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The suprachiasmatic nucleus (SCN) of the anterior 
hypothalamus is the master circadian pacemaker in 
mammals. Although individual SCN neurons can 
function as cell-autonomous circadian pacemakers, 
the SCN neural network is essential for the genera-
tion of precise circadian output. SCN neurons are 
GABAergic, and recently it has been shown that a 
subset of intrinsically photosensitive retinal ganglion 
cells release GABA in the SCN (Sonoda et al., 2020). 
Within the SCN, GABA transmission regulates the 

clock’s response to light input as well as the strength 
of coupling between individual neurons (Moldavan 
et  al., 2006; Gillespie et  al., 1996, 1997; Liu and 
Reppert, 2000; Albus et  al., 2005; Evans et  al., 2013; 
Freeman et  al., 2013; DeWoskin et  al., 2015). While 
GABA is traditionally thought of as an inhibitory 
neurotransmitter, GABA transmission is excitatory 
during brain development (but see Valeeva et  al., 
2016) and in certain pathological states (Gamba, 2005; 
Blaesse et al., 2009; Ben-Ari et al., 2012). Furthermore, 
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Abstract Both inhibitory and excitatory GABA transmission exist in the mature 
suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. 
Whether GABA is inhibitory or excitatory depends on the intracellular chloride 
concentration ([Cl−]i). Here, using the genetically encoded ratiometric probe 
Cl-Sensor, we investigated [Cl−]i in AVP and VIP-expressing SCN neurons for 
several days in culture. The chloride ratio (RCl) demonstrated circadian rhythmic-
ity in AVP + neurons and VIP + neurons, but was not detected in GFAP + astro-
cytes. RCl peaked between ZT 7 and ZT 8 in both AVP + and VIP + neurons. RCl 
rhythmicity was not dependent on the activity of several transmembrane chlo-
ride carriers, action potential generation, or the L-type voltage-gated calcium 
channels, but was sensitive to GABA antagonists. We conclude that [Cl−]i is 
under circadian regulation in both AVP + and VIP + neurons.

Keywords GABA, suprachiasmatic nucleus, chloride, vasopressin, vasoactive intestinal 
peptide
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excitatory GABA transmission has been observed in 
several regions of the adult brain, including the SCN 
(Wagner et al., 1997, 2001; De Jeu and Pennartz, 2002; 
Albus et al., 2005; Choi et al., 2008; Irwin and Allen, 
2009; Freeman et  al., 2013; Alamilla et  al., 2014; 
Farajnia et  al., 2014; Fan et  al., 2015; Myung et  al., 
2015). Although there is evidence to support a func-
tional role for excitatory GABA transmission in 
encoding photoperiod (Rohr et  al., 2019; Farajnia 
et al., 2014; Evans et al., 2013), the physiological role 
of excitatory GABA signaling in the SCN remains 
unclear.

Due to the GABAA receptor’s permeability to Cl− 
and HCO3

− ions, whether GABA is depolarizing or 
hyperpolarizing depends, in part, on the intracel-
lular chloride concentration ([Cl−]i). [Cl−]i is deter-
mined by the concerted activity of a family of 
cation chloride cotransporters (CCCs). Generally, 
the sodium-potassium-chloride cotransporter 1 
(NKCC1), transports Cl− ions into neurons, while 
the potassium-chloride cotransporters (KCC) 
transport Cl− out of neurons (Blaesse et al., 2009). 
Interestingly, immunohistochemistry has shown 
differential expression of chloride transporters 
throughout the SCN (Belenky et al., 2010), suggest-
ing that [Cl−]i, and therefore the GABAergic rever-
sal potential, may vary regionally within the SCN 
(Klett and Allen, 2017). Over the last decade, sev-
eral groups have verified the importance of the 
CCCs in regulating [Cl−]i in the SCN (Choi et  al., 
2008; Irwin and Allen, 2009; Alamilla et  al., 2014; 
Farajnia et  al., 2014; Klett and Allen, 2017; Olde 
Engberink et al., 2018).

In this report, we performed epifluorescent imag-
ing of organotypic slice cultures to assess the circa-
dian regulation of [Cl−]i in the SCN over the course of 
several days. To monitor [Cl−]i, we made use of the 
ratiometric chloride indicator, Cl-Sensor. Cl-Sensor 
is a fluorescent reporter composed of a Cl-sensitive 
YFP moiety linked to a Cl-insensitive CFP moiety 
(Batti et al., 2013; Markova et al., 2008). Obtaining the 
ratio of these two fluorescent signals (RCl) allows one 
to estimate [Cl−]i in the physiological range. 
Compared to electrophysiological techniques, imag-
ing offers the advantage of monitoring [Cl−]i from 
multiple cells simultaneously without disrupting the 
native cellular milieu. Using Cre-lox recombination 
techniques, we targeted Cl-Sensor to arginine vaso-
pressin (AVP) or vasoactive intestinal peptide (VIP) 
expressing SCN neurons, as well as glial fibrillary 
acidic protein (GFAP) expressing astrocytes. Using 
these mice, we observed a circadian rhythm in both 
AVP + and VIP + SCN neurons that was not present 
in GFAP + astrocytes. Further, the RCl rhythm of 
AVP + neurons was found to be sensitive to GABA 
antagonists.

MateRIalS aNd MethOdS

animal Strains and housing

Cl− imaging experiments were performed with 
C57BL/6 mice in which a floxed Cl-Sensor allele was 
inserted into the Rosa26 locus (Batti et al., 2013). We 
crossed these mice with either AVP-IRES-Cre (Harris 
et  al., 2014), VIP-IRES-Cre (Taniguchi et  al., 2011; 
Harris et al., 2014), or GFAP-Cre mice (B6. Cg-Tg(Gfap-
cre)73.12Mvs/J; Jackson Laboratory) to yield AVP::Cl-
Sensor, VIP::Cl-Sensor, or GFAP::Cl-Sensor mice. Tail 
snips were sent to an external facility for genotyping 
(Transnetyx, Inc). Mice were heterozygous for both 
the Cl-Sensor and Cre transgenes. Brain slices were 
prepared from adult male and female mice between 2 
and 6 months old.

Mice were housed in an environmental chamber 
(Percival Scientific, Perry, IA) maintained at 20ºC 
-21ºC on a 12:12 h light:dark cycle, with free access to 
food and water. Data are plotted in relation to the 
time of lights on (zeitgeber time or ZT, lights on = ZT 
0). All procedures were approved in advance by the 
Animal Care and Use Committees of Oregon Health 
and Science University.

long term Imaging of Cl-Sensor

Using sterile techniques, brains were quickly 
removed and submerged in chilled Hanks’ buffered 
salt solution (HBSS). Cultures were prepared as 
described previously (Moldavan et al., 2017; Hablitz 
et al., 2020). Briefly, the brain was blocked and 150 µm 
coronal slices were prepared with a vibratome (Leica 
VT 1000 S, Leica Biosystems GmbH, Nussloch, 
Germany). SCN slices were trimmed to remove sur-
rounding hypothalamic tissue, and positioned unto 
Millipore Millicell cell culture inserts (Sigma-Aldrich, 
St. Louis, MO). Inserts were placed in 35 mm culture 
dishes containing 1.2 mL culture medium and sealed 
with vacuum grease. Culture medium consisted of 
DMEM (Sigma-Aldrich, St. Louis, MO Cat# D 2902) 
supplemented with B27 (Life Technologies, 
ThermoFisher Scientific), 20 mM glucose, 10 mM 
HEPES, 4.2 mM NaHCO3, 25 µg/mL penicillin, and 25 
µg/mL streptomycin. pH was adjusted to 7.2 with 
NaOH. Dishes were sealed with vacuum grease, incu-
bated for a period of 2 to 6 h and subsequently placed 
in a 37°C temperature-controlled chamber positioned 
on the stage of an inverted fluorescent microscope 
(ECLIPSE TE2000-U, Nikon, Tokyo, Japan). Excitation 
light was supplied by a xenon arc lamp, and excita-
tion wavelength was controlled by a filter wheel 
(Lambda 10-3, Sutter Instrument, Novato, CA). 
Excitation of YFP at 500/20 nm preceded excitation of 
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CFP at 436/20 nm to promote Cl-Sensor photostability 
(Friedel et al., 2013). Excitation duration was between 
500 and 1000 milliseconds. Images were acquired at 
10X (NA 0.30) every 5 or 10 min with a CFP/YFP filter 
set (Chroma, 51017, Bellow Falls, VT), a beamsplitter 
(Dual-View, Photometrics, Tucson, AZ) and an Evolve 
EMCCD camera (Photometrics, Tucson, AZ). 
Equipment control and image processing were per-
formed with Metafluor software (Molecular Devices, 
Sunnyvale, CA). Regions of interest (ROI) were 
defined around groups of fluorescent neurons or sin-
gle neurons on each side of the SCN, and a dim region 
of the field of view was selected as background. 
Background values were subtracted from ROI inten-
sity values for each frame.

Immunohistochemistry

Mice were anesthetized with isoflurane and trans-
cardially perfused with 1X phosphate buffered saline 
(PBS, pH 7.4), followed by 4% paraformaldehyde 
(PFA) in PBS. After perfusion, the brain was left to 
incubate in PFA for 18 h at 4°C. Subsequently, the 
brain was cryoprotected with overnight incubation in 
10% sucrose in PBS (first night) and 30% sucrose in 
PBS (second night). In preparation for sectioning, 
brain blocks were embedded in Shandon Cryochrome 
Embedding Medium (Thermo Fisher Scientific Inc.) 
and fast-frozen with a mixture of dry ice and 96% 
ethanol for 3-5 min. Coronal (20 μm thick) sections 
were cut with a Leica cryostat (CM1950, Leica 
Microsystems, Inc.), thaw-mounted onto pre-cleaned 
SuperFrost Plus glass slides, and dried at 37°C. Dry 
SCN-containing sections were then rehydrated in 0.1 
M phosphate buffer (PB). To reduce background 
autofluorescence, the sections were incubated in an 
aldehyde-reducing agent (1% NaBH4 in 0.1 M PB) for 
30 min and rinsed with multiple changes of 0.1 M PB. 
The tissue was then permeabilized with 0.3% Triton 
X-100 in TBS and non-specific binding was blocked 
by incubation in 5% normal donkey serum for 1 h at 
room temperature. For GFAP staining, the primary 
antibody was mouse anti–GFAP (1:1000, Millipore 
Bioscience Research Reagents MAB 3402, RRID: 
AB_94844). The secondary antibody was donkey 
anti-mouse Dy-Light 594 (1:1000, Jackson 
ImmunoResearch #715-585-151, RRID: AB_2340855). 
The images were acquired using a Zeiss 780 confocal 
laser scanning microscope and processed with 
ImageJ.

drugs

Tetrodotoxin (TTX) was acquired from Affix 
Scientific (Fremont, CA) and stored in water at 2 mM. 

Bumetanide, VU0240551, picrotoxin, nimodipine, 
and GABAzine (SR 95531 hydrobromide) were 
acquired from Tocris Bioscience (Bristol, United 
Kingdom). Bumetanide and picrotoxin were dis-
solved and stored in DMSO at 100 mM. VU0240551 
was dissolved in DMSO at 20 mM. GABAzine stock 
was dissolved in water at 2 mM. The anion exchange 
blocker 4,4’-diisothiocyano-2,2’-stilbenedisulfonic 
acid (DIDS) was acquired from Sigma-Aldrich (St. 
Louis, MO) and stored in DMSO at 100 mM before 
use. Strychnine hydrochloride, diazepam, zolpidem, 
and 5-Nitro-2-(3-phenylpropylamino)benzoic acid 
(NPPB) were purchased from Sigma-Aldrich (St. 
Louis, MO).

Statistics and analysis

The ROI time-series data were uploaded into the 
Lumicycle Analysis Program (Actimetrics, Wilmette, 
IL). The data beginning at the first nadir and continu-
ing for three full cycles were detrended using the pro-
gram’s 24 h rolling average baseline subtraction 
function. For Lomb-Scargle periodogram analysis, the 
detrended data were then loaded into the Lomb  
package (https://CRAN.R-project.org/package=lomb)  
running in R studio (Version 1.2.5033) (Ruf, 1999). 
Experiments in which the highest value of normalized 
peak power fell outside of the circadian range of 18 to 
30 h were considered arrhythmic, and were excluded 
from subsequent analysis of period, phase, and power. 
Graphpad Prism (Version 8.4.2) was used for plotting 
and statistical analysis. Drugs were tested in AVP::Cl-
Sensor SCN slices, and drug effects were compared to 
AVP + control experiments using an one-way 
ANOVA, while VIP + control experiments were com-
pared to AVP + control experiments using the 
unpaired Student’s t-test. Data are presented as the 
mean ± standard error.

ReSultS

To examine whether [Cl−]i may be under circadian 
regulation, we performed long-term chloride imag-
ing of SCN slice cultures. To drive Cl-Sensor expres-
sion, we used a Cre-inducible mouse line, with a 
floxed Cl-Sensor allele inserted into the Rosa26 locus 
(Batti et al., 2013). In order to obtain Cl-Sensor expres-
sion in the SCN, we crossed these mice with either 
AVP-IRES-Cre or VIP-IRES-Cre mice to give Cl-Sensor 
expression in either AVP + or VIP +  SCN neurons 
(Taniguchi et al., 2011; Harris et al., 2014). The resul-
tant AVP::Cl-Sensor mice displayed Cl-Sensor expres-
sion in the dorsomedial SCN, while the VIP:: 
Cl-Sensor mice displayed Cl-Sensor expression in the 

https://CRAN.R-project.org/package=lomb
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ventrolateral SCN, as expected for AVP and VIP 
expression (Figure 1a and 1e, van den Pol, 1986). 
Regions of interest were defined around clusters of 
neurons in the SCN slice. To obtain the chloride ratio 
(RCl), we plotted the fluorescence emission from CFP 
excitation at 436 nm over the emission from exciting 

YFPCl at 500 nm, so that an increase in RCl indicates an 
increase in [Cl−]i. Interestingly, we observed a circa-
dian rhythm of RCl in AVP + neurons (8 out of 9 slices) 
that persisted for several days (Figure 1b). In order to 
extract circadian parameters from the data, it was 
necessary to detrend the traces (Figure 1c). RCl was 

Figure 1. long-term imaging of RCl from SCN explants. Fluorescent images of cultured SCN explants from an aVP::Cl-Sensor (a) or 
VIP::Cl-Sensor mouse (e). Regions of interest were defined around large groups of neurons in the left and right SCN. Raw values of RCl 
from the left (black trace) and right (blue trace) SCN of an aVP::Cl-Sensor (b) or VIP::Cl-Sensor mice (f). the periods of darkness dur-
ing the animal’s prior light/dark cycle are indicated with shading. RCl data from an aVP::Cl-Sensor mouse (c) or VIP::Cl-Sensor mouse 
(g) following detrending. each trace represents a measure of RCl from a cluster of neurons in the left or right SCN. [Cl−]i is high during 
the day and peaks at approximately Zt 8. Rhythmicity could also be detected at the level of single cells in both aVP + (d) and VIP + (h) 
neurons. abbreviations: RCl = chloride ratio; SCN = suprachiasmatic nucleus; aVP = arginine vasopressin; VIP = vasoactive intestinal 
peptide; Zt = zeitgeber time.
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found to peak during midday, at approximately ZT 8 
(ZT 7.9 ± 0.5 h, n = 8 slices), indicating that [Cl−]i is 
high during the day, and low during the night. 
Following Lomb-Scargle periodogram analysis, we 
found that the RCl rhythm had a mean period of 
23.8 ± 0.3 h and an average normalized peak power 
of 184.9 ± 7.3 (n = 8). Using VIP::Cl-Sensor mice, we 
observed that RCl also oscillated in VIP + neurons (8 
out of 11 slices, Figure 1f and 1 g). In VIP + neurons, 
RCl was found to peak around ZT 7 (ZT 7.1 ± 0.5 h) 
and had an average period of 23.2 ± 0.6 h (n = 8 slices). 
The time of peak was not significantly different 
between AVP + and VIP + neurons, but the ampli-
tude of the first peak was found to be larger in 
AVP + neurons compared to VIP + neurons (Student’s 
t-test, p = 0.03, Figure 6b). Periodogram analysis 
revealed that the average normalized peak power 
was smaller in VIP + neurons (125.4 ± 19.3; Student’s 
t-test, p = 0.0121, Figure 6d), indicating that the 
rhythm was weaker in VIP + neurons compared to 
AVP + neurons. Rhythmicity could be detected 
within single cells for both AVP + (Figure 1d) and 
VIP + neurons (Figure 1 h). These results indicate that 
[Cl−]i peaks during the day in both AVP + and 
VIP + SCN neurons.

We next asked whether the observed rhythmicity 
of RCl was specific to neurons, or could also be 
observed in SCN astrocytes. To obtain Cl-Sensor 
expression in astrocytes, we made use of a transgenic 
mouse line in which Cre expression is driven by the 
GFAP promoter. Crossing these mice with the floxed 
Cl-Sensor mice yielded GFAP::Cl-Sensor mice. 
Immunohistochemical analysis of these mice con-
firmed that Cl-Sensor is expressed in GFAP + astro-
cytes in the SCN (Figure 2a). From these GFAP:: 
Cl-Sensor mice, we again prepared organotypic slice 
cultures of the SCN and defined a region of interest 
around the entire left SCN, but observed no rhyth-
micity in RCl (n = 5; Figure 2b), indicating that RCl 
rhythmicity is specific to SCN neurons.

We next tested whether the observed cycling of RCl 
may be due to CCC regulation of the intracellular 
chloride concentration. Indeed, previous studies 
have implicated these transporters in [Cl−]i regulation 
in SCN neurons (Choi et al., 2008; Irwin and Allen, 
2009; Belenky et al., 2010; Farajnia et al., 2014; Klett 
and Allen, 2017; Alamilla et al., 2014; Rohr et al., 2019; 
Myung et  al., 2015; McNeill et  al., 2018; Olde 
Engberink et al., 2018). To test for the activity of CCCs 
in driving the rhythm in RCl, we cultured SCN slices 
from AVP::Cl-Sensor mice in the presence of antago-
nists to the CCCs. We used a high concentration of 
the non-selective CCC inhibitor bumetanide (100 
µM), as well as 20 µM of VU0240551, which selec-
tively targets the KCC family of chloride transporters 
(Delpire et al., 2009). However, we observed that RCl 

cycling persisted in the presence of these drugs, indi-
cating that the CCCs do not drive the rhythmicity in 
RCl (average period = 23.4 ± 0.3 h; average normalized 
peak power = 189.1 ± 15.9; n = 3 slices; Figure 3a). 
Neuronal [Cl−]i is also regulated by the anion exchang-
ers (Farrant and Kaila, 2007). To test if anion exchang-
ers underly the rhythm in RCl, we cultured SCN slices 
from an AVP::Cl-Sensor mice in the presence of the 
anion exchange inhibitor DIDS. However, RCl rhyth-
micity was not perturbed in the presence of 100 µM 
DIDS (average period = 23.8 ± 0.4 h; average normal-
ized peak power = 203.5 ± 14.3; n = 3 slices; Figure 3b). 
Recently, the expression of the calcium-activated 
chloride channel (CaCC) anoctamin-1 has been dem-
onstrated in the SCN (Aguilar-Roblero et al., 2018). To 
investigate whether anoctamin-1 drives the rhythm 
in RCl, we targeted the CaCCs with the blocker 5-nitro-
2-(3-phenylpropylamino) benzoic acid (NPPB) (Jeon 
et al., 2013; Huang et al., 2012; Berg et al., 2012). RCl 
rhythmicity persisted when SCN slices were cultured 
in the presence of NPPB (average period = 23.5 ± 0.2 
h; average normalized peak power = 187.0 ± 8.2; n = 3; 
Figure 3c), indicating that anoctamin-1 does not con-
tribute to the cycling of [Cl−]i in SCN neurons.

SCN neurons display a circadian rhythm in action 
potential firing frequency with a peak in the middle 
of the day (Inouye and Kawamura, 1979; Green and 
Gillette, 1982). Therefore, we next tested whether the 
observed rhythmicity in RCl may be dependent on 
action potential discharge—indeed, both RCl and 
SCN firing frequency share a similar phase, peaking 
around mid-day. However, when culturing SCN 
slices from AVP::Cl-Sensor mice in 2 µM tetrodotoxin 
(TTX) to block voltage-dependent Na + channels and 
action potential generation, RCl rhythmicity persisted 
(average period = 23.3 ± 0.2 h; average normalized 
peak power = 181.0 ± 12.9; n = 4 slices; Figure 4a). 
Therefore, RCl rhythmicity is not dependent on action 
potential generation. Although insensitive to TTX, it 
remained possible that RCl rhythmicity reflected the 
cycling of other voltage-dependent currents. In the 
SCN, a nimodopine-sensitive fast-oscillating calcium 
current has been identified in the presence of TTX 
(Jiang et al., 1997; Pennartz et al., 2002). To determine 
whether this Ca2 + current could regulate the RCl 
rhythm, we applied nimodipine (5 µM) together with 
TTX. However, rhythmicity persisted in the presence 
of nimodipine (average period = 23.0 ± 0.3 h; average 
normalized peak power = 182.4 ± 20.0; n = 3 slices; 
Figure 4b). Together, these results indicate that RCl 
rhythmicity is independent of SCN excitability.

Activation of GABAA receptors produces localized 
increases of [Cl−]i that can alter the Cl− equilibrium 
potential (Kuner and Augustine, 2000; Jedlicka et al., 
2011). In the SCN, GABA activates synaptic GABAA 
receptors and is known to act at highly sensitive and 
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slowly desensitizing extrasynaptic GABAA receptors 
to produce a tonic GABA current (Moldavan et  al., 
2017; Moldavan et al., 2021; Brickley and Mody, 2012). 
To test if GABA transmission contributes to RCl oscil-
lations, we cultured AVP::Cl-Sensor SCN slices in the 
presence of the GABAA receptor antagonists 
GABAzine and picrotoxin. RCl rhythmicity was 
detected in 7 of 8 GABAzine-treated slices and 4 of 7 

picrotoxin-treated slices (Figure 5a and 5b). After 
excluding the non-rhythmic GABAzine and picro-
toxin experiments, the remaining rhythmic trials 
demonstrated reduced normalized peak power in the 
Lomb-Scargle periodogram (GABAzine average: 
125.5 ± 20.2, n = 7; picrotoxin average: 110.7 ± 10.8, 
n = 4) compared to control (184.9 ± 7.3, n = 8, ANOVA: 
p < 0.0001, multiple comparisons: p = 0.0053 for 

Figure 2. RCl does not cycle in gFaP + SCN astrocytes. (a) Confocal micrograph of the SCN from a gFaP::Cl-Sensor mouse. Native 
Cl-Sensor YFP fluorescence (left), gFaP immunostaining (center), and composite image (right). top row: 20X; bottom row 40X. the 
scale bar indicates 50 μm in all images. (b) long-term imaging of RCl from a gFaP::Cl-Sensor mouse. abbreviations: RCl = chloride ratio; 
gFaP = glial fibrillary acidic protein; SCN = suprachiasmatic nucleus; YFP = Yellow Fluorescent Protein; OC = Optic chiasm.
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GABAzine and p = 0.0029 for picrotoxin, Figure 6d), 
indicating a reduction in rhythm strength (Figure 5b 
and 5d). Importantly, these results suggest that 
GABAA receptor signaling contributes to RCl rhyth-
micity. Because GABAA receptors are permeable to 
Cl− ions, RCl rhythmicity may be a direct effect of Cl− 
flux through GABAA receptors. Since Gabazine and 
picrotoxin were able to disrupt RCl rhythmicity, we 

next asked if benzodiazepines are able to increase the 
rhythm’s strength. Benzodiazepines are positive allo-
steric modulators of the GABAA receptor, so diaze-
pam and zolpidem might be expected to increase 
rhythm strength or RCl amplitude by increasing Cl− 
flux through GABAA receptors. However, when cul-
tured in the presence of diazepam (5 µM) or zolpidem 
(10 µM), we found no effect of these drugs on either 
the amplitude of RCl itself or the rhythm strength 
(diazepam: average period = 24.4 ± 0.2 h; average nor-
malized peak power = 218.2 ± 2.7; n = 3 slices; Figure 
5e and 5f, zolpidem: average period = 24.6 ± 0.5 h; 
average normalized peak power: 217.6 ± 6.4; n = 3 
slices; data not shown).

Like GABA receptors, glycine receptors allow for 
Cl− flux through cell membranes. Indeed, glycine 
receptors have been described in the SCN (Ito et al., 
1991; Prosser et  al., 2008; Shinohara et  al., 1998; 
Mordel et al., 2011). To test if glycine receptors con-
tribute to RCl rhythmicity, we cultured SCN slices 
from AVP::Cl-Sensor mice in the presence of the gly-
cine receptor antagonist strychnine. Strychnine did 
not prevent RCl from cycling or affect the strength of 
RCl rhythmicity (average period = 26.1 ± 1.1 h; aver-
age normalized peak power = 167.6 ± 11.5; n = 3; 
Figure 5 g and 5 h).

Figure 3. RCl rhythmicity persisted in the presence of antago-
nists to likely [Cl−]i regulators. long-term imaging of RCl from 
an aVP::Cl-Sensor mouse cultured in the presence of either 100 
µM of the non-selective CCC blocker bumetanide and 20 µM of 
the KCC antagonist Vu0240551 (a), 100 µM of the anion exchange 
inhibitor dIdS (b), or 20 µM of the Cl− channel blocker NPPB (c). 
abbreviations: RCl = chloride ratio; aVP = arginine vasopressin; 
CCC = cation chloride cotransporter; KCC = potassium-chloride 
cotransporters; dIdS = 4,4’-diisothiocyano-2,2’-stilbenedisul-
fonic acid; NPPB = 5-Nitro-2-(3-phenylpropylamino)benzoic 
acid; Zt = zeitgeber time.

Figure 4. RCl rhythmicity is independent of action potential fir-
ing and calcium current activity. long-term imaging of RCl from 
an aVP::Cl-Sensor mouse cultured in the presence of either 2 µM 
ttX (a) or 2 µM ttX with 5 µM nimodipine (b). abbreviations: 
RCl = chloride ratio; aVP = arginine vasopressin; ttX = tetrodotoxin.
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Figure 5. gaBa neurotransmission contributes to RCl rhythmicity. long-term imaging of RCl (left column) and lomb-Scargle periodo-
gram analysis (right column) from an aVP::Cl-Sensor mouse cultured in the presence of either 10 µM gaBazine (a, b) or 100 µM picro-
toxin (c, d). although some experiments with gaBa antagonists remained rhythmic, on average gaBazine and picrotoxin experiments 
demonstrated a lower normalized peak power in periodogram analysis. experiments with either 5 µM diazepam (e, f) or 50 µM strych-
nine (g, h). abbreviations: RCl = chloride ratio; aVP = arginine vasopressin; Zt = zeitgeber time; gaBa = gamma-aminobutyric acid.
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dISCuSSION

We observed that [Cl−]i oscillates in AVP + and 
VIP + neurons of the SCN. While other groups have 
suggested that [Cl−]i cycles in the SCN using esti-
mates of the GABAergic reversal potential or obser-
vations of GABA-mediated excitation, we have 
directly assessed [Cl−]i using ratiometric imaging in 
genetically defined subpopulations of SCN neurons. 
We found that RCl peaked between ZT 7 and ZT 8 in 
AVP + and VIP + SCN neurons. The increased [Cl−]i 
will shift the [Cl−]i equilibrium potential to more pos-
itive voltages and increase the likelihood of an excit-
atory GABA response. This observation may provide 
a physiological basis for reports that have observed 
increased excitatory GABA transmission during the 
day and early night (Wagner et al., 1997; Albus et al., 
2005; Choi et al., 2008; Irwin and Allen, 2009; Alamilla 
et al., 2014). In addition to neurotransmission, [Cl−]i is 
an important parameter involved in many cellular 
processes including pH regulation, cell volume regu-
lation, and even membrane potential. Therefore, our 
observation of RCl rhythmicity offers important new 
insights into SCN physiology.

Although the Cl-Sensor transgene may be subject 
to the general rhythms of protein translation present 
in the SCN (Shibata et al., 1992; Chiang et al., 2014; 
Cao et al., 2011), the fact that Cl-Sensor is ratiometric, 
and therefore normalizes the Cl-sensitive YFP fluo-
rescent signal to that of the Cl-insensitive CFP fluo-
rescent signal, precludes the possibility that the 
observed rhythmicity in RCl reflects a rhythm in pro-
tein translation. Furthermore, we observed no rhyth-
micity in RCl when measured in GFAP + SCN 
astrocytes, indicating that the rhythmicity is specific 
to neurons, and does not represent an artifact of pro-
tein translation.

Methodological differences may explain the diver-
gence of our [Cl−]i cycling observations from a report 
by DeWoskin et al. (2015), who observed no cycling 
[Cl−]i using the chloride indicator MQAE in SCN neu-
rons. DeWoskin et al. loaded the entire SCN (includ-
ing astrocytes) with the MQAE dye—therefore [Cl−]i 
rhythmicity in distinct subpopulations of SCN neu-
rons (such as AVP +) may have been lost in the sig-
nal-to-noise ratio. Indeed, we did not observe RCl 
rhythmicity in GFAP + astrocytes. It is also worth 
noting that MQAE is not ratiometric, and therefore 
not well-equipped to normalize for artifacts related to 
dye concentration, fluorophore bleaching, tissue 
thickness, and dye leakage, which could potentially 
obscure rhythmicity in the MQAE signal (Arosio and 
Ratto, 2014).

Cl-Sensor is sensitive to protons in addition to the 
Cl− ion (Markova et al., 2008), leaving open the pos-
sibility that the cycling of the fluorescent emission 

Figure 6. Summary of rhythm parameters across conditions. 
time of peak (a) and amplitude of the first peak (b) obtained from 
a sine-wave fit of the detrended RCl trace. VIP::Cl-Sensor slices had 
a lower amplitude of RCl compared to aVP::Cl-Sensor slices (Stu-
dent’s t-test, p = 0.03). aNOVa analysis of RCl amplitude on aVP 
experiments revealed an effect of drug (p = 0.0008), with a post 
hoc multiple comparisons test yielding p = 0.0031 for picrotoxin. 
Period (c) and normalized peak power (d) from lomb-Scargle 
periodogram analysis. VIP::Cl-Sensor slices had a lower normal-
ized peak power compared to aVP::Cl-Sensor slices (Student’s 
t-test, p = 0.0121). aNOVa analysis of power on aVP experiments 
revealed an effect of drug (p < 0.0001), with a post hoc multiple 
comparisons tests yielding p = 0.0053 for gaBazine and p = 0.0029 
for picrotoxin. abbreviations: RCl = chloride ratio; VIP = vasoac-
tive intestinal peptide; aVP = arginine vasopressin; Zt = zeit-
geber time; dIdS = 4,4’-diisothiocyano-2,2’-stilbenedisulfonic 
acid; NPPB = 5-Nitro-2-(3-phenylpropylamino)benzoic acid; ttX, 
tetrodotoxin. BMNtd = Bumetanide; NMdPN = Nimodipine; 
Vu = Vu0240551; * p< 0.05; **p< 0.01; *** p< 0.005 
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signal (RCl) could be attributed to circadian changes 
in pH. However, at low [Cl−]i (below 25 mM), an error 
in RCl measurements produced by pH changes is 
expected to be modest (Arosio and Ratto, 2014). 
Furthermore, intracellular pH is a tightly controlled 
physiological parameter, and pH homeostasis is 
essential to the proper functioning of a myriad of cel-
lular processes. Therefore, we consider it unlikely 
that intracellular pH would vary with a circadian 
rhythm. Still, it remains possible that the rhythmicity 
of RCl could be affected by cycling of intracellular pH. 
This issue could be further addressed with the use of 
ClopHensorN, a genetically-encoded Cl− indicator 
which is able to measure [Cl−]i and pHi simultane-
ously (Arosio et al., 2010; Raimondo et al., 2013).

We observed that RCl amplitude and rhythm 
strength was larger in AVP::Cl-Sensor slices com-
pared to VIP::Cl-Sensor SCN slices. Interestingly, this 
difference corresponds to the rhythmic expression of 
clock genes. Rhythmicity of Per1 and Per2 was 
observed in the dorsomedial shell of the SCN, but 
was absent, or of reduced amplitude, in the ventrolat-
eral core (Hamada et  al., 2001; Yan and Okamura, 
2002; Hamada et  al., 2004). Therefore, the observed 
rhythm in RCl may provide insight into the link 
between the molecular clock and SCN network 
physiology.

Several CCCs are expressed in the SCN (Kanaka 
et al., 2001; Belenky et al., 2008, 2010), and a functional 
contribution for these transporters in regulating [Cl−]i 
has been demonstrated (Choi et al., 2008; Irwin and 
Allen, 2009; Alamilla et al., 2014; Farajnia et al., 2014; 
Klett and Allen, 2017; Alamilla et al., 2014; Rohr et al., 
2019; Myung et  al., 2015; McNeill et  al., 2018; Olde 
Engberink et al., 2018). Indeed, by imaging Cl-Sensor 
in acute SCN slices, we have previously demonstrated 
that RCl in AVP + and VIP + neurons responds to VU 
and bumetanide (Klett and Allen, 2017). However, we 
were not able to block RCl rhythmicity with these 
antagonists to the CCCs. Aside from the CCCs, neu-
rons routinely express homeostatic regulators of [Cl−]i 
such as the anion exchangers (Romero et  al., 2004; 
Blaesse et  al., 2009), but RCl rhythmicity persisted 
when targeting these transporters with the antagonist 
DIDS. In addition to transporters and ATP-dependent 
Cl− pumps (Inoue et al., 1991), several chloride chan-
nels are expressed in the mammalian brain including 
the voltage-gated chloride channels (the ClC family), 
volume-regulated anion channel (VRACs), and the 
calcium-activated chloride channels (the CaCCs or 
anoctamins) (Jentsch and Pusch, 2018; Rahmati et al., 
2018; Voss et al., 2014; Qiu et al., 2014). Indeed, the 
expression of anoctamin-1 has recently been demon-
strated in the SCN, although its function has not 
been described (Aguilar-Roblero et  al., 2018). We 
were not able to block RCl rhythmicity with the gen-
eral blocker of Cl− conductance, NPPB. Still, 

neuronal Cl− regulation is a relatively understudied 
and developing field (Duran et al., 2010), leaving open 
the possibility that other membrane proteins contrib-
ute to RCl rhythmicity in the SCN.

The RCl peak between ZT 7 and ZT 8 corresponds 
to the peak of action potential firing frequency 
(Inouye and Kawamura, 1979; Green and Gillette, 
1982). Indeed, an increase in [Cl−]i, along with the 
concomitant increase in GABAergic excitation may 
contribute to the rise in action potential generation 
during the day. Although RCl oscillations may con-
tribute to the rhythmic discharge of the SCN, action 
potentials are not necessary to generate the rhythm, 
as the cycling in RCl was not blocked by TTX. This 
finding is reminiscent to that observed for cytosolic 
Ca2 +, which was found to cycle independently of fir-
ing, and suggests that [Cl−]i may be under control of 
the molecular clock (Ikeda et  al., 2003). However, 
Ikeda et al. observed cytosolic Ca2 + to peak at approx-
imately CT 1.6 which precedes the peak of RCl, imply-
ing that these two signals are not directly linked.

Chloride influx through GABAA receptors is suffi-
cient to drive changes in [Cl−]i (Jedlicka et al., 2011), 
therefore it is possible that GABA receptor activity 
underlies RCl rhythmicity. Indeed, the sensitivity of 
RCl to Gabazine and picrotoxin suggests that it is 
mediated, in part, by Cl− fluxes through GABAA 
receptors. The frequency of spontaneous GABA cur-
rents (sIPSCs) oscillates in the dorsal SCN (Itri et al., 
2004). However, the rhythmicity of sIPSCs was TTX-
sensitive and peaked at ZT 12, while TTX had no 
effect on the rhythm of RCl. These observations sug-
gest that the activation of synaptic GABAA receptors 
may not contribute to the rhythm in [Cl−]i that we 
observed. Alternatively, the activation of extrasynap-
tic GABAA receptors may underlie RCl rhythmicity. 
Indeed, extrasynaptic GABA receptors are known to 
be insensitive to benzodiazepines, and we found that 
RCl amplitude and rhythm strength were unchanged 
with either diazepam or zolpidem (Semyanov et al., 
2004; Santhakumar et al., 2006). The first suggestion 
for the presence of a tonic GABA current in the SCN 
came from the observation of GAD67 expression in 
the SCN (Gao and Moore, 1996; Feldblum et al., 1993). 
Due to the lack of desensitization of GABA-induced 
currents in SCN neurons, Wagner et al. proposed that 
extrasynaptic GABAA receptors drive circadian 
changes in [Cl−]i (Wagner et al., 2001). More recently, 
a Gabazine-sensitive tonic GABA current has been 
directly measured in the SCN (Moldavan et al., 2017; 
Moldavan et al., 2021); however, the source of the 
GABA driving this current has not been identified. 
Ambient GABA levels in the extracellular fluid 
mediate the excitation of extrasynaptic GABAA 
receptors. Both vesicular and non-vesicular GABA 
sources contribute to the ambient GABA concentra-
tion. Non-vesicular GABA sources include extrusion 
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of GABA by GABA transporters (from both neurons 
and astrocytes) and permeation through bestrophin 
channels (Brickley and Mody, 2012). Although extra-
cellular GABA concentrations in the SCN have not 
yet been directly measured across 24 h, biochemical 
methods have demonstrated that GABA levels in the 
entire hypothalamus show a circadian rhythm, with 
one study showing a peak during the day (Cattabeni 
et al., 1978; Aguilar-Roblero et al., 1993). Interestingly, 
vesicular release from dendrites has been demon-
strated in the SCN (Castel et  al., 1996), suggesting 
that dendritic GABA release could contribute to ambi-
ent GABA levels. Alternatively, astrocytes may con-
tribute to ambient GABA levels in the SCN. 
Interestingly, Barca-Mayo et al. observed that GABA 
signaling from astrocytes was sufficient to rescue dis-
rupted molecular rhythms in SCN neurons (Barca-
Mayo et  al., 2017). Although the source of GABA 
driving the tonic GABA current remains unclear, we 
propose that circadian changes in the ambient GABA 
concentration produce concurrent changes in the 
degree of extrasynaptic GABAA receptor activation to 
drive the rhythm in RCl observed in this study.

Because SCN neurons provide extensive local 
GABAergic innervation within the SCN (Freeman 
et al., 2013; Fan et al., 2015), our observation of rhyth-
mic [Cl−]i provides important new insights into the 
circadian physiology of the SCN. We did not observe 
rhythmicity of RCl in GFAP + astrocytes, suggesting 
that RCl rhythmicity is specific to SCN neurons. 
Therefore, it would be interesting to determine if RCl 
rhythmicity is present in other types of SCN neurons. 
Indeed, several other Cre lines have been used in the 
SCN (Jones et al., 2015; Lee et al., 2015). Crossing such 
Cre lines with the floxed Cl-Sensor mouse used in 
this study would allow measurement of RCl in differ-
ent and potentially larger populations of SCN 
neurons.
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