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Aim Mitochondrial DNA dysfunction has been implicated in the pathogenesis of cardiovascular diseases. We aimed to investigate the 
associations between leukocyte mitochondrial DNA (mtDNA) abundance, as a proxy of mitochondrial function, and coronary ar
tery disease (CAD) and heart failure (HF) in a cohort study and approximate the causal nature of these relationships using 
Mendelian randomization (MR) in genetic studies.

Methods 
and results

Multivariable-adjusted Cox regression analyses were conducted in 273 619 unrelated participants of European ancestry from 
the UK Biobank (UKB). For genetic studies, we first performed MR analyses with individual-level data from the UKB using a 
weighted genetic risk score (GRS); two-sample MR analyses were subsequently performed using summary-level data from the pub
licly available three consortia/biobank for CAD and two for HF. MR analyses were performed per database separately and results 
were subsequently meta-analysed using fixed-effects models. During a median follow-up of 11.8 years, restricted cubic spline Cox 
regression analyses showed associations between lower mtDNA abundance and higher risk of CAD and HF. Hazard ratios for 
participants in the lowest quintile of mtDNA abundance compared with those in the highest quintile were 1.08 (95% confidence 
interval: 1.03, 1.14) and 1.15 (1.05, 1.24) for CAD and HF. Genetically, no evidence was observed for a possible non-linear causal 
effect using individual-level weighted genetic risk scores calculated in the UKB on the study outcomes; the pooled odds ratios (95% 
confidence interval) from two-sample MR of genetically predicted per one-SD decrease in mtDNA abundance were 1.09 (1.03, 
1.16) for CAD and 0.99 (0.92, 1.08) for HF, respectively.

Conclusion Our findings support a possible causal role of lower leukocyte mtDNA abundance in higher CAD risk, but not in HF.
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1. Introduction
Cardiovascular disease (CVD) is the leading cause of death worldwide. The 
heart is high oxygen-consuming, with large amounts of mitochondria con
stituting up to one-quarter of cardiomyocytes volume.1 Mitochondrial dys
function, a hallmark of the aging process,2 leads to reduced bioenergetic 
capacity and disrupted redox homeostasis, and is therefore hypothesized 
to be a critical component in the pathogenesis of CVD.3,4 Mitochondria 
have their own circular genome, the mitochondrial DNA (mtDNA), con
sisting of 37 genes, 13 of which encode proteins on the electron transport 
chain. Individual mitochondrion may contain several copies (CN) of the 
mitochondrial genome, known as mtDNA copy numbers. The mtDNA 
abundance is associated with bioenergetics, mitochondrial membrane po
tential, and oxidative stress,5 and therefore could serve as a surrogate bio
marker of mitochondrial dysfunction.6 A better understanding on the role 
of mtDNA abundance may provide early opportunities in the prevention 
and treatment of CVD.

Recent epidemiological studies have assessed the associations between 
leukocyte mtDNA abundance using mtDNA-CN and multiple cardiovas
cular endpoints. These studies so far unequivocally indicated lower 
mtDNA-CN as an independent risk factor of prevalent CVD in case- 
control and retrospective cohort studies7–10 and of incident CVD and 
risk of sudden cardiac death in the prospective Atherosclerosis Risk in 
Communities (ARIC) study.11–14 Nevertheless, apart from the ARIC study, 
other studies comprised a small sample size and/or a limited number of 
cases, which might have resulted in insufficient statistical power. In a recent 
cross-sectional study integrating multiple studies, mtDNA abundance was 
associated with a cluster of cardiometabolic traits that increase the risk of 
CVD, including obesity, hypertension, and hyperlipidaemia.15 However, 
due to the vague onset and long-term progression of CVD pathogenesis, 
it is not possible to fully eliminate reverse causation and residual confound
ing in studies with observational study designs. Whether these associations 
are causal, therefore, remains unclear.

Triangulation of causal inference in aetiological epidemiology has been pro
posed, which integrates results from different methodological approaches to 

enhance the reliability of a research study.16 The confidence in the findings will 
be strengthened if results from different approaches are consistent with each 
other. Based on earlier studies, we hypothesized that a lower mtDNA abun
dance is associated with an increased risk of incident CVD. Consequently, we 
first examined the associations between mtDNA abundance and incidence of 
coronary artery disease (CAD) and heart failure (HF) in participants of 
European ancestry in the UK Biobank (UKB) using Cox proportional hazards 
regression models. Second, to test for possible non-linear effect of the expos
ure on the outcome, we conducted Mendelian randomization (MR) using a 
weighted genetic risk score from individual-level data in the UKB; subsequent
ly, publicly available data were exploited to perform two-sample MR to inves
tigate whether genetically predicted low mtDNA abundance were causally 
associated with increased risk of diseases.

2. Methods
2.1 Prospective study
2.1.1 Study population
The UKB cohort is a prospective cohort with 502 628 participants between 
the age of 40 and 69 years recruited from the general population at multiple 
assessment centres across the UK between 2006 and 2010.17 More detailed 
information about the recruitment of participants is available in 
Supplementary methods. The UKB study was approved by the 
North-West Multi-center Research Ethics Committee (MREC) and con
ducted according to the Declaration of Helsinki. All participants provided 
written informed consent. We used genotype data from 488 377 individuals 
in the full genetic data release (July 2017) in the present study.

Participants who did not pass the sample quality control were initially ex
cluded according to the parameters presented in the sample quality control 
file of the UKB, including participants (i) who were not used to compute prin
cipal components (PCs); (ii) who were identified as outliers in heterozygosity 
and missing rates, which is indicative of poor-quality genotype data for these 
samples; (iii) who were identified as putatively sex chromosome aneuploidy; 
(iv) whose sex inferred from genotype data did not match their self-reported 
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sex; and (v) who had an excessive number (more than 10) of relatives in the 
database. To minimize the variation resulting from population substructures, 
we restricted the study population to unrelated white British individuals. 
Participant relatedness was available in the UKB by estimating kinship coeffi
cients for all pairs. White British ancestry was identified based on self-reported 
ethnic background, and the population definition was further refined in a prin
cipal component analysis of the genotype data that were tightly clustered as 
performed and provided by the UKB. This resulted in a primary study cohort 
comprising 302 685 unrelated European ancestry participants. A flowchart 
of the exclusions steps is provided in Supplementary material online, Figure S1.

2.1.2 mtDNA abundance computation
We computed somatic mtDNA abundance from the UKB participants 
from the intensities of genotyping probes on the mitochondrial chromo
some on the Affymetrix Array. The method for computing mtDNA abun
dance has been described in detail earlier.18 We followed the same pipeline 
for calculation in the available data of UKB (https://github.com/ 
GrassmannLab/MT_UKB). In brief, the relative amount of mtDNA hybri
dized to the array at each probe was the log2 transformed ratio (L2R) of 
the observed genotyping probe intensity divided by the intensity at the 
same probe observed in a set of reference samples. The median L2R values 
across all 265 variants passing quality control on the MT chromosome were 
used as an initial raw measure of mtDNA abundance. To correct for the 
confounding induced by poorly performing probes, we weighted the L2R 
values of each probe multiplied by the weight of the probe that was gener
ated from a multivariate linear regression model in which those intensities 
statistically significantly predicted normalized mitochondrial coverage from 
exome sequencing data, resulting in a single mtDNA abundance estimate 
for each individual. To eliminate the plate effect, we subsequently standar
dized the abundance to a mean of zero and a standard deviation (SD) of one 
within each genotyping plate comprising 96 wells. An additional quality con
trol step was performed by eliminating individuals with high SD (two SD 
from the mean) of autosomal probes log2 ratio (L2R). Consequently, 
293 245 individuals remained in the cohort and are further used in the sub
sequent observational analyses and individual-level data genetic study. 
Importantly, the mtDNA abundance has been shown to be highly consist
ent with the number of mtDNA-CN.19,20

2.1.3 Outcome definition
Outcomes in the analysis were incident cardiovascular diseases during the 
period from recruitment to 1 January 2021. Incident disease status was as
certained by linkage with hospital admissions data and national death regis
ter data to identify the date of the first known CVD or CVD-related death 
after the date of baseline assessment. The linkage details are presented in 
the original study protocol (https://www.ukbiobank.ac.uk/media/gnkeyh2q/ 
study-rationale.pdf, accessed April 2021). The outcomes were incident 
CAD and HF, separately. Incident disease diagnoses are coded according 
to the International Classification of Diseases edition 10 (ICD-10); CAD 
cases were defined as angina pectoris (I20), myocardial infarction (MI) 
(I21 and I22), and acute and chronic ischaemic heart disease (IHD) (I24 
and I25); Incident HF cases were defined as I50. In addition, we analysed 
acute MI and chronic IHD as separate outcomes in sensitivity analyses. 
Follow-up time is computed from the baseline visit to the diagnosis of in
cident disease, death, or censoring, whichever occurred first.

2.1.4 Covariates
Covariates were from baseline measurements, including demographic 
parameters (age at recruitment, sex, deprivation index); the first 10 PCs 
to correct for possible remaining population stratification; genotyping 
batch; cell numbers (white blood cell counts and platelet counts); an
thropometric measure of body mass index (BMI) in kg/m2; self-reported 
lifestyle factors [smoking status (never, past and current), alcohol con
sumption frequency (twice or less per week/more than three times per 
week), physical activity (MET hours per week for moderate-vigorous activ
ity), sleep duration in hours and insomnia symptoms (yes/no)]; familial 

CVD history (yes/no), lipid levels (mmol/l) [total and LDL (low-density lipo
protein) cholesterol] lipid-lowering medication, blood pressure (mmHg, 
average of the two measurements taken a few moments apart when ap
plicable), and blood pressure-lowering medication, as well as baseline 
type 2 diabetes mellitus (T2DM, yes/no) from the medical records.

2.1.5 Statistical analysis
After further exclusion of participants with any prevalent CVD or with
drawn informed consent, the study cohort comprised an analytic sample 
of 273 619 individuals (see Supplementary material online, Figure S1). 
The baseline characteristics of the study population were described in 
quintiles of mtDNA abundance and presented as mean (SD) or median 
(interquartile range, IQR) for continuous variables and frequency (propor
tion) for categoric variables. Cumulative incidence for competing risks 
(CICR) was used to plot the cumulative incidence of both CAD and HF 
against follow-up time by mtDNA abundance quintiles, accounting for 
death as a competing event.

Cox proportional hazards models were used to estimate hazard ratios 
(HRs) and corresponding 95% confidence intervals (CIs) for the association 
between mtDNA abundance and incident CAD and HF. Two multivariable- 
adjusted regression models were fitted: Model 1 was adjusted for age, sex, 
the first 10 PCs, genotyping batch, white blood cell count, and platelet count; 
Model 2 was additionally adjusted for BMI, smoking, alcohol consumption, 
sleep duration, insomnia, physical activity, familial CVD history, lipid levels 
and lipid-lowering medication, blood pressure, and blood pressure-lowering 
medication and T2DM. In the primary analysis, we treated mtDNA abundance 
as a continuous variable and assessed the risk of incident diseases associated 
with per one-SD decrease in mtDNA abundance using restricted cubic spline 
Cox regression, with knots located at 5th, 50th, and 95th percentiles. 
Subsequently, mtDNA abundance was categorized into quintiles, and HRs 
compared the 1st to 4th quintiles (lower mtDNA abundance) with the 5th 
quintile (reference, highest mtDNA abundance). The proportional hazard as
sumption was graphically assessed by plotting log(−log[survival]) vs. 
log(follow-up time) and was tested using Schoenfeld residuals.

Missing data were present in the covariates and were imputed using mul
tiple imputation by chain equations (MICE),21 setting the number of im
puted datasets to 10. We used predictive mean matching for continuous 
variables, logistic regression for binary variables, and polytomous regres
sion for categorical variables. The imputation model included mtDNA 
abundance, all covariates, the Nelson–Aalen estimator of cumulative haz
ard and incident disease status. Cox-proportional hazards models were fit
ted within each imputed dataset and were subsequently pooled according 
to Rubin’s rules.

As sensitivity analyses, firstly, interaction terms between mtDNA abun
dance and age and sex were added to Model 2 to test for the presence of 
effect modification by sex or age. Subgroup analyses were also performed 
in each stratum of sex and age (<50 years, 50∼60 years, > 60 years), re
spectively. Secondly, all analyses were performed for the CAD subtypes, 
i.e. MI and IHD. Thirdly, analyses were repeated restricting to participants 
without missing data on covariates, i.e. complete cases (n = 162 002).

2.2 Mendelian randomization analyses
2.2.1 Instrumental variables
We retrieved 129 independent (linkage disequilibrium < 0.05) nuclear 
single-nucleotide polymorphisms (SNPs) on autosomes as genetic instru
ments that were associated with continuous mtDNA abundance at a 
genome-wide significance threshold (P < 5 × 10−08), as identified in a re
cent genome-wide association study (GWAS) by Longchamps et al.22

The study was performed in 465 809 individuals of White European ances
try combining the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) consortium and the UKB. Genetic associations 
were adjusted for age, sex, and covariates that were specific in each cohort, 
such as PCs, blood collection sites, family structure, and cell composition. 
To minimize horizontal pleiotropic effect, we thoroughly scrutinized the 
phenotypes associated with each SNP when available in Phenoscanner 
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V2 (see Supplementary material online, Table S1). We subsequently ex
cluded 9 SNPs in total that were genome-wide significantly associated 
with CAD [rs7213347 (SMG6), rs142158911 (LDLR), rs7412 (APOE), 
rs2736100 (TERT)] or risk factors for CAD, predominantly blood pressure, 
lipids and lipoproteins [rs7800558 (DENND2A), rs7896518 (JMJD1C), 
rs261290 (ALDH1A2), rs289713 (CETP), rs4895441 (HBS1L), rs4841132 
(RP11-115J16.1)] in European descendant participants. F-statistics 
[(β/S.E.)2] were computed to evaluate instrumental strength. 
Furthermore, we calculated the proportion of total variance in the expos
ure explained by each instrument (R2) separately.23

2.2.2 Individual-level data from the UKB
We used 293 245 individuals with both prevalent and incident outcomes as 
illustrated in Supplementary material online, Figure S1. We calculated a genetic 
risk score (GRS) for each participant weighted by the associations of the gen
etic instrumental variables for mtDNA abundance identified from the previous 
step. To be aligned with the observational analyses, we created quintiles based 
on the GRS. MR estimates were obtained by dividing the GRS-outcome asso
ciation by the GRS-mtDNA abundance, where logistic regression and linear 
regression were used for outcomes and cell counts, respectively. All regres
sion models were adjusted for age at recruitment, sex, genotyping batch, 
and the first 10 PCs. Moreover, we also investigated the non-linearity of the 
exposure–outcome relationship using a piecewise linear method,24 in which 
the population was divided into strata by instrumental variable- 
free exposure (i.e. residuals from mtDNA regressing on GRS), and a causal ef
fect in each stratum was estimated, referred to as a localized average causal 
effect (LACE). We reported the P-values from two tests for non-linearity, in
cluding the quadratic test and the Cochran’s Q test.

2.2.3 Summary-level outcome data source
Summary statistics for instrument-CAD associations were extracted from 
three large databases separately, the CARDIoGRAMplusC4D (Coronary 
Artery Disease Genome-Wide Replication and Meta-analysis plus the 
Coronary Artery Disease Genetics from Nikpay et al.,25 where UKB data 
were not included) consortium, UKB, and FinnGen study (freeze 5, released 
in May 2021). Similarly, summary statistics for SNP-HF associations were 
drawn from HERMES Consortium (Heart Failure Molecular Epidemiology 
for Therapeutic Targets Consortium, which included data from UKB in 
the meta-analysis) and the FinnGen study, respectively. The descriptions, 
number of cases and controls, cases definition, as well as covariates used 
for association tests of each of the databases, are presented in detail in 
Supplementary methods and Supplementary material online, Table S2.

2.2.4 Mendelian randomization analysis
SNP-exposure and SNP-outcome data were harmonized to make align
ment on effect alleles. Palindromic SNPs were eliminated.26 The primary 
MR analysis was performed using inverse-variance weighted (IVW) method 
to combine the SNP-specific estimates calculated using Wald ratios, as
suming all instrumental variables are valid.27 Results were expressed as 
an odds ratio (OR) on disease risk for a one-SD decrease in genetically pre
dicted mtDNA abundance. When the MR assumptions were met, this OR 
approximated the causal effect of the exposure on the outcome. Sensitivity 
analyses accounting for pleiotropy were conducted, including weighted- 
median estimator (WME) and MR-Egger regression,28,29 both of which as
sumed that at least half of the instrumental variable had to be valid. The 
intercept from MR-Egger represents the average pleiotropic effect; when 
the intercept deviates from zero, estimates from IVW might be biased. 
MR-PRESSO (MR Pleiotropy RESidual Sum and Outlier) was applied to de
tect and correct for horizontal pleiotropy through removing outliers.30

Moreover, we examined the heterogeneity using Cochran’s Q statistic 
among all SNPs within each outcome database.

For outcomes derived from the UKB, despite the gene-exposure associa
tions being from the same population, it has been shown that two-sample 
MR methods can be reliably used for one-sample MR performed within 
large biobanks, such as UKB, except for the MR-Egger sensitivity analysis.31

2.2.5 Meta-analysis of estimates from different 
databases
The effects of mtDNA abundance on CAD/HF in MR analyses were separ
ately estimated in different outcome databases, CARDIoGRAMplusC4D 
consortium (CAD) or HERMES (HF), UKB (CAD only), and FinnGen 
(both), and derived estimates were subsequently pooled using fixed-effects 
meta-analysis.

2.2.6 Sensitivity analysis
Furthermore, the selected SNPs from large GWAS may associate with 
other downstream traits of the trait of interest, such as effects directly 
on the outcome. The inclusion of SNPs with stronger associations to out
comes than to exposures could result in incorrect approximation of the 
causal effect due to reverse causation of those particular SNPs. 
Therefore, we applied MR Steiger filtering to test the direction of causality 
for each instrumental variable on exposure and outcome. Steiger filtering 
assumes that a valid instrumental variable should explain more variation in 
the exposure than in the outcome; if an instrumental variable meets the 
criterion, the causal direction of this instrument is ‘TRUE’, otherwise, it 
is ‘FALSE’,32 indicating that this instrument may likely suffer from reverse 
causation. P-values for the inference of direction were also obtained. 
After removing those SNPs with the ‘FALSE’ causal direction, we repeated 
all MR analyses using the IVW method and meta-analysed using the 
fixed-effect model.

Despite the large sample size of the GWAS used for the selection of in
strumental variables in the Longchamps et al. study, which increased the 
statistical power, the assessments of mtDNA abundance among cohorts 
that contributed data to the meta-analysis were very different. To account 
for this measurement heterogeneity, we additionally performed sensitivity 
analyses restricting to genetic instruments identified from the UKB only. 
Therefore, 66 independent (linkage disequilibrium < 0.1) SNPs were 
used that were associated with mtDNA abundance at a genome-wide sig
nificance threshold (P < 5 × 10−08) from 295 150 participants conducted 
by Hägg et al.18 Genetic associations were adjusted for PCs, age, sex, geno
typing batch, genotyping missingness/call rate, and cell composition. Similar 
to the main analyses, we retrieved all the phenotypes associated with the 
identified SNP (see Supplementary material online, Table S3), and 6 SNPs 
were excluded due to the association with either CAD or related risk fac
tors. All MR analyses were repeated with the substitution of the 60 genetic 
instruments for mtDNA abundance.

All the analyses were performed using R (v3.6.3) statistical software (The 
R Foundation for Statistical Computing, Vienna, Austria). Packages used in 
the analyses included ‘cmprsk’ for cumulative incidence for competing risk 
analyses, ‘mice’ for multiple imputations, ‘survival’ and ‘survminer’ for 
Cox-proportional hazard regression, ‘rms’ for non-linear dose-response 
associations, ‘TwoSampleMR’ for MR analyses, and ‘meta’ for 
meta-analyses. All results were reported as HRs in observational analyses 
and ORs in MR analyses with accompanied 95% CIs.

3. Results
3.1 Prospective results
3.1.1 Main analyses
A total of 273 619 participants were eligible for analyses after exclusion. 
Compared with the highest quintile of mtDNA abundance (Table 1), par
ticipants in the lower quintiles were more likely to have unfavourable CVD 
risk factors, including older age, male sex, higher BMI, higher blood pres
sure and more blood pressure-lowering medication, higher lipids (total 
and LDL cholesterol) and more cholesterol-lowering medication, less 
physical activity, more current smokers, and a higher percentage of familial 
history of CVD or prevalent T2DM.

During a median follow-up of 11.8 (IQR: 11.0, 12.5) years, 18 346 parti
cipants developed CAD and 5795 participants developed HF. Cumulative 
incidence of both CAD and HF increased stepwise with the decrease in 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/119/4/998/6941157 by U

niversiteit Leiden / LU
M

C
 user on 23 June 2023

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac182#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac182#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac182#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac182#supplementary-data


1002                                                                                                                                                                                                          J. Luo et al.

mtDNA abundance, accounting for death as a competing risk (P for Gray’s 
test < 0.001) (Figure 1). In multivariable-adjusted Cox-proportional hazard 
models, restricted cubic spline analyses showed an approximately linear 
dose-response relationship between lower mtDNA abundance with the 
higher risk of CAD (P for non-linearity = 0.1) and HF (P for non-linearity 
= 0.7), as shown in Figure 2. Continuously (model 1), a one-SD decrease 
in mtDNA abundance, was associated with a 1.06-fold (95% confidence 

interval, CI: 1.05, 1.08) and a 1.09-fold (95% CI: 1.06, 1.12) higher hazard 
of CAD and HF, respectively. Categorically, adjusted HRs for the first (low
est mtDNA abundance) vs. the fifth (reference, highest mtDNA abundance) 
quintile of mtDNA abundance were 1.18 (95% CI: 1.13, 1.24) for CAD and 
1.28 (95% CI: 1.17, 1.39) for HF. Additional adjustment for CVD risk factors 
only minimally attenuated the estimates of CAD and HF (Figure 3 and 
Supplementary material online, Table S4).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of the study participants by quintiles of mtDNA abundance

Variable Q1 (lowest 
abundance)

Q2 Q3 Q4 Q1 (highest 
abundance)

P-value

n 54 724 54 724 54 723 54 724 54 724 —

Age (years) 57.2 (8.0) 56.8 (8.0) 56.5 (8.0) 56.2 (8.0) 55.9 (7.9) <0.001

Sex <0.001
Male 25 413 (46.4%) 24 898 (45.5%) 24 478 (44.7%) 24 320 (44.4%) 23 622 (43.2%)

Female 29 311 (53.6%) 29 826 (54.5%) 30 245 (55.3%) 30 404 (55.6%) 31 102 (56.8%)

BMI (kg/m2) 27.6 (5.0) 27.4 (4.8) 27.3 (4.6) 27.1 (4.6) 26.9 (4.5) <0.001
Deprivation index −1.5 (2.9) −1.6 (2.9) −1.7 (2.9) −1.7 (2.9) −1.7 (2.9) <0.001

Diastolic blood pressure (mmHg) 82.9 (10.2) 82.6 (10.0) 82.4 (10.0) 82.3 (10.1) 81.8 (10.1) <0.001

Systolic blood pressure (mmHg) 139.5 (18.9) 138.7 (18.7) 138.2 (18.7) 137.6 (18.4) 136.6 (18.3) <0.001
Blood pressure-lowering medication <0.001

Yes 10 826 (19.8%) 10 085 (18.4%) 9598 (17.5%) 9089 (16.6%) 8524 (15.6%)

No 43 898 (80.2%) 44 637 (81.6%) 45 128 (82.5%) 45 635 (83.4%) 46 199 (84.4%)
Total cholesterol (mmol/L) 5.8 (1.1) 5.8 (1.1) 5.8 (1.1) 5.8 (1.1) 5.7 (1.1) <0.001

HDL (mmol/L) 1.5 (0.4) 1.5 (0.4) 1.5 (0.4) 1.5 (0.4) 1.5 (0.4) <0.001

LDL (mmol/L) 3.7 (0.9) 3.6 (0.8) 3.6 (0.9) 3.6 (0.8) 3.6 (0.8) <0.001
Triglycerides (mmol/L) 1.8 (1.0) 1.8 (1.0) 1.7 (1.0) 1.7 (1.0) 1.7 (1.0) <0.001

Cholesterol-lowering medication <0.001

Yes 7596 (13.9%) 7394 (13.5%) 7148 (13.1%) 6822 (12.5%) 6663 (12.2%)
No 47 128 (86.1%) 47 330 (86.5%) 47 575 (86.9%) 47 902 (87.5%) 48 061 (87.8%)

Physical activity (moderate-vigorous MET 

hours/week)

26.5 (33.8) 27.0 (34.3) 27.1 (34.6) 27.1 (33.8) 27.1 (33.8) 0.054

Alcohol consumption frequency <0.001

At least three times per week 24 939 (45.6%) 24 836 (45.4%) 25 303 (46.2%) 25 400 (46.4%) 25 679 (46.9%)

Twice or less per week 29 751 (54.4%) 29 851 (54.5%) 29 381 (53.7%) 29 287 (53.5%) 29 015 (53.0%)
Data missing 34 (0.1%) 37 (0.1%) 39 (0.1%) 37 (0.1%) 30 (0.1%)

Smoking status <0.001

Current 6124 (11.2%) 5643 (10.3%) 5369 (9.8) 5046 (9.2%) 4521 (8.3%)
Previous 18 646 (34.1%) 18 831 (34.4%) 18 588 (34.0%) 18 586 (34.0%) 18 702 (34.2%)

Never 29 732 (54.3%) 30 079 (55.0%) 30 594 (55.9%) 30 914 (56.5%) 31 350 (57.3%)

Data missing 222 (0.4%) 171 (0.3%) 172 (0.3%) 178 (0.3%) 151 (0.3%)
Sleep duration (hours) 7.1 (1.2) 7.1 (1.2) 7.1 (1.2) 7.1 (1.2) 7.1 (1.2) 0.6

Insomnia 0.02

Sometimes 26 161 (47.8%) 26 273 (48.0%) 26 420 (48.3%) 26 243 (48.0%) 26 321 (48.1%)
Usually 15 488 (28.3%) 15 145 (27.7%) 15 031 (27.5%) 14 982 (27.4%) 14 991 (27.4%)

Never/rarely 13 038 (23.8%) 13 271 (24.3%) 13 237 (24.2%) 13 454 (24.6%) 13 384 (24.5%)

Data missing 37 (0.1%) 35 (0.1%) 35 (0.1%) 45 (0.1%) 28 (0.1%)
Familial CVD history <0.001

Yes 21 539 (39.4%) 21 716 (39.7%) 21 690 (39.6%) 21 687 (39.6%) 21 359 (39.0%)

No 27 791 (50.8%) 27 822 (50.8%) 28 005 (51.2%) 28 026 (51.2%) 28 420 (51.9%)
Data missing 5394 (9.8%) 5186 (9.5%) 5028 (9.2%) 5011 (9.2%) 4945 (9.0%)

T2DM history (yes) <0.001

Yes 1184 (2.2%) 1093 (2.0%) 969 (1.8%) 914 (1.7%) 879 (1.6%)
No 53 540 (97.8%) 53 631 (98.0%) 53 755 (98.2%) 53 810 (98.3%) 53 845 (98.4%)

BMI, Body mass index; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; CVD, cardiovascular disease; CAD, coronary artery disease; HF, heart failure. 
Data are mean (SD) or median (interquartile range, IQR) for continuous variables and frequency (percentage) for categorical variables. Some percentages do not add up to 100 because of 
rounding. P-values were obtained from Kruskal–Wallis H test or χ2 test as appropriate.
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3.1.2 Sensitivity analysis
We observed no evidence favouring interactions between mtDNA abun
dance and sex (P-values for interaction = 0.2 for CAD, 0.7 for HF); in line, in 
sex-stratified analyses, the estimates between men and women were simi
lar (see Supplementary material online, Table S5). Interaction was observed 
between mtDNA abundance and the baseline age for CAD (P for inter
action < 0.001). After stratification by age groups, HRs obtained from 
model 2 for CAD slightly attenuated from the younger group (<50 years) 
to older groups (50∼60 years and >60 years) (HR: 1.06, 1.04, and 1.02, re
spectively) (see Supplementary material online, Table S6). However, no 
interaction was detected between mtDNA abundance and age at baseline 
for HF (P for interaction = 0.2); though HR in the younger group was also 
higher for HF, this may be due to the very limited number of cases in this 
group. When analyses were conducted for MI and IHD separately, cumu
lative incidences were higher in lower quintiles compared with the highest 
quintile (see Supplementary material online, Figure S2) for MI and IHD; es
timates from Cox proportional hazard regression models did not differ 
considerably from when all CAD were considered (see Supplementary 
material online, Tables S4–S6).

In addition, missing data in covariates were present (see Supplementary 
material online, Table S7), and 162 002 (59%) of 273 619 individuals included 
in the current study provided complete data for all variables. The absolute 
difference in the baseline characteristics between these participants with 
and without complete data was very limited (see Supplementary material 
online, Table S8). Furthermore, the main results from sensitivity analyses re
stricting to complete cases did not materially differ from the results obtained 
after imputation (see Supplementary material online, Table S9).

3.2 Mendelian randomization
3.2.1 Individual-level data
In the UKB, lower weighted GRS was continuously associated with a step
wise lower mtDNA abundance (see Supplementary material online, 
Figure S3), and was also associated with a higher risk of CAD [OR (95% 
CI): 1.18 (1.09, 1.28)] but not with the risk of HF [OR (95%CI): 1.07 
(0.92, 1.24)]; categorically, compared with the highest GRS quintile (highest 
mtDNA abundance), the ORs increased according to quintiles, with signifi
cant estimates for CAD in the 1st and 2nd quintiles (lower mtDNA abun
dance) [OR (95%CI): 1.05 (1.02, 1.09) and 1.07 (1.03, 1.11)] (see 
Supplementary material online, Table S10). MR estimates [OR (95%CI)] 

using the ratio method were 1.25 (1.12, 1.38) and 1.09 (0.89, 1.34) for 
CAD and HF, respectively. We did not observe any non-linear association 
across different quintiles or from the piecewise method for both CAD and 
HF by the non-linear test (see Supplementary material online, Figure S4).

3.2.2 Summary-level data analyses
In total, 101 distinct SNPs were present in at least one of the outcome da
tabases. F-statistics for each SNP were higher than 10 and ranged from 16 
to 634, and a total of 1.8% variation were explained by the instruments (see 
Supplementary material online, Table S11).

For CAD, the pooled OR of the primary IVW estimates from 
CARDIoGRAMplusC4D, UKB, and FinnGen of a one-SD decrease in 
mtDNA abundance was 1.09 (95% CI: 1.03, 1.16) (Figure 4). Estimates from 
WME and MR-Egger generally did not differ substantially except for UKB where 
the point estimates attenuated to some extent. No pleiotropy was detected by 
the intercept of MR-Egger (P > 0.05). Though outliers were identified by 
MR-PRESSO in each database, estimates after outlier removal remained similar 
to those obtained from IVW (see Supplementary material online, Table S12).

For HF, the combined OR from IVW obtained in the HERMES consortium 
and FinnGen per one-SD decrease in mtDNA abundance was 0.99 (95% CI: 
0.92, 1.08) (Figure 4). Results from WME were similar, and we observed no 
evidence for horizontal pleiotropy from MR-Egger intercept (P > 0.05); out
liers were spotted in the HERMES consortium assessed by MR-PRESSO, 
but outlier-corrected estimates did not materially differ from those generated 
from IVW (see Supplementary material online, Table S13).

3.2.3 Sensitivity analyses
Steiger filtering detected several SNPs across different outcome datasets 
with possible reverse causation, and these were likely to be primarily asso
ciated with the outcomes rather than mtDNA abundance (see 
Supplementary material online, Table S11). After removing these SNPs, 
IVW analyses were repeated and study-specific estimates were 
meta-analysed; results from these efforts and estimates did not substantially 
differ with the overall analysis. Although the individual estimate became in
significant due to fewer instrumental variables, the meta-analysis of three 
estimates remained significant [OR (95%CI): 1.06 (1.00, 1.12)] for CAD 
and remain null [OR (95%CI): 0.99 (0.92, 1.08)] for HF (see 
Supplementary material online, Figure S5).

Figure 1 Cumulative incidence of CAD and HF by quintiles of mtDNA abundance. We calculated cumulative incidence for CAD and HF, accounting for 
death as a competing event. Differences in cumulative incidence between mtDNA abundance quintiles were assessed using Gray’s test. CAD, coronary artery 
disease; HF, heart failure.
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When we used genetic instrumental variables from Hägg et al.,18 59 
distinct SNPs were included. F-statistics for each SNP were higher than 
10 and ranged from 30 to 277, and a total of 1.1% variation were ex
plained by the instruments. Detailed full information on the used genetic 

instruments is presented in Supplementary material online, Table S14. A 
one-SD decrease in mtDNA abundance was associated with a 1.16-fold 
(95% CI: 1.07, 1.26), a 1.04-fold (95% CI: 0.94, 1.15) higher risk of CAD 
and HF in the meta-analyses, respectively (see Supplementary material 

Figure 2 Hazard ratios for incident CAD and HF by levels of mtDNA abundance. Solid lines represented hazard ratios (derived from model 2 adjusted for 
age, sex, genotyping batch, the first two principal components, white blood cell count and platelet count, body mass index, physical activity, smoking status, 
alcohol consumption frequency, blood pressure and blood pressure-lowering medication, cholesterol, triglycerides and lipid-lowering medication, sleep dur
ation and insomnia, type 2 diabetes status, and familial history of cardiovascular disease) and corresponding 95% confidence intervals (grey shadowed area) 
using restricted cubic splines for mtDNA abundance with knots at distribution of 5th, 50th, and 95th percentiles. The density on the right y-axis shows the 
distribution of baseline participants. Since mtDNA abundance has been standardized during computation, the distribution is approximately normal. CAD, cor
onary artery disease; HF, heart failure.
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online, Figure S6). MR sensitivity analyses including WME, MR-Egger, and 
MR-PRESSO are presented in Supplementary material online, Tables S15 
and S16.

4. Discussion
In the present study, we implemented a prospective cohort study design 
and MR study to assess the relationship of leukocyte mtDNA abundance 
with the risk of incident CAD and HF. Results from the multivariable- 
adjusted prospective analyses suggested associations between lower 
mtDNA abundance and higher risks of CAD and HF, whereas findings 
from MR analyses using either individual-level and summary-level data 
only confirmed an association between genetically influenced lower 
mtDNA abundance and a higher risk of CAD, possibly reflecting evidence 
of causality for CAD.

Consistent with our observational findings, previous studies showed that 
lower mtDNA-CN measured from leukocyte was related to an increased 
risk of CVD and its risk factors.7–15 The only prospective study that assessed 
the relationship between mtDNA content and either CAD or HF used the 
ARIC study.12,13 In the ARIC study, composed of 20 163 participants (2460 in
cident CAD) with a mean follow-up of 13.5 years, a lower mtDNA abundance 
was associated with an increased risk of incident CAD. Similarly, with 10 802 
participants (2227 incident HF cases) followed-up for a mean of 23.1 years, 
lower mtDNA abundance was linked to an increased risk of HF. Residual con
founding, in particular factors relevant to both mitochondrial function and 
CVD such as physical activity and insomnia, was not taken into account. 
However, in our multivariable-adjusted analysis, additional adjustment for 
these covariates did not further attenuate the estimates substantially.

To the best of our knowledge, the current study is the first to evaluate 
the causal nature of the associations between mtDNA abundance and the 
risk of CVD. MR analyses with the genetic instruments for mtDNA abun
dance confirmed the detrimental effect of lower mtDNA content on the 

risk of CAD observed in the cohort studies. Mitochondrial dysfunction, in
dicated by low mtDNA abundance, would lead to increased production of 
reactive oxygen species (ROS) in mitochondria.5 Those maladaptive over
produced mitochondrial ROS mediate irreversible damage to macromole
cules, such as increased oxidation of LDL and dysfunction of endothelial 
cells that are critical factors to promote atherosclerosis, and further 
CAD events.33 Nevertheless, several factors merit thoughtful consider
ation in terms of the interpretation of the null effect on HF in MR analyses. 
HF has substantial phenotypic heterogeneity, which can be defined by ejec
tion fraction (EF) and diastolic function; more than half of patients have 
preserved EF while over 40% of cases have isolated diastolic dysfunction.34

Moreover, a large degree of variation has been described even within pa
tients with preserved EF.35,36 It has also been shown previously that the as
sociations between mtDNA abundance and HF with preserved and 
reduced EF were different and possibly would make the association in 
the direction to zero when we combined the two subgroups in a single ana
lysis.13 However, stratification by cause of HF in the UKB ended up with a 
low number of cases and insufficient statistical power and cause-specific 
GWAS summary-level data of HF are currently not available. For these rea
sons, the lack of a clear association between mtDNA abundance and HF 
should be interpreted with caution, and more follow-up analyses are re
quired to investigate the cause-specific HF in more detail.

4.1 Study strengths and limitations
The main strength of our study is that we adopted the triangulation of cau
sal inference in aetiological epidemiology.16 The consistency between bio
chemically measured and genetically determined mtDNA abundance with 
CAD increased the validity of the results. Given the absence of randomized 
clinical trials concerning mtDNA abundance and CAD to date, the analyses 
that have been performed in the present study provide the foremost evi
dence on the association between mtDNA content and CAD. Other im
portant strengths of our prospective cohort study include the large sample 

Figure 3 Hazard ratios for incident CAD and HF by quintiles of mtDNA abundance. Estimated hazard ratios for the effect of per-SD decrease in mtDNA 
abundance (continuous), or for the 1st (lowest mtDNA abundance) to the 4th quintile compared with the 5th (reference, highest mtDNA abundance) quintile 
(categorical) on CAD and HF. Model 1 was adjusted for age, sex, genotyping batch, the first two principal components, white blood cell count, and platelet 
count. Model 2 was model 1 additionally adjusted for body mass index, physical activity, smoking status, alcohol consumption frequency, blood pressure and 
blood pressure-lowering medication, cholesterol, triglycerides and lipid-lowering medication, sleep duration and insomnia, type 2 diabetes status, and familial 
history of cardiovascular disease. CAD, coronary artery disease; HF, heart failure.
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size and the considerable number of incident cases from the UKB, compre
hensive assessment of confounding factors, and subtype analyses of MI and 
IHD within CAD. In MR studies, we meta-analysed three large databases 
where SNP-outcome associations were derived, comprising a substantial 
size of overall participants and cases. The results wereconsistent across dif
ferent databases, and the precision of the pooled MR estimates obtained 
from different databases increased significantly.

Several limitations should be acknowledged. First, mtDNA content was 
measured in leukocytes. Without experimental confirmation in specific 
target tissues (e.g. heart, endothelium) that are relevant in the pathogenesis 
of CVD, our results therefore cannot be applied to indicate mtDNA abun
dance in cardiac or vascular tissues, which are highly physiologically distinct 
from cells circulating in the blood. More studies are needed to address the 
correlation between blood- and tissue-derived mtDNA abundance with 
larger sample sizes. In addition, the initial calculation of mtDNA abundance 
from chip arrays might have introduced noise due to the small number of 
variants. To this end, a weighted mtDNA abundance was implemented, 
which approximates what would be estimated from exome sequencing 
and has been validated.18 Second, in MR analyses in the UKB, the GRS 
for mtDNA was generated based on the genetic associations identified 
from a combination of the CHARGE consortium and the UKB, and thus, 
the GRS is not completely externally weighted. Nevertheless, with the 
available data, this has been the utmost effort; in the two-sample MR, des
pite a large number of instrumental variables the variation of mtDNA abun
dance explained by these SNPs was small. Notwithstanding, we had more 
than sufficient power to detect the true causal effect in MR analyses (see 
Supplementary material online, Figure S7). Moreover, while we acknow
ledge the possibility of pleiotropic effects of included genetic instruments, 
this is likely to be vertical (Supplementary discussion). When we excluded 
genetic variants mapped in lipid-metabolism-related genes, and additionally 
stringently remove a large proportion of genetic variants with possible re
verse causation detected by Steiger filtering test, the results remained simi
lar. Third, since the population of non-Europeans was highly 
heterogeneous in UKB, we restricted the individual observational and gen
etic analyses to White European populations; furthermore, two-sample 

MR analyses were also performed predominantly in European-descent in
dividuals. It is therefore inappropriate to extrapolate our findings to other 
populations with different ethnic backgrounds. Lastly, we were not able to 
dissect the potential impact of other mtDNA alterations, such as mtDNA 
mutations or deletions which have been proposed to contribute to the ini
tiation and progression of atherosclerosis.37 Consequently, there is a need 
for accurate deep sequencing to simultaneously analyse the entire mito
chondrial genome to better understand the relationships between 
mtDNA abundance function, germline and acquired mutations, and CVD.

5. Conclusions
This study provides the first evidence of a possible causal association be
tween leukocyte mtDNA abundance and the risk of CAD. Further studies 
are required to fully understand how mtDNA affects atherogenic risk 
development.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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Translational perspective
We provide evidence that low leukocyte mtDNA abundance is a causal risk factor, independent of other traditional cardiovascular risk factors, for 
atherosclerotic cardiovascular diseases among individuals without known cardiovascular diseases. Future studies should address the value of incorp
oration of mtDNA abundance into risk prediction on cardiovascular risk management in clinical practice.
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