 
measurements affected by medication use. Rather, it requires additional caution when 
defining research questions and more rigorous planning on how medication should be 
handled in the analysis. In any given case, we advise researchers to consciously set a 
research question and corresponding analytic strategy for handling medication use 
based on the clinical aim and underlying assumptions.
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This thesis aimed to investigate methodological issues pervasive in epidemiological 
studies with observational data. We specifically focused on dealing with missing data 
in propensity score analysis, identifying measurement errors, and handling medication 
use, both statistically and conceptually. In this discussion chapter, we summarize the 
main findings of our research and discuss implications and future perspectives.

Summary of the main findings
In Chapter 2, we investigated how to optimally handle covariates with missing data 
in propensity score analysis. We generated several simulation scenarios by varying 
missing data mechanisms and the presence of an effect modification of the treatment. 
Our findings demonstrated that no single approach is universally optimal. Which 
methods to use depends on the data structure, such as the missing mechanism and 
presence of effect heterogeneity and/or unmeasured confounding. Importantly, 
complete case analysis or adding missing indicators in a model, methods that are 
considered ‘naïve’ and inappropriate to handle missing data, outperformed multiple 
imputation when missing is not at random. Multiple imputation performed best when 
data were missing at random, but only when the imputation model was correctly 
specified. This implies that the imputation model should include the outcome variable. 
When heterogeneity in the treatment effect is present, an interaction term should as 
well be added to the model.

Chapter 3 examined methods to detect measurement errors possibly due to sample 
dilution in time-serial hormonal data where study participants’ blood was drawn every 
10 minutes for 24 hours. We compared four approaches for detecting measurements 
error: i) Eyeballing by physiological experts, which could be considered as a golden 
standard, ii) the stepwise approach, which incorporates physiological knowledge into 
standard deviation-based detection, iii) Tukey’s fences method, which identifies errors 
based on interquartile ranges, and iv) the expectation-maximization (EM) algorithm 
which mathematically distinguishes the potential distributions of hormone levels 
measured with and without error. Based on the performance in the real-world setting 
and simulated data, we concluded that the stepwise approach, leveraging physiological 
background knowledge, outperformed fully automated data-driven methods, such as 
Tukey’s fences and the EM algorithm. Tukey’s fences performed especially unstably 
when the hormonal profile was mainly flat with few sudden pulses (e.g., growth 
hormone). The EM algorithm could not ensure whether the identified distributions truly 
distinguished outliers from non-outliers. On the other hand, the stepwise approach 
showed consistent performance under different types of hormonal trends.

Chapter 4 studied how to handle variables affected by medication use when the research 
aim is in the variables if not treated. For instance, one may be interested in the effect of 
a genetic factor on blood pressure at a certain age or the effect of blood pressure on the 
risk of cardiovascular disease if no one with hypertension uses antihypertensive drugs. 
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We showed with simulations that which method to use is contingent upon whether the 
affected variable is the exposure, the outcome, or a confounder. When the exposure is 
affected, restricting the study population to the untreated individuals may yield a valid 
result. However, if effect heterogeneity is present, the result may not be extrapolated to 
the overall population. If external knowledge of the mean and standard deviation of the 
medication effect is known, regression calibration with adding the mean medication 
effect to the treated values could be used. When a confounder variable is affected 
by medication use, simple methods such as restricting the population to untreated 
individuals or adding an indicator variable for medication use in a regression model 
may work well. However, when the outcome is affected, simple methods will lead to 
bias. Instead, adding mean medication effect or using censored normal regression is 
appropriate. Based on the results, we encouraged researchers to critically consider the 
processes of medication prescription, the presence of effect heterogeneity, and what 
information on medication effects is available when handling medication use.

Several methods discussed in Chapter 4 require external knowledge of the estimated 
effect of medication and, in some cases, its standard deviation of the medication 
effect. Randomized control trials on drugs may provide the information. However, 
populations in trials often do not represent a population of interest in observational 
research. Applying the medication effect acquired in trials to observational settings 
could introduce bias due to discrepancies in clinical settings between trials and the 
real world.

Hence, in Chapter 5, we aimed to describe changes in glucose and HbA1c levels 
after glucose-lowering medication from routinely collected data in the Netherlands 
Epidemiology of Obesity (NEO) study participants. Electronic Patient Records from 
general practitioners were used to identify incident diabetes cases and repeated 
measurements of glucose and HbA1c. We fitted linear mixed models with time as a 
categorical variable added as fixed and random effect. To avoid regression to the mean 
effect, we set 6 to 12 months before medication prescription as the reference, assuming 
that it would better represent the study participants’ baseline glucose and HbA1c levels. 
The results showed that the effect of mediation was the largest at 6 to 12 months after 
medication use. The estimated effects were smaller than observed in RCTs, however, 
remained effective for more than two years after prescription. The effect of medication 
varied largely between individuals. We also observed that both glucose and HbA1c level 
increased shortly before medication use. This may reflect a random high measurement 
that led to a treatment decision in some individuals. Thus, using the last measurement 
before the start of medication as a reference could lead to a regression to the mean 
effect. The estimated mean changes can be used in further research in the NEO study 
when glucose or HbA1c level is the variable of interest. For instance, when they are 
the outcome of interest, one can add the estimated differences to the measurements 
of individuals using glucose-lowering medication. If they are the exposure of interest, 
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using regression calibration by adopting the mean difference and standard deviation 
could be an option. Routinely collected data allowed investigation of the long-term real-
world effect of medication, which could not be easily obtained from RCTs. However, 
data collection and clinical decision-making processes in the routinely collected 
electronic health records were not clearly known, introducing challenges in our study.

In Chapter 6, we performed a systematic review of how variables affected by 
medication use were handled in clinical research. We showed that a majority of the 
studies ambiguously reported whether their research aim is in the values as observed 
regardless of medication use or if not affected by medication. Even when the aim was 
clear, many studies used invalid methods for handling medication use. Especially 
when the outcome variable was affected, methods that are invalid regardless of 
the research aim, such as restricting a study population to untreated individuals or 
adding an indicator for medication use, were frequently used. More advanced methods 
described in methodological literature were rarely adopted. These results indicated 
that the importance of establishing a clear research question regarding medication 
use is often overlooked, and appropriate methods to handle medication use are not 
well-known to clinical researchers.

Chapter 7 set out to discuss how medication use can be differently incorporated 
into a research question when the exposure or outcome of interest is affected by 
medication use in some people. Under each possibility, we discussed the assumptions 
on relationships between variables and the potential clinical relevance behind them. 
Some questions could be formulated within a causal framework, where emulating a 
target trial could help crystalize the question. Other questions are not suitable for a 
causal estimation but may still provide etiological insight. Concurrently, medication 
use should be handled differently in the analysis of each question, and different 
methodological considerations are required.

Implications and future perspectives

•	 There is no one optimal method for all situations: all decisions made in a study 
depend on contextual knowledge

Numerous decisions have to be made when conducting an epidemiological study, 
from setting a research question and designing a study to analyzing collected data 
and interpreting the results. Every decision should be made consciously according to 
the aims and the population of interest. For the analysis, it is essential to understand 
the structure of the collected data. Whether a certain method is considered default or 
commonly used should not be a reason to routinely choose the method. This is also 
the case when handling confounding, missing data, selection bias, and measurement 
error in observational research.
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For example, we showed in Chapter 2 that using the default settings of multiple 
imputation software could lead to biased results even when the data are missing at 
random if the default regression models are not sufficient to capture the complete 
data structure (3-5). Also, when handling measurement errors, it is essential to know 
how the data were collected. In our particular example of Chapter 3, we utilized the 
information that multiple hormones were processed simultaneously, which was known 
from context-dependent background knowledge (6). Intercurrent events should also be 
dealt with according to one’s research question and corresponding target estimand (7-9). 
We discussed this in a specific context of medication use (see Chapter 3, Chapter 4, 
and Chapter 7). However, in Chapter 6, we observed that many clinical studies applied 
prevalently used but invalid methods.

The increasing availability of electronic health records and disease registries facilitates 
conducting a broad range of observational studies with so-called big data. As sample 
sizes are getting bigger and data structures are becoming more challenging to grasp, 
machine-learning approaches are thought of as attractive alternatives to traditional 
statistical modeling (6). With machine learning approaches, computer algorithms 
can learn and improve themselves to grasp the complex structure and patterns of the 
data. This development may lead to the thought that context-specific knowledge of the 
research setting is redundant as long as ‘big data’ to run a machine learning algorithm 
is available.

Big data, however, also is affected by issues regarding measurement error, selection 
bias, confounding, and missing data, if not more so (10). For instance, in Chapter 5, 
we encountered challenges when using electronic health records, such as selective 
medication prescription within the individuals diagnosed with the same diseases or 
irregular measurements of the outcomes between individuals. These issues will remain 
and will not magically disappear simply by increasing the sample size. The machine 
does not learn itself and will likely derive invalid causal estimates without appropriate 
input in the algorithm about the data collection process and various sources of potential 
error (11, 12). Unless these are adequately addressed, one should be skeptical about the 
interpretability, reproducibility, and reliability of the results from machine learning 
(13, 14). Even in the emergence of big data and machine learning, careful considerations 
of the research setting, clinical knowledge, and study designs remain highly important.

•	 Simulation studies should be used more often in clinical research
In several chapters, we conducted simulation studies to compare the performances 
of different statistical methods and to find an optimal approach in different scenarios 
(see Chapter 2, Chapter, 3 and Chapter 4). A simulation study is a widely used tool in 
statistical research due to its advantage of providing empirical results on how specific 
methods would perform under various settings as opposed to theoretical evidence from 
mathematical derivations (15).

8
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We suggest clinical researchers utilize simulation studies in collaboration with 
analytical experts when it is unclear which statistical method to use in their research 
setting. Simulation studies can provide information on the magnitude and the direction 
of the bias and/or the robustness of methods under the violation of assumptions 
(16). From such information, one can evaluate the validity of adopting a particular 
method in a given setting. The validity of the methods can also be easily compared in 
several different data structures by modifying simulation parameters. For instance, 
previous methodological studies suggested that Heckman’s treatment model could be a 
suitable method for handling measurements affected by medication. However, through 
simulation studies in Chapter 4, we observed that the method may not be suitable when 
the medication effect varies largely between individuals, which is likely the case in the 
NEO study setting (shown for the glucose-lowering medication effect in Chapter 5).

One of the pitfalls of simulation studies is that the simulation cannot fully reflect 
real-world settings. The complexity of a real-world setting may be mitigated by 
incorporating real-world data into the simulation study. For example, in Chapter 4, 
we used several variables directly from the NEO study data in our simulation so that the 
simulated data would reflect the relationship between the variables in the real world. 
Performing simulation studies would enable researchers to make analytical decisions 
more consciously and enhance transparent reporting on the rationale behind using a 
specific statistical method over another. Several studies discussed how to set up and 
conduct a sound simulation study (15, 17-19).

•	 More focus on bridging the gap between statistical advances and clinical 
research is needed

The statistical methods compared in our simulation studies were not newly developed 
methods but have already been discussed in methodological literature. Our focus in 
this thesis was to compare available statistical methods and provide guidance on when 
and how to properly apply them in specific observational research contexts.

Unfortunately, advances in statistical methods mainly remain within the methodological 
research domain. It often takes a long time, if ever, before new methodological advances 
are adopted in applied research. For example, none of the more advanced methods to 
handle medication use, which we studied in the simulation of Chapter 4, were applied 
in the clinical studies that we reviewed in Chapter 6. Also, pitfalls of commonly used 
methods known in methodological research are easily neglected in applied research, 
leading to potentially flawed results (20, 21). Using multiple imputation without a correct 
model specification is one of the examples shown in this thesis (see Chapter 2).

Possible reasons for the gap between the methodological and clinical research could 
be a lack of understanding of the technical backgrounds of the problems, a difficulty in 
programming in statistical software, or an absence of guidance on when to use which 
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methods in practical settings. To overcome this, there should be a constant focus not 
only on developing new methods but on bridging the gap between existing methods and 
applied epidemiological research (16), to which we hope to have contributed with this 
thesis. Other systematic efforts are being made. For instance, some epidemiological 
journals provide a corner, such as the education corner in the International Journal of 
Epidemiology, to introduce methodological development in an accessible (22).

•	 Confounding, missing data, selection bias, and measurement error are 
interrelated

Our research investigated methodological challenges due to missing data, selection 
bias, and measurement errors in several specific observational study settings. Although 
these biases are mostly addressed as separate issues, they are closely related (23, 24). 
Selection bias is closely related to a missing data problem; a part of the data needed to 
make a valid conclusion about the target population is not observed. Ignoring missing 
data when data are missing at random or not at random would lead to selection bias. 
Missing data is an extreme form of measurement error, and differential measurement 
error may lead to selection bias. Thus, a methodological issue that seemingly originates 
from one type of bias can be approached from multiple angles. Subsequently, a method 
developed to handle one type of problem may be used for handling another one.

For instance, it was demonstrated that a method we used for handling data missing not 
at random in the context of propensity score analysis (see Chapter 2) is also applicable 
when handling bias due to sample selection (25). Although it was unsuccessful, we 
showed that the EM algorithm, which is usually considered in statistical modeling 
when missing values exist, can also be applied in detecting measurement errors (see 
Chapter 3). Also, for handling medication use, we could adopt methods rooted from 
different angles (see Chapter 4). By approaching the problem from a selection bias 
perspective, we used inverse probability weighting or Heckman’s treatment model. 
From a measurement error perspective, we used regression calibration or adding a 
constant value. From a missing data perspective, we used multiple imputation methods. 
From a censored data perspective, we used quantile regression and censored normal 
regression.

Efforts have been made to provide a unified understanding of the biases by adopting 
a potential outcome framework (23, 24, 26, 27). From a more practical angle, several 
authors also provided statistical methods to simultaneously address different sources 
of bias. These include but are not limited to, multiple imputation methods, Bayesian 
models, g-formula, and inverse probability weighting (27-31). We believe seeking 
solutions from broader and more flexible perspectives than approaching each bias in 
an isolated manner will lead to a better possibility of finding an appropriate solution 
in one’s research setting.
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Conclusions

There is no one best method that can be universally applied to mitigate the problems of 
confounding, missing data, selection bias, and measurement error in various settings 
of observational research. No analytical decision should be taken for granted, and 
each source of bias should be handled on the basis of context-specific knowledge. A 
constant pursuit of connecting the methodological and clinical worlds and broadening 
the perspectives on handling biases will contribute to the validity of observational 
research.
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Dutch Summary

In dit proefschrift onderzoeken wij de potentiële uitdagingen die de validiteit van 
observationeel epidemiologisch onderzoek kunnen aantasten. Deze potentiële 
bronnen van vertekening, zoals confounding, ontbrekende gegevens, selectiebias 
en meetfouten, vormen aanzienlijke obstakels voor een accurate interpretatie van 
onderzoeksresultaten. Hoewel talrijke methoden zijn ontwikkeld om het effect van 
vertekeningen te verminderen, blijft het bepalen van de meest geschikte benadering 
voor specifieke empirische contexten een complexe taak. Bovendien krijgen problemen 
die worden besproken in de methodologische literatuur, in klinisch onderzoek vaak 
beperkte aandacht. Daarom analyseren we de problemen omtrent ontbrekende 
gegevens, selectiebias en meetfouten die optreden in diverse specifieke observationele 
situaties, en bespreken we de meest geschikte methoden om deze kwesties te 
behandelen.

In Hoofdstuk 2 hebben wij systematisch onderzocht hoe covariabelen met ontbrekende 
gegevens op de meest optimale manier in een propensity score-analyse kunnen worden 
behandeld door verschillende simulatiescenario’s te genereren. Hierbij hebben we 
rekening gehouden met diverse mechanismen voor ontbrekende gegevens en de 
aanwezigheid van modificatie van het behandelingeffect. Onze bevindingen tonen aan 
dat er geen universeel optimale aanpak is, aangezien de geschikte methode afhangt 
van de datastructuur, zoals het ontbrekende mechanisme, effectheterogeniteit en 
ongemeten confounding. Opmerkelijk is dat een complete case-analyse of het toevoegen 
van ontbrekende indicatoren aan een model, die doorgaans als ‘naïef’ en ongeschikt 
voor het omgaan met ontbrekende gegevens beschouwd worden, beter presteerden dan 
meervoudige imputatie bij niet-random ontbrekende gegevens. Meervoudige imputatie 
was het meest effectief wanneer gegevens willekeurig ontbraken, maar alleen wanneer 
het imputatiemodel correct gespecificeerd was. Dit impliceert dat de uitkomstvariabele 
in het imputatiemodel moet worden opgenomen en, indien van toepassing, een 
interactieterm om rekening te houden met heterogeniteit in het behandeleffect.

In Hoofdstuk 3 hebben we methoden onderzocht voor het opsporen van meetfouten die 
mogelijk te wijten zijn aan het verdunnen van monsters in tijdreeks hormoongegevens. 
We vergeleken vier methoden: i) beoordeling door fysiologische experts, dat als 
gouden standaard gezien kan worden, ii) de stapsgewijze aanpak, die fysiologische 
kennis integreert met op standaarddeviatie gebaseerde detectie, iii) de methode van 
Tukey’s fences, die fouten identificeert op basis van interkwartielafstanden, en iv) het 
verwachting-maximalisatie (EM) algoritme, dat de verdelingen van hormoonspiegels 
met en zonder fout wiskundig onderscheidt. Op basis van de prestaties in de praktijk 
en gesimuleerde gegevens, concludeerden we dat de stapsgewijze methode, die 
gebruikmaakt van fysiologische kennis, beter presteerde dan volledig geautomatiseerde 
datagedreven methoden zoals Tukey’s fences en het EM-algoritme.
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In Hoofdstuk 4 zijn strategieën voor het omgaan met variabelen die worden beïnvloed 
door medicijngebruik onderzocht, voor de situatie waarbij interesse is effecten zonder 
behandeling. Een voorbeeld is het onderzoeken van de invloed van een genetische factor 
op de bloeddruk op een bepaalde leeftijd of de invloed van bloeddruk op het risico op 
hart- en vaatziekten zonder gebruik van antihypertensiva bij personen met hypertensie. 
Uit simulaties bleek dat de keuze van de methode afhangt van of de beïnvloede 
variabele de blootstelling, de uitkomst of een confounder is. Als de blootstelling wordt 
beïnvloed, kan het reduceren van de onderzoekspopulatie tot onbehandelde individuen 
tot een valide resultaat leiden. Echter, als er effectheterogeniteit aanwezig is, kunnen 
de resultaten mogelijk niet naar de algemene populatie worden geëxtrapoleerd. Als 
externe kennis over het gemiddelde en de standaardafwijking van het medicijneffect 
bekend is, kan regressiecalibratie met het toevoegen van het gemiddelde medicijneffect 
aan de behandelde waarden worden gebruikt. Als de uitkomst wordt beïnvloed, leiden 
simpele gangbare methoden tot vertekening. In plaats daarvan is het optellen van het 
gemiddelde medicijneffect of het gebruik van gecensureerde normale regressie geschikt. 
Op basis van de resultaten adviseren we onderzoekers om kritisch na te denken over 
het proces van medicijnvoorschrijving, de aanwezigheid van effectheterogeniteit en 
welke informatie over medicijneffecten beschikbaar is.

Verschillende methoden die in Hoofdstuk 4 worden besproken, vereisen externe kennis 
over het geschatte effect van medicatie en in sommige gevallen de standaardafwijking 
van het medicijneffect. Deze gegevens kunnen uit gerandomiseerde gecontroleerde 
onderzoeken (RCT’s) verkregen worden. Populaties in dergelijke onderzoeken zijn vaak 
niet representatief voor de populaties in observationeel onderzoek. Door verschillen 
tussen klinische settings in RCT’s en praktijksettings, kan het toepassen van het 
medicijneffect verkregen in RCT’s in observationele settings vertekening geven.

In Hoofdstuk 5 hebben we veranderingen in glucose- en HbA1c-niveaus na het gebruik 
van glucoseverlagende medicatie beschreven met behulp van routinematig verzamelde 
gegevens van deelnemers aan de Nederlandse Epidemiologie van Obesitas (NEO) studie. 
Elektronische Patiëntendossiers werden gebruikt om nieuwe gevallen van diabetes en 
herhaalde metingen van glucose en HbA1c te identificeren. Lineaire gemengde modellen 
werden toegepast, waarbij tijd als een categorische variabele werd gebruikt voor zowel 
vaste als willekeurige effecten. Om regressie naar het gemiddelde te beperken, werd 
het referentiepunt ingesteld op 6 tot 12 maanden vóór het voorschrijven van medicatie. 
De resultaten toonden aan dat de meest aanzienlijke medicatie-effecten optraden 6 
tot 12 maanden na de start van de behandeling, en dat de medicatie ook na twee jaar 
effectief bleef. Deze effecten waren echter kleiner dan die waargenomen in RCT’s. We 
zagen verhoogde glucose- en HbA1c-waarden kort voor het gebruik van medicatie, wat 
mogelijk wijst op willekeurig hoge metingen die leiden tot behandelingsbeslissingen 
en daaropvolgende regressie naar het gemiddelde.

A
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In Hoofdstuk 6 is systematisch in de wetenschappelijke literatuur onderzocht 
hoe variabelen die door medicatie worden beïnvloed, worden behandeld in 
klinisch onderzoek. Hierbij kwamen we ambiguïteit in onderzoeksdoelen en het 
frequente gebruik van ongeldige methoden tegen. Geavanceerde methodologieën 
werden zelden toegepast, wat wijst op een behoefte aan meer kennis onder klinische 
onderzoekers en de noodzaak van een duidelijke onderzoeksvraag met betrekking tot 
medicijngebruik.

In Hoofdstuk 7 zijn verschillende manieren onderzocht om medicijngebruik op te 
nemen in onderzoeksvragen wanneer blootstelling- of uitkomstvariabelen worden 
beïnvloed door medicatie bij sommige individuen. We bespreken aannames over de 
relaties tussen variabelen van belang en de mogelijke klinische relevantie daarvan. 
Sommige vragen passen in een causaal kader, waar het nabootsen van gerandomiseerd 
onderzoek de onderzoeksvraag kan verhelderen. Andere vragen zijn mogelijk niet 
causaal, maar kunnen wel etiologische inzichten bieden. Medicijngebruik moet voor 
elk type vraag op een andere manier worden behandeld en de overwegingen voor het 
omgaan met medicatie en methodologische kwesties variëren per vraag.

In Hoofdstuk 8 concludeerden wij dat er geen universeel toepasbare methode bestaat 
om de problemen van confounding, ontbrekende gegevens, selectiebias en meetfouten 
in observationele onderzoekssettings te verminderen. Analytische beslissingen zouden 
niet als vanzelfsprekend moeten worden beschouwd en elke bron van vertekening 
moet worden behandeld op basis van contextspecifieke kennis. Een constant streven 
naar het verbinden van de methodologische en klinische werelden en het verbreden 
van de perspectieven op het omgaan met biases zal bijdragen aan de validiteit van 
observationeel onderzoek.
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