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ABSTRACT: Nongenotoxic (NGTX) carcinogens induce cancer via
other mechanisms than direct DNA damage. A recognized mode of action
for NGTX carcinogens is induction of oxidative stress, a state in which the
amount of oxidants in a cell exceeds its antioxidant capacity, leading to
regenerative proliferation. Currently, carcinogenicity assessment of
environmental chemicals primarily relies on genetic toxicity end points.
Since NGTX carcinogens lack genotoxic potential, these chemicals may
remain undetected in such evaluations. To enhance the predictivity of test
strategies for carcinogenicity assessment, a shift toward mechanism-based
approaches is required. Here, we present an adverse outcome pathway
(AOP) network for chemically induced oxidative stress leading to
(NGTX) carcinogenesis. To develop this AOP network, we first
investigated the role of oxidative stress in the various cancer hallmarks. Next, possible mechanisms for chemical induction of
oxidative stress and the biological effects of oxidative damage to macromolecules were considered. This resulted in an AOP network,
of which associated uncertainties were explored. Ultimately, development of AOP networks relevant for carcinogenesis in humans
will aid the transition to a mechanism-based, human relevant carcinogenicity assessment that involves a substantially lower number
of laboratory animals.

■ INTRODUCTION
Carcinogenesis is a multistep process in which normal cells
transform into cancer cells by acquiring various, biologically
diverse characteristics referred to as cancer hallmarks.1−3 At
present, the International Agency for Research on Cancer
(IARC) has classified 534 chemical compounds as proven
human carcinogen (IARC 1), probable human carcinogen
(IARC 2A) or possible human carcinogen (IARC 2B).4 These
chemical carcinogens can induce tumor formation either
through genotoxic (GTX) or nongenotoxic (NGTX) mecha-
nisms.5 Compounds able to directly damage or interact with
DNA are generally classified as GTX carcinogens, whereas
NGTX carcinogens do not directly interact with DNA nor the
cellular apparatus involved in preserving genomic integrity.6

Instead, NGTX carcinogens induce carcinogenesis via
mechanisms including receptor activation, chronic inflamma-
tion, immune suppression, endocrine disruption, epigenetic
silencing or oxidative stress.2,7,8 Both GTX and NGTX
mechanisms of carcinogenesis eventually involve the cancer
hallmarks of genomic instability, loss of proliferative control
and resistance to cell death.5 Despite a wide spectrum of
modes of action (MoAs) for NGTX carcinogens, increased cell
proliferation is shown to be a fundamental key event (KE).7,9

Receptor activation, sustained cytotoxicity, altered signal
transduction, immunosuppression and induction of oxidative
stress can all contribute to stimulation of cell proliferation.1,7

Contrary to GTX carcinogens, NGTX carcinogens are

hypothesized to induce tumorigenesis through repeated or
sustained exposure resulting in prolonged perturbation or
modulation of physiological processes.10,11

Oxidative stress leading to regenerative proliferation is a
MoA relevant for carcinogenesis.12−16 Upon an imbalance
between the generation of oxidants, such as reactive oxygen
species (ROS), and their scavenging by antioxidants, oxidative
stress is induced.17 This imbalance can arise from exposure to
either endogenous or exogenous sources responsible for
oxidant generation or from depletion of antioxidants.13

Oxidative stress is known to promote carcinogenesis through
both DNA damage and impaired repair and through indirect
actions influencing homeostasis and signaling.18 Additionally,
ROS play a role in numerous stages of the multistep
carcinogenic process.19,20

Traditionally, cancer hazard assessment requires long-term
carcinogenicity studies (OECD Test Guidelines 45121/45322).
There is a strong need for alternative approaches because
rodent studies show limited translatability to man,23 raise
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ethical concerns, have questionable reproducibility7,24 and are
time- and cost consuming.23 Currently, cancer hazard
assessment predominantly relies on genetic toxicity end points,
since genetic damage is considered to be key to carcinoge-
nicity.25 While there is evidence of a GTX MoA for most of the
substances classified by IARC, approximately 9% of these
substances lack a GTX potential based on data from a battery
of in vitro and in vivo genotoxicity tests,8 indicating that NGTX
carcinogens may remain undetected in such evaluations since
these act via other mechanism than direct genetic damage.
Therefore, to enhance the prediction of carcinogenic potential
of substances, transitioning toward a mechanism-based
approach is deemed necessary.7,25−28 To aid this transition,
adverse outcome pathways (AOPs) could serve as a framework
to select appropriate new approach methodologies (NAMs)
and identify research gaps.

In this article, an AOP network for chemically induced
oxidative stress leading to (NGTX) carcinogenesis is proposed.
We start with summarizing the main findings concerning the
role of oxidative stress in the cancer hallmarks and its relation
to cancer in both animals and humans. Next, possible
mechanisms for chemical induction of oxidative stress are
considered. The relation between oxidative stress and the
cancer hallmarks is further explored by discussing the
biological effects of oxidative damage to macromolecules.
Ultimately, we integrate this information into an AOP network
that can contribute to the development of an integrated
approach to the testing and assessment (IATA) for suspected
(NGTX) carcinogens inducing oxidative stress. Given the
breadth of literature on oxidative stress as well as carcino-
genesis, we considered it necessary to demarcate the scope of
this paper. This review focuses on the role of ROS, whereas the
role of reactive nitrogen species in oxidative stress and
carcinogenesis is considered beyond the scope of this paper.
Additionally, although we are well aware of the interrelation
between oxidative stress and inflammation, we deliberately
describe the discussed processes from an oxidative stress
perspective.

■ METHODOLOGY
A literature search was performed in October 2021 using
Embase. As a search strategy (Figure S1), certain keywords
such as oxidative stress/reactive oxygen species/oxygen
radicals, chemical induction/carcinogen and carcinogenesis/
tumorigenesis/cancer, etc. were used. After compiling a list of
539 papers, abstracts were read and papers focusing on
genotoxins, effects in offspring, and antioxidants, or when the
full text could not be accessed were discarded. The resulting
papers were read and then either included or excluded based
on redundancy of information. Some additional relevant papers
were obtained through reference tracking. Papers published
after October 2021 that sufficed our search strategy were read
and incorporated if assessed relevant.

■ OXIDATIVE STRESS IN RELATION TO THE CANCER
HALLMARKS

During the process of carcinogenesis cells acquire certain
characteristics referred to as cancer hallmarks.1,2 These
hallmarks rationalize the complex biological processes involved
in tumor formation.2,29,30 In a well-known review, Hanahan
and Weinberg proposed the following six hallmarks: (1)
‘sustaining proliferative signaling’, (2) ‘evading growth

suppression’, (3) ‘enabling replicative immortality’, (4)
“inducing angiogenesis”, (5) “resisting cell death”, and (6)
‘activating invasion and metastasis’.1 Later, two emerging
hallmarks and two enabling characteristics were added:
‘avoiding immune destruction’, ‘deregulating cellular ener-
getics’, ‘genome instability and mutation’, and ‘tumor-
promoting inflammation’.2 Since then, novel insights into
carcinogenesis have led to occasional reconsideration of the
cancer hallmarks3,29,30 (Figure 1).

A vast number of studies have described the relationship
between oxidative stress and carcinogenesis.13,16,18−20,31−33

Generally, low concentrations of ROS are involved in regular
biological processes such as transcriptional regulation, differ-
entiation and proliferation, whereas high levels of ROS exceed
the antioxidant defense system, consequently inducing
oxidative stress.34 Carcinogenesis may occur when ROS
exceed physiological levels sustainably while avoiding excessive
cell death.20 ROS can induce tumor formation either through
GTX or NGTX mechanisms.13 Genotoxicity occurs when ROS
interact with DNA and the resulting oxidative DNA damage is
not repaired prior to DNA replication. Alternatively, ROS can
modulate expression of genes and proteins, such as growth
factors and proto-oncogenes, which play a pivotal role in
carcinogenesis, without inflicting direct DNA damage.13,18

Since the focus of this review is on NGTX carcinogenesis by
chemical induction of oxidative stress, the cancer hallmarks
‘activating invasion and metastasis’ and ‘inducing angiogenesis’
will not be discussed. These hallmarks are considered late
events in carcinogenesis, making it virtually impossible to
distinguish chemically induced oxidative stress from tumor-
induced oxidative stress, thereby lowering its predictive value
for human health protection and relevance for chemical hazard
assessment.7 For the cancer hallmarks ‘enabling replicative
immortality’ and ‘deregulating cellular energetics’, we were

Figure 1. Hallmarks of cancer. The 10 hallmarks of cancer as
described by Hanahan and Weinberg,2 supplemented with novel
insights into carcinogenesis.3,29,30 Translucent hallmarks are not
discussed in this paper. The inner circle schematically represents the
signaling networks that connect the hallmarks and the tumor
microenvironment.
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unable to find sufficiently substantial, biologically relevant
evidence for their relation with chemical induction of oxidative
stress. Hence, the focus of this review is on the relationship
between oxidative stress and the cancer hallmarks ‘maintaining
proliferative capacity’ (fusion of sustaining proliferative
signaling and evading growth suppression), ‘resisting cell
death’, ‘immune modulation’ (merger of avoiding immune
destruction and tumor-promoting inflammation), and ‘genome
instability and epigenetic dysregulation’, excluding direct GTX
effects.
Maintaining Proliferative Capacity. Cancer cells are

known for their ability to maintain proliferation.2 One
mechanism through which ROS are involved in sustaining
proliferative signaling is through oxidation of phosphatases and
subsequent activation of signaling pathways associated with cell
proliferation.13,32,35 To illustrate, ROS can oxidize and
subsequently inhibit phosphatase and tensin homologue
(PTEN), leading to activation of phosphoinositide 3 kinase
(PI3K)/protein kinase B (Akt) signaling.36,37 Alternatively,
PI3K/Akt signaling activation can be mediated by oxidation of
protein tyrosine phosphatase 1B (PTP1B).38 Similarly,
oxidation of mitogen-activated protein kinase (MAPK)
phosphatase (MKP) leads to activation of MAPK/extracellular
signal-regulated kinase (ERK) signaling.39,40 MAPK/ERK
signaling can be triggered through ROS-dependent intra-
cellular calcium release and subsequent activation of protein
kinase C (PKC) as well.41 Notably, induction of oxidative
stress can both activate and repress nuclear factor κ-light-chain-
enhancer of B cells (NF-κB) signaling.35,42 Inhibitor of NF-κB
(IκB) oxidation results in dissociation, allowing nuclear
translocation of NF-κB,43 whereas oxidation of IκB kinase
(IKK) prevents IκB degradation and subsequent NF-κB
nuclear translocation.44,45

Alternatively, cell proliferation can be maintained through
activation of activator protein 1 (AP-1). Upon oxidation of
thioredoxin (TRX), apoptosis signal-regulating kinase 1
(ASK1) activity is no longer inhibited, allowing c-Jun N-
terminal kinase (JNK) proteins to translocate to the nucleus
for induction of AP-1.46,47 Activation of AP-1 induces
expression of growth-stimulatory genes and suppresses cell
cycle inhibitors.13,48 Lastly, in response to oxidative mod-
ification of Kelch like ECH associated protein 1 (KEAP1),
nuclear factor erythroid 2-related factor 2 (NRF2) is activated
and subsequent translocation to the nucleus leads to
expression of genes involved in proliferation (e.g., Ki67 and
NOTCH1).49,50

Resisting Cell Death. The normal balance between
proliferation and cell death is disturbed in cancer cells.29

ROS can disrupt this equilibrium either through inhibition of
pro-apoptotic factors or through induction of antiapoptotic
factors, ultimately mediating resistance to cell death. For
example, ROS can activate the Akt pathway through oxidation
of PTEN,36,37 which may lead to increased cell survival via
phosphorylation and consequent inactivation of pro-apoptotic
factors such as B-cell lymphoma (Bcl)-2-associated agonist of
cell death (Bad), Bcl-2-associated X protein (Bax), and Bcl-2-
interacting mediator of cell death (Bim).33,51,52 Additionally,
oxidative stress can activate MAPK/p38,53 NF-κB43 and
NRF250 signaling, resulting in reduced caspase activity.
Moreover, NRF2 activation can reduce the release of
cytochrome-c from mitochondria, preventing apoptosis
through inhibition of apoptosome formation.54,55 Alternatively,
ROS can induce expression of antiapoptotic Bcl-2 family

members by means of NRF2,54,55 NF-κB, and signal transducer
and activator of transcription 3/5 (STAT3/5) signaling.56

Immune Modulation. According to immune surveillance
theory, cells are continually monitored by the body’s immune
system and eliminated upon becoming cancerous.2 Following
this principle, existing tumors have arisen from cells that
somehow managed to avoid detection and elimination by the
immune system. Oxidative stress can mediate avoidance of
immune destruction in three ways. First, oxidative stress can
induce the formation of regulatory T-cells and strengthen their
immunosuppressive potency.57 Second, by inhibiting the
interaction between the T-cell receptor and the major
histocompatibility complex (MHC)-peptide complex, ROS
can functionally impair cytotoxic T-cells, which play a pivotal
role in immune destruction of cancer cells.58 Lastly, tumor-
induced myeloid-derived suppressor cells (MDSCs) can inhibit
T-cell proliferation in a ROS-dependent manner.59

Contrarily, oxidative stress is also involved in creating a
tumor-promoting inflammatory microenvironment. The abun-
dance of ROS can trigger pro-oncogenic signaling pathways,
for example, NF-κB,43 MAPK,40 and STAT3,56 which in turn
can contribute to the production of pro-inflammatory
mediators such as tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, and IL-6.56,60 Consecutively, these pro-inflammatory
mediators can stimulate both ROS production61 and pro-
oncogenic signaling pathways involved in proliferation, angio-
genesis, invasion, and resistance to apoptosis.62

Genome Instability and Epigenetic Dysregulation.
Besides direct induction of mutations as a result of oxidative
DNA damage, oxidative stress can contribute to genome
instability and epigenetic dysregulation. Repetitive sequences,
which are particularly susceptible to DNA oxidation, can form
secondary DNA structures upon oxidation.63 During DNA
replication, recruitment of a special but error-prone DNA
polymerase to these secondary DNA structures is needed for
continuation of synthesis, ultimately contributing to genome
instability.63 Furthermore, ROS-induced expression of Bcl-2,
following NRF2,54,55 NF-κB, or STAT3/5 signaling,56 can
inhibit DNA double-strand break (DSB) repair.64 Lastly, ROS-
induced inflammation can cause both microsatellite and
chromosomal instability via dysregulation of DNA repair
enzymes, defective mitotic checkpoints, induction of DSBs,
and dysregulated homologous recombination (reviewed in ref
65).

Alternatively, ROS can cause alterations in the DNA
methylation status through interaction with DNA and
proteins.15 As a result of DNA oxidation, 8-hydroxy-2′-
deoxyguanosine (8-OHdG) and 5-hydroxymethylcytosine
(5hmC) may be formed.66,67 Consequently, DNA binding of
methyl-CpG binding proteins (MBPs), epigenetic regulators
responsible for DNA methyl transferase (DNMT) and histone
deacetylase (HDAC) recruitment can be inhibited and these
DNA regions might therefore get hypomethylated.66,67 Most
demethylated regions are promoters belonging to oncogenes,
which consequently can be activated.15,68,69 Additionally,
methylation of repetitive and transposable elements is often
lost in cancer, which can result in random integration of these
elements into the genome and subsequently cause genetic
instability.15,70 On the other hand, ROS can also mediate
hypermethylation and subsequent loss of tumor suppressor
promoter regions through upregulation and recruitment of
DNMT and HDAC, a phenomenon frequently observed in
human cancers.15,71 For example, hypermethylation of the
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human mutL homologue 1 (hMLH1) promoter region
diminishes its expression,72 which is related to repressed
activity of the mismatch repair system.73

■ OXIDATIVE STRESS IN CANCER
Oxidative stress leading to regenerative proliferation is one of
the best documented mechanisms for carcinogenesis.12−15

About half of the IARC 1 classified substances (35 out of 86)
were shown to have the ability to induce oxidative stress.74

Notably, chronic inflammation, associated with ROS formation
and altered signaling, has become a well-recognized risk factor
for various human cancers.14,62 Evidence for the role of
oxidative stress in carcinogenesis can be found in both animals
and humans.
Animal Carcinogenicity Data. Clear evidence for

oxidative stress leading to regenerative proliferation as a
carcinogenic MoA in animals was derived from rodent
knockout studies. Loss of antioxidant genes, such as superoxide
dismutase 1 (Sod1),75,76 peroxiredoxin 1 (Prdx1)77,78 and
glutathione peroxidase (Gpx),79 was shown to predispose mice
to oxidative DNA damage and carcinogenesis. Moreover,
contrary to wildtype mice, mice with a knockout of
cytochrome P450 2E1 (Cyp2e1; a known electron leaker
during xenobiotic metabolism) were shown to not manifest
hepatotoxicity nor regenerative proliferation upon exposure to
chloroform.80 In another study, Cyp2e1-null mice showed no
oxidative damage phenotype whereas wildtype and humanized
Cyp2e1 mice did.81 Furthermore, impaired liver regeneration
has been observed in rodents lacking either AP-1 (c-Jun
monomer) or NF-κB, both are essential transcription factors
for hepatic regenerative proliferation.82,83 Inhibition of IL-1α84

or hematopoietic depletion of inhibitor of NF-κB kinase β
(Ikkβ)85 in mice resulted in decreased regenerative prolifer-
ation. Lastly, Jnk1 knockout mice showed impaired cellular
proliferation and subsequent decreased liver carcinogenesis.86

In a project by the European Partnership for Alternative
Approaches to animal testing (EPAA), 170 NGTX carcino-
genic agrochemicals were evaluated, with the aim to assess the
tumor types induced and organs affected and to identify the
various MoAs underlying the carcinogenic potential.10

Mechanistic information collected on the NGTX carcinogens
resulted in a list of nine MoAs, including sustained cytotoxicity
leading to regenerative proliferation. Of the 96 substances for
which a MoA could be established, 49 (51%) were presumed
to induce sustained cytotoxicity. This MoA has been observed
for tumors in the liver, kidney, stomach, bladder, and
intestine.10 Induction of oxidative stress is a central event
within the MoA sustained cytotoxicity.87 However, only for
four of the 49 substances, induction of oxidative stress was
explicitly mentioned.10 Together these four substances induced
seven unique treatment-related tumors affecting the liver,
spleen and lymphoid system.10

Human Carcinogenicity Data. Evidence for the role of
oxidative stress in carcinogenesis in humans mainly comes
from epidemiological studies. Increased risk of cancer of the
liver, kidney, blood, immune system, bladder and gastro-
intestinal tract has been reported in humans after exposure to
carcinogens known to operate via oxidative stress in
animals.88−96 For instance, GTX carcinogens (pharmaceut-
icals) that induce oxidative DNA damage, such as cyclo-
phosphamide, etoposide, tamoxifen and azathioprine,97,98 have
epidemiologically been linked to elevated cancer risk.89

Epidemiological evidence for NGTX carcinogens operating

via oxidative stress exist as well; a few examples are described
here. In a large cohort study of 23,829 sawmill workers in
British Columbia, substantial evidence of an association
between pentachlorophenol exposure and the incidence of
liver cancer, non-Hodgkin lymphoma and multiple myeloma
was found.90 Additionally, occupational exposure to penta-
chlorophenol might elevate the risk of hematopoietic,99

neurological and digestive tract cancer.100 Evidence for
oxidative stress induction following pentachlorophenol ex-
posure has been found both in cells with a human origin and in
mice.101,102 Another example is exposure to trichloroethylene,
for which an epidemiological link to increased risk of kidney
cancer,88,92−95 non-Hodgkin lymphoma,92,94,103 and liver
cancer94,96 has been found. Trichloroethylene has been
shown to induce oxidative stress in a human hepatic cell
line104 and in rats.105 Moreover, in a prospective cohort of
pesticide applicators, an association between thyroid cancer
and lindane exposure was observed.106 Agricultural use of
lindane also has been associated with an elevated risk of non-
Hodgkin lymphoma.107,108 In rats, lindane exposure was shown
to induce oxidative stress.109

Another line of evidence for human relevance derives from
genetic variation in oxidative-stress related genes and cancer
susceptibility in the human population.18 Single nucleotide
polymorphisms (SNPs) in antioxidant enzymes SOD and
catalase (CAT) have been linked to increased cancer incidence
and susceptibility.110 Moreover, SNPs altering the function of
AP-endonuclease 1 (APE1) and 8-oxo-guanine DNA glyco-
sylase (OGG1), DNA repair genes primarily involved in base
excision repair of oxidative DNA damage,18 have been linked
to increased cancer risk in humans.111−113

Next to this, biomarkers of oxidative stress can be found in
cancer patients as well, though it should be noted that these are
not indicative of a role for oxidative stress in tumor initiation.
Increased total oxidant, decreased total antioxidant,114−119

elevated malondialdehyde (MDA)114,116,120,121 and increased
protein carbonyl serum levels117−119,122 are found in cancer
patients compared to healthy controls. Moreover, the catalogue
of somatic mutations in cancer (COSMIC) has identified a
mutational signature (SBS18) in human cancers which is
associated with oxidative DNA damage.123 Finally, 8-OHdG, a
biomarker for oxidative DNA damage, can be quantified in
biopsies and urinary samples from cancer patients. 8-OHdG
levels were found to be significantly increased in chronic
hepatitis C patients with hepatocellular carcinoma (HCC)
compared to chronic hepatitis C patients without HCC.124

Both 8-OHdG and NRF2 expressions were found to be
significantly elevated in cancerous tissue compared to non-
cancerous tissue of HCC patients.125 Again, these biomarkers
are indicative of oxidative stress in the cancer patient which is
more likely the consequence rather than the cause of the
tumor.

■ CHEMICAL INDUCTION OF OXIDATIVE STRESS
Chemical substances can induce oxidative stress through direct
or indirect mechanisms. Direct mechanisms include mitochon-
drial and extramitochondrial production of oxygen radicals,
whereas impact on the antioxidant defense system is
considered an indirect mechanism.13 Notably, chemical
induction of oxidative stress is not restricted to carcinogens
nor carcinogenesis.126−128

Formation of Reactive Oxygen Species. An example of
a direct mechanism of oxidative stress induction is mitochon-
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drial production of oxygen radicals. Interaction of substances
with mitochondria, especially mitochondrial complex I and
III,13 during oxidative phosphorylation is considered to be
central in the formation of ROS.129 By blocking electron
transport, a substance can induce mitochondrial membrane
depolarization, and consequently ROS production.130

Another mechanism of ROS formation is closely related to
the biotransformation of a substance. During detoxification of
substances, CYP enzymes are induced.14 CYP enzymes
catalyze the transfer of oxygen to the substrate, a process
thoroughly associated with nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase.48 Upon disturbance of this
association, electrons derived from NADPH can reduce CYP-
oxygen complexes, consequently generating ROS.14,18,48 More-
over, various CYP enzymes, specifically CYP2E1, can leak
electrons during the course of their catalytic cycle, producing
ROS in the process.48,131,132 CYP1A, CYP1B1, CYP1D1 and
CYP3A4 have also been described to produce ROS during
their catalytic cycle,133 either through direct interaction with a
substance or through activation of the aryl hydrocarbon
receptor (AhR) in case of CYP1A1.134

Impacting the Antioxidant Capacity. An indirect
mechanism of oxidative stress induction is reduction of
antioxidants, of which the primary function is to protect the
body against overload of oxidants.135 The antioxidant defense
system consists of three parts: enzymes, vitamins and
minerals.135,136 This review focuses on enzymatic antioxidants
since we consider these most relevant for exposure to
environmental chemicals. The main human enzymatic
antioxidants include SOD, CAT, GPX and PRDX.135,137

SOD converts superoxide radicals to hydrogen peroxide.138

Next, hydrogen peroxide can be converted by either CAT,
GPX or PRDX.137 CAT directly converts hydrogen peroxide in
water and oxygen,139 whereas GPX and PRDX require
cofactors such as reduced glutathione (GSH) or reduced
TRX, respectively, to convert hydrogen peroxide in water while
oxidizing GSH and TRX.137,140 Glutathione reductase (GR)
and thioredoxin reductase (TR) can convert oxidized GSH and
TRX, respectively, back to their reduced states by converting
NADPH to NADP+.137,140 Glutathione-S-transferase (GST)
uses GSH for oxidant detoxification as well.137

Figure 2. Schematic representation of ROS-induced damage and biological effects in relation to carcinogenesis. ROS can interact with and damage
lipids (green/left), proteins (blue/middle) and DNA (red/right). Through signaling pathways, oxidative modification of macromolecules can
contribute to various cancer hallmarks and, ultimately, carcinogenesis. Inflammation also affects neighboring cells. First layer effector molecules are
depicted in orange/rectangles, second layer effector molecules in purple/rounded rectangles, and third layer effector molecules in yellow/circles.
ROS: reactive oxygen species; SOD: superoxide dismutase; CAT: catalase; GPX: glutathione peroxidase; PKC: protein kinase; NF-κB: factor κ-
light-chain-enhancer of B cells inhibitor; IκB: Inhibitor of NF-κB; IKK: IκB kinase; PTEN: phosphatase and tensin homologue; PI3K:
phosphoinositide 3 kinase; AKT: protein kinase B; PTP1B: protein tyrosine phosphatase 1B; JAK/STAT: Janus kinase/signal transducer and
activator of transcription protein; MKP: MAPK phosphatase; ERK: extracellular signal-regulated kinase; TRX: thioredoxin; AKS1: apoptosis signal-
regulating kinase 1; JNK: c-Jun N-terminal kinase; AP1: activator protein 1; KEAP1: Kelch like ECH associated protein 1; NRF2: nuclear factor
erythroid 2-related factor 2; HDAC: histone deacetylase; DNMT: DNA methyltransferase; MBP: methyl binding protein; Bcl2: B-cell lymphoma 2;
Bcl-xL: B-cell lymphoma extra-large; Bad: Bcl-2-associated agonist of cell death; Bim: Bcl-2-interacting mediator of cell death; Bax: Bcl-2-associated
X protein.
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■ OXIDATIVE DAMAGE TO MACROMOLECULES
ROS can interact with and damage macromolecules such as
lipids, proteins and DNA.19 Through interaction with these
macromolecules, ROS can affect multiple cellular processes
such as proliferation, inflammation and cell death.31 Notably,
different types of ROS can have distinct effects on macro-
molecules. For example, hydrogen peroxide mostly oxidizes
cysteine residues of proteins reversibly, controlling protein
activity similarly to other post-translation modifications (e.g.,
phosphorylation), whereas highly reactive ROS, such as
superoxide and hydroxyl radicals, are most likely to induce
lipid peroxidation and cell death.137

Oxidative Damage to Lipids. Lipid peroxidation is the
process in which ROS break down polyunsaturated fatty acids,
damaging lipid-containing cellular components, such as the cell
membrane, mitochondria, and the endoplasmic reticulum
(ER).141−143 Membrane permeability and fluidity and activity
of membrane-bound proteins can be affected by lipid
peroxidation.129,144 Importantly, products of lipid peroxidation,
such as MDA and 4-hydroxynonenal (4-HNE),141,142 can react
with other macromolecules further impairing cellular func-
tion.143,145

Lipid peroxidation can affect cell signaling pathways
involved in proliferation, inflammation and cell death (Figure
2). It is important to note that, similar to ROS itself, low levels
of lipid peroxidation have proliferative effects, whereas high
levels induce cell death.146 For example, low concentrations of
4-HNE can trigger activation of PI3K/Akt and MAPK/ERK
signaling pathways, while high concentrations of 4-HNE are
cytotoxic.146 Lipid peroxidation mediated cytotoxicity can
either lead to cell death or uncontrolled cell growth.147,148

Moreover, lipid peroxidation products can induce inflamma-
tory responses through JNK.149

Oxidative Modification of Proteins. Oxidative damage
can reduce, increase, modify or completely abrogate biological
activity of proteins.143 Examples of oxidized proteins are
protein carbonyl derivates, advanced oxidation protein

products, and advanced glycation end products.141 During
oxidative stress, proteins can be temporarily oxidized leading to
altered protein function and signaling.150 Oxidized receptor
proteins can modify the transfer of signals13 or enzymatic
activity may be reduced due to oxidative alteration.36−40,43

One important example is ROS-mediated cysteine modifica-
tion of KEAP1, resulting in nuclear translocation and
transcriptional activation of NRF2.50 Alternatively, protein
oxidation can also be irreversible, such as protein carbon-
ylation, resulting in loss of function due to protein aggregation
and degradation.150 In addition, accumulation of oxidized
proteins may result in impaired cellular function and
apoptosis.143 Furthermore, oxidative stress can lead to
misfolding of proteins in the ER, consequently inducing ER
stress.151

Oxidative damage to proteins can affect cell proliferation,
survival and inflammation (Figure 2). Upon oxidation of
TRX46 or phosphatases,36−40,43 such as MKP, PTEN, PTP1B,
and IκB, proliferative signaling is stimulated. Alternatively,
oxidative stress can result in intracellular release of calcium,152

consequently stimulating PKC signaling, which in turn can
activate MAPK/ERK and NF-κB signaling pathways.41 More-
over, protein oxidation can enhance survival through oxidation
of PTEN, followed by PI3K/Akt activation and subsequent
inactivation of pro-apoptotic Bad, Bax, and Bim.33,51,52

Additionally, oxidation of IκB lifts its inhibitory effect on
NF-κB signaling, which can both reduce caspase activity43 and
induce expression of antiapoptotic Bcl-2 family members.56

This can also be mediated by oxidation of KEAP1 and
subsequent activation of NRF2 signaling.50,54,55 Lastly, NF-κB
signaling contributes to inflammation via the production of
pro-inflammatory mediators.56,60

Oxidative Damage to DNA. ROS-induced oxidative DNA
modification may result in alteration of the DNA methylation
status15 or genomic instability following DNA oxidation-
induced secondary structures.63 These alterations in DNA
methylation, resulting from oxidative modification of MBPs,

Figure 3. Proposed network of AOPs for chemically induced oxidative stress leading to carcinogenesis. Chronic or prolonged activation of the
molecular initiating event and subsequent key events is required for this AOP network to trigger the adverse outcome. Molecular initiating events
are depicted in green, cellular effects in orange, tissue effects in bright red and the adverse outcome in dark red. Cancer hallmarks are depicted in
bold. Italicized text represent associated signaling pathways. Examples of cytochrome P450 enzymes, oxidases and key proteins in protein oxidation
are given in parentheses.
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DNMTs, and HDACs,66,67 can activate proto-oncogenes, such
as c-Myc, Kras and c-Jun, as a result of promoter
hypomethylation,68,69 and inactivate tumor suppressors, for
instance RUNX3 (RUNX family transcription factor 3) and
hMLH1, following promoter hypermethylation72,153 (Figure
2). Altered regulation of proto-oncogenes and tumor
suppressor genes is pivotal in carcinogenesis.154

Relation with the Cancer Hallmarks and Carcino-
genesis. Oxidative damage to lipids, proteins and DNA can
affect multiple cancer hallmarks, including maintaining
proliferative capacity, immune modulation, resistance to cell
death, and genomic instability and epigenetic dysregulation
(Figure 2). Ultimately, through contribution to these cancer
characteristics, carcinogenesis can be initiated and pro-
moted.1,2 Notably, cancer hallmarks can be induced through
oxidative damage to one specific class of macromolecules or to
multiple (Figure 2). Importantly, oxidative damage mediated
cell death can be compensated by regenerative prolifera-
tion.155,156

■ PROPOSED AOP NETWORK FOR CHEMICAL
INDUCTION OF OXIDATIVE STRESS LEADING TO
(NON)GENOTOXIC CARCINOGENESIS

Through structuring the above-described information regard-
ing the role of oxidative stress in the cancer hallmarks,
chemical induction of oxidative stress and oxidative damage to
macromolecules, we have developed an AOP network for
chemically induced oxidative stress leading to carcinogenesis
(Figure 3). Notably, this is an outline AOP network that
requires further development especially a detailed description
of the KEs and key event relationships (KERs). A preliminary
weight of evidence (WoE) evaluation was performed (Table
S1A−D) according to OECD guidance.157 Adjacent KERs
were assessed for both biological plausibility (Table S1A) and
empirical evidence including consideration of contradictions
(Table S1C), while KEs were assessed for essentiality (Table
S1B). For this, we relied on the WoE assessments available in
the AOP-Wiki (aopwiki.org) as well as scientific literature.
Details are given in Tables S1A−D, with Table S1D providing
a summary of the WoE for each of the adjacent KERs. Overall,
the biological plausibility for the direct relationships in this
AOP network is fairly strong. Evidence from empirical studies
partly supports this assessment, but for some KERs the number
of published studies appeared to be limited. The essentiality of
the KEs in the AOP network, which can be demonstrated by
modulating one KE and observing concordance in the
downstream KEs, was considered as moderate. Based on this,
we consider the overall WoE of the AOP network moderate to
strong: certain branches are very data rich, providing strong
evidence, whereas other branches require more data to be
generated. Additionally, to further examine this AOP network,
a noncomprehensive list of possible assays for KEs and
reference chemicals for these assays is provided in Table S2.

The AOP network consists of five molecular initiating events
(MIEs), namely activation of specific CYPs, inhibition of
mitochondrial complexes, impacting on cellular antioxidant
capacity, sustained AhR activation, and oxidase activation,
which may all lead to oxidative stress. Following the central KE
oxidative stress, three parallel KEs can be induced: lipid
peroxidation, protein oxidation and oxidative DNA damage.
Sufficient activation of these KEs can result in ER stress,
altered cell survival, and/or genomic instability. Altered cell
survival can result in tumor promoting inflammation, which in

turn can lead to sustained or regenerative proliferation.
Moreover, both genomic instability and altered cell survival
can also result in regenerative or sustained proliferation.
Sufficient and persistent activation of this KE can lead to tumor
formation. Notably, both sustained or regenerative prolifer-
ation and mutations are pivotal in carcinogenesis, and their
relationships to carcinogenesis are interlaced. Importantly,
chronic or prolonged activation of the MIEs and subsequent
KEs is necessary to trigger cancer.

■ DISCUSSION AND CONCLUSION
In the preceding sections, we reported evidence for the role of
oxidative stress in carcinogenesis along the lines of the cancer
hallmarks. We summarized the main findings concerning the
role of oxidative stress in cancer in both animals and humans.
Lastly, we described how chemicals can induce oxidative stress,
and how oxidative stress to macromolecules relates to cell
death, ER stress, inflammation, proliferation, and genomic
instability. Our efforts have led to the development of an AOP
network for chemically induced oxidative stress leading to
carcinogenesis (Figure 3), which can be used to guide the
development of an IATA for suspected NGTX carcinogens
inducing oxidative stress. Notably, many other mechanism
relevant for tumorigenesis exist. These were considered
beyond the scope of this review and are therefore not included
in the presented AOP network.

Within the AOP-Wiki,158 53 AOPs mentioning either
oxidative stress or ROS as KE exist at the time of writing
this review (Table S3). Of the 53 AOPs, only 12 cover cancer
as an adverse outcome (AO), highlighting the diverse role of
oxidative stress. In these 12 AOPs, various organs are linked to
cancer resulting from induction of oxidative stress, including
the liver, lung, breast, stomach and mesothelium. The diversity
in target sites for the AO has implications for hazard
assessment since quantitative differences between organs
presumably affect the point of departure. Additionally, several
currently existing AOPs link cytotoxicity to carcinogenesis
(Table S4). Although these AOPs do not specifically mention
induction of oxidative stress, this is known to be closely linked
to cytotoxicity.87 Notably, chronic or sustained activation of
KEs is necessary for carcinogenesis to occur.

The described AOP network is exploratory and requires
further development to elucidate the associated uncertainties.
One uncertainty relates to the relationship between mitochon-
drial dysfunction and oxidative stress. While some AOPs
suggest that oxidative stress is the consequence of mitochon-
drial dysfunction, others suggest that oxidative stress is the
cause. Here it should be noted that AOPs are a simplified
representation of complex biological networks. The discrep-
ancy between different AOPs is most likely the result of this
simplification. We chose to depict mitochondrial dysfunction
as the causative factor for oxidative stress since there is
evidence for chemical interference with mitochondrial
complexes leading to oxidative stress.130 However, ROS have
been described to disrupt mitochondrial function, and this
should be taken into account upon quantification of the KER.
Another feedback loop within the AOP network includes
damage to macromolecules by lipid peroxidation products,145

causing reinforcement of the effect of oxidative stress.
Moreover, inflammation can both be portrayed as the causative
and consequential factor in relation to oxidative stress. This
likely results from the interrelation between oxidative stress
and inflammation as an abundance of ROS can trigger
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production of pro-inflammatory cytokines, which in turn can
stimulate ROS formation, resulting in a positive feedback
loop.62 Since the focus of our AOP network is chemically
induced oxidative stress, we depict oxidative stress as the cause
and inflammation as the consequence. Similarly, oxidative
stress can induce ER stress through protein oxidation, and ER
stress can, in turn, cause oxidative stress.151 Lastly, altered cell
survival and inflammation appear to be intertwined KEs. Cell
death is known to trigger inflammation through the production
of damage-associated molecular patterns (DAMPs),159 and
inflammation can induce cell death via a process referred to as
pyroptosis (reviewed in160,161). Importantly, all biologically
relevant feedback loops should be taken into account when
quantifying the AOP network.

We would like to give a few considerations concerning the
application of the proposed AOP network for in vitro testing.
First, both the macromolecular and cellular KEs can be
measured in vitro using a relatively simple model system, for
example, HepG2 cells. Despite quantitative uncertainties due
to the cancer origin, such cell lines can be used for high-
throughput screening after which more complex and relevant
model systems can be used for further testing. One important
challenge here is the definition of oxidative stress. At present,
no threshold to discern physiological ROS levels from
pathological ROS levels exist. Second, since prolonged
activation of KEs is required for carcinogenesis to occur,
repeated, low-dose exposure is hypothesized to be more
relevant compared to single, high-dose exposure. In vitro assays
are still limited in their duration and applicability for testing
repeated-dose toxicity. Possibly, recovery experiments can shed
light on the sustainability of induced effects. Lastly, no
regulatory accepted in vitro assays for measuring proliferation
currently exist. Additionally, the AO cannot be measured in
vitro. Therefore, other downstream KEs such as altered cell
survival and tumor promoting inflammation are thought to be
key in distinguishing carcinogens from noncarcinogens. In vitro
testing of the KE tumor promoting inflammation requires a
complex model system containing multiple cell types, e.g.,
hepatocytes, Kupffer cells and stellate cells. For the KE altered
cell survival interpretation at the moment in unclear. Both an
increase and a decrease in cell survival can be linked to
carcinogenesis, for the latter in combination with regenerative
proliferation. Future research will have to elucidate how both
different types of cell death and quantitative differences in cell
survival are to be interpreted in relation to carcinogenesis.

For regulatory application of this AOP network, quantifica-
tion of the various KERs is essential. Not all substances that
induce oxidative stress through one of the proposed MIEs are
known to cause cancer. For example, although acetaminophen
(MIE: CYP2E1 activation)162 and diclofenac (MIE: mitochon-
drial dysfunction)163 are hepatotoxicants that are able to
induce oxidative stress, they are not known as (human)
carcinogens. We hypothesize that quantitative differences in
certain KERs, specifically those associated with the cancer
hallmarks, are central in this distinction of carcinogenic
potential. To illustrate, acetaminophen is highly hepatotoxic
and possibly does not cause liver cancer because death by liver
failure will precede carcinogenesis.131 Next to this, toxicoki-
netic differences between substances are presumed to affect
this inequity in AO induction as well. Furthermore, target sites
can differ in their antioxidant capacity and varying responses to
oxidative stress by the microenvironment are thought to
influence carcinogenesis.137 Lastly, increased cellular prolifer-

ation does not exclusively lead to carcinogenesis, healthy
regeneration can occur as well. Therefore, sustained
perturbation of signaling, ultimately impairing normal regen-
eration and homeostasis, is expected to be fundamental in
malignant transformation. Hazard assessment will thus have to
qualitatively and quantitatively cover the KERs in the proposed
AOP network and consider tissue-specific differences in
sensitivity.
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■ ABBREVIATIONS
4-HNE, 4-hydroxynonenal; 5hmC, 5-hydroxymethylcytosine;
8-OHdG, 8-hydroxy-2′-deoxyguanosine; AhR, aryl hydro-
carbon receptor; Akt, protein kinase B; AO, adverse outcome;
AOP, adverse outcome pathway; AP-1, activator protein 1;
APE1, AP-endonuclease 1; AKS1, apoptosis signal-regulating
kinase 1; Bad, Bcl-2-associated agonist of cell death; Bax, Bcl-2-
associated X protein; Bcl-xL, B-cell lymphoma extra-large; Bim,
Bcl-2-interacting mediator of cell death; CAT, catalase; CYP,
cytochrome P450; DAMP, damage-associated molecular
pattern; DNMT, DNA methyl transferase; DSB, double-strand
break; EPAA, European partnership in alternative approaches
to animal testing; ER, endoplasmic reticulum; ERK, extrac-
ellular signal-regulated kinase; GPX, glutathione peroxidase;
GR, glutathione reductase; GSH, glutathione; GST, gluta-
thione-S-transferase; GTX, genotoxic; HCC, hepatocellular
carcinoma; HDAC, histone deacetylase; hMLH1, human mutL
homologue 1; IARC, International Agency for Research on
Cancer; IATA, integrated approach to testing and assessment;
IκB, inhibitor of NF-κB; IKK, IκB kinase; IL, interleukin; JAK,
Janus kinase; JNK, c-Jun N-terminal kinase; KE, key event;
KEAP1, Kelch-like ECH associated protein 1; KER, key event
relationship; MAPK, mitogen-activated protein kinase; MBP,
methyl binding protein; MDA, malondialdehyde; MDSC,
myeloid-derived suppressor cell; MHC, major histocompati-
bility complex; MIE, molecular initiating event; MKP, MAPK
phosphatase; MoA, mode of action; NADPH, nicotinamide
adenine dinucleotide phosphate; NAM, new approach
methodology; NF-κB, factor κ-light-chain-enhancer of B cells
inhibitor; NGTX, nongenotoxic; NRF2, nuclear factor
erythroid 2-related factor 2; OGG1, 8-oxo-guanine DNA
glycosylase; PI3K, phosphoinositide 3 kinase; PKC, protein

kinase; PRDX, peroxiredoxin; PTEN, phosphatase and tensin
homologue; PTP1B, protein tyrosine phosphatase 1B; ROS,
reactive oxygen species; RUNX3, RUNX family transcription
factor 3; SNP, single nucleotide polymorphism; SOD,
superoxide dismutase; STAT, signal transducer and activator
of transcription protein; TNF, tumor necrosis factor; TR,
thioredoxin reductase; TRX, thioredoxin; WoE, weight of
evidence
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