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Abstract

Purpose: Current phantoms used for the dose reconstruction of long-term childhood cancer
survivors lack individualization. We design a method to predict highly individualized abdominal
three-dimensional (3-D) phantoms automatically.

Approach:We train machine learning (ML) models to map (2-D) patient features to 3-D organ-
at-risk (OAR) metrics upon a database of 60 pediatric abdominal computed tomographies with
liver and spleen segmentations. Next, we use the models in an automatic pipeline that outputs
a personalized phantom given the patient’s features, by assembling 3-D imaging from the data-
base. A step to improve phantom realism (i.e., avoid OAR overlap) is included. We compare
five ML algorithms, in terms of predicting OAR left–right (LR), anterior–posterior (AP),
inferior–superior (IS) positions, and surface Dice–Sørensen coefficient (sDSC). Furthermore,
two existing human-designed phantom construction criteria and two additional control methods
are investigated for comparison.

Results: Different ML algorithms result in similar test mean absolute errors: ∼8 mm for liver
LR, IS, and spleen AP, IS; ∼5 mm for liver AP and spleen LR; ∼80% for abdomen sDSC; and
∼60% to 65% for liver and spleen sDSC. One ML algorithm (GP-GOMEA) significantly per-
forms the best for 6/9 metrics. The control methods and the human-designed criteria in particular
perform generally worse, sometimes substantially (þ5-mm error for spleen IS, −10% sDSC for
liver). The automatic step to improve realism generally results in limited metric accuracy loss,
but fails in one case (out of 60).

Conclusion: Our ML-based pipeline leads to phantoms that are significantly and substantially
more individualized than currently used human-designed criteria.

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.4.046501]
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1 Introduction

Virtual anthropomorphic phantoms are three-dimensional (3-D) representations of the human
body that are used as surrogates for the anatomy of humans, to estimate the quantity and
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geometric distribution of radiation dose when having been exposed to radiation, e.g., in radiation
treatment for cancer patients.1,2

We consider the scenario of radiation dose reconstruction for childhood cancer survivors who
were treated in the pre-3-D planning era, i.e., before computed tomography (CT) scans became
commonplace in radiation treatment practice.3,4 Reconstructing the radiation dose that these
patients were subject to is key to study the possible late adverse effects of radiation treatment
and consequently improve future treatments.5–7 Here phantoms are needed to act as a surrogate
for the unknown 3-D anatomy of the patient.8

Nowadays, several types of (pediatric and adult) phantom exist. For example, research
groups have been building phantoms as nonrealistic but easily reconfigurable cuboids,8,9 or,
conversely, as extremely realistic anatomies, by morphing patient CT scans and respective organ
segmentations.10–12 Efforts have also been done to build 4-D phantoms, i.e., phantoms that
include realistic motion simulations, as well as phantoms that include a large number (a thou-
sand) of organ segmentations.13,14

In the scenario we consider, phantom building techniques that assume 3-D patient imaging to
be available cannot be used.15 This leads to a key issue that existing approaches have in common:
they build phantom libraries using large population statistics (e.g., ICRP ‘8916) and categorize
them by simple hand-crafted criteria, typically based on age, gender, and/or height and weight
percentiles.9–12,14 When dose reconstruction for a childhood cancer survivor is needed, the
criterion is applied to choose the phantom that corresponds to the patient’s category.
Several studies have, however, indicated that such simple criteria are incapable of capturing
the high variance in internal anatomy.2,3,10,17 Since the lack of resemblance between the
patient’s and the phantom’s anatomy is a primary source of error,18 this can ultimately lead
to inaccurate dose reconstructions.4 We remark that, for the purpose of dose reconstruction,
anatomy resemblance (configuration and properties of internal organs) does not necessarily
imply anatomy realism.8

To improve phantom individualization for patients with no 3-D imaging, adaptation tech-
niques have been studied such as morphing organ shapes19,20 and organ repositioning.21 In this
work, we attempt to improve upon the use of simple hand-crafted criteria, and upon adaptation
techniques, by proposing an end-to-end approach based on nontrivial criteria (models) discov-
ered by machine learning (ML).22,23 In particular, we design an automatic pipeline that predicts a
pseudorealistic, individualized phantom for a childhood cancer survivor, given features that are
typically available from the pre-3-D planning era and a database of recent patient 3-D imaging.
We remark that we primarily focus on individualization and only secondarily on anatomical
realism, since the latter aspect is desirable but not a necessary condition to perform dose
reconstruction.

We consider pediatric patients between 2 to 6 years and focus on dose reconstruction
for abdominal radiation treatment, for the following reasons. First, children are typically
under-represented in existing phantom libraries, i.e., phantoms are available for few broad
categories.9,10 Second, the inclusion of radiation treatment in cancer care has led to high
survival rates for several types of pediatric abdominal cancer (e.g., Wilms’ tumor, the most
common type of kidney cancer), but it is known to cause late adverse effects.6,24

2 Materials and Methods

2.1 Data

We built a database using data of 60 pediatric cancer patients, in the age range of 2 to 6 years,
roughly half males and half females (details in Table 1). The patients were treated after 2002 at
the Radiation Oncology Department of the Amsterdam UMC, location AMC, in Amsterdam, or
at the University Medical Center Utrecht/Princess Màxima Center for Pediatric Oncology in
Utrecht, mostly but not exclusively for Wilms’ tumor (almost 2 out of 3 patients). Nephrectomy
was performed for 32 out of 60 patients (13 left and 19 right). For each patient, a CT scan is
available (median axial thickness: 2.5 mm, median in-plane resolution: 1.0 mm × 1.0 mm) of
the patient positioned on a flat couch in supine orientation. The CT scan fully includes the lower
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part of the thorax to the lower part of the abdomen, from the top of the thoracic 10th vertebra
(T10) to the bottom of the sacral 1st vertebra (S1).

We simulated the scenario of dose reconstruction for patients treated in the pre-3-D planning
era using the database of recent patient data, by considering only features that were typically
recorded in the past. Note that this is a necessary condition to validate our approach and to train
ML models (explained in Sec. 2.3). We base features availability choices considering the Emma
Children’s Hospital/Academic Medical Center (EKZ/AMC) childhood cancer survivor cohort
(treated between 1966 and 1996).6 For these patients, 2-D coronal radiographs are available.
Consequently, we could consider measurements along left–right (LR) and inferior–superior
(IS) directions based on the reliably visible bony anatomy (see Fig. 1). We simulated the avail-
ability of historical radiographs using digitally reconstructed radiographs (DRRs). We manually
tuned DRR quality to resemble the quality of historical radiographs of the EKZ/AMC cohort:
window level of 1441 hounsfield unit (HU), window width of 3200 HU, no bone enhancement.
Figures 1(a) and 1(b) show an example of a historical radiograph and a DRR.

Table 1 lists the features considered in this work. Features involving measurements from
DRRs were collected after manual placement of landmarks (using 3D Slicer software25) exem-
plified in Fig. 1(c). The abdominal diameter in anterior–posterior (AP) direction was historically
measured using rulers and calipers, at the center of the radiation treatment field (corresponding
with the isocenter for the EKZ/AMC cohort). For our cohort, we measured the abdominal diam-
eter along AP from the CTs using a typical isocenter position for abdominal flank irradiation,
as described in our previous work.3 Figure 2 shows the Pearson correlation coefficients between
the considered features. Most features are moderately correlated and few are strongly correlated,
e.g., height with age and weight. The distance along IS between the top of the right diaphragm
and T12 (RDIS) has the lowest correlation with any other feature. This is likely due to RDIS
being heavily influenced by the breathing state of the patient,26,27 which is itself independent
from the other features.

Table 1 Features of our cohort, typically available for patients treated in the pre-3-D planning era.

Feature name Abbreviation Unit Source Min Max Mean St. Dev.

Age AGE Years Records 2.0 6.0 3.8 1.2

Abdominal diameter in AP at typical
isocenter

ADAP mm Records 11.1 16.0 13.3 1.2

Abdominal diameter in LR at middle
of L2

ADLR mm Radiograph 16.3 23.5 19.4 1.4

Distance from top of iliac crest to
spinal cord along LR

ICSC mm Radiograph 4.3 6.8 5.5 0.6

Gender GEND – Records 33 females, 27 males

Heart size along LR HESZ mm Radiograph 6.8 9.9 8.5 0.7

Height HEIG cm Records 86.0 123.0 103.0 10.7

Left diaphragm length along LR LDLR mm Radiograph 6.5 10.7 8.4 0.9

Right diaphragm length along LR RDLR mm Radiograph 6.2 10.5 8.3 0.8

Right diaphragm top to T12
distance along IS

RDIS mm Radiograph 4.0 7.8 5.9 1.0

Spinal cord length along IS from
T12 to L4

SPIS mm Radiograph 7.0 10.9 9.3 0.8

Weight WEIG kg Records 10.0 28.0 16.4 3.7

Note: Gender is categorical, other features are numerical.
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We consider two organs at risk (OARs), i.e., organs for which exposure to radiation is known
to lead to adverse effects: the liver and the spleen. The shape and position of these OARs is
known to vary substantially per individual, and they are considered hard to predict.3 Moreover,
the liver and the spleen are not (clearly) visible in historical radiographs (see Fig. 1). For each
patient in the cohort, 3-D segmentations of the OARs and the external body (delimited along
IS between T10 and S1) were first automatically generated (with ADMIRE research software,
2.3.0, Elekta AB, Stockholm, Sweden), then manually checked and corrected by a doctoral
student (3 years of experience) and an experienced radiation treatment technologist (more than
25 years of experience), using Velocity software (version 3.2.0, Varian Medical Systems,
Inc. Palo Alto, CA, US), and finally approved by a pediatric radiation oncologist (5 years
experience).

Fig. 2 Pearson correlation coefficients (number and color-coded) between the considered fea-
tures. See Table 1 for the meaning of abbreviations.

Fig. 1 (a) An example of a 2-D coronal radiograph, taken by a radiation treatment simulator used
in the pre-3-D planning era, including annotations by medical personnel (sensitive information
censored). (b) A DRR built from a CT. Images are acquired in AP setting. Liver and spleen are
not clearly visible. (c) Example of manually placed landmarks used to measure features from
radiographs. The length of the left and the right diaphragm along the LR direction is derived
by fitting a cubic spline to the respective dashes.
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2.2 Pipeline for Automatic Phantom Construction

Our pipeline takes as input features of a pre-3-D planning era pediatric patient and returns as
output a personalized abdominal CT-based phantom. The phantom is built by assembling recent
patient imaging data using ML predictions. The pipeline is summarized in Fig. 3. Given the
patient features as input, the following phases follow.

Phase 1: Input features dispatching. The features of the patient are dispatched to ML models.
These models were trained beforehand (as explained in Sec. 2.3). The models that predict similar
OAR segmentations to retrieve (Mbody

S and MOAR
S ) also use features of patients in the database

as input.
Phase 2: Receiver preparation. An ML model Mbody

S is used to predict which CT is most
resembling in terms of overall body shape (for the abdominal region). We call this CT the
“receiver.” Then the OARs of the receiver are “resected”: the voxels of the OARs are set to
HU values that represent generic soft abdominal tissues (we used 78 as done in the phantoms
of the University of Florida/National Cancer Institute10). This way, no cavities are present that
could harm dose calculations.

Phase 3: Prediction of similar OAR segmentation and its position. For each OAR, its center
of mass position is predicted using independent models, i.e., one for the LR (MOAR

LR ), one for the
AP (MOAR

AP ), and one for the IS position (MOAR
IS ). A fifth model (MOAR

S ) is used to predict which
OAR segmentation to retrieve among the ones available based on a shape-focused metric
(described in Sec. 2.3.1). We refer to the CT that is chosen by MOAR

S to provide the OAR
segmentation as a “donor.”

Phase 4: OAR transplant. Each OAR segmentation is “transplanted” into the receiver, using
its predicted position. Transplantation is achieved similarly to resection: we add the OAR seg-
mentation to the set of segmentations of the receiver, placed in the predicted position, and we set
the HU values of the voxels in the receiver that belong to the OAR segmentation to the respective
HU values from the donor scan.

Phase 5: Anatomical inconsistency correction. Because ML predictions can in principle
place OARs in nonrealistic positions, an anatomical inconsistencies correction (AIC) procedure
is used to enhance phantom realism. AIC attempts to be minimal to ensure fidelity with respect to
the individualized ML predictions (see Sec. 2.4).

Fig. 3 Pipeline for automatic phantom building. Pretrained ML models are used to predict 3-D
OAR positions as well as what OAR donor segmentation and what receiver CT to retrieve from
the database to construct a patient-specific phantom CT (only the liver is considered as OAR
in this example). The resected and transplanted OAR is highlighted in red and green, respectively.
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To store CTs and segmentations sets, we relied on the Digital Imaging and Communications
in Medicine (DICOM) standard. Segmentation sets were stored in DICOM RT-Structure sets. To
handle this data format, we used the pydicom package for Python (https://pydicom.github.io/).
For further details, we refer to our source code: http://github.com/marcovirgolin/APhA.

2.3 Machine Learning

2.3.1 Datasets for training

To train the ML models we prepare 1þ 4 × nOARs datasets: one to learn how to pick the receiver
CT, and for each OAR three to predict the spatial position, and one to predict the segmentation to
retrieve.

Features are normalized by z scoring28 (subtraction of the mean and division by the standard
deviation). Patient gender is set to a binary value (0 female and 1 male). As no correlation
coefficient above 0.9 was found between the features (Fig. 2), we do not exclude any feature.
z scoring is also applied to the target variable Y.

We construct two types of datasets. One type is used to learn OAR position (in LR, AP,
and IS). The other type is used to learn a notion of shape similarity between segmentations.
The preparation of the datasets for learning OAR position is straightforward. We define the
OAR position relative to a common landmark: the center of the L2 vertebra. In other words,
the OAR position in LR, AP, or IS direction is a signed, one-dimensional distance from the
center of the L2 vertebra to the center of mass of the OAR’s segmentation, measured in
mm. We do not account for possible (but typically limited) patient tilting.

For the datasets concerning OAR segmentation similarity, a measure of similarity needs to be
chosen to act as target variable. Note that a measure of similarity is defined between pairs of
segmentations, hence each example needs to be defined over a pair of patients, leading to a total
of npatientsðnpatients − 1Þ∕2 training examples. A pairwise version of the features is considered
here, defined as the absolute difference of the features of patients p and q: xp;q ¼ jxp − xqj,
with xp being the feature x of patient p. For the target variable, several possibilities to address
segmentation similarity have been proposed in the literature. For example, a possibility is to
consider similarity in OAR weight.12 We do not rely on OAR weight nor volume because they
do not account for similarity of shape. Another commonly adopted option to assess OAR sim-
ilarity is the use of the volumetric Dice–Sørensen coefficient (DSC).3,29,30 However, the DSC still
has limitations, because it is segmentation-volume dependent. Similarly, we do not consider the
Hausdorff distance because it is determined by a single point.31 We choose to rely on the recently
introduced surface Dice–Sørensen coefficient (sDSC),32 which considers only significant milli-
metric deviations between the surfaces of the segmentations to evaluate similarity. The sDSC
uses a threshold parameter τ that expresses what deviations are acceptable (e.g., as part of inter-
observer variability). We set τ ¼ 5.0 mm, i.e., double the median CT slice thickness in our
database. A valid alternative to the sDSC is the average symmetric surface distance.33–35 We
nevertheless preferred the use of the sDSC because the average symmetric surface distance con-
siders all deviations as significant and is not a percentage. Because we predict OAR positions
separately for each OAR, the sDSC is computed after aligning the segmentations on their center
of mass, i.e., to maximally focus on shape similarity.

2.3.2 Loss function for learning

As loss function to train and validate the ML algorithms, we consider the mean absolute error
(MAE), i.e.,

EQ-TARGET;temp:intralink-;sec2.3.2;116;143MAEðy; ŷÞ ¼ 1

n

Xn

i¼1

jyi − ŷij;

where y and ŷ are n-dimensional vectors of ground-truth values and ML predictions, respec-
tively. We choose to use the MAE over, e.g., the (rooted) mean squared error, because it weighs
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all errors equally, meaning it is relatively robust to outliers (important considering the limited
number of patients).

Measuring the MAE in OAR positions committed by our pipeline is trivial. It corresponds
to the MAE of the ML predictions. This is not the case for segmentation retrieval (MOAR

S and

Mbody
S in Fig. 3). Given the predictions of sDSCs between the OAR segmentation of the test

patient (Ot) and the OAR segmentations of the database, we retrieve from the database the seg-
mentation with the largest sDSC prediction (O⋆). Now, the actual sDSC between Ot and O⋆

may be different from the predicted one, hence we calculate it anew: this is the sDSC we ulti-
mately report. Note also that the maximum score of OAR shape similarity achievable is not
necessarily 100%, rather, it is the maximum sDSC that can be obtained with the OAR segmen-
tations available in the database.

2.3.3 Algorithms

We compare a total of five regression ML algorithms: ridge regression (RidReg),36,37 the least
absolute shrinkage and selection operator (LASSO),38 random forest (RF),39 traditional genetic
programming (GP-Trad),40,41 and the genetic programming instance of the Gene-pool Optimal
Mixing Evolutionary Algorithm (GP-GOMEA).42,43

RidReg and LASSO combine features linearly, include penalization metrics to avoid over-
fitting and build models that can be read as often interpretable mathematical expressions.44

By “interpretable,” we specifically refer to the concept of “global interpretability,” meaning
that the entirety of the logic of a model can be understood, and any outcome can be foreseen.45

We use the implementation of RidReg and LASSO from the package glmnet in R.46,47

RF allows nonlinear modeling, by means of an ensemble of decision trees. Because the
model is an ensemble, it is considered not interpretable. 44 We use the R implementation known
as ranger.48

The GP algorithms are interesting because, like RidReg and LASSO, they deliver models in
the form of mathematical expressions that can, however, include nonlinear feature combinations.
GP-Trad is typically employed as a baseline algorithm, whereas GP-GOMEA was recently
found to work particularly well when small, yet accurate expressions are needed.43 We use
the C++ implementation of GP-Trad and GP-GOMEA (https://github.com/marcovirgolin/GP-
GOMEA).

Hyperparameter tuning is performed with fivefold grid-search cross validation to promote
minimal MAE. More details are given in Appendix A.

2.3.4 Validation strategy

Because the cohort is relatively small (60 patients), we use leave-one-out cross validation, per-
formed “patient-wise,” i.e., all the examples relative to a particular patient p are removed from
the training set and solely used for testing. For the datasets on OAR segmentation retrieval,
where each row represents a pair of patients (see Sec. 2.3.1), all npatients − 1 (59) rows, where
p appears are removed from the training set and put in the test set. Note that this is necessary
to avoid a positive bias in the test results.

Since RF, GP-Trad, and GP-GOMEA are stochastic algorithms, we repeat their execution
10 times and report the mean result.

2.4 Anatomical Inconsistency Correction

The last phase of our pipeline repairs possible anatomical inconsistencies present in the
assembled phantoms. We automatically detect and correct for possible overlaps between the
transplanted OARs (liver and spleen), and between the OARs and the spinal cord segmentation
of the receiver, which is available for these patients. To have an additional margin, we enlarge the
spinal cord segmentation by 10% uniformly in all dimensions. Furthermore, we assess if the
transplanted OARs stick out of the segmentation of the body of the receiver. If a larger segmen-
tation of the body exists than the common region of interest between T10 and S1 (used to assess
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body shape similarity to train ML models), that segmentation is used here. Again, for robustness,
the body segmentation is shrunk uniformly in all dimensions, by 2.5%.

We use a general purpose, derivative-free real-valued optimization algorithm to modify the
transplanted OAR segmentations to eliminate the anatomical inconsistencies, with default
parameter settings.49,50 The algorithm modifies the OAR segmentations by expansion/shrinking
(up to 1.25 and 0.25 of the original volume, respectively), and repositions their center of mass
(up to 10 mm for each direction). We set anatomical inconsistencies as hard constraints to satisfy.

Modifying the OARs to satisfy the constraints deviates from the predictions of the ML mod-
els and can therefore result in making the phantom less individualized. Therefore, the objective
function is set to minimize the effect of OAR modifications: for each OAR, we use the sDSC
(again with a threshold of 5 mm) between its current modified state and its version premodi-
fications. The final objective is given by summing the sDSC of the OARs to be maximized.

2.5 Comparing to Phantom Selection Approaches

As we mentioned in the introduction, current phantom-based dose reconstruction methods build
phantom libraries and select a representative phantom according to a hand-crafted criterion.
As CTs of actual patients can act as phantoms, we consider several approaches to compare with
our pipeline: two methods that simulate state-of-the-art human-designed criteria used to build
and select from phantom libraries, random selection, and one method to select a single CT from
our database based on ML predictions.

2.5.1 Human-designed criteria for phantom selection

The first methods we consider are the criterion used by the University of Texas MD Anderson
Cancer Center,8,9 which we refer to as human criterion 1 (HC1), and the criterion used by the
University of Florida/National Cancer Institute,10 which we refer to as human criterion 2 (HC2).
We further consider random selection to see if the other methods are better than random.

The phantoms on which HC1 has previously been used are virtual cuboid shapes with OARs
represented as point clouds.8,9 Only the age of the patient is considered as a feature to manipulate
the phantom’s representativeness by scaling the cuboids according to guidelines on population
data. Furthermore, gender is used to exclude/include gender-specific OARs. To simulate HC1,
i.e., age binning, we cluster our database into age bins, by rounding the age to years. This results
in 5 bins, with the following distribution: 10 patients of age 2, 18 of age 3, 11 of age 4, 15 of age
5, and 6 of age 6.

For a test patient p, we consider the other patients from the database that share the same
age bin with p. Then for each metric of interest, we report the average error given by comparing
the metric value for pwith the one for each other patient that has the same age as p. For example,
for the assessment of liver segmentation similarity of a patient p that is 3 years old, we compute
the sDSC between p and each other patient that is 3 years old and return the mean. By doing this,
we simulate the fact that an average anatomy has been built using the anatomical information of
all patients (different from p) that have the same age. We do this because phantoms are built to
represent average anatomies.

The phantom library where HC2 is adopted comprises phantoms made by scaling segmen-
tations acquired from actual patient CT scans, thus they are quite realistic.10 For these phantoms,
the features considered to build the library were gender, height, and weight (age was not used).
HC2 uses these features to select a representative phantom. We simulate HC2 by clustering our
database by gender, and by height and weight, using 5 bins for each of the latter two. We use the
bin method of the R package binr (http://jabiru.github.io/binr) for this purpose, with default
settings, which results in 5 bins of 12 patients each. Like for HC1, the error for a metric is given
by comparing the metric value for the test patient p with the metric values of each patient that
shares the same bin of p and taking the average.

We further consider a control method where the OAR positions and segmentations are
retrieved uniformly at random from the set of patients, excluding the test patient p. Because
of the stochastic nature of this approach, each iteration is repeated 10 times, and mean results
are reported. In the following, we refer to this method as RAND.

Virgolin et al.: Machine learning for the prediction of pseudorealistic pediatric. . .

Journal of Medical Imaging 046501-8 Jul∕Aug 2020 • Vol. 7(4)

http://jabiru.github.io/binr
http://jabiru.github.io/binr
http://jabiru.github.io/binr


As we propose a pipeline to build a phantom, it is interesting to assess how it fares against a
simpler approach, e.g., to use ML predictions to select a single, overall most representative CT
scan. This approach can be related to literature, where new ways to identify which phantom to
pick are studied.3,51,52

Although our phantom construction pipeline can predict the different 3-D metrics independ-
ently (position for each direction, sDSC for each OAR segmentation), for a single CT approach,
an overall score needs to be defined that expresses how representative a CT scan is. The design of
such a score is not trivial.3 For example, a choice needs to be made on whether 5 mm along the
LR direction is more important or less important than an sDSC loss of 5%. For the sake of
simplicity, we propose a score measure that considers only OAR positions, with equal impor-
tance. We choose to focus on OAR position because we recently found it to be the metric that is
most correlated with dose accuracy for pediatric abdominal radiation treatment.53 In detail, we
take as the best CT the one that is closest to the predictions of the ML models in terms of squared
position differences, i.e.,

EQ-TARGET;temp:intralink-;e001;116;568best CT ¼ argminCT
X

O∈OARs

X

D∈fLR;AP;ISg
ðDO

ML −DO
CTÞ2; (1)

whereDO
ML andD

O
CT are, respectively, the ML-predicted position and the actually available posi-

tion in the CT, of the OAR O, along direction D. We denote this approach with single computed
tomography (sCT).

Note that sCT is essentially a hybrid between a human-designed criterion, represented by
Eq. (1), and the use of ML, of which the predictions are used in this equation. Finally, since
we found GP-GOMEA to be the overall best performing ML algorithm (shown later in Sec. 3.1),
we used the models found by GP-GOMEA to provide the predictions for sCT.

2.6 Experimental Setup

We divide the experiments into two parts. In the first part, we compare the predictions of the ML
algorithms in terms of MAE. In the second part, we compare the prediction of the overall best
performing ML algorithm with the phantom selection approaches in a similar way. In this second
comparison, we include the effect of anatomical inconsistency correction to assess how much it
compromises the accuracy of the predictions of the ML models.

We run the ML algorithms on a machine with two Intel® Xeon® CPU E5-2699 v4 at
2.20 GHz. We assess statistical significance of the results as follows. Given the two 60-D vectors
resulting from the leave-one-out cross validation performed using two different ML algorithms
(or human-criteria), we run one statistical significance test to assess what algorithm performed
best. Note that the patient tested in one round of leave-one-out is independent from the other
patients tested in the other rounds. We use the Wilcoxon signed-rank test, paired by leave-one-
out folds.54 This means that we account for the effect of the same groups of patients being used in
the training phase or in the test phase when comparing two methods. We also use the Bonferroni
correction method to prevent type I errors.55 In particular, since we perform pairwise tests
between the algorithms for each metric, we assess whether the test p-value is below a confidence
level of 0.05, further reduced by Bonferroni correction to contrast false positive outcomes due
to chance.

3 Results

3.1 Comparison of the Machine Learning Algorithms

The mean (and standard deviation) training and test MAEs obtained from the (average across
10 repetitions) leave-one-out cross validation of the ML algorithms are reported in Table 2.
If multiple results are not found to be statistically significantly worse than the best result, they
are considered to be equally good. Note that for consistent use of error minimization, the task of
segmentation retrieval is reported in terms of εsDSC ¼ 100 − sDSC.
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Errors are typically of comparable magnitude. In terms of training performance, GP-
GOMEA is overall the best algorithm, as it is not significantly worse than any other for six
metrics, i.e., OAR position for all directions. RF follows with three top performances, in par-
ticular for the segmentation retrieval task (S) of all OARs, where it achieves markedly lower
errors than all other algorithms. LASSO performs the worst, with at least one algorithm signifi-
cantly outperforming it in each metric. Standard deviations are overall small in the training
phase.

Regarding the test performance, GP-GOMEA significantly obtains again the best results for
most metrics. GP-GOMEA also generalizes well on predicting which segmentation to select for
the liver, but it is inferior to RF when it comes to selecting the segmentations for the body and
the spleen.

Although RF performs better than any other ML algorithm for the body and spleen seg-
mentations, the errors at test time are much larger than the ones found at training time. Note
that this mismatch between training and test performance can be explained by possible over-
fitting, as well as by the fact that, at test time, error propagation can happen (as explained in
Sec. 2.3.2). Further, standard deviations are much larger when testing than when training. In our
case, this is because of having limited data available (see Appendix B). Note that the best per-
forming algorithms according to statistical tests do not necessarily have the smallest deviations
(see, e.g., spleen S).

3.2 Machine Learning versus Phantom Selection Approaches

Table 3 shows results comparing the ML algorithm found to perform best overall, GP-GOMEA,
to the use of phantom selection approaches. The use of anatomical inconsistency correction upon
GP-GOMEA’s predictions is also included now (named GP − GAIC). We remark that GP-
GOMEA and GP − GAIC are the same in terms of error for body S because AIC does not intro-
duce corrections to the body segmentation.

The correction-less predictions obtained with GP-GOMEA are generally best, with the only
exceptions being the IS position and segmentation retrieval for the spleen (by relatively small
errors on average). The use of anatomical inconsistency correction upon GP-GOMEA’s predic-
tions, GP − GAIC, can change shape and position of the OARs in both considerable (e.g., liver
AP and liver S) and minor (e.g., liver LR and spleen IS) magnitude. Figure 4 shows box plots of
the corrections on all phantoms. For our database, the AIC was triggered for 31/60 phantoms.
The liver is subject to more corrections than the spleen: it is typically shrunk more than the
spleen, and its position in AP is subject to large variations. This is not surprising, because the
liver is a considerably larger organ than the spleen, and it is more likely to violate the anatomical
consistency constraints we imposed.

Overall, correcting for inconsistencies typically comes at the cost of worsening the accuracy
of the ML predictions. GP − GAIC significantly has the best performance only on three metrics
(body S, spleen AP, and spleen S). For spleen AP and spleen S, performing inconsistency cor-
rection leads to better test results compared to not applying corrections. However, the correction
algorithm solely optimizes for resolving the inconsistencies (while attempting to retain maxi-
mum prediction fidelity). Moreover, because sCT also obtains good results on spleen AP and
spleen S, it can be argued that these metrics are not modeled sufficiently by GP-GOMEA to
begin with, and thus are more likely to be improved upon by chance.

Although the use of anatomical inconsistency correction after ML prediction typically leads
to larger errors, it remains a valuable approach compared to the other methods. GP − GAIC is the
overall best when the correction-less GP-GOMEA predictions are excluded from the compari-
son. The human-designed criteria HC1 and HC2 perform overall worse than GP − GAIC. Despite
its simplicity, HC1 performs well for AP and S of the liver. This may be because metrics related
to the liver are harder to model by the ML algorithms and because the use of anatomical incon-
sistency correction compromises GP-GOMEA’s prediction (particularly notable for liver AP).
Despite the fact that HC2 is a somewhat more involved criterion compared to HC1 (HC2 con-
siders gender, height, and weight, whereas HC1 considers only gender and age), it is never found
to be competitive on any metric. This could mean that weight and height are not good features
when accounting for similarity of internal anatomy in children. This result is in agreement with
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the previous work53 where lack of correlations between dose reconstruction outcomes was found
with respect to height and weight.

Importantly, in some cases, HC1 and HC2 perform particularly poorly. HC1 is particularly
inaccurate for spleen S compared to the other approaches, and HC2 leads to notably large errors
for spleen IS. In the latter case, HC2 is not found to be better than RAND. Furthermore, both
criteria perform poorly on body S (as well as sCT). Figure 5 shows the reliability function of the
considered approaches for body S. This function shows the likelihood of committing errors of a
certain magnitude (for segmentation retrieval, in percentage). A curve is better than the others if
it is more on the left and if it decreases more rapidly since this means that the probability of any
error magnitude is lower than the ones of the other methods. This figure illustrates that the model
learned by GP-GOMEA achieves this behavior. For example, the probability of a GP-GOMEA’s
model to predict a body segmentation that has an εsDSC > 20% (sDSC < 80%) with the actual
body of the patient is 60%. For HC2 and sCT, that magnitude of error happens more frequently,
i.e., in almost 80% of the cases. HC1 performs worse since errors above 20% are almost certain.
On the other hand, rarely, (probabilities around 5%), HC2 and sCT can retrieve body segmen-
tations that have errors above 80%.

Regarding sCT, the results indicate that this approach is generally worse than GP − GAIC, but
better than the human-designed criteria to predict metrics related to the spleen. sCT performs

Fig. 4 Distribution of the effect of the anatomical inconsistency correction on all phantoms (29/60
are not corrected). OAR shape (S) is corrected by volume enlargement (if >0%) or shrinking
(if <0%) uniformly along the three dimensions. Change of center of mass for AP, LR, and IS
is in mm. Phantoms where correction is not needed, contribute to OAR shape modification with
0% (no enlargement nor shrinking), and to OAR position change with 0 mm (no repositioning).
Boxes extend from the 25th to the 75th percentiles, inner bar is the median, and whiskers extend
from the 10th to the 90th percentiles.

Fig. 5 Reliability functions for prediction of segmentation retrieval (S) of the external body seg-
mentations. The y value is the probability of committing an error equal or greater than the x value.
The test MAE is in εsDSC. Note that the anatomical inconsistency correction does not alter the body
segmentation. GP-GOMEA leads to much better performance compared to the other approaches.
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particularly poorly with respect to metrics regarding the liver (note in particular liver LR). This is
an interesting result because the CT selected by sCTweighs OAR positions equally for liver and
spleen [see Eq. (1)]. We remark that sCT uses the ML models (found by GP-GOMEA) to predict
which single CT scan (and accompanying segmentations) to select by means of a hand-designed
metric. Essentially, the results confirm our hypothesis that designing a good score to select one
CT is not trivial and that there is added value in constructing a new anatomy by assembling
different components into one. sCT may, however, still be preferable if anatomical consistency
is desired, which is proven to be a challenging task to achieve when assembling a phantom based
on multiple CTs (see Sec. 4).

3.3 Model Interpretability

As we mentioned before, the added value of utilizing the linear ML algorithms (RidReg and
LASSO) and the GP algorithms (GP-Trad and GP-GOMEA) is that their models are mathemati-
cal expressions that, if simple enough, can be globally interpretable. 45 Interpretability can play a
crucial role in determining whether ML can be applied in some clinical settings. For RF, the
interpretation of the model is essentially impossible, as it returns an ensemble of (500) decision
trees. Similarly, this would not be possible with other popular techniques like deep learning56 and
boosting algorithms.57

We report all the best-at-test-time models found by GP-GOMEA in Appendix C. Here we
report two of those models that are remarkably simple. For the prediction of which body seg-
mentation to retrieve, the model found most frequently in 10 repetitions is (assuming the target
variable and the features are normalized):

EQ-TARGET;temp:intralink-;sec3.3;116;4600.420 × ðADAPþ ADLRþ SCISÞ:

Notably, this model is just a scaled sum of the abdominal diameters (ADAP and ADLR) and the
spinal cord length (SCIS). Essentially, the model uses an equal contribution (features are nor-
malized) of features capturing information of size relative to the 3-D LR, AP, and IS, to predict
which body segmentation to retrieve. This seems a reliable, simple, and reasonable method to
select a representative body segmentation.

A second model we showcase here is the one for the prediction of what spleen segmentation
to retrieve:

EQ-TARGET;temp:intralink-;sec3.3;116;3472.718AGE × 0.057 × SCIS:

It is interesting to see that spleen shape is found to be related to age by an exponentiation. This
can be considered reasonable for our cohort, because the age of our patients is between 2 to 6
years, where anatomical development is rapid. The length of the spinal cord in IS further weighs
the prediction. This feature seems also reasonable to consider, because it captures information
relative to the size of the abdomen in IS, and because the spleen is located nearby the spinal cord.
Albeit understandable, reasonable, and well-performing, it is arguably unlikely for humans to
invent models like these.

4 Examples of Automatically Constructed Phantoms

Figure 6 shows qualitative results: five example phantoms generated with our pipeline (using
GP-GOMEA, which was used to train all models). The images are created by using 3D Slicer25

with module SlicerRT.58 Note that the segmentations of the external body and the spinal cord
shown in this figure can extend beyond the commonly available region of interest used for train-
ing (from T10 to S1). The receiver CT’s original liver and spleen can also be identified (in part),
as their not overridden voxels are uniformly set to a specific value (78 HUs as done for
the phantoms of the University of Florida/National Cancer Institute10) in the resection step.
Overlaps of the transplanted OAR can still happen with respect to other organs that are not
considered in the training and correction process (e.g., spleen overlapping with the kidneys).
Note also the presence of some further remaining limited anatomical inconsistencies, which are
not detected by our algorithm (e.g., small overlaps with bony anatomy).
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Our current Python implementation takes about 5 min to generate a phantom if no anatomical
inconsistencies are found, with resection and transplant taking most of the time (we expect that
parallelizing voxels’ HU value overwrites will markedly reduce running time). If anatomical
inconsistency correction needs to be performed, the whole pipeline can take from a few minutes
to a few hours, depending on how complex the correction is for the optimizer, and on the hard-
ware (the optimizer is highly parallelizable). As mentioned in Sec. 2.3, for our database, the
anatomical inconsistency correction triggered on half the phantoms. However, in our opinion,
only roughly half of those cases (so 1/4 of the total number of phantoms) had really noticeable
anatomical inconsistencies, e.g., large OAR overlaps or OARs exceeding the body boundaries,
that required corrections of large magnitude. In the other cases, inconsistencies were more subtle
(e.g., small OAR overlap) and caused corrections of small magnitude.

Fig. 6 Examples of phantoms constructed with our pipeline. CT snapshots are chosen to attempt
to display both liver (in ocher) and spleen (in crimson red). Axial views are in IS, coronal views and
3-D views are in AP, and sagittal views are in LR.
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Figure 7 shows two examples of anatomical inconsistency correction for cases where incon-
sistency can be considered large, displaying phantoms pre- and postanatomical inconsistency
correction, one to correct the liver, and one to correct the spleen.

5 Discussion

We have presented a new take on phantom construction: a fully automatic ML-based pipeline
that predicts how to assemble a patient-specific phantom using a database of delineated 3-D CT
scans, given the features of long-term childhood cancer survivors. We performed experiments
upon data of 60 pediatric patients including imaging of the abdomen and focused on tailoring
the position and shape of the liver and the spleen.

Our experimental results strongly suggest that our approach leads to phantoms that are quan-
titatively more representative of the unknown 3-D anatomy of the patient compared to the use of
current human-designed criteria and to the use of an ML-based overall anatomical similarity
metric to pick a single CT. The use of our method for dose reconstruction for childhood
cancer survivors is, therefore, expected to provide high accuracy. A collaborative study where
our method (extended to more OARs) is compared with the methods of the University of
Texas/MD Anderson Cancer Center8 and the University of Florida/National Cancer Institute10

is currently in preparation.
One clear limitation of our work is that we could only employ a small database of 60 patients.

It can be reasonably expected that, by increasing the database size, both the errors of the ML
models and the onset of large anatomical inconsistencies will be reduced. Appendix B includes
an experiment measuring ML performance for increasing database size. We are currently work-
ing on expanding the number of institutes contributing to the database. Furthermore, we are
working on extending the number of OARs to build the phantom (e.g., heart and kidneys) and

Fig. 7 Examples of anatomical inconsistency correction tackling OARs being partly positioned
outside of the body segmentation. Precorrection liver is in ocher, postcorrection in orange; pre-
correction spleen is in crimson red, postcorrection is in salmon pink. (a) Axial and (b) 3-D view of
large anatomical inconsistency involving the liver. (c) Axial and (d) 3-D view of large anatomical
inconsistency involving the spleen. Note that this axial view is different from the ones in other
figures as it is taken in SI direction (spleen displayed on the left), to be consistent with the
3-D visualization. The 3-D view shows the back of the patient from head to toes.
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on extending the region of interest (e.g., abdomen and thorax), for a cohort including also
slightly older children (2 to 8 years). With more data available, we could consider including
models for the prediction of more complex OAR transformations (e.g., resizing and rotations).
In the future work, it is of interest to also compare methods across more OAR similarity metrics
than the sDSC and center of mass position by considering the metrics proposed in segmentation
challenges.59

To improve realism, we proposed a simple AIC method, which proved sufficient to resolve
the constraint we imposed, often without excessively compromising the predictions of the
ML models. An alternative is to impose restrictions to the ML predictions, e.g., by designing
(OAR-specific) penalization metrics. However, designing competent penalization metrics is
a nontrivial effort.

Even if AIC resolves all the automatically identified inconsistencies, other inconsistencies
can still be present. This is because the constraints are not comprehensive enough. Figure 8
shows an example of phantom where none of our constraints is violated (liver and spleen
do not overlap with each other nor with the spinal cord, and the organs do not exceed the body
contour), yet the anatomy remains unrealistic because the organs are placed too high with respect
to the receiver CT. In fact, this is because it is the prediction of the receiver CT that does not work
well for this patient, as it retrieves a body which is quite shorter (14-cm smaller SCIS, sDSC of
60%) compared to the actual body of the patient. Fortunately, this is the only phantom out of 60
where such an evident inconsistency was found and likely the probability of this happening only
reduces with a growing database size. Still, we intend to study how to further improve our cor-
rection method by attempting to craft more constraints and allowing for nonuniform OAR
deformations.15

In our comparison with HC1 and HC2, we simulated the process of phantom selection in
state-of-the-art phantom libraries using our own database of CT scans and organ segmentations.
For HC2, we actually did further investigate the use of the library of the University of Florida/
National Cancer Institute, which is of public access. We, however, found that selecting those
phantoms leads to no better results than using our database (the body segmentation was not
considered because a region of interest between T10 and S1 is not readily available for those
phantoms). In particular, it was found to be significantly better for half of the 3-D metrics
(LR and S for the liver, LR and IS for the spleen), but worse for the other half. We also found
the use of the actual library to be always significantly worse than using GP-GOMEA, with
exception for LR of the spleen, where it was equivalent. This may be because the statistics
on which those phantoms are based, which come from the United States, do not accurately re-
present the patients of our cohort, who are Dutch.

In future work, we will include more OARs, as well as consider porting our approach to
different types of regions of interest (e.g., head for brain tumors) and cohorts (e.g., older
patients). Ultimately, we are interested in generating an entire body anatomy for any patient.

Fig. 8 Example of the limitations of anatomical inconsistency correction when applied to a coarse
prediction of the body segmentation. Colors as in Fig. 7. (a) Actual anatomy of the patient and
(b) proposed phantom, including corrections. The receiver CT is quite smaller than the actual
CT in IS dimension. The anatomical inconsistency correction shrunk and relocated the liver that
was exceeding the body boundaries and moved the spleen away from the spinal cord. However,
liver and spleen are placed too high with respect to the underlying anatomy for it to be realistic.
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We believe our approach is very promising because, once appropriate features are defined, no
modifications in how to train ML algorithms, nor in how the pipeline works, are needed to obtain
new phantoms. Moreover, since the availability of different OAR segmentations is currently
limited to what is available in the database, and since delineating new OARs requires speciali-
zation, experience, and time, ways to use ML to deform an existing OAR template into a patient-
specific segmentation could be worth investigating.19 Furthermore, it will be interesting to
investigate whether the single CT selection approach (sCT) can be improved, by understanding
how to best combine more metrics than organ positions. With more data available, the use of
deep convolutional neural networks could be explored56 to replace the use of features extracted
from the radiographs with the use of the radiographs themselves, potentially by proposing 2-D
OAR segmentations that can be used to reconstruct 3-D versions.60,61 Last but not least, in addi-
tion to organ dose reconstruction for historical radiation treatment, other uses of our approach
could potentially be identified in the field of radiology: for example, phantoms could be built to
estimate 3-D anatomical information of a patient from 2-D scout images, to minimize radiation
exposure.62–64

6 Conclusion

We have presented a new take on phantom construction that leverages ML to assemble existing
3-D patient imaging into a new anatomy. Contrary to existing approaches, the pipeline we pro-
pose requires no manual intervention except for the initial effort of assembling a database of 3-D
patient imaging (CTs, segmentations, and patient features), and the measurement of few features
of the historical patients on their radiographs. With our approach, the problem of finding a glob-
ally good metric to represent anatomical categorization, typically faced by phantom libraries, is
shifted to train ML models for parts of phantoms based on specific 3-D metrics. Our experi-
mental results on a database of 60 pediatric cancer patients, focused on liver and spleen, showed
that this approach can lead to significantly better anatomical resemblance compared to the use of
phantom building criteria that are currently common practice. Positive results were still found
after applying a simple but automatic anatomical inconsistency correction method to enhance
realism. Regarding the ML algorithm used in the pipeline, we found that GP-GOMEA, a state-
of-the-art genetic programming approach, can deliver models that are both accurate and
readable. This aspect can be of added value as such models increase the chances of clinicians
understanding them better and trusting their use.

7 Appendix A: Hyperparameters and Tuning

Table 4 shows the hyperparameters used by the ML algorithms. For RidReg and LASSO,
we optimize λ to penalize complex models. Note that both algorithms perform squared-error
minimization (along with penalization handling) via cyclical coordinate descent.47 However,
the hyperparameter tuning grid-search cross-validation procedure we use is aligned to MAE
minimization, and this procedure is wrapped around the squared residual-based optimization.

For RF, we use the default, relatively large number of trees (given the datasets at hand) of 500
as advised by the literature.65 We optimize how many features are randomly chosen when build-
ing the nodes that compose each decision tree (“mtry”) and the minimum number of data sam-
ples a node should represent (“min. node size”), the same way we optimize λ for RidReg and
LASSO.

For GP-Trad and GP-GOMEA, the function set F defines which functions to use as model
components (tree nodes). The division operator ÷A is the analytic quotient,66 which not only
guarantees that the divider can never be null, but also ensures smoothness (in contrast with the
protected division operator,41 which can harm generalization66). The logarithm operator is pro-
tected to avoid infeasible computations.40 The ephemeral random constants are constants for
which the value is set by uniform sampling from a defined interval.41 Mathematical expressions
are encoded as parse trees in GP-Trad and GP-GOMEA. We set a small tree height to keep the
resulting mathematical expressions short and readable (we found that the larger three heights can
result in hard to read expressions) and to prevent overfitting.
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The number of candidate expressions to evolve, i.e., the population size, is a sensitive param-
eter for GP algorithms. We run GP-Trad and GP-GOMEA using the interleaved multistart
scheme (IMS), a method that interleaves multiple runs with increasing population size. We set
the number of subiterations between runs gIMS to 4 as has been reported to work well on bench-
mark problems.42,43 Since the IMS can in principle run forever, we set a time limit of 60 s. We
found this limit to be reasonable because the datasets are small and evaluations are fast and
because the other ML algorithms take only a few seconds to execute. We also preliminarily
observed that increasing the time limit (e.g., 5 or 10 min) does not alter the results in a significant
way. For further details on GP-Trad, GP-GOMEA, the IMS, and other hyperparameters, the
reader is referred to the seminal paper on GP-GOMEA for regression.43

For RidReg, LASSO, and RF, we perform grid-search hyperparameter tuning with fivefold
cross validation upon the training data, to determine the best hyperparameter values. We use the
R package caret for this purpose,67 focused on minimizing the MAE. Once the best hyperpara-
meter settings are found, we train the ML algorithm on the training set using those settings and
test it on the test set. For GP-Trad and GP-GOMEA, we take the best expression found by the
interleaved runs started by the IMS.

8 Appendix B: ML Performance for Increasing Database Size

Perhaps the biggest limitation of our study is the limited size of the database, consisting of only
60 patients. To put this number in perspective and understand whether increasing the database
size will likely improve ML performance, we simulated the effect of having smaller (training)
databases.

Figure 9 shows the effect of using GP-GOMEA (the overall best performing algorithm) when
learning ML models of the liver position using different training set sizes in a traditional fivefold
cross validation. The test set size consists of 1

5
th of the total number of patients (60∕5 ¼ 12

patients), whereas the maximum number of patients to be considered at training time is varied
between 1

5
th (12 patients) and 4

5
th (48 patients). Patients are picked at random (taking care that

patients in the test set never appear in the training set). This is repeated 10 times for each size to
account for stochasticity.

Mean (of the 10 repetitions) test MAEs behave as can be expected: the larger the training set
size is, the lower the test MAE is. The fact that means training MAEs increases with the number
of patients to be considered is due to the fact that smaller sets are easier to (over)fit.

Table 4 Hyperparameters of the ML algorithms. The sub-
script “tune” means that the hyperparameter setting is sub-
ject to optimization with fivefold cross-validation grid-search
among the listed values.

Algorithm Hyperparameter Settings

RidReg and LASSO λtune 10−10;10−9; : : : ; 1010

RF nr. trees 500

min. node sizetune 5;10; : : : ;20;25

mtrytune 1;2; : : : ; #features2

GP-Trad and
GP-GOMEA

F fþ;−;×;÷A; exp; logPg

ERC U½−10;10�

Tree height 2

g IMS 4

Time limit 60 s
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Note that the errors obtained in Table 2 are substantially different (smaller and with larger
standard deviation) than the ones obtained here. This is because leave-one-out cross validation
was applied in that case, which is precisely expected to be a better representative of the true
generalization error but typically exhibits larger variations.68

Overall, these results allow us to conclude that the inclusion of more patients will most likely
result in further improving the (test) performance of ML. Moreover, the more patients will be
included, the more it will be possible to enlarge the set of features to consider: this will enable to
better fit both the training set (and reduce the training MAE) and the test set (and further reduce
the test MAE).

9 Appendix C: Examples of Models Found by GP-GOMEA

Examples of the mathematical expression models found by GP-GOMEA for the automatic
construction of pediatric abdominal phantoms are reported below. Each model pertains to
a particular metric and has been manually rearranged to aid readability. The features and the
target metrics are normalized by z scoring. To apply the model in practice, each feature needs
to be denormalized, i.e., scaled by the standard deviation and translated by the mean.
Furthermore, the output of the model needs to be denormalized as well, i.e., scaled and translated
by the standard deviation and the mean of the target variable, respectively (this information is
available in Table 1). We do not include these denormalization coefficients in the models for
the sake of readability. Also since normalized features are approximately in the same scale, the
magnitude of the coefficients included in the model can be associated with feature relevance.

Body S:

EQ-TARGET;temp:intralink-;sec9;116;2620.420 × ðADAPþ ADLRþ SCISÞ:

Liver LR:

EQ-TARGET;temp:intralink-;sec9;116;219ðGENDþ ADAPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.100þ RDLR2

p

8.264þ 0.100 × RDLR2
:

Liver AP:

EQ-TARGET;temp:intralink-;sec9;116;160

0.169 × ADAPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.100þ ðAGE − HEIGÞ2

p

Liver IS:

EQ-TARGET;temp:intralink-;sec9;116;1010.179 × ADLRþ GEND × RDIS

Fig. 9 Effect of increasing the database size on learning the liver position using GP-GOMEA.
Center points represent the mean, and error bars represent the standard deviation, of the
MAEs obtained from an average (across 10 repetitions) fivefold cross validation.
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Liver S:

EQ-TARGET;temp:intralink-;sec9;116;723

ADLRþ SCISffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.100þ ð4.389þ LDLRÞ2

p :

Spleen LR:

EQ-TARGET;temp:intralink-;sec9;116;667

−0.821 × LDLRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LDLR2 þ 0.100 × ICSC2 þ 0.010

p :

Spleen AP:

EQ-TARGET;temp:intralink-;sec9;116;612

−0.285 × ICSCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.100þ ðAGEþ ADAPÞ2

p :

Spleen IS:

EQ-TARGET;temp:intralink-;sec9;116;553

AGEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.100þ HEIG2Þ × ð9.673 − 6.188 ×WEIGþWEIG2Þ

p :

Spleen S:

EQ-TARGET;temp:intralink-;sec9;116;4962.718AGE × 0.057 × SCIS:

As mentioned in Sec. 3.3, the model for body S is linear. The other models found by
GP-GOMEA are nonlinear. The recurrence of square roots and squaring terms is due to the use
of the analytic quotient, which prevents dividing by 0. For the sake of intuition, xffiffiffiffiffiffiffiffiffiffi

0.1þy2
p can be

considered as approximately x
jyj (j · j takes the absolute value).

Let us begin by considering the models that predict the LR position of the liver and the
spleen. The model for liver LR will always return a positive number, whereas the one for the
spleen will always return a negative number. This is reasonable because the center of mass of
the liver is normally on the right of the reference point we used to determine the organ position,
i.e., the second lumbar vertebra and the opposite holds for the spleen. Moreover, for the pre-
diction of the liver position along LR, the model combines the AP direction, by means of the
abdominal diameter in AP (ADAP), and the LR direction, by means of the right diaphragm
length along LR (RDLR). Note that since GEND can either have value 0 (female) or 1 (male),
the left multiplicand term is bigger for males than females. Thus for males, the model predicts
bigger shifts in LR. Differently from the liver, the LR position of the spleen relies on the LR size
of the left diaphragm rather than on the right diaphragm. This aspect reflects the fact that the liver
and spleen are, respectively, placed below the right and the left diaphragm.
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