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ABSTRACT

The clinical failure rate for disease-modifying treatments (DMTs) that slow
or stop disease progression has been nearly 100% for the major neurodegen-
erative disorders (NDDs), with many compounds failing in expensive and
time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically
review the use of pharmacological and mechanistic biomarkers in early phase
clinical trials of DMTs in NDDs, and propose a roadmap for providing early
proof-of-concept to increase R&D productivity in this field of high unmet
medical need. A literature search was performed on published early phase
clinical trials aimed at the evaluation of NDD DMT compounds using MESH
terms in PUBMED. Publications were selected that reported an early phase
clinical trial with NDD DMT compounds between 2010 and November 2020.
Attention was given to the reported use of pharmacodynamic (mechanistic
and physiological response) biomarkers. A total of 121 early phase clinical trials
were identified, of which 89 trials (74%) incorporated one or multiple phar-
macodynamic biomarkers. However, only 65 trials (54%) used mechanistic
(target occupancy or activation) biomarkers to demonstrate target engage-
ment in humans. The most important categories of early phase mechanistic
and response biomarkers are discussed and a roadmap for incorporation of a
robust biomarker strategy for early phase NDD DMT clinical trials is proposed.
As our understanding of NDDs is improving, there is a rise in potentially
disease-modifying treatments being brought to the clinic. Further increasing
the rational use of mechanistic biomarkers in early phase trials for these
(targeted) therapies can increase R&D productivity with a quick win/fast fail
approach in an area that has seen a nearly 100% failure rate to date.

INTRODUCTION

While there have been successes in neuropharmacology, most central
nervous system (CNS) pharmaceutical approaches treat symptoms rather
than disease cause. Such symptomatic treatments can be very successful at
suppressing disease symptoms at first, however, the effects eventually di-
minish over time and do not stop disease progression. Therefore, there is an
urgent need for better treatments that can slow or stop disease progression
of neurodegenerative disorders (NDDs), especially since the burden of these
debilitating diseases on patients and society is on the rise as populations
age.! Alarmingly, the clinical failure rate for such disease-modifying treat-
ments (DMTs) for NDDs has been nearly 100% to date.2-> Exceptions include
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the approval of riluzole and edaravone as treatments for amyotrophic lateral
sclerosis (ALS), however both arguably show only marginal effects.®” With the
recent approval of nusinersen for the treatment of spinal muscular atrophy
(sMa)8 new hope may be on the horizon.

In fact, our understanding of underlying NDD pathophysiological
mechanisms is rapidly expanding,®-13 and this has sparked a new interest in
the development of (targeted) disease-modifying treatments. This is reflected
for example, by the >100 compounds currently in clinical development for
Alzheimer’s disease* and close to 150 compounds in clinical development for
Parkinson’s disease,'* many of which can be categorized as DMTs.

Compared to most other fields, the clinical development path of NDD
DMTs faces some important additional challenges that contribute to the
high failure rate experienced to date. First, preclinical and animal models
have historically shown poor translatability to predict drug efficacy in human
NDDs because of the complexity of the pathophysiology of neurodegenera-
tive disorders and our incomplete understanding of these processes.215.16
Secondly, in NDDs it may take along time from disease onset to the manifes-
tation of clinical symptoms to objectifiable disease progression and clinical
trials have struggled to separate out symptomatic effects from disease-modi-
fying effects.216:1” Moreover, by the time of diagnosis significant (irreversible)
damage to the cNs has often already occurred, and it has been challenging to
identify robust diagnostic biomarkers to initiate treatment in earlier disease
stages.18 Thirdly, unlike diseases of most other organ systems, cNs disorders
are localized to a body compartment that is not easily accessible for obtain-
ing tissue samples in clinical studies to verify molecular pathophysiologic
mechanisms and drug effects. And finally, there has been a lack of validated
biomarkers as outcome measures for disease progression in disease-modi-
fication trials.1®

However, considerable progress is being made in the development of bio-
markers for NDDs,1%20 that cannot only help diagnose or track progression of
NDDs, but can also be used as tools during clinical development to demon-
strate central exposure, (peripheral) target engagement and functional
responses to guide dosing-decisions or facilitate patient enrichment in
later stage clinical trials.2! In particular, peripheral biomarkers for their
relatively easy clinical accessibility hold a promise to help overcome some
of the fundamental challenges in cNs drug development and allow for more
efficient screening of drug candidates in early-phase clinical trials.2? In a
field where nearly 100% of investigational drugs fail to make it to market,
the use of such biomarkers can offer an indirect yet relatively quick strategy
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to confirm (peripheral) target and pathway-engagement and provide early
proof-of-concept in short-duration mechanistic early-phase trials in both
healthy volunteers and patients.23:24 This quick win / fast fail approach can
increase research and development (R&D) productivity and help guide dosing-
decisions for maximizing success rates in later stage trials.25

Here we present a review and a roadmap for the use of pharmacodynamic
biomarkers in early phase clinical trials of DMTs in NDDs. First, we present an
introduction on NDD mechanisms, considerations for drug development of
innovative disease-modifying compounds and the role of biomarkers in clini-
cal drug development for context. Then we categorize the pharmacodynamic
biomarkers that were reported in early phase clinical pharmacology studies
identified from aliterature review of the past decade, including an overview
of bodily sources that can be used for biomarker analysis, and present con-
siderations for biomarker selection in early clinical development. Finally, we
summarize and conclude this overview with a proposal for a roadmap for de-
signing mechanistic, data-rich early phase clinical pharmacology studies for
disease-modifying therapies in neurodegenerative disorders.

NEURODEGENERATIVE DISEASE MECHANISMS

Neurodegenerative disorders, including Alzheimer’s disease (AD), fronto-
temporal- (FTD) and Lewy body dementia (LBD), amyotrophic lateral sclerosis
(aLs), Huntington’s disease (HD), Parkinson’s disease (pD), and spinocerebellar
ataxias (SCAs), are characterized by a progressive degeneration of neurons in
various regions of the brain and result in losses in cognitive and/or motor
function.2627 As it appears, these NDDs share multiple overlapping patho-
logical mechanisms including misfolding, aggregation, and accumulation
of proteins, dysfunctional mitochondrial homeostasis, formation of stress
granules, and maladaptive innate immune responses eventually leading to
cellular dysfunction, loss of synaptic connections, and brain damage.28:29
In AD amyloid-[i protein fragments that cluster together and form amyloid
plaques, as well as TAU proteins forming neurofibrillary tangles, disrupt
neurological functioning and contribute to neurotoxicity leading to inflam-
mation and neuronal cell death. In PD clumping of a-synuclein into so-called
Lewy bodies in dopaminergic neurons is believed to play an important role
in neuroinflammation and eventually neurodegeneration, while in ALS the
aggregation of TAR DNA-binding protein 43 (TDP-43) in cell stress granules
may contribute to disease pathology, neuroinflammation and motor neuron
death. Because of an overlap in the underlying pathological mechanisms, as
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well as involvement of the same cell types, it is not surprising that many bMT
mechanisms under development often target multiple NDDs. For example,
inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1),
aregulator of inflammation, cytokine release, and necroptotic cell death, is
being investigated as treatment for AD, ALS and multiple sclerosis (Ms),30 while
TAU protein is being targeted with antibodies for both progressive supra-
nuclear palsy (PsP) and AD.3! In addition to the more general mechanisms of
neurodegeneration, genetic studies have begun identifying risk-associated
alleles and disease-causing rare mutations in NDDs.13:32 These genetic studies
may pave the way for targeted therapies in selected subpopulations, such as
an antisense oligonucleotide targeting the mutated superoxide dismutase
(sop1) enzyme in ALS,33 or glucocerebrosidase (GBA)-activators or leucine-rich
repeat kinase 2 (LRRK2)-inhibitors targeting disease-causing mutations in GBA
or LRRK2 respectively in Parkinson’s disease.34

INNOVATIVE DRUG DEVELOPMENT OF
DISEASE-MODIFYING TREATMENTS

The development of innovative disease-modifying treatments for these NDDs
with novel mechanisms of action is radically different from the development
of a generic version of an existing effective drug from a well-established
class.2> For innovative compounds, the uncertainty about the different
aspects of the drug is far greater, which is also reflected in the high clinical
failure rate in the field of DMTs for NDDs. This uncertainty requires a high level
of flexibility in the drug development program, the use of innovative methods
and a high level of integration of information rather than the purely opera-
tional requirements of a generic development program.2’ Innovative drug
development in essence starts with the preclinical development of assays
to identify and validate a novel pharmacological target and subsequently
demonstrating safety and efficacy in a (relatively standardized) battery of
laboratory and animal studies. Hereafter the clinical development trajectory
starts in humans and revolves around answering a set of 6 basic scientific
questions in a series of what are traditionally called phase 1-3 clinical trials:
What is the safety and pharmacokinetic behavior of the drug?

Does the drug occupy the intended pharmacological target?

Is the drug capable of activating the target?

Does this target activation lead to the intended physiological response?
And subsequently to the intended pathophysiological response?

And does the drug result in a sufficient clinical response?25

AN A W N
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Traditionally these questions are addressed in a chronological order, starting
with small-scale phase 1 clinical studies focusing on safety and pharmaco-
kinetics in healthy volunteers or patients and ending with large-scale, often
global and multi-center, phase 3 studies to demonstrate safety and efficacy
versus placebo or an active comparator in the intended drug label target
population. However, as stated above, drug development does not need
to take this linear approach. Especially if one considers that development
becomes more and more expensive the further acompound progresses into
later stage trails. In fact, for truly innovative compounds such as the develop-
ment of DMTs in NDDs, there is a strong scientific and financial argument to
be made to demonstrate proof-of-concept for a new compound in humans
as early as possible.3% From a scientific perspective, an early demonstration
of proof-of-concept helps focus future efforts to the most promising leads.
From a financial perspective early proof-of-concept contributes to a quick
win / fast fail development approach thereby increasing R&D productivity
and preventing investments in compounds only to fail in the most expensive
later stages of drug development.

Demonstrating proof-of-concept of DMTs in early-stage trials is challenging,
however. Considering the definition of a neurodegenerative DMT: ‘an inter-
vention that produces an enduring change in the clinical progression of the
NDD by interfering in the underlying pathophysiological mechanisms of the
disease process leading to cell death’,3¢ proof-of-concept for the first part of
this definition is difficult to demonstrate because of the short-duration of early
phase clinical trials. Moreover, traditional clinical outcomes - such as disease
progression scales or patient-reported outcomes (PROs) - are not suitable for
demonstrating effects of DMTs in NDDs in healthy subjects for alack of disease,
nor in patients because of the general short duration and small group sizes
in phase 1 trials and large placebo-effects in PROs often seen in these patient
populations. The ability of an investigational compound to ‘interfere in the
underlying pathophysiological mechanisms leading to cell death’ on the other
hand, is something that could be demonstrated with the use of pharmacody-
namic biomarkers in short-duration early phase trials, even in healthy subjects.

BIOMARKERS

A biomarker (biological marker) is defined as ‘a characteristic that is objec-
tively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacological responses to a therapeutic inter-
vention’3” When the level of a biomarker changes in response to exposure
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to a medical product, it can be called a response or pharmacodynamic bio-
marker.3® Other types of biomarkers can include diagnostic biomarkers
(detecting or confirming the presence of a disease), predictive biomarkers
(presence or change in the biomarker predicts an individual or group to ex-
perience a favorable or unfavorable effect from the exposure to a medical
product), prognostic biomarkers (identify the likelihood of a clinical event,
disease recurrence, or disease progression in untreated patients) and safety
biomarkers (indicates the likelihood, presence, or extent of a toxicity as an ad-
verse event)38:39- Table 1. In some cases abiomarker can be used as surrogate
to substitute for a clinical endpoint, but to qualify as a surrogate, a biomark-
er must correlate with the clinical outcome and the change in the biomarker
must also explain the change in the clinical outcome;38 evidence that is cur-
rently lacking for the majority of biomarkers.

Recent reviews have described the current status of biomarkers in ALS,40
Alzheimer’s disease,*! Parkinson’s disease,*? Huntington’s disease,*3 and
spinocerebellar ataxias,*# although for most of these indications reliable in-
dicators of disease severity, progression, and phenotype are still lacking.

EARLY PHASE PROOF-OF-CONCEPT WITH
MECHANISTIC BIOMARKERS

Even without a proven correlation with clinical outcome, biomarkers are
useful in early phase trials of DMTs for NDDs. At this stage of development,
it is more important and feasible to demonstrate that the investigational
drug engages its molecular pathway in humans as envisioned (mechanistic
proof-of-concept). This can be accomplished with mechanistic biomarkers,
by demonstrating pharmacologic activity of the compound both in healthy
subjects as well as patients, allow for the application of mechanism-based
pharmacokinetic/pharmacodynamic (PK/PD) modelling,#¢ and help define
the optimal dose for phase 2/3 efficacy trials. This maximizes the eventual
chance of clinical development success, or can save valuable resources by
supporting an early ‘no-go’ decision in case the compound fails to reach or
appropriately modulate its target.2"*” In fact, disease specific regulatory guid-
ance for drug development in NDDs also recommends the use of biomarkers
in the early phases of the clinical development to:
1 Establish the pharmacological mechanism(s) on which the drug may

be thought to have therapeutic activity.
2 Demonstrate target engagement and proof-of-concept.
3 Determine the PK/PD relationship and the dose-response curve,48-50
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Additionally, by including a pharmacological effect or target engagement
biomarker in a first-in-human (FIH) study, the dose-response curve in humans
can be linked to the non-clinical experience, thereby supporting more in-
formed dose escalation decisions. This is especially true for innovative drugs
with a novel mode of action, where the relationship between the minimally
pharmacologically active dose and a safe therapeutic dose in humans is not
yet known.! Inclusion of a pharmacodynamic measure in FIH trials is now
also recommended by the regulatory bodies for safety reasons.52

REPORTED USE AND CLASSIFICATION OF EARLY
CLINICAL PHASE BIOMARKERS

As indicated above, biomarkers can play an important role in early phase drug
development. To investigate the current use of pharmacodynamic response
biomarkers for the development of DMTs for NDDs, a literature search was
performed for published early phase clinical trials using medical subject
headings (MESH) terms in PUBMED (Supplement 1, available online via chapter
reference). Publications between 2010 and November 2020 were selected that
reported an early phase clinical trial with NDD DMT compounds. Publications
of early phase trials identified from references in the reviewed literature that
were not identified by the MESH search strategy were also included. Only
the first and original reports of early phase clinical trials were selected to
avoid duplication (Supplemental Figure S2). An overview of all included trials
and the reported peripheral and central pharmacodynamic biomarkers is
presented in Table 2.

The early clinical phase pharmacodynamic response biomarkers retrieved
from this search can be subdivided into proximal mechanistic biomarkers
that are primarily used to demonstrate target occupancy and target activa-
tion (target engagement), and physiological and pathophysiological response
(distal) biomarkers (Table 1).25:46

Overall, 89 out 0f 121 (74%) NDD DMT early phase trials that were published
over the past decade reported the use of one or more pharmacodynamic
response biomarkers (Figure 1). Given the significant added value of using
pharmacodynamic response biomarkers in early phase trials this might not
be surprising. Less than half of all trials (46%) reported the use of central
pharmacodynamic biomarkers. The use of peripheral pharmacodynamic bio-
markers was slightly higher at 50%. Only 65 trials (54%) reported the use of
proximal mechanistic biomarkers (Figure 1) and there are clear differences
in the use of biomarkers between different disorders and different types of
drugs (Table 2).
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Clinical outcome data was collected even more frequently in early clinical
phase NDD trials (74% of all trials involving patients, or 60% of all trials) than
mechanistic biomarker read-outs (54% of all trials) (Figure 1). This despite the
fact that early phase trials are often of too short a duration and have a too
limited sample size to expect a significant effect on any clinical or surrogate
response biomarkers.

In the next sections we will break down the different types of identified
biomarkers. For each stage of drug development, these different types of
biomarkers can help answer different relevant clinical development ques-
tions, see also Figure 2.

Target occupancy

Only 26% of early clinical phase NDD DMT trials reported target occupancy
biomarkers (Figure 1 and Table 2). Target occupancy in first-in-human studies
is used to demonstrate that the same target binding observed in the preclini-
cal animal models holds true in humans.l”! The importance of this from a
safety perspective is exemplified by the clinical study with the cD28 target-
ing immunomodulating agent, TGN1412. Because of differences in TGN1412
pharmacology between nonhuman primates and humans, the starting dose
of the FIH trial directly resulted in 90% receptor occupancy, leading to life-
threatening cytokine release syndrome in healthy volunteers.l”2173

Demonstrating target engagement is also critical from the drug-develop-
ment perspective. When a novel compound fails to demonstrate disease-
modifying properties and no target engagement data is available, it will be
difficult if not impossible to conclude whether the mechanism of action does
not produce NDD disease-modification per se, or if this specific compound
was just not successful in sufficiently engaging the intended target in
humans.74175

Ideally target occupancy is demonstrated by biomarker evidence of:
1 The compound reaching its site of action;
2 The compound binding to the intended molecular target;
3 Occupancy of the target increases with increasing dose.
Demonstrating that a compound reaches its site of action is one of the major
challenges in cNs drug development, and in fact often not even possible to
demonstrate directly (except post-mortem). As an alternative, often the
presence of the compound at pharmacologically active concentrations in
the cerebrospinal fluid (CsF) is used as a surrogate for CNs exposure.2:23:30,54
While this is not an absolute guarantee that the compound reaches its site
of action in the brain, it does provide a relatively uncomplicated method (it
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can even safely be used in pediatrics)’¢ to demonstrate that the compound
does cross the blood-brain barrier in sufficient concentrations to expect an
effect based on preclinical cellular dose-response assays. In addition, further
translational approaches can be used to predict human brain distribution and
target site kinetics.!””

Besides measuring compound concentration in CSF, positron emission
tomography (PET) can be used to demonstrate compound distribution into
specific brain compartments and can in some cases also be used as a direct
occupancy assay for receptor, transporter or enzyme targets.l”8179 However,
PET imaging cannot always be applied for the lack of an appropriate radioligand
or unfavorable radioligand characteristics, e.g. high non-specific binding.1>°
Actual binding of the compound to the molecular target could in some cases
be demonstrated in the CSF, for example for monoclonal antibodies binding
to a circulating extracellular target protein such as amyloid [}54-56.60 or
a-synuclein#® (Table 2). However, this may not always be possible because
assays are either not sensitive enough to detect the low abundance pathological
target (e.g. aggregated aSYN concentrations in CSF) or drug concentrations
in the CSF are not sufficient to demonstrate an effect on a more abundant
surrogate biomarker (e.g. total asyN in CsF).145

For (intra)cellular targets in CNS tissue it may be even more difficult to
demonstrate that the compound binds the intended molecular target, mainly
because of the fact that these cellular molecules are likely not present in
biofluids in detectable amounts and the target neuronal cells cannot be
sampled from living human beings for cell lysis and subsequent target en-
gagement assays. In these cases, an alternative indirect strategy could be to
demonstrate target engagement in peripheral cells, on the condition that the
molecular target is expressed in these cells. For example, peripheral receptor
occupancy on cell surfaces can be measured with the use of flow cytometry
on fresh blood.180 In a similar fashion, intracellular target occupancy can be
demonstrated peripherally in blood cells such as done for LRRK2-inhibitor
binding measured via the dephosphorylation of SER935 on the LRRK2 pro-
tein in lymphoblastoid cells,!8! or the reduction of phosphorylated s166 RIPK1
in peripheral blood mononuclear cells (PBMCs) after dosing of an RIPK1-in-
hibitor.30 When combined with the plasma-to-csF drug concentration ratio,
such peripheral target occupancy can give an indirect indication of expected
target occupancy in the CNs.
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Target activation

After confirming that a novel compound occupies its molecular target, the
next step in innovative clinical development is to demonstrate that upon
target occupation the investigational compound activates the intended
molecular pathway to a sufficient extent for possible disease modification
(Figure 2). Such mechanistic proof-of-concept can often be demonstrated by
evaluating a substrate biomarker that is downstream in the pathway of the
compound’s direct molecular target. When quantitatively measured, changes
in such a so-called ‘pathway activation biomarker’ at different dose-levels can
help generate a dose-response curve of the investigational compound’s ago-
nistic (stimulatory or inhibitory) molecular effects. This dose-response curve
can be linked to the preclinical in vitro and animal model studies to determine
ahuman dose level at which maximum disease modification can be expected
in patients. Target activation biomarkers have been used more frequently
than target occupation biomarkers, but still only 40% of early clinical phase
NDD DMT trials reports the use of target activation biomarkers (Figure 1).

An example of a molecular pathway activation biomarker is the quan-
tification of amyloid [%1-42 (A[S) concentrations in the CSF in response to
BACE1-inhibitors (Table 2).84-°0 BACE1 (P secretase) is a protease that cleaves
the amyloid precursor protein at the [S-site, which eventually leads to the
production and release of Aﬁ peptide in the brain. A decrease in A(S brain
concentrations may help prevent the progression of Alzheimer’s disease.182
However, as indicated before, such an apparently obvious relationship
between the molecular pathway activation biomarker to the neurodegenera-
tive disease that the compound is being develop is not a necessity. It is more
important that the biomarker has a direct relationship to the true molecular
target that the investigational compound activates or inhibits, and that
the biomarker can reliably be measured with a robust and validated assay.
An example is the quantification of phosphorylation of RAB10 (pRAB10), a
bonafide substrate of LRRK2 kinase activity, in response to the administra-
tion of LRRK2-inhibitors under development for Parkinson’s disease.!83 The
fact that at the time of discovery it was not entirely clear how the activity of
RAB GTPases contributes to degeneration of the nervous system!84 does not
impact the usability of prAB10 as target activation biomarker to quantify the
inhibitory effects of LRRK2-inhibitors.

Similar to target occupancy, it may not always be possible to demonstrate
target activation in the CNs, especially for intracellular molecular pathways,
inwhich case an alternative strategy can also be to demonstrate target activa-
tion peripherally in blood or tissues expressing the same molecular target
(Figure 2).120,126,127,130
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Demonstrating target activation can be complicated by the fact that the
targeted molecular pathway activation status may only be present in diseased
tissue. For example, RIPK1 regulates inflammation, cytokine release, and
necroptotic cell death and inhibition of RIPK1 activity protects against inflam-
mation and cell death in multiple animal models. RIPK1 is also expressed in
circulating PBMCs offering a peripheral opportunity to demonstrated target
activation of RIPK1-inhibitors. However, in these non-diseased PBMCs RIPK1
activity levels will not be similar to that in the CNs of ALs and AD patients. To
overcome this problem and quantify the effects of different dose levels of a
RIPK1-inhibitor peripherally, PBMCs can be collected from study subjects after
dosing and then be stimulated in vitro with e.g. the pan-caspase inhibitor
ZVAD-FMK (TSZ) to stimulate these cells to increase phosphorylated R1PK1.30
In a similar fashion, lipopolysaccharide (LPs) has been used in an early phase
study in MS patients to stimulate 6-SULPHO LACNAC+dendritic cells in vitro, to
demonstrate that laquinimod therapy is capable of reducing cD83 expression
and TNF-a production.]38 The possibility to demonstrate target activation
in vitro in human cells is supported by regulatory guidance,>? and could be
used to demonstrate target activation in first-in-human studies with healthy
volunteers.30 Some molecular targets are really only present in patients with
the target disease, such as mutated huntingtin protein in patients with Hun-
tington’s disease. In such a case the best strategy may therefore be to directly
include patients in the earliest clinical trials, to be able to demonstrate target
activation as early as possible in the clinical development trajectory.!3!

Other types of target activation biomarkers may be used for different
classes of investigational drugs (Table 2). For example, in the case of im-
munotherapy target activation could be demonstrated by the formation
of antibody titers in plasma,15¢ and in the case of an antisense oligonucle-
otide target activation may be demonstrated by areduction in target protein
levels.33.167 For other types of drugs such as monoclonal antibodies against
amyloid (53-54:63,55-62 jt may not be possible to demonstrate target activa-
tion, as the goal of these treatments is to clear the molecular target either
by macrophage phagocytosis and complement activation or by altering the
equilibrium of amyloid across the blood-brain barrier in favor of efflux from
the brain to the blood.18%

Physiological response

Physiological response biomarkers are reported in 23% of early phase NDD
DMT clinical trials (Figure 1). These provide insight into more general or sys-
temic (distal) responses to the investigational compound that are expected to
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contribute to, or be indicative of, possible disease modification. Examples of
physiological response markers that have been used in early phase NDD DMT
clinical trials include the evaluation of brain glucose metabolism after admin-
istration of nerve growth factor gene therapy®® or deep brain stimulation’678
for Alzheimer’s disease, and CSF cytokine production after transfusion of
stem cells!9! or administration of granulocyte colony-stimulating factor
(G-csF)IIS in ALS patients (Table 2). However, it is important to realize that
while such biomarkers can indicate that a compound exerts a physiological
response, they often do not provide direct information about the actual
clinical effects of the compound,2’ nor that the intervention can produce an
enduring change in the clinical progression of the NDD. Nevertheless, when
combined with target occupancy and activation biomarkers, physiological
response biomarkers can contribute to the total amount of evidence for
proof-of-concept (Figure 2). Additionally, physiological response markers
can offer an opportunity to get a better understanding of an intervention’s
potential effects when no direct molecular target is involved or when the
exact mechanism of action is not yet fully understood, e.g. in the case of stem
cell trials in ALS patients (Table 2).101,104

Pathophysiological response

Pathophysiological response biomarkers are also distal biomarkers, and
contrary to the physiological response biomarkers, should have a clear and
direct link to the disease pathophysiological mechanisms. For early phase
trials these biomarkers do not necessarily need to be validated surrogate
substitutes for clinical endpoints, however, when available, a validated
surrogate would of course provide stronger evidence for possible disease
modification. It should be considered though that most early phase trials
are only of a short duration and for most NDDs the disease progresses too
slow to measure a significant change over a short period of time. Moreover,
early phase trials usually only recruit small sample sizes and there can be
significant interindividual variation in disease phenotype and progression.
Therefore, chances are that it may not be possible to demonstrate a signifi-
cant effect of the investigational compound on pathophysiological response
biomarkers in early phase trials, which would not necessarily equal a lack of
effect of the investigational compound. It is therefore not surprising that
pathophysiological response biomarkers are only reported in 33% of early
phase clinical trials involving patients (Figure 1). In healthy volunteer studies
pathophysiological response biomarkers obviously cannot be included for a
lack of disease presence.
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Examples of pathophysiological response wet biomarkers that have been used
in early phase NDD DMT trials include quantification of CSF TAU phosphory-
lated at threonine 181 (p-TAU181)5460 and evaluation of amyloid by PET’> for
Alzheimer’s disease pathology, phosphorylated neurofilament heavy chains
(and post-hoc neurofilament light chain) concentrations as general axonal
damage biomarker in ALs,33 FTD,12° and Huntington’s disease,13! and csF
mitochondrial dysfunction markers (GDF15, lactate) in Ms (Table 2).13° Other
types of more physical pathophysiological response biomarkers include the
evaluation of retinal nerve fiber layer thinning in Ms!3° and electromyogram
(EMG) study of the tibialis anterior muscles in ALS patients receiving stem cell
treatment.199 Also neuroimaging techniques can be used as pathophysiologi-
cal response biomarkers, such as the evaluation of disease progression via
dopaminergic function with the use of 18F-DOPA PET,!33 or reduction of whole
brain or hippocampal atrophy (MRI) or reduction of cerebral metabolism on
fluordeoxyglucose (FDG) PET,3¢ although it is unlikely that an effect on these
markers can be observed in short-duration trials.

Clinical response

It appears that clinical outcomes are most frequently included (74%) as ex-
ploratory endpoints in early phase trials with NDD patients (Figure 1). These
clinical outcome measures included disease rating scales [e.g. Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-c0G),%3:70,73,78 Mini-
Mental State Examination (MMSE),>8:61 Revised Amyotrophic Lateral Sclerosis
Functional Rating Scale (ALSFRS-R),33106.11% Neuronal Ceroid Lipofuscinosis
Type 2 Clinical Rating Scale (CLN2 score),43 Unified Huntington’s Disease
Rating Scale (UHDRS),132 Hammersmith Functional Motor Scale Expanded
(HFMSE),1¢7 and Movement Disorders Society Unified Parkinson Disease
Rating Scale (MDS-UPDRS)153:154161] pulmonary functioning evaluation,100.128
muscle power assessments,??103.113 and quality of life questionnaires. 68,120,152
We would argue, however, that due to small samples sizes in early phase
trials, potentially significant placebo effects or sometimes lack of a placebo
control, and the relatively low sensitivity of these disease rating scales such
instruments may at best be useful as safety biomarkers but not as outcome
markers at this stage of clinical development. Even in longer-duration open
label extensions of early phase trials clinical outcomes are not expected to
yield reliable results because of the small sample sizes and lack of a placebo
control.18¢ However, the high percentage of early phase trials reporting
clinical outcomes may result from regulatory guidance that recommends to
explore clinical outcomes in early phase trials to investigate how these can
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be further used in subsequent pivotal trials.#? A more sensitive future tool
for assessing exploratory clinical outcomes on disease progression could be
the use of continuous digital biomarkers, such as smartphone-based assess-
ments.187

BIOMARKER SOURCES

Cerebrospinal fluid (31% of trials) and blood (45% of trials) are the most fre-
quently used biofluids for biomarker analysis in NDD research. These biofluids
are relatively easily accessible in the clinical setting and well-established
bioanalytical methods for these matrices are available. cSF could arguably
be the most proximal source for physiological and pathological response
biomarkers related to the intended CNs target. Moreover, concentrations of
CNs biomarkers outside of CSF are often extremely low making them difficult
to detect using standard assays, and in blood endogenous antibodies and
proteases may be present that interfere with assays or shorten the lifespan of
peripheral protein biomarkers.18 However as discussed previously, mechanis-
tic proof-of-concept of target engagement by DMT compounds can often be
demonstrated very well peripherally without being hampered much by such
challenges. Moreover, NDDs are found to also be influencing some peripheral
tissues outside the cNs.188 Therefore, in early stage drug development phar-
macodynamic biomarkers can be used from a large variety of bodily sources
(Table 2). Besides whole blood, plasma or serum, leukocytes and in particular
the subset of PBMCs can be an easily accessible source for evaluating intracel-
lular pathways ex vivo, which also offers the possibility to simulate disease
states (also in heathy volunteer studies). When working with pPBMcs though,
it is important to realize that these cells represent a heterogeneous group
that includes lymphocytes, monocytes and macrophages and the molecular
target of interest may not be expressed to similar levels in all of these cells.

For example, LRRK2 kinase and its direct substrate RAB10 are only abundantly
expressed in monocytes and are virtually undetectable in B and T lympho-
cytes as well as natural killer and dendritic cells that constitute most of the
PBMCs.189 Moreover, both these proteins are expressed to an even higher
degree in neutrophils, making neutrophils potentially the best source for
demonstrating mechanistic proof-of-concept of LRRK2-inhibitors.!18% An-
other easily accessible biofluid that can be a source for biomarker analysis is
urine,1?? but also more challenging matrices, such as stool samples, ocular
fluids, and mucosal secretions can be considered for biomarker analyses.!°!
The challenge of accurate analysis, however, is much higher in such matrices
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and therefore feasibility of sampling as well as analyte extraction should be
considered and demonstrated prior to implementation in clinical trials.1°!
Also tissue biopsies, such as from muscle®? or nasal olfactory neural tissue,92
and surgical byproducts!®! can be considered as sources for biomarker analy-
sis. And even the body surface has proven to be an easily accessible source for
biomarker analysis in NDD drug development via the use of skin fibroblasts1®3
and hair follicle RNA194

As there may be relatively large intra- and interindividual variability in
some of the biomarkers in these matrices, it could be necessary to normalize
the biomarker readouts to a quantifiable reference value to draw more robust
conclusions between different sampling times and individuals. This is espe-
cially important given the small numbers of subjects usually included in early
phase trials. Examples of normalization factors used in biomarker analysis in-
clude normalization to total protein or creatinine to correct for the number
or concentration of cells in a specific sample or matrix for gene expression
analysis,? relating analysis of sOD1 activity in erythrocytes to the content of
hemoglobin in erythrocyte lysates,120 relating phosphorylated glycogen syn-
thase (Gs) to the total levels of Gs,!2% and using the survival of motor neuron 2
full length (SMN2FL)/SMN2A7 mRNA ratio to reduce the confounding effects of
SMN2FL and SMN2A7 mRNA level fluctuations for monitoring the inclusion of
SMN2 exon 7 and the effect of risdiplam.16? Also using patients as their own
controls with crossover designs in early phase clinical trials helps limit the
potential effects of often large intersubject variability in studies with small
numbers of subjects.8! Finally it can be worth considering using patient en-
richment strategies for early phase trials,!° to optimize the chance of success
in demonstrating proof-of-concept by including the most suitable patient
population (e.g. with a specific genetic mutations, disease onset state, or a
slow or fast disease progression prognosis). The scientific benefit of targeting
a specific subpopulation, however, should be balanced to the recruitability
of the trial and potentially the targeted mode of action.

BIOMARKER SELECTION, DEVELOPMENT,
AND VALIDATION

The decision to evaluate biomarkers in early phase clinical trials should be
taken well in advance in order to select appropriate biomarkers to address
the key scientific early phase clinical development questions and develop
robust bioanalytical methods.25191 In fact, the biomarker strategy planning
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for first-in-human studies should ideally start during the preclinical develop-
ment phase (Figure 2). Steps to consider when selecting biomarkers for use
in early phase clinical trials include defining the scientific questions that the
biomarker should help answer, performing a thorough literature review to
select fit-for-purpose biomarker, bioanalytical method development or assay
and laboratory selection, analytical model validation testing, and defining
the clinical sampling, data reduction and analysis strategy.1°L19¢ Preferably
the selected biomarkers are validated in the preclinical models used during
drug development as well as in patients or patient biofluid repositories.1®”
Characteristics to select a useful biomarker include that the biomarker
should give a consistent response across studies and drugs with the same
mode of action, must respond clearly to therapeutic doses, must have a clear
dose-response relationship and ideally there should be a plausible relation-
ship between the biomarker, pharmacology of the drug class, and disease
pathophysiology (although for mechanistic biomarkers this not an absolute
necessity as discussed previously).2>

Biomarkers used in early phase clinical development do not fall under
standardized regulatory requirements and therefore the clinical develop-
ment team has to decide on the level of method characterization and
documentation that is needed by weighing how the biomarker may provide
the most value to the clinical development program goals.®! For an early
go/no-go decision a qualified assay may fit the purpose, whereas for proof-
of-concept of clinical responses a fully validated method may be required.!°!
Some biomarkers used in early phase trials may evolve over time to become
diagnostics or surrogate endpoints, but this requires the biomarkers to
become accepted for use through submission of biomarker data during the
drug approval process or via the biomarker qualification program developed
by the Center for Drug Evaluation and Research.3?

LIMITATIONS

Itis clear that the use of pharmacodynamic biomarkers in early phase clinical
trials can help optimize clinical development in an area that has seen a near
100% failure rate to date, and that the frequency of rational use of these phar-
macodynamic biomarkers should be improved (Figure 1). However, the use of
pharmacodynamic biomarkers in itselfis obviously not a guarantee for clinical
development success. There are still some major challenges that the develop-
ment of DMTs for NDDs faces that the use of biomarkers willnot be able to solve.
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DMT development has been struggling with a poor translatability of pre-
clinical and animal models to human disease,!> though in the past decade
great advances have been with neurons derived from induced pluripotent
stem cells (1PsCs) and 3D cell cultures technologies as preclinical models for
neurodegenerative diseases.1?8 While the use of biomarkers will not directly
impact the quality of the animal models, biomarkers may help identify sub-
sets of patients or early versus late stage disease states to better align the
preclinical work with the target population for human proof-of-concept
studies. Moreover, when preclinical and early stage clinical biomarker pro-
grams are well aligned, they can help demonstrate early proof-of-concept and
translatability of target engagement in humans. Especially when combined
with upcoming preclinical or translational PK/PD modeling and simulation
(M&s) techniques,!® mechanistic biomarkers can in this way contribute
to early ‘go/no-go’ development decisions and thereby help improve R&D
productivity in the development of NDD DMTs.

Another challenge for the development of DMTs for NDDs is that our current
disease understanding or hypotheses may be wrong, and that even when bio-
markers demonstrate target engagement in humans there may be no clinical
disease-modifying effects of the compound.2 However, in this case it is essen-
tial that target engagement was demonstrated in the early phase trials, as this
would point towards limited clinical relevance of the targeted pathway as a
whole, rather than possiblyjust alack of effect of the specific compound itself.

The usefulness of biomarkers must also not be overestimated. Early phase
clinical trials may be of too short a duration to demonstrate an effect on
disease progression biomarkers and therefore alack of effect on a pathophys-
iological response marker in early phase trials does not necessarily mean that
there can be no long-term clinical effect. Another caveat to be aware of is that
treating a biomarker may not treat the disease, as has become clear in the de-
velopment of anti-amyloid therapies. While anti-amyloid antibodies, BACE
inhibitors, and y-secretase inhibitors all demonstrated target engagement in
early phase trials, they all subsequently failed to demonstrate clinical effect in
later stage trials.2%0 This could potentially indicate that targeting amyloid
may after all not contribute to disease modification in Alzheimer’s disease, or
that amyloid ﬁ-targeting therapies need to be administered in amuch earlier
disease state for which we currently still lack robust diagnostic biomarkers.

Moreover, as no single one biomarker to date has been demonstrated to
be indicative of NDD disease progression, it is recommended to use multiple
response biomarkers when available to establish a pattern or fingerprint of
treatment effects,?0:202 contributing to the overall persuasiveness of proof-
of-concept for a disease-modifying effect.
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Finally, it should be kept in mind that developing a robust biomarker strategy
can be a very lengthy and time-consuming process, and this process should
therefore already be initiated well in advance of the first-in-human studies.
This requires a strong collaborative effort between the preclinical scientists
and the clinical development team to ensure a seamless integration of the
preclinical and early-stage clinical biomarker strategies,?*> which in the end
might prove to be the most critical parameter for success in early stage NDD
DMT development.

ROADMAP FOR MECHANISTIC, DATA-RICH EARLY
PHASE CLINICAL PHARMACOLOGY STUDIES

Over the past decade the toolbox for early phase clinical development for
NDDs has expanded significantly, which will hopefully help bring the first
DMTSs to patients in the decade to come. In AD (79%) and PD (71%) pharma-
codynamic biomarkers by now have a well-established role in early clinical
development, but in for example ALS (52%) and PSP (25%) there is still room
for significant improvement (Table 2). In Figure 2 we therefore propose a
best-practice roadmap for mechanistic, data-rich early phase clinical phar-
macology studies for disease-modifying therapies in neurodegenerative
disorders. Even if modifying the course of NDDs could ultimately prove to
require a multi-drug approach, it will remain essential to clearly demonstrate
pathway engagement of each individual drug component to get to rational
multi-drug treatment regimens.

CONCLUSION

As our understanding of NDDs is improving, there is a rise in potentially
disease-modifying treatments being brought to the clinic. Further increasing
the rational use of mechanistic biomarkers in early phase trials for these
(targeted) therapies can increase R&D productivity with a quick win / fast fail
approach in an area that has seen a nearly 100% failure rate to date.
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Table1 Biomarker categories and examples of use in NND DMT drug development
(adapted from Cummings and Amur et al).39:45

Biomarker category Use in drug development Examples from NND DMT drug
development
Response Pharmacodynamic biomarker as csF total amyloid-p and fragments
indicator of intended drug activity in response to amyloid-p antibody
-+ Proximal (molecular target treatments
occupancy and activation) Braak staging with TAU PET as a
- Distal ([patho]physiological surrogate biomarker for clinical
response) AD (though no validated surrogate
Efficacy response marker as a biomarkers are available yet for NDDs)
surrogate for a clinical endpoint
Diagnostic Patient selection GBA1 gene mutation in PD patients
SOD1 gene mutation in ALS patients
Predictive Patient stratification TAU PET to identify AD patients more
Trial enrichment via inclusion criteria likely to respond to anti-TAU therapies
Prognostic Patient stratification Percentage of weight loss at baseline
Trial enrichment with patients likely for life expectancy and disease
to have disease progression in ALS patients
Safety Detect AEs and off-target drug MRI for structural changes (including
responses tumor or syrinx formation) within the
brain after stem cell transplantation
for ALS
44 MECHANISTIC EARLY PHASE CLINICAL PHARMACOLOGY STUDIES WITH DISEASE-MODIFYING DRUGS
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Figure1 Percentage of early clinical phase reporting the use of different categories
of pharmacodynamic biomarkers and clinical outcomes. Thirty-one trials (26 %)
reported the use of target occupancy biomarkers and forty-eight trials (40%) reported
the use of a target activation biomarkers. Sixty-five trials included at least 1 proximal
(mechanistic) biomarker (target occupancy and/or activation). Twenty-eight trials (23%)
reported the use of physiological response biomarkers. Thirty-two trials used patho-
physiological response biomarkers, which comes down to 33% of all early phase NDD
DMT trials (98) that were performed in patients. Forty-seven trials (39%) reported the
use of at least 1 distal biomarker. In total 89 of 121 trials reported at least one pharmaco-
dynamic biomarker and seventy-three trials reported clinical outcomes, which comes
down to 74% of all early phase NDD DMT trials (98) that were performed in patients.

0% 10% 20% 30% 40% 50% 60% 70% 80%

Target activation 40% (48/121)
21 roximal iomarker - Y s (/121
Physiological response 23% (28/121)

Pathophysiological response _ 33% (32/98)
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Figure S2 Study selection overview. Flow diagram of studies’ screening and selection

for this review.

717 records
identified through
database searching
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within citations
of primary records

725 records assessed for
eligibility based on abstracts

121 early phase
NDD DMT studies
included in review
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604 articles excluded:
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© 48 not DMT
11 long-term outcomes
1interim outcomes
5 post-hoc analysis
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2 bridging studies
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