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Abstract
A population group that is often overlooked in the recent revolution of self-tracking 
is the group of older people. This growing proportion of the general population is 
often faced with increasing health issues and discomfort. In order to come up with 
lifestyle advice towards the elderly, we need the ability to quantify their lifestyle, 
before and after an intervention. This research focuses on the task of activity rec-
ognition (AR) from accelerometer data. With that aim, we collect a substantial 
labelled dataset of older individuals wearing multiple devices simultaneously and 
performing a strict protocol of 16 activities (the GOTOV dataset, N = 28 ). Using 
this dataset, we trained Random Forest AR models, under varying sensor set-ups 
and levels of activity description granularity. The model that combines ankle and 
wrist accelerometers (GENEActiv) produced the best results (accuracy > 80% ) for 
16-class classification. At the same time, when additional physiological information 
is used, the accuracy increased ( > 85% ). To further investigate the role of granular-
ity in our predictions, we developed the LARA algorithm, which uses a hierarchical 
ontology that captures prior biological knowledge to increase or decrease the level 
of activity granularity (merge classes). As a result, a 12-class model in which the 
different paces of walking were merged showed a performance above 93% . Testing 
this 12-class model in labelled free-living pilot data, the mean balanced accuracy 
appeared to be reasonably high, while using the LARA algorithm, we show that a 
7-class model (lying down, sitting, standing, household, walking, cycling, jumping) 
was optimal for accuracy and granularity. Finally, we demonstrate the use of the 
latter model in unlabelled free-living data from a larger lifestyle intervention study. 
In this paper, we make the validation data as well as the derived prediction models 
available to the community.

Keywords Activity recognition · Activity ontology · Ageing population · Public 
dataset · Random forest · Sensor selection · Wearables
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1 Introduction

With the recent availability of a wide range of affordable personal sensing 
devices, a growing group of people is starting to experiment with self-tracking. 
This new development, aimed at quantifying various aspects of one’s personal 
life, is allowing people to better understand their life, improve their professional 
efficiency, or optimise a range of health factors. While it has become a lot easier 
to gather large quantities of raw data about one’s daily activities and physiolog-
ical parameters, making sense of all this data is still a considerable challenge. 
Especially when better health is the primary goal, understanding the exact nature 
of one’s activities, in other words, placing the raw measurements into context, is a 
crucial prerequisite for further processing of the data.

Although the self-tracking movement has become a mature field of study, the 
primary subject of study is still the healthy, young individual that is interested in 
how technology can contribute to a better life. In terms of available models and 
data, there is a clear focus on younger individuals, which produces a bias in the 
physiological nature of the data, as well as the typical lifestyle recorded. A sys-
tematic approach towards self-tracking aimed at the elderly has so far been under-
represented (Schrack et al. 2016), which is unfortunate since, in most countries, 
the elderly are becoming a larger proportion of the population.

Among senior citizens, the biggest potential of self-tracking lies in improving 
or maintaining their general health. A major determinant in that is one’s lifestyle, 
so quantifying that is the first priority. In fact, many medical studies of healthy 
ageing are aimed at lifestyle changes (Schrack et al. 2016; van de Rest et al. 2016; 
Jansen 2015; Wijsman et al. 2013). Typically, senior participants are encouraged 
to replace a mostly sedentary lifestyle by a more active one, for example by pro-
posing a daily moderate exercise. As part of these lifestyle-oriented intervention 
studies, a pre- and post-intervention period of free-living is recorded, in order to 
quantify the change in the participant’s activity profile. We have been involved 
in several such studies in the Netherlands, and a recurring theme in these studies 
was the objective measurement of activity type and level by means of wearable 
sensors.

To investigate such conditions in older people, in the Netherlands, several 
observational and experimental biomedical studies were initiated, with a focus on 
healthy ageing. These studies aimed to identify both genetic and environmental 
determinants of healthy ageing and included the collection of various types of 
physical activity data. As an example, the GOTO study (van de Rest et al. 2016) 
(one of the Leiden biomedical ageing studies that follow people predisposed to 
become long-lived and age healthily) studied 164 older participants (mean age 
63.2  years). Alongside several clinical parameters, gene expression levels and 
MRI scans, the participant’s daily activities using wearable sensors were meas-
ured over 2 weeks, one before and one after the lifestyle intervention. A major 
hurdle in the integrated analysis of this data is the correct interpretation of the 
sensor data since it is known in considerable detail what accelerations different 
body parts were experiencing, but what exactly the participants were doing is not 
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immediately apparent. Similar challenges exist in other studies, including some 
of our studies, which we list in “Appendix  2” (Westendorp et  al. 2009; van de 
Rest et al. 2016; Jansen 2015; Wijsman et al. 2013).

In the absence of good training data and predictive models aimed at the activity 
recognition of the elderly using wearables, we decided to conduct our own valida-
tion study using a wide range of sensors and building appropriate models. In this 
paper, we report on the Growing Old TOgether Validation (GOTOV) study. We 
collected labelled wearable sensor data of 35 subjects, aged between 60 and 85 
with a mean age 65 and mean BMI 27 kg/m2 . These population details are similar 
to the above-mentioned studies performed in Leiden University Medical Center 
(LUMC), like the GOTO, where different participants took place with a mean age 
63.2 and mean BMI 27 kg/m2 . This dataset encompasses 16 activities with low 
(lying down, sitting), mid (standing, household activities) and high (walking and 
cycling) levels of intensity. The data collection protocol was designed to include 
activities that cover all periods of everyday living for this age group in approxi-
mately 90 min.

The GOTOV data collection protocol was developed to mostly recreate free-
living conditions. This means that in order to be representative, the data collection 
took place in two separate moments. First, low and mid-intensity activities were 
measured indoors in a laboratory environment. This part of the protocol simulates 
activities such as sitting on a sofa while reading a newspaper or performing differ-
ent household activities. The second part of the protocol was measured outdoors, 
where we collected data of more complex and high-intensity activities like walking 
and cycling during normal urban conditions. Adding to that, some activities can be 
specified at different granularity.

The GOTOV study was designed with two goals in mind, (1) to encompass all 
the sensor set-ups involved in four biomedical studies in Leiden (“Appendix 2”), and 
(2) to involve novel sensors for capturing additional physiological parameters (e.g. 
heart and breath rate variability, skin temperature, etc.), which could then be cor-
related with the more comfortable and affordable wearables such as accelerometers. 
Since individual studies required different subsets of the data, separate models had 
to be trained for different subsets of the data. For example, the GOTO study involves 
a moderate set-up of only accelerometers worn at the wrist and the ankle, while for 
example Switchbox (Jansen 2015) including heart and breath rate sensors. The inter-
play between sensors and their body location, the granularity of activity classes and 
resulting model accuracies forms a large part of the experimental results that we 
present here.

In our study, we introduce an activity ontology, formulated during the design of 
the data collection protocol, which consists of three levels of granularity. Having 
these levels allows one to recognise the activity at several levels of specificity. In 
fact, there is a trade-off between the granularity and accuracy of the model: as you 
move down the hierarchy, making detailed distinctions between sub-classes requires 
better data and more accurate models, a luxury that is not always available. We pro-
pose a new learning method (LARA, for Learning activity recognition models accu-
rately) that aims to guarantee a certain, user-specifiable, level of accuracy, by mov-
ing up the hierarchy (from specific to general) until the desired accuracy is achieved. 
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At each iteration, the granularity of the most problematic part of the hierarchy is 
reduced.

The method proposed here is agnostic to the actual activity recognition (AR) 
algorithm employed, so any prediction algorithm can be plugged in. But for the 
experiments presented below, we are using a novel combination of two algorithms 
that are able to deal with the specific challenges of AR data, Accordion algorithm 
and random forest (RF). The Accordion (Cachucho et al. 2014) algorithm specifi-
cally extracts features from temporal data that are suitable for further classification 
of the activities by a classification algorithm, RF here. Since raw sensor data are 
captured at a relatively high frequency, and activities are only predicted, say, once 
per second, the sensor data will need to be aggregated over windows of various 
lengths (to capture both short and long-term effects). Having extracted promising 
features with Accordion, we employ a random forest (Breiman 2001) to produce the 
actual prediction.

Summarising, the main contributions of this paper are as follows: 

1. We present and make publicly available a new data collection focused on the 
elderly which incorporates 16 activities following a three-level hierarchical ontol-
ogy.

2. We develop a pipeline combining Accordion and RF with a novel method, called 
LARA, that systematically considers different levels of granularity appropriate 
for the sensor set-up in question.

3. We deliver robust and highly accurate activity recognition models.
4. We report on optimal sensor set-ups in terms of size, sensor type and body loca-

tion.
5. We demonstrate the performance of our models in both labelled and unlabelled 

free-living accelerometer data.

In Fig. 1, we present our study workflow. This is divided into 4 parts, i.e. A, B, 
C, D. (A) represents the labelled AR dataset, that will become publicly available 

Fig. 1  Study Flow-chart
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(GOTOV), (B) the pipeline of the consecutive AR tools (Accordion, Random For-
est, LARA), (C) the evaluation of the AR models using the Leave-One-Subject-Out 
cross-fold validation (LOSO-CV), and (D) the demonstration of one of our models, 
with free-living data from two sources: 1. a labelled collection and 2. the GOTO 
lifestyle intervention study (unlabelled).

In detail the paper’s structure, in Background (Sect.  2), we present the related 
work and put our contributions into perspective. In LARA (Sect. 3), we introduce 
some mathematical notation followed by the learning method LARA that we pro-
pose. In Sect. 4, we introduce part of A (Fig. 1) including the data collection proto-
col, the activities ontology and a description of the dataset made publicly available. 
This is followed by part B and C of the study workflow (Fig. 1), in Sect. 5 (training 
of AR models) where we present the experiments, discuss the feature construction 
step, optimise the classification model and present the optimal location of the sen-
sors. At the end of the section, we also evaluate and demonstrate the use of one of 
our models in labelled free-living data (part D-1, Fig. 1) and in free-living data of 
the GOTO study (part D-2, Fig. 1). In Sect. 6, we present our conclusions and future 
work. Finally, in the Appendix we add a list of all the abbreviations (“Appendix 1”) 
and the details of the four Leiden biomedical ageing studies (“Appendix 2”).

2  Background

In recent years, the advances in wearable sensor technology (smaller size, non-inva-
sive, long battery life) and its potential application to studies that monitor physi-
cal activity have attracted wide attention. Since physical activity is one of the main 
determinants of healthy ageing, from early 2000 until today, there is a significant 
increase in ageing studies using such devices (Shiroma et al. 2018). The (Murphy 
2009; Schrack et al. 2016; Tedesco et al. 2017; Shiroma et al. 2018) review papers 
give an extensive comparison of up-to-date studies using wearables or/and station-
ary sensors to monitor physical activity in older adults. In this section, consider-
ing wearables sensors as predictors, we will have a systematic analysis that puts our 
study into perspective with others, with special attention to activity recognition in 
older people.

Comparing the literature, it can be seen that identifying and quantifying activity 
(moderate to vigorous intensity) of older adults from sensor data is a challenging 
problem. Most studies tend to use activity metrics such as cut points and/or meta-
bolic equivalents (METs) thresholds (Rejeski et al. 2016; Schrack et al. 2018). How-
ever, most of these threshold values are calculated in younger individuals and may 
prove problematic when applied to older ones since activities patterns differ depend-
ing on the age (Sallis 2000; Martin et al. 1992, 2014). Additionally, if they are not 
accompanied by a daily activity log, they are more or less disconnected from the 
activity’s context. As a result, it is hard to identify which activities are linked with 
health parameters and may, therefore, be used as healthy ageing recommendations. 
For this reason, we would like to use AR models to investigate if there is a relation-
ship between the different activities and health parameters.
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Activity recognition (AR) using wearable sensors (e.g. accelerometers) could be 
a solution to this challenge. In the last 20 years already, the field of AR has signifi-
cantly evolved, with research both in using wearable sensors (Bao and Intille 2004; 
Parkka et al. 2006; Patel et al. 2009; Altun and Barshan 2010; Lara and Labrador 
2013) and environment-based sensors (Ranasinghe et al. 2016; Rashidi and Mihai-
lidis 2013). However, the majority of the relevant literature (Bao and Intille 2004; 
Parkka et al. 2006; Altun and Barshan 2010; Reiss and Stricker 2012; Attal et  al. 
2015; Saez et al. 2016) focuses on developing AR models mainly on younger popu-
lations (mid 20s). Adding to that, the few studies focused on older individuals they 
either study participants with various health conditions (Patel et al. 2009; Gao et al. 
2014) or when they focus to healthy older individuals they use stationary sensors 
(Moshtaghi et al. 2015; Duong et al. 2005). This concludes in making the models 
non-generalisable to wider healthy older population. In more detail, in Del Rosari 
et  al. (2014) it is presented that training AR models in a young population and 
applied to an older one (and vice versa) conclude to lower performance compared 
to models trained and tested on the same population. As a result, existing AR mod-
els which were developed on a younger population could not be generalisable to an 
older one. For that reason, it is important to study physical activity and develop AR 
models focused on healthy older populations.

Additionally, enhancing reproducibility in the field of AR is a major challenge 
(Brush et  al. 2011). The majority of the publications in AR are not reproducible, 
mainly because both algorithms and dataset are not publicly available. Take as an 
example the publications on activity recognition for older people: none of them has 
made the datasets publicly available; even not the dataset of the most cited AR pub-
lication (Bao and Intille 2004). In contrast, there are few publications (Altun and 
Barshan 2010; Reiss and Stricker 2012; Chavarriaga et al. 2013) that have published 
their collected datasets or parts of them. However, these publicly available data-
sets fall short to support studies on ageing populations. Therefore, we introduce a 
new publicly available activity recognition dataset that focuses on older individuals 
(between 60 and 85 with a mean age 65). The collected dataset consists of 35 partic-
ipants, 2 different devices (GeneActivs and Equivital) on 3 different body locations 
(ankle, wrist, chest) and 16 activity classes, with a hierarchical ontology.

From a modelling perspective, focusing on wearables, due to the fact that differ-
ent activities utilise different body parts, it has been proven that AR model’s per-
formance is highly dependent on the sensors’ body position (Bao and Intille 2004). 
Moreover, different studies train AR models using multiple wearables at differ-
ent body locations (chest, wrist, ankle, thigh, etc.). Consequently, there is a need 
for studies that could recognise daily activities independently of the body posi-
tion (Khan et al. 2010). Due to our hierarchical activity ontology design, we create 
activity detail specific models per sensor combination. This way, depending on the 
desired activity detail prediction, we can suggest a sensor combination.

The use of an ontology structure for activity recognition has been introduced 
before in several studies, both for vision-based methods and for wearables sensors-
based, see details in this review (Chen and Nugent 2009). More specific, ontologies 
have been used to represent the hierarchy of different activities (Riboni and Bettini 
2011), which allows to describe the activities in a more structured way and identify 
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activities with different readings because of movement, body posture or intensity as 
one.

Adding to that, we have seen several studies (Reiss and Stricker 2012; Parkka 
et  al. 2006; Dutta et  al. 2016) that started with a data collection protocol that 
includes a big number of activities, but in the end, the reported models are tested 
only on a subset of them. Often, these activity classes are merged into a higher con-
cept activity-class based on confusion (Dutta et al. 2016). However, this step is not 
clearly explained or justified. With the use of a prior ontology which is used by an 
algorithm as an input (LARA), this merging of classes is performed and achieved in 
a more methodological way.

Adding to body locations and ontology, there is a lack of standardised activity 
protocols that could generalise laboratory-trained AR models to free-living collected 
data. Sasaki et al. (2016) compares classification algorithms for accelerometer data 
in the laboratory and in free-living conditions. The results prove that laboratory-
trained AR models will underperform when they are used to classify activity from 
free-living data. On the other hand, creating free-living labelled datasets can be 
challenging, since participants should record daily logs or use extra devices, like 
cameras, increasing the studies cost and interfering with the participant’s private 
life. Therefore, there is a need for methods that develop accurate AR models, that 
are robust under free-living conditions.

3  LARA: learning activity recognition models accurately

In this section, we introduce fundamental concepts to understand the created models 
and datasets that are used to create such models.

3.1  Preliminaries

We will start by focusing on data produced by a collection of sensors. Such a col-
lection produces datasets that can be formalised as a multivariate time series matrix. 
We define a multivariate time series as an n × m matrix T (see Eq. 1).

Note that this matrix, is on a temporal order: �i,j represents a measurement at time 
point i for variable j, e.g. the input value of X-axes of an accelerometer at the time-
point i. This collection can be decomposed into subsets of sensors s ∈ S , where S is 
the set of all sensors employed. A subset of sensors s ∈ S refers to one or more sen-
sors combined, which represent a sub-matrix of the predictors matrix, �s ⊆ � . We 
refer to �s as sensor set-up.

(1)� =

⎛
⎜⎜⎜⎜⎝

�
1,1

�
1,2

⋯ �
1,m

�
2,1

�
2,2

⋯ �
2,m

⋮ ⋮ �i,j ⋮

�n−1,1 �n−1,2 ⋯ �n−1,m

�n,1 �n,2 ⋯ �n,m

⎞⎟⎟⎟⎟⎠
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With � being a time series, the indexes {1,… , n} of � represents a temporal order 
and each point of a time series is collected at a specific moment in time. We refer to 
each of these moments as timestamps �(i) . From the timestamps, one can derive rel-
evant information such as sampling rates. The sampling rate of � can be calculated 
as follows:

Assume that associated with the multivariate time series � , we have a categori-
cal dependent variable � representing the target variable (subject’s activity). In the 
case of time series, this target variable is a vector � = (c

1
,… , c|�|) , with temporal 

order. The target vector � represents a finite sequence of classes, with the following 
properties:

• Target variable � has fewer or the same number of instances than predictors 
matrix � : |�| ≤ n.

• � and � are collected during the same period of time: �(|�|) = �(n).
• ci′ denotes a class by means of an integer {1,… , k} , where k is the number of 

classes;

Please note that the categorical target vector � has a lower sampling rate than � , 
r
�
≤ r

�
.

3.2  Activity recognition problem

In our activity recognition framework, � is a target vector where the classes repre-
sent different activities. k represents the number of human activities ( k = 16 ). Given 
a set of activities A = {a

1
,… , ak} , we define an ontology as a sequence of partitions 

P
0
,…Pd , where the parameter d refers to the depth of the ontology (the number of 

levels minus one) and

• for d = 0 : P
0
 is the singleton consisting of A: P

0
= {A},

• for d = l : Pl aggregates a subset of activities Pl+1 in a parent activity: a, where 
∀a ∈ Pl,∃G ⊂ Pl+1∶ a =

⋃
G.

The partitions Pl represent the levels of the ontology: different levels of activity 
description, ranging from individual activities ( Pd ) to all activities merged together 
( P

0
 ). This definition of an ontology allows multiple activities with any number of 

levels of aggregation depending on their granularity.
In this paper, the specific ontology used is of depth d = 3 , where levels P

1
 , P

2
 

and P
3
 are presented in Fig. 2, with P

3
 the classes of the bottom row of the ontol-

ogy, P
2
 the intermediate level (lying down, sitting, standing, household, jumping, 

walking, cycling), and P
1
 the level representing activities at three levels of intensity 

(low, medium and high). In Sect. 4.1.2, we explain the reasoning behind our selected 
ontology.

(2)r
�
=

n − 1

�(n) − �(1)
.
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3.2.1  Feature construction and selection

When facing multiple sampling rates as stated above, one important aspect is how 
to map multiple instances of the independent variables � to one instance of the 
dependent variable � . The most common solution for this mapping is to take multi-
ple values of � and aggregate them to one value. This technique is widely known as 
sliding windows (Bifet 2009). Such an aggregation procedure will result in what we 
call aggregate features.

Note that the possibilities of combinations in term of window size w and a poten-
tially large set of aggregation functions will lead to a fairly large search space. In 
this paper, we use Accordion (Cachucho et al. 2014), a published algorithm for fea-
ture construction and selection in mixed-sampling rates time series data. In detail, 
using a set of aggregation functions and given a maximum window (here 5 sec) and 
a prediction sampling rate, it selects the best representative features and window 
sizes, guided by the information gain measure.

3.2.2  Learning accurate and robust AR models

Now assume that we are given a set of aggregate features F  with a cardinality of m. 
Such a set can be represented as a |�| × m feature matrix, which we call � . Given � 
and � , the definition of an activity recognition model is:

In Eq. 3, f is a classification model learned by a classification algorithm and ĉi′ is a 
class prediction, for instance, i′ based on row �i′ of matrix �.

Assume that we have a sensor set-up, producing a multivariate time series �s 
and a target of human activities, ci′ . The method that we propose takes �s and 
ci′ as inputs, and outputs a classification model f, as described in Algorithm  1. 
This algorithm begins by attempting to build a model for predicting all activities 
separately (multi-class classification with k classes). As long as this model does 
not reach a specified accuracy threshold � (accuracy is computed by the count of 

(3)ĉi� = f (�i� ),
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Fig. 2  Activities hierarchical ontology. (Color figure online)
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correct predictions), the algorithm iteratively moves up the activity ontology until 
the minimum desired activity description Pmin is reached, for our application level 
P
2
 . We named this method Learning Activity Recognition models Accurately 

(LARA) and use it to determine the appropriate number of classes that should be 
used for classification.

At each iteration, LARA merges one set of activities (siblings) that belong to 
a single parent activity (e.g. {Lying Down Left}, {Lying Down Right} becomes 
{Lying Down}). In terms of the ontology P

0
,… ,Pd , the iterative algorithm starts 

with the individual activities P = Pd at depth depth = d , considers all parent 
activities in Pdepth−1 and merges the sibling activities of the parent that causes the 
most ‘confusion’ (explained below). After all activities on level depth have been 
merged (assuming the accuracy threshold � has not yet been reached), the activity 
partition P now equals Pdepth−1 . Then depth is decreased by one, and the process 
naturally proceeds until sufficient accuracy or minimum depth is reached.

In order to decide at each level which is the next set of activities to be merged 
into their parent a, we compute the intra-group confusion IGC. For a given parent 
a and its constituting activities a

1
,… , ak , the IGC computes how many cases of ai 

are predicted (confused) as aj , for all i ≠ j . In other words, LARA focus on confu-
sion between classes of the same parent.
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As an example, given our ontology (Fig. 2). In the first iteration with k = 16 classes 
and depth = 3 , if a model does not reach the accuracy threshold � , the LARA algo-
rithm will: 

1. Compute the IGC per group of siblings, e.g. the ICG of lyingDown’s children, 
sitting’s children, etc.

2. Identify the group with the highest ICG.
3. Merge the siblings to one class, the parent, e.g. walkingSlow, walkingNormal and 

walkingFast into class walking.
4. Train the new model with the given classes and evaluate if it reached the accuracy 

threshold �.
5. If the threshold is not reached, it continues merging sibling classes per level until 

either the threshold or the minimum activity description is reached.

As part of the threshold criterion in Algorithm 1, the accuracy is computed using 
Leave-One-Subject-Out cross-validation (LOSO-CV) (Bao and Intille 2004; Patel et al. 
2009; Reiss and Stricker 2012; Saez et al. 2016). This evaluation methodology splits 
the dataset into N folds, where N is the number of human subjects, using N − 1 folds 
as the training set and the remaining fold as the test set. This simulates how the models 
will be used in the future: on subjects not yet known to the model. Through this proce-
dure, we guarantee that the classifier learns nothing about the subject to be predicted, 
thus decreasing learning bias and achieving reliable results for cross-subject predic-
tion. Note that an evaluation methodology that does not use LOSO-CV would provide 
a more optimistic estimate of the accuracy. More specifically, with normal cross-vali-
dation, data from the same subject would be used in both training and test set leading 
to an overestimation in papers that report accuracies using it (Attal et al. 2015; Gao 
et al. 2014; Chavarriaga et al. 2013). Unlike cross-validation, this procedure estimates 
the expected accuracy, not only on new data but also on new subjects. The process is 
repeated for all the subjects and the average accuracy is reported. This accuracy is a 
measure of performance on ‘unseen’ data.

4  GOTOV data

In this section, the data collection regarding the Growing Old TOgether Validation 
(GOTOV) study is presented, PART A (Fig. 1). The GOTOV study was designed to 
create a labelled dataset of physical activity, focused on older people. From this dataset, 
we can develop and compare multiple activity recognition models. To the extent of our 
knowledge, this GOTOV dataset is the first dataset with a focus on activity recognition 
of healthy older people using wearable sensors to be made publicly available.

4.1  Data collection protocol

The GOTOV collection took place at Leiden University Medical Center (LUMC), 
between February and May 2015. During this period, 35 (14 female, 21 male) 
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ac�vity classifica�on

(e)

Fig. 3  GOTOV study devices and their body location

Table 1  The 16 activities protocol

Activity Description Duration in sec, 
expected (aver-
age)

Jumping Lightly jump (synchronise sensors) 20 (20.1)
Standing Get some rest between the two activities 60 (62)
Step Stepping a step 20 times at participant’s pace 60 (40.6)
Lying down left Turn 90◦ to the left 180 (179.1)
Lying down right Turn 90◦ to the right 180 (177.7)
Sitting sofa Sit and watch TV (feet touch the ground) 180 (177)
Sitting couch Sit and read a newspaper (feet on the Couch) 180 (180)
Sitting chair Sit on an office chair word on a Computer 180 (173.1)
Walking stairs up Ascend two flights of stairs 20 (17.3)
Washing dishes Stand and wash dishes 180 (180)
Stacking shelves Stack shelves with books 180 (180.6)
Vacuum cleaning Perform some cleaning with a vacuum cleaner 180 (181.6)
Walking slow Walk at a slow pace 300 (298.4)
Walking normal Walk at a medium pace 300 (299)
Walking fast Walk at a fast pace 300 (285.2)
Cycling Cycle at a normal pace 900 (724.4)
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individuals performed 16 everyday activities (see Fig. 2) while wearing 4 devices 
on 6 body locations (see Fig. 3). The set of 16 activities followed a specific, 90 min, 
protocol (see Table 1).

4.1.1  Participants selection

The individuals were selected via a paper advertisement and they had to meet the 
following criteria: (1) Be older than 60 years of age; (2) Have a BMI between 23 
and 35 kg/m2 ; (3) Not being restricted in their movements by health conditions; (4) 
Bring their own bicycle. The selected participants received €50 for their contribu-
tion to the GOTOV study and agreed to the use of recorded data for scientific pur-
poses, in an anonymised manner.

4.1.2  Activities ontology

The set of activity classes to be performed were selected based on two main criteria. 
First, they had to represent the different aspects of everyday life, both in an indoor 
and outdoor environment. Second, and most importantly, they had to follow a hier-
archical ontology with different levels of description. These levels allow us to gener-
alise the set of activities depending on the activity detail needed in every AR model. 
We wanted to include in our protocol a variation of signals from similar activities 
that have:

• different patterns in sensor-readings because of body position/posture but are the 
same, like sitting on a sofa or chair is both sitting.

• different patterns in sensor-readings because they are performed at different 
intensities/paces per person, but they are the same activity, like walking.

• similar body position/posture and performed intensities and it is hard to distin-
guish them later, like different household activities.

In order to include all these different signals while training, we designed an activ-
ity ontology that hierarchically categorizes the activities. The design of this ontol-
ogy tree, which can be seen in the two axes of our tree, see Fig. 1 of the paper, is 
based on two principals: 

1. We should be able to classify activities at several intensities.
2. We should be able to classify activities at several levels of detail.

Based on these principals, we included 16 everyday activities, which were 
divided into 3 levels of description. In Fig. 2, we present the activities ontology and 
the level of description for each activity. The lower level of description (light blue) 
has been divided into low, mid and high-intensity. The second level from the top of 
Fig. 2 represents a set of 7 everyday activities (indoors and outdoors), the General 
Activities (see ontology Sect. 3). These activities were categorised in the 3 intensi-
ties according to the METs values per activity code from Ainsworth et al. (2011). 
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The set of indoor activities were mainly distributed under the low and mid-inten-
sity with classes like lying down, sitting, standing and household chores, while the 
class of jumping belongs to high-intensity. On the other hand, the set of outdoor 
activities belong to the high-intensity group with classes like walking and cycling. 
Furthermore, we should point out that the outdoor activities were performed while 
the participants encountered different meteorological and traffic conditions such as 
crossroads or signs.

The third and highest level of activity description (dark blue) contains the more 
detailed activities, such as different sides of lying down (left and right), various 
types of sitting, multiple households and several paces of walking. In detail, the var-
ious sitting classes were divided into sitting on a chair (participants sit and work), 
sitting on a sofa (participants watched TV) and sitting on a couch (participants read 
a newspaper). The discrimination between sitting on Sofa and Couch is based on the 
fact that for Couch the participants placed their feet on it, while for the Sofa their 
feet were touching the ground. The multiple household chores were divided into 
washing dishes, stacking shelves and vacuum cleaning. Lastly, the different paces of 
walking were divided into walking with different paces (slow, normal, fast), walk-
ing stairs up and exercising with a step. We should point out that step and walking 
stairs up were performed indoors, while walking with different paces was performed 
outdoors.

4.1.3  The activities protocol

The 35 participants performed the set of 16 activities following a specific protocol. 
During that time, a researcher asked the participants to perform every activity during 
a time window. However, no other instructions or illustrations of the activities were 
given. After that, the researcher monitored the activities and recorded their start and 
end times. The order, duration (expected and average measured) and description of 
activities are presented in Table 1. A visual example of the procedure can be found 
in a recorded video.1 Adding to that, every participant filled a physical activity ques-
tionnaire (IPAQ) (Craig et al. 2003), just before the monitoring protocol started.

Before every individual started the sequence of activities, there was a prior sensor 
calibration step of COSMED that took approximately 10–15  min. Following that, 
the individuals jumped lightly for 20 s, while waving their arms around. This proce-
dure creates a recognisable pattern in the data, that is used to synchronise the sen-
sors. Subsequently, the different activities were performed in the two environments, 
indoors and outdoors, with the outdoor activities performed in the immediate vicin-
ity of the research building. Between every two activities (except lying down right 
and left), the participants were always standing for more than 1 min, providing this 
way with a clear demarcation to the signal data.

It can be observed that some activities were performed for a longer time com-
pared to others (see Table 1). This was intended, in order to accommodate the com-
plexity present in some of them (e.g. cycling). It should, also, be stated that due to 

1 https ://youtu .be/jvx5F GhqPx w.

https://youtu.be/jvx5FGhqPxw
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adverse weather conditions, some of the participants did not perform the outdoor 
activities (10 out of 35). Nevertheless, we decided to include these participants in 
our study in order to increase the number of instances for indoor activities. In the 
end, the data collection contained approximately 26 h of labelled activities.

4.1.4  Devices and body locations

The devices and their body locations were selected to serve Leiden biomedical stud-
ies mentioned before. The set of devices included both accelerometry sensors and 
sensors measuring participants’ physical information, e.g. breathing rate (BR) and 
volume ( VO

2
 , VCO

2
 ) or heart rate (HR). The goal of using those sets of sensors 

is to observe diverse parameters for body motion or energy expenditure. In Fig. 3, 
the details of the devices and their respective body locations are presented. In more 
detail, we used the GENEActiv accelerometer on the ankle, wrist and chest, the 
Equivital measuring both accelerometry and other physical information on the chest, 
the COSMED K4b2 measuring breath volume using a face mask and wearable unit 
on the torso, and Activ8 which predicts energy expenditure from accelerometry data. 
If a device was severely limiting a participant’s movement, it was removed (7 out of 
35 participants did not use at least one device).

Since the focus of this study is on activity recognition models, the devices that 
would be used for our analysis are the combinations of GENEActiv accelerometers 
(a,w,c in Fig. 3) and Equivital (e in Fig. 3). On the other hand, data from COSMED 
(K4 in Fig. 3) and Activ8 (A8 in Fig. 3) are intended for future research in order to 
develop energy expenditure models using as input also the activities predicted.

4.2  Publicly available dataset

One of the main contributions of this paper is to create a large publicly available 
dataset for physical activity recognition focused on older individuals, see (A) in 
Fig. 1. Motivated by that, the part of GOTOV study dataset, which is related to this 
activity recognition paper is made freely available in the 4TU.Center for research 
data repository2 (for DOI link see footnote 2). This AR dataset contains data from 
2 out of 4 GOTOV study devices and includes 35 participants performing the 16 
activities protocol. In detail, GENEActiv accelerometer on the ankle, wrist, chest (a, 
w and c in Fig. 3) and Equivital on the chest (e in Fig. 3) with both accelerometer 
and the accompanying physiological measurements data are publicly available. Hav-
ing in mind the task of activity recognition, the resulting sensor set-ups and their 
abbreviations are presented in Table 2. Note that chest-Equivital (ce) sensor set-up 
combines e and Equivital, both placed on the chest (same body location).

The dataset made public is already a product of multiple pre-processing steps. 
Those steps assure that all the devices are synchronised and the activity labels are 
imputed according to protocol. Since every device uses different time formats, all 

2 DOI link: http://doi.org/10.4121/uuid:d3dd8 165-cc4e-4e2a-ab12-82198 ab6dc 39.

http://doi.org/10.4121/uuid:d3dd8165-cc4e-4e2a-ab12-82198ab6dc39
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timestamps were converted to a UNIX format. UNIX timestamps, also known as 
POSIX time or epoch time, allow a synchronisation precision up to the millisecond. 
The resulting target (activities) and predictors (sensors) datasets are made publicly 
available for each participant.

5  Training activity recognition models

In this section, the training, evaluation and performance of the sensor set-ups are 
presented (B and C in Fig. 1). All the experiments were implemented in the R lan-
guage, with external packages for machine learning and published algorithms for 
feature construction and selection. For all our experiments, we use the publicly 
available activity recognition dataset from the GOTOV study. For our study, we 
included the participants that had data for all three GENEActivs (ankle, chest, wrist) 
and Equivital device. For that reason, only 28 participants out of 35 were included in 
the current study, from which all the 28 performed the indoors activities and 18 the 
outdoors.

The structure of our experiments is presented in Fig. 4 and is as follows. First, we 
compare an intuitive feature construction (Baseline) with an automated one (Accor-
dion), see I in Fig. 4. Second, the choice of classifier follows comparing Decision 
Trees (DT) and Random Forest (RF) (II in Fig.  4). Here, we analyse each activ-
ity precision and how it influences the total accuracy, computed by LOSO-CV, per 
sensor set-up. The Accordion, RF pipeline is extended with LARA to compare the 
classification power per sensor set-up, in terms of activity granularity (III in Fig. 4), 

Table 2  Sensor set-ups abbreviation. (Color table online)

The ankle, wrist and chest (a,w,c respectively) refer to GENEActiv sensor positioned at these body loca-
tions

Fig. 4  Experiments workflow, where I refers to Sect. 5.1, II to Sect. 5.2, and III to Sects. 5.3 and 5.5
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when accuracy of 90% is asked. The 90% threshold is chosen, having in mind future 
predictions in free-living data. This threshold is a parameter set in LARA in order 
to compare the performance of the different sensor set-ups. Nevertheless, it can be 
set differently depending on the confidence needed. Finally, we compare the perfor-
mance of the developed activity recognition models per set-up.

5.1  Feature construction and selection

Here, we analyse the features constructed by the Baseline and Accordion. During 
the baseline experiment, we constructed 1 aggregated feature as a predictor, using 
the mean value of a fixed non-overlapping window of 1  s, for every sensor vari-
able. Using these features, we trained a DT per sensor set-up and evaluated it with 
LOSO-CV. This experiment will allow us to compare between an intuitive and a 
data-driven feature construction strategy.

Our second step was to build and select features using the Accordion algorithm 
and train another DT. Accordion (Cachucho et al. 2014) is a machine learning wrap-
per that finds an optimised set of aggregate features, for each sensor set-up. This 
algorithm, given a maximum window size (5 s), constructs and selects aggregated 
features according to the information gain measure. The decision of limiting the 
window size to a maximum of 5  s is to enforce the trade-off between recognition 
speed and accuracy. In detail, if we use bigger windows in order to represent 1 s of 
activity it might be that there will be a loss of activity detail; since for example if 
we double the window size to 10 s, one is able in this time to alter between two dif-
ferent activities, e.g. sit-stand-sit and this in-between information might not be used 
correctly. Smaller windows will have the ability to react more quickly to changes in 
activity.

Table 3  Number of Accordion features per sensor variable and set-up. (Color table online)

For set-up abbreviations, see Table  2. Equivital variables, Lat, Ver, Lon lateral, vertical, longitudinal 
acceleration, HR, BR heart and breath rate, HRc, BRc heart and breath rate confidence, BW breathing 
wave, ECG electrocardiogram, IBi inter-beat interval, Temp skin temperature
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Table 3 presents the different number of features constructed by the Accordion 
algorithm per sensor (row) and sensor set-up (columns). In the table, the cells 
represent the number of features constructed and selected for each set-up. The 
highlighted in grey are the variables with the most features selected. In detail, 
Table 3 presents information about features selected (predictors) per data set-up, 
which is represented per column. The first two rows of the table show the total 
number of features selected per set-up (first row) and their average window size 
(2nd row). After these two rows, we present the number of features selected per 
devices’ variable (predictor), and if a device was not included in this combination, 
we added a dash to its variables. In order to read this information correctly, we 
divided the table according to the two devices used, GENEActiv and Equivital. 
Then, since GENEActivs were used in 3 different body location we also divided 
this into three different groups, while for Equivital, placed only on the chest there 
is only one block of information. For example, if you want to see how many fea-
tures were selected for ankle-wrist-equivital (awe) combination per variable, you 
should go to column awe and then one could observe that for GENEActiv on the 
ankle there were 14, 17 and 3 features selected per variable, with 17 being high-
lighted since it is the max of all the rows for column awe.

From Table 3, we can observe that whenever ankle is included in one data set-
up, the most selected features are always from one of its variables (predictors). In 
other words, the ankle is the sensor with the most features selected whenever it is 
included in the sensors set-up. This indicates that an accelerometer on the lower 
limb is highly informative for ambulatory activities. Even when compared with 
physical measurements (breath rate, heart rate, etc.), an accelerometer is the more 
relevant for AR.

Every feature constructed and selected by Accordion is a representation of the 
variable used, followed by the aggregation function applied to it for the selected 
window. Some examples of selected features per sensor are ankleY_SD_39 , 
wristX_Mean_74 and SkinTemperature_SD_6 . In ankleY_SD_39 the standard devi-
ation of ankleY (g force on the y axis) summarised for a window of 39 inputs is 
presented. Similarly, for the wrist, wristX_Mean_74 presents the mean of a win-
dow of 74 inputs on X axes acceleration variable. In the first two rows of the 
table, for each sensor set-up, we present the total number of selected features and 
their mean window size (in seconds).

In addition to Table 3, we plot the probability density function (PDF), using 
Kernel Density Estimation of feature windows that Accordion selected between 
0 and 5 s per set-up, see Fig. 5. The 5 s here is the maximum window size given 
to Accordion. In the literature, the used windows sizes vary (Huynh and Schiele 
2005; Banos et al. 2014, 2012). In Fig. 5, we observe two main modes of window 
sizes: 1–1.5 and 3.5–4  s. This is an important observation since the Accordion 
considers many candidate features and fixing the window size allows for a much 
quicker feature selection. Another interesting finding is that the graph does not 
peak around 5 s. This is important because if there would have been many fea-
tures selected close to our specified maximum of 5 s, that would warrant further 
investigation of longer windows.
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5.2  Evaluation of activity recognition models (C, Fig. 1)

To compare the two methods of data space representation, we trained a DT to clas-
sify each second of input to one of the 16 activities, using both Baseline and Accor-
dion features for every sensor set-up. We evaluated the models using LOSO-CV and 
their performance is demonstrated in Table 4. For set-up abbreviations, see Table 2. 
As expected, Accordion outperforms the Baseline results. Compared to the Baseline, 
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Fig. 5  The probability density function per window per data set-up.  one-body location,  : two-body 
locations,  : three-body locations. (Color figure online)

Table 4  Accuracies per experiment and sensor set-up (16-class classification). (Color table online)

The a,w,c refer to GENEActiv and e to Equivital, see Table 2
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Accordion takes into account the variations of the signal by using a set of aggregate 
functions and different window sizes. As a result, the models’ accuracy increased by 
≈ 20–30%.

From the machine learning perspective, there are numerous choices for classifica-
tion algorithms. In our experiments, we compare DT (C4.5) with RF. Both DT and 
RF have been used extensively for activity recognition problems (Bao and Intille 
2004; Reiss and Stricker 2012; Patel et al. 2009; Parkka et al. 2006; Gao et al. 2014; 
Sasaki et al. 2016). When learning RF using the Accordion features, we improved 
the activity recognition models for every sensor set-up. Compared with DT using 
the same features, the accuracy increased ≈ 6–12% (Table 4). Please note that using 
RF, all sensor set-ups that combine multiple body locations achieve an accuracy 
higher than 77% , where aw and awe have the higher accuracies of 83% and 86.8% 
respectively (16-class classification).

In Fig. 6, we display a heatmap of classification precision ( % ) per set-up. In other 
words, the percentage of an activity to be True Positive over all the true inputs of 
this activity per different sensor combination (y-axes). From this figure, it is clear 
that cycling, lying down and jumping are the activities with the highest precision. 
On the other hand, the poor performing activities are standing and the several types 
of sitting and walking. For these activities, we can make two main observations. 
First, we notice that their poor performance is only observed for one body location 
set-ups. This is represented by the orange-red area in the upper left corner of the 
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precision heatmap. This pattern indicates that, by measuring multiple body loca-
tions, one can improve the precision of the low and mid-intensity activities.

As for our second observation, we see that the various paces of walking are 
underperforming regardless of the sensor set-up. This is the horizontal orange-red 
area on the bottom of the precision heatmap. To know more about these two under-
performance patterns, we have to examine the confusion between activity predic-
tion. In order to do that, we examine the confusion matrices per set-up. In detail, 
we converted the confusion matrices counts into precision and error percentages per 
activity by normalising their results. These percentual results account for activity 
classes’ imbalance. For practical reasons, in Fig. 7, we present two of the confusion 
matrices, one of the single (above) and one of the multiple body locations (below). 
The displayed confusion matrices highlight the percentage of confusion (light green 
to red) and precision (green to dark green) per class.

In most cases, adding an extra body location creates activity recognition models 
with higher class precision. In fact, when comparing single and multiple body loca-
tions, the sitting and household classes are distinguished more clearly. On the other 
hand, the various walking classes remain highly confused. In Fig.  7, one can see 
how confusion is distributed among the walking types. In fact, walkingNormal is 
confused both with walkingSlow and walkingFast. This is likely to be due to the fact 
that every individual has a different walking pace.

5.3  LARA implementation

To understand why our models do not reach the given LOSO-CV threshold accuracy 
of 90% we implemented the LARA algorithm as presented in Sect. 3.2.2. Here, we 
present an example of LARA’s first iteration procedures and rationales for the algo-
rithmic choices we did. The choices are related to the machine learning algorithm 
(RF) chosen for classification, the bottom-up merging procedure for classes of the 
same supra-class (parents) and the criteria to stop learning ( 90% threshold). Follow-
ing Algorithm 1, we analyse the model’s performance by the different activities.

As a result, when applying LARA, merging the walking classes to their parent 
class would be the first step in order for our models to achieve the given accuracy 
threshold. The improvement, in terms of accuracy, after LARA’s first iteration with 
one walking class, is displayed in Table 5 (12-class classification). For set-up abbre-
viations, see Table 2. As expected, merging the walking classes resulted in a sub-
stantial increase in accuracy for all the models ( ≈ 10% ). The sensor set-ups that 
overcame the 90% threshold accuracy with the first merging, as seen in Table 5, are 
aw ( 93.9% ), ace ( 90.2% ), wce ( 90% ) and awe ( 94.4% ). Analysing the accuracies of 
different sensor set-ups (12-class classification), it seems that there are two groups 
of results: one around 80% and another around 90% . The first group is the one with 
sensors located only at a single body location, while the second is a combination of 
multiple. As for the top performers, the two models with the highest accuracy com-
bine sensors on the ankle and wrist, aw with 93.9% accuracy or on the ankle, wrist 
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and Equivital on the chest,awe with 94.4% accuracy. The difference in performance 
between these set-ups due to K–S test3 is not significant.

Following the LARA procedure, in Fig. 8, the different merges per iteration and 
the sensor set-ups reaching the accuracy threshold are displayed. During the sec-
ond iteration, the various sitting classes are merged into one class. Here, it can be 
observed that with a 10-class classification, one class for sitting and another one for 
walking, all the sensor set-ups using more than one body location reach an accuracy 
of 90% , except for the ac, Table 5. Note that, if a set-up reached the given threshold 

Table 5  Accuracies per merging using LARA algorithm. (Color table online)

Here a,w,c refer to GENEActiv and e to Equivital, see Table 2
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Fig. 8  Activity ontology with the steps of LARA merging. : 1st Iteration, merging walking paces for 
{aw, ace, wce, awe}. : 2nd Iteration, merging different sitting for {ae, wc, we, awc, awce}. : 3rd 
Iteration, merging household chores for {a, w, e, ce, ac}. : 4th Iteration, merging lyingDownLeft and 
lyingDownRight for {c}. For set-up abbreviations, see Table 2. (Color figure online)

3 Kolmogorov–Smirnov test.
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it was not trained in the next iteration. Further on, by the third iteration, the house-
hold chores collapse to one class (8-class classification) and all set-ups except the 
chest have an accuracy of more than 90% . Finally, it is clear that a chest accelerom-
eter does not have the desired classification performance, since it does not reach the 
threshold value even when lying down classes are merged. Having in mind that the 
mid-level our Pmin stopping criterion, the LARA algorithm stops and returns that a 
chest accelerometer is not enough to reach the desired classification accuracy ( 90% ) 
for the minimum level of description.

5.4  Sensor set‑ups

Examining the merging results of LARA algorithm in Fig. 8, we can decide which 
sensor location could be the most suitable for similar studies. As examples, we con-
sider two different scenarios: the minimal sensor set-up (best body location) and the 
best performing set-up in terms of accuracy. While proposing different set-ups, we 
consider multiple perspectives such as the classification model performance and the 
comfort of the devices.

Starting with the minimal sensor location, when devices are placed only on one 
body location, ankle, wrist, Equivital (sensor strap placed on chest) and the com-
bination of chest accelerometer and Equivital, the performance of these set-ups is 
similar, in reaching the 90% threshold accuracy only after LARA’s third iteration 
(8-class classification). At this iteration, LARA suggests to merge the different kinds 
of walking, sitting and household activities. For most application needs, these levels 
of description are still quite acceptable when considering only one sensor location.

When more than one body location can be selected, adding to the ankle either 
wrist or chest (Equivital) produces very good solutions. This was already expected 
from the feature analysis done in Sect. 5.1. Considering also LARA’s first iteration, 
combining ankle and wrist creates highly accurate and robust models, with high lev-
els of description (12-class classification). In detail, the AR models combining ankle 
and wrist achieve 93.9% accuracy for aw and 94.4% for awe. However, please note 
that this difference is not significant.

On the other hand, it seems that more data from more body locations does not 
always result in better models. This can be observed in some of the AR mod-
els produced by LARA, such as set-ups with ankle, wrist and chest (awc) or even 
more clearly, ankle, wrist, chest and Equivital (awce). The model accuracies of 
awc and awce reach the 90% threshold only after LARA’s third iteration (10-class 
classification).

5.5  Demonstration

Since the AR models intended to be used in studies with unlabeled accelerometer 
data, in this section (part D, Fig. 1), we demonstrate on how our 12-class-aw model 
performs on free-living activity data. In order to do that, we will first evaluate our 
model on a free-living dataset with labelled activities (D-1, Fig. 1). Then, we will 
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discuss how the LARA algorithm could be used in order to see which level of activ-
ity granularity to use when we try to predict the free-living activities. Finally, we 
will apply our model to one of our existing studies, the GOTO intervention study 
(van de Rest et al. 2016) (D-2, Fig. 1).

5.5.1  Free‑living labelled data (part D, Fig. 1)

In order to validate our models in free-living data collections, there was a need for 
a free-living labelled data collection focused on older participants. Since there was 
no such collection freely available, we initiated our own pilot study. There are three 
main ways to perform such a data collection:

• Participants log their activities by recording times and descriptions.
• One or multiple researchers observe and label the activities performed.
• Stationary or body cameras record everyday life of participants, and later, one or 

multiple researchers label the activities with the use of the video.

For this study, we decided to perform a data collection using a combination of the 
above. We recruited two participants, one male, one female, that had demographics 
similar to the GOTO study in terms of BMI, age and health status. The participants 
had a researcher follow them during the day for at least 4 h on 2 different days, with 
one session taking place in the morning and one in the afternoon. The participants 
reported themselves their sleeping times and if they woke up during the night. Dur-
ing the day sessions, the researcher reported the activities performed using a mobile 

Fig. 9  Hours of activities reported during the free-living data collection
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app, Atracker (ATracker)4 and was allowed to take pictures or videos of the activi-
ties performed if necessary. During the data collection, only two accelerometers 
were used, one on the wrist and one on the ankle, like in the GOTO study set-up 
(van de Rest et al. 2016). Both participants signed an informed consent stating that 
their activity data could be shared with our research team to validate the developed 
AR models.

In total, 32 h of free-living data were collected, 16 h of 20 daytime activities and 
approx.  16 h of sleeping. In Fig. 9, the total hours of 17 activities is presented since 
two general activity classes were included in our set, sittingWork and standingWork. 
These classes represent multiple too short or too general activities while sitting or 
standing (for example, gardening, watering plants, etc.). Note that the existing activ-
ities from GOTOV were employed, but also several new classes were introduced to 
fit activities not included in the validation study (e.g. driving).

Having the labels and the accelerometer data, we are able to apply and evalu-
ate our GOTOV-developed AR models. Taking into account the fact that there are 
several new labels in the free-living activities that did not exist in the activity ontol-
ogy, it is not possible to measure our model’s performance with the use of accuracy 
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Fig. 10  12-class model results when plotted against the classes collected in free-living
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metrics. This is because generally, there is no one-to-one activity comparison 
between the activities that the models were trained and the free-living activities. 
Consider Fig. 10, in order to evaluate whether the predicted activities are similar to 
the real free-living ones.

In Fig.  10, we present how the free-living activities are predicted using the 
12-class aw model presented earlier. For example, we observe that 34% of the lying-
Down instances are predicted as lyingDownLeft, 38% as lyingDownRight and 25% 
as sittingCouch. These values could be thought of as a Recall since we compare 
the number of predicted true positives over the sum of predicted true positives and 
true negatives. This can be seen with classes that exist in our protocol. For example, 
sittingCouch, where 55% of its instances are predicted correctly while 39% are pre-
dicted as sittingChair.

Keeping that in mind, we can identify four blocks of confusion based on these 
values: (a) the lying down, (b) the sitting activities, (c) the activities that include 
standing and main use of hand and (d) the walkings. From these blocks, we can 
observe that activities that were not included in our hierarchy are predicted as activi-
ties that make use of the same body parts. For instance, driving is predicted mainly 
as sittingSofa ( 55% ) or sittingChair ( 37% ), while cooking 36% of the time is pre-
dicted as dishwashing and 46% as stackingShelves. Both of these make sense, since 
driving is a sedentary activity while cooking is a household activity where hands are 
used while standing.

In conclusion, we understand from this analysis that predicting free-living activi-
ties with laboratory-trained models is a challenging task. Having this in mind, we 
decided to try reducing the activity detail level by using the LARA algorithm.
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5.5.2  LARA implementation on free‑living labelled dataset

Applying the LARA algorithm to our 12-class free-living predictions requires a 
small modification. This is because in the laboratory environment, we measured 
confusion as the false discovery rate, since we could compare class on a one-to-one 
basis using precision, while now we will need to compute confusion as the false-
negative rate based on recall.

The LARA algorithm followed three iterations, one per parent activity of the 
mid-level activity description (see Fig. 2) except walking, which was already merged 
before. During the three iterations, the first activities merged were the household 
ones, while the sittings followed. In the last iteration, lyingDownLeft and lying-
DownRight were merged to lyingDown. The result of the produced 7-class model is 
demonstrated in Fig. 11.

Similar to Fig.  10, Fig.  11 represents how every true class is predicted. Here, 
we can see clearer the four groups of activities. The first is the lyingDown activ-
ities. The second is all the sitting activities, the third all the activities performed 
while standing and the last is the different types walking. The two classes the higher 
confusion rate (with several other classes) are standingWork and walking. In more 
detail, standingWork is confused with multiple classes since this activity includes 
multiple smaller ones like gardening, plant watering, desk cleaning, house mainte-
nance, etc. On the other hand, walking is mainly confused with household activities. 
This confusion mostly results from vacuumCleaning (see Fig. 10), since this activ-
ity also includes steps and not only standing and using the hands like dishwashing. 
Another interesting point is that there is a confusion between sitting and lyingDown, 
which is mainly because of sittingCouch activity (see Fig. 10). This sitting is dif-
ferent from the other ones since the feet of the subjects do not touch the ground but 
they are positioned on the couch or the coffee table. This results in a similar body 
position with lying down from the view of ankle accelerometer signal.

Taking into account these results, we are confident that when predicting in free-
living conditions with our 7-class model, we can identify and classify most of the 
activity patterns included in these 7 groups. As a result, we can conclude to an 
updated activity ontology that includes activities that were not part of the GOTOV 
protocol, based on their main confusion with one of our 7-classes. Thus, the driving 

Table 6  Activities in both 
training and free-living labelled 
data with their performance 
metrics

Precision Recall F1 Balanced 
accuracy

lyingDown 0.99 0.76 0.86 0.88
sitting 0.43 0.85 0.57 0.83
standing 0 – – –
household 0.87 0.69 0.77 0.82
walking 0.58 0.60 0.59 0.79
jumping 0 – – –
cycling 0 – – –
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and sittingWork can be added as children of sitting, the bathroom, cooking and 
standingWork as children of household and the walkingStairsDown under walking.

With such an ontology, we can have one-to-one comparison of the classes and 
present the main metrics, see Table 6. Here, we see that lyingDown is predicted with 
99% precision, household with 87% , while sitting and walking have lower perfor-
mances with 43% and 58% accordingly. In detail, as discussed, the main confusion 
of sitting is with lyingDown due to the sittingCouch class, while for walking the 
main confusion is with household. This is expected since the activities represented 
as household are consisted by standing, main move of upper limp but also short 
steps, e.g. vacuumCleaning and cooking. In Table 6, we present the 7 activities with 
their performance metrics. Have in mind, that there was no standing still, cycling 
and jumping performed during our free-living data collection.

Concluding, if we want to examine how our model performs in terms of accuracy, 
we will need to use a metric that cope with an imbalanced classification problem 
(see Fig. 9), such a metric is the Balanced Accuracy (Velez et al. 2008).

The reported average balanced accuracy of our model is 74% . From the analysis 
above, it is clear that the confusion mostly stems from activities that make use of the 
same body parts. So, the value of 74% accuracy is not that low under this consid-
eration. Adding to that, when compared with previous work of Sasaki (Sasaki et al. 
2016), where they also developed RF models trained in laboratory condition and 
tested on free-living data, they report an accuracy of 49–55% for a 5-class model, 
while our approach results in higher accuracy ( 74% ) and resolution (7-classes). 
These improved results are likely the result of our models being based on two sensor 
instead of one for Sasaki et al.

5.5.3  GOTO application (part D‑2, Fig. 1)

Since the AR models intended to be used in studies with unlabelled accelerometer 
data, we perform a short demonstration of the 7-class aw model in the unlabelled 

Balanced Accuracy = (Sensitivity + Specificity)∕2.
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free-living data of the GOTO study (part D-2, Fig. 1). The dataset used is part of 
the GOTO intervention study (van de Rest et  al. 2016) where two accelerometers 
were used to monitor 160 participants. As part of our demonstration, we selected 
one participant who used both ankle and wrist GENEActiv. In Fig. 12, we present 
the activity predictions of aw-model built on the 7-class scenario. This demonstra-
tion shows how our model, in the future, can be used to develop and aggregate par-
ticipants activity profiles.

From Fig. 12 we can see a clear pattern of active and non-active behaviour dur-
ing day and night, respectively. In detail, during the day, the two dominant activity 
classes are sitting and household activities (doing something while sitting or stand-
ing), as expected. On the other hand, there is a high percentage of sitting during 
the night, which as discussed a bit earlier could be lying down with a body position 
similar to sittingCouch. Furthermore, we can see an increase of activity levels over 
the three days, with day 1 having lower activity levels than 2 and day 3 more than 
2. Nevertheless, this variation of activity patterns should also be examined in more 
detail, something that is beyond the scope of this paper.

6  Conclusions and future work

In this paper, we present the Growing Old TOgether Validation (GOTOV) study for 
monitoring physical activity, in order to serve multiple mobility and healthy ageing 
studies in older adults. Throughout the paper, our main goals involve four main top-
ics. First, we generated a new activity recognition dataset, using wearable sensors 
in a population of individuals over 60 years old. This dataset boasts a hierarchy of 
activity classes, contains both indoor and outdoor activities and is now made pub-
licly available. Second, we developed LARA, a method to learn robust and accu-
rate AR models. Third, we delivered a sensor set-up analysis focusing on which 
body locations or combinations are the most efficient to monitor and predict physi-
cal activity. Fourth, we provide an AR model that can be used in free-living data 
in order to recognise general physical activity patterns that can be associated with 
physiological health parameters. Working towards these goals, our conclusions are 
presented in the following paragraphs.

The GOTOV dataset is special for a number of reasons. To begin with, it is the 
first publicly available dataset that focuses on older individuals (aged over 60). The 
focus until now has been mostly on a younger population (mid-twenties), which is 
known to faster adopt wearable technology. Additionally, it is a reasonably large 
data collection, with 35 participants performing 16 everyday-life activities while 
wearing multiple devices on three different body locations, both accelerometers and 
physiological sensors.

Furthermore, the data collection protocol has been designed and executed to 
mimic free-living challenges, being collected both indoors and outdoors. The dif-
ferent activity classes allow several levels of activity detail, which follow a specific 
activity ontology. Hence, the dataset allows creating different AR models, depend-
ing on the desired level of activity detail and the available sensor set-up on focused.
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Here, we would like also to discuss some limitations of our data collection and as 
a result our modelling. First, we should note that the market of wearables has devel-
oped impressively in the last years. This implies that there could be smarter systems 
to measure physical activities when compared to our sensors. Second, during the 
data collection some activity classes were performed for longer and some other for 
shorter periods of time (see Table 1 for details) which resulted in a somewhat unbal-
anced dataset. Adding to that, it would be better in the future to perform the same 
activities more than once per participants and possibly without following a specific 
order, in order to capture more signal variation from every activity. Third, after our 
demonstration, we realise that from one side it is not feasible to include all of the 
free-living activities in a training set, but on the other side having an ontology where 
the description can be adjusted could be really useful in order to capture the more 
general activities, as presented with the 7-class model analysis. However, it is rea-
sonable that the use of free-living data for training would be ideal, but such data are 
really challenging to collect.

Nevertheless, our data collection includes a wide range of activities with differ-
ent granularity and of sufficient size. As a result, the GOTOV dataset as well as the 
developed AR models can be related to sensor data from more than 500 participants 
( ≈ 3 Tb), which can be combined with high-value health data from the Leiden Bio-
medical Ageing Studies (see “Appendix 2”).

In detail, about the AR models, our main goal was to be robust with high accu-
racy. Using the LOSO-CV evaluation technique, we designed a wrapper algorithm 
that reduces the number of classes belonging to the same supra-class, until an accu-
racy threshold is achieved. We combined this method with automated feature con-
struction and selection and a well-known learning algorithm of ensemble models. 
As a result, for each subset of sensors (set-up), we output a robust Random For-
est model with different capacity of activity recognition. Here, we should point out 
that an algorithm like LARA, that merges classes to improve accuracy levels, even 
though we use it for such a purpose, reduces the classification power. On the other 
hand, it is a useful tool for comparing the activity granularity a given set-up requires 
to achieve a specific accuracy. The choice for Random Forests was made in order to 
be able to investigate the contribution of body location and different devices for AR. 
Still, we would like to stress that our pipeline is independent of the classification 
algorithm used. Concluding, the combination of Accordion, RF and LARA using an 
activity ontology is a valuable pipeline for activity recognition research.

Having multiple sensor locations, we were able to indicate which is the optimal 
sensor set-up for activity recognition. From all the models built, our best AR mod-
els are a combination of merging the three paces of walking (12-class classifica-
tion) and the use of ankle, wrist accelerometers and Equivital. This model achieves 
an accuracy of 94.4% , while it contains a considerably high level of activity detail. 
Nevertheless, leaving out the Equivital, the combination of ankle wrist does not 
have a much lower accuracy ( 93.9%).

Comparing the minimal set-ups (so one device only), for an 8-class classifica-
tion problem, we see that ankle, wrist and Equivital (accelerometer and physiologi-
cal measurements) have similar accuracies. Nevertheless, considering the market 
availability and comfort, it the wrist accelerometer (see Table 5, 8-class, with 90.2% 
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accuracy) seems to be the most recommendable minimal set-up. The wrist is a 
practical solution in terms of body location, with multiple market solutions (smart 
watches) being available.

6.1  Future work

Now that we have shown that the aw AR model is able to quite accurately recognise 
activities in 7 classes in free-living data, we will proceed applying this model to 
Leiden biomedical datasets (see “Appendix 1”). These datasets have been collected 
to study the association of frequency, duration and intensity of activities, with health 
parameters in older people. We aim to develop general physical activity patterns and 
associate them with physiological parameters of health like blood pressure, lipid and 
glucose levels. Furthermore, since it is clear that training on free-living data could 
improve the accuracy, this motivates us to consider a full-scale labelled free-living 
data collection.

Except for the activity recognition part, we would like to observe the activity pat-
terns per person and predict the energy expenditure of these. To further investigate 
that and to what extent the activity intensity levels are metabolically effective, in 
the GOTOV data collection, already the energy expenditure (using the COSMED 
device) has been included. In this manner, we will attempt to estimate the intensities 
of activities performed by each person in our Leiden biomedical studies, predict the 
energy expenditure and correlate them with the collected health parameters.

In the long run, in the Leiden biomedical studies, our goal would be to observe 
among older adults which range and intensity of physical activities improve param-
eters of metabolic health, general health and well-being. These relations, then, 
can be turned into distinct recommendations for effectively maintaining mobility 
among older adults and a continuous monitoring system to track the adherence and 
improvement of metabolic health.
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Appendix 1: Table of abbreviations across the paper

See Table 7.

Table 7  Abbreviations across 
the paper in alphabetical order Abbreviations

a GENEActiv ankle
A8 Activ8
AR Activity recognition
BMI Body Mass Index
BR Breath rate
BRc Breath rate confidence
BW Breath wave
c GENEActiv chest
DT Decision tree
e Equivital
ECG Electrocardiogram
GOTO Growing old together study
GOTOV Growing old together validation study
HR Heart rate
HRc Heart rate confidence
IBI Inter beat interval
ICG Intra-group confusion
K-S Kolmogorov–Smirnov test
K4 COSMED K4b2

LARA Learning activity recognition accurately
Lat Equivital lateral acceleration
Lon Equivital longitudinal acceleration
LOSO-CV Leave one subject out cross-validation
MET Metabolic equivalent of task
PDF Probability density function
RF Random Forest
Temp Skin temperature
Ver Equivital vertical acceleration
w GENEActiv wrist

http://creativecommons.org/licenses/by/4.0/
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Appendix 2: Further data: Leiden biomedical ageing studies

All Leiden Biomedical Ageing Studies were approved by the Medical Ethical 
Committee of the Leiden University Medical Centre and was performed accord-
ing to the Helsinki declaration. All participants gave written informed consent for 
participation.

Leiden Longevity Study

The Leiden Longevity Study (LLS) (Westendorp et al. 2009) was initiated to iden-
tify the genetic and environmental determinants of human longevity and healthy 
ageing. The LLS participants have been recruited between 2003 and 2006 and 
the complete study consists of 421 long-lived families including 944 siblings of 
90 years and older, their middle-aged offspring ( N = 1674 , mean age = 60 years) as 
a group of predisposed to become long-lived and age healthily, and spouses/partners 
( N = 744 , mean age 60  years) of their offspring as representatives of the general 
population. We found that middle-aged members of long-lived families have a lower 
prevalence of hypertension, cardiovascular disease and type 2 diabetes as compared 
to the controls. In addition, we found that members of long-lived families are less 
likely to be a carrier of the genetic APOE� 4 allele and more likely to be a carrier of 
the genetic APOE� 2 allele (Deelen 2014).

All participants of the LLS have been followed for their vital status, and in 2017 
we obtained data on present and developed morbidities of the offspring and control 
generation, as well as their medication use. In these members of long-lived families 
and the controls, we have collected 1 week of free-living wearable data (GENEAc-
tiv), which we would like to annotate the frequency and intensity of different activi-
ties and relate that to health parameters such as clinical blood values, anthropomet-
rics, blood pressure, blood metabolite and gene expression levels, and brain MRI 
images that in the past have been collected in the same participants.

Growing Old TOgether study

The Growing Old TOgether (GOTO) study (van de Rest et  al. 2016) is a cohort 
of LLS where we applied in older people a 13-weeks lifestyle program, with a tar-
get of 12.5% caloric restriction and 12.5% increase in energy expenditure through an 
increase in physical activity. For people in their 40s and 50s, lifestyle programs have 
been shown to improve metabolic health. For older adults, however, it is not clear 
whether these programs are equally healthy. For the GOTO study, we recruited, in 
2012, participants from the LLS, i.e. couples of members of long-lived families and 
their current partners (controls). In total, 164 older adults (mean age = 63.2 years; 
BMI= 23–35  kg/m2 ) participated. The mean weight loss of baseline weight was 
4.2% (SE = 2.8% ), while many other parameters of metabolic health, such as blood 
pressure, and thyroid, glucose and lipid metabolism improved significantly. Many 
metabolites levels changed in a direction previously associated with a low risk of 



601

1 3

Activity recognition using wearable sensors for tracking…

type 2 diabetes and cardiovascular disease and partially independently of weight 
loss. In the GOTO study, we collected wearable sensor data (GENEActiv) 1 week 
before the start of the intervention and the 13th week of the intervention. We would 
like to annotate the available wearable sensor data to frequency and intensity of 
different activities and relate that to (the change in) health parameters, for exam-
ple clinical blood values, anthropometrics, blood pressure, blood metabolite and 
gene expression levels, and brain MRI images that have been collected in the same 
participants.

Active and Healthy Ageing study

In 2011, in the Active and Healthy Ageing (AGO) study (Wijsman et al. 2013), we 
applied in older people a 12-weeks web-based physical activity program (DirectLife, 
Philips, Consumer Lifestyle, Amsterdam) directed at increasing daily physical activ-
ity. The DirectLife program consists of three elements: (1) an accelerometer-based 
activity monitor, (2) a personal website and (3) a personal e-coach, who provides 
regular updates of the individual’s physical activity status by email and gives advice 
to increase physical activities. In total, 235 older adults (mean age 64.8 years) par-
ticipated in the AGO study. Body composition (mean weight loss was 1.5 kg) and 
measures of glucose metabolism improved. In the AGO study, we collected weara-
ble sensor data (GENEActiv) 1 week before the start of the intervention and the 12th 
week of the intervention. We would like to annotate the available wearable sensor 
data to frequency and intensity of different activities and relate that to (the change 
in) health parameters, for example clinical blood values, anthropometrics, blood 
pressure and blood metabolite that have been collected in the same participants.

Switchbox study

The Switchbox study (Jansen 2015) has been initiated to study endocrine and met-
abolic regulation in relation to health in old age and participants were recruited 
from the LLS. Between January 2012 and April 2013, 135 members of long-lived 
families and controls from the LLS were recruited and selected based on previous 
obtained information and were middle-aged (55–77 year) with a body mass index 
(BMI) between 19 and 33 kg/m2 to participate.

In the Switchbox study, we collected wearable sensor data (GENEActiv and 
Equivital belt) during 1 week. We would like to annotate the available wearable sen-
sor data to frequency and intensity of different activities and relate that to health 
parameters, for example clinical blood values, anthropometrics, continuous physio-
logical measurements, blood pressure and blood metabolite that have been collected 
in the same participants.
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