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Abstract. Simulations suggest that the strong phase ob-
ject approximation of dynamical scattering may allow ex-
tracting crystallographic phase information from single 2D
electron diffraction patterns of 3D protein crystals using
probabilitistic procedures. Unlike other phasing methods,
the procedure does not require any additional knowledge –
like real space images, atomicity, non-crystallographic
symmetry, the presence or location of disordered solvent
or the availability of a support with a known structure. In
specific cases, the availability of precession electron dif-
fraction data can further improve the phases.

Introduction

When protein crystals fail to grow to a size sufficient for
X-ray crystallography, electron diffraction may be a viable
alternative (Georgieva et al., 2007). The reason why elec-
tron diffraction is a more attractive option for very small
crystals than X-ray diffraction, is that for each elastically
diffracted quantum, electrons on average deposit less en-
ergy in the sample than X-rays (Henderson, 1995). How-
ever, the issue has been raised that for crystals of proteins
that are more than just a few unit cells in thickness, dy-
namic scattering may prevent structure solution (e.g. Glae-
ser and Downing, 1993).

Dynamical diffraction occurs when electrons scatter
elastically more than once in the sample. This effect has
been modelled in the multi-slice approach in the Cowley-
Moodie formulation of dynamical diffraction theory
(Cowley & Moodie, 1957). The regime for dynamical
scattering from bacteriorhodopsin 2D crystals was indi-
cated by Glaeser & Ceska (1989): differences between
Friedel pairs caused by dynamic scattering were clearly
observed when 20 kV electron diffraction patterns were
collected; however, they were not observed in 100 kV pat-
terns. For 3D protein crystals, which are considerably
thicker than 2D protein crystals, differences between Frie-

del mates were anticipated even at high accelerating vol-
tage (e.g. Glaeser and Downing, 1993)1 and are indeed
also observed experimentally (e.g. Jiang et al., 2009).

A brief summary of electron diffraction is given here,
mainly serving to define some terms that are used through-
out the paper. An incoming, coherent electron plane wave
passes through a crystalline sample that has a three dimen-
sional scattering potential Vð~xx ; zÞ, where ~xx is a 2D real
space vector in the plane of the electron wave and z repre-
sents the third dimension in the direction of the beam. The
wavelength of the electrons is slightly compressed in areas
with a higher potential and an exit wave emerges that can be
described by a 2D complex exit wave function wð~xxÞ. The
exit wave phase shift of wð~xxÞ is proportional to the projected
potential of the sample at the position defined by ~xx . In
photon optics this shifting of the exit wave phases in the
absence of absorption, is known as refraction. If absorption
occurs, the exit wave amplitude jwð~xxÞj is also affected,
again proportional to the projected potential of the sample
experienced by the electron. Off-axial diffraction occurs, but
at high electron energies and moderate resolution, this angu-
lar scattering can safely be ignored, leading to the so-called
“strong phase object approximation” (Schiff, 1952; Spence,
2003; Glaeser et al., 2007), see also Fig. 1. In Appendix I it
is shown that the strong phase object approximation is prac-
tically equivalent to the multi-slice approach of dynamical
electron scattering for high energy electrons at resolutions
typical of protein crystals. When off-axial scattering can be
ignored, the exit electron plane wave wð~xxÞ is therefore deter-
mined by the projected potential of the sample
(r?ð~xxÞ ¼

Ð
Vð~xx ; zÞ @z):

wð~xxÞ ¼ c e�qr?ð~xxÞ ð1Þ
In this equation, the factor c is a scale factor proportional
to the electron dose. The imaginary term of the exponen-
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1 However, the Friedel pair differences were overestimated in
Glaeser and Downing (1993), since their calculations assumed a zero
scattering potential for the disordered solvent and lipid parts of the
crystal (which on average occupy 50% of the unit cell in protein
crystals), resulting in a substantial overestimation of the phase shift of
electrons that traveled through ordered protein, compared to electrons
that traversed the disordered parts of the crystal.



tial complex factor ðq ¼ qr þ iqiÞ defines the phase shift

qi ¼
e�

�h�

� �
. The real term qr corrects for absorption and

inelastic scattering. Replacing the complex part of the ex-
ponential of lemma (1) by its logarithm (the first term of its
Taylor expansion), will lead to the weak phase approxima-
tion, which assumes single electron scattering (e.g. Spence,
2003, Glaeser et al., 2009). This is a good approximation,
provided the variation in r?ð~xxÞ is sufficiently small. In
electron diffraction theory, the weak phase approximation
is the counterpart of kinematic X-ray diffraction.

In the discussion below, the weak phase approximation
is not assumed. Instead, the exit wave function defined in
lemma (1) is assumed, which results from axial dynamical
scattering. Off-axial dynamical scatter is ignored. In this
approximation, the dynamic nature of the forward scatter
is determined by the projected potential of the sample.
Ignoring off-axial scattering and only assuming axial dy-
namical scattering has led to successful analyses of radia-
tion hard crystalline material using the column approach
(e.g. Van Dyck and De Beek, 1996), and it is a worth-
while approximation for protein crystals too (see also Ap-
pendix I).

Note that although the exit wave function as defined in
(1) is complex, at a constant instrument parameter q, it is
determined by a single, real valued function: the projected
potential r?ð~xxÞ. As a result, the complex value of the exit
wave function wð~xxÞ is confined to a logarithmic spiral in
the complex plane. The scale of this complex plane spiral
is determined by qi and its pitch is determined by qr,
which are uniform for a given sample and microscope set-
ting. The phasing procedure that is proposed here makes

use of this strong constraint that limits the values of wð~xxÞ.
This restraint allows extracting crystallographic phase in-
formation from diffraction patterns. Below it is referred to
as the ‘spiral constraint’.

Especially for crystalline samples, the most extreme
contrast is generated in diffraction mode. In diffraction
mode, the lens system of the electron microscope does not
generate a projection image of the exit wave function, but
instead generates a diffraction pattern of wð~xxÞ with intensi-
ties Ið~hhÞ that are discrete if the sample is periodic (Fig. 1).
At low scattering angles these intensities are determined
by the Fourier transform of wð~xxÞ, both in the weak and
the strong phase object approximation. At higher scatter-
ing angles, parallax has to be taken into account, which is
essentially described by the curvature of the Ewald sphere.
For resolutions up to 2 �A at electron energies between
100 keV to 300 keV (with relativistic electron wavelengths
varying between lr � 0:035 �A and lr � 0:015 �A, respec-
tively), the curvature of the Ewald sphere can be ignored.
Resolutions up to 2 �A can be achieved for 3D protein
crystals (Georgieva et al., 2007). If we ignore the curva-
ture of the Ewald sphere, the structure factors Fð~hhÞ of the
exit wave function wð~xxÞ are defined by a Fourier trans-
form2:

Fð~hh Þ ¼
Ð1
�1

wð~xxÞ e�2ip~xx � ~hh @~xx ¼ =ðwð~xxÞÞ ð2Þ

Since the number of data points in Fð~hhÞ is limited, the
relationship between the structure factors and the para-
meters describing the electrostatic potential is usually de-
scribed by the discrete equivalent of (2), summing ~xx (in
fractional coordinates) over the unit cell and ignoring a
constant scale factor N3:

Fð~hmhmÞ ¼
P
n

c e�qr?ð~xnxnÞ e�2ip~xnxn � ~hmhm ð4Þ

The diffracted intensities Ið~hmhmÞ that are measured by the
detector, are determined by the norms of Fð~hmhmÞ (note that

Fð~hmhmÞ is the complex conjugate of Fð~hmhmÞ):

Ið~hmhmÞ ¼ Fð~hmhmÞ Fð~hmhmÞ ð5Þ
Only the intensities can be measured, so reconstruction of
the projected potential r?ð~xxÞ requires knowledge of the
crystallographic phases of Fð~hmhmÞ. In general, it is not pos-
sible to infer these crystallographic phases from the mea-
sured diffraction data Ið~hmhmÞ in the absence of additional
knowledge if the Fourier transform of Fð~hmhmÞ is a real-val-
ued function. For instance, in the case of kinematic data,
where the Fourier transform of Fkinð~hmhmÞ is real-valued,
Fkinð~hmhmÞ and Fkinð�~hmhmÞ are not independent, but strictly
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Fig. 1. The strong phase object approximation assumes the wave-
length of elastically interacting electrons to be compressed when pas-
sing through more electron dense parts of the sample. The shift in
phase that results, is proportional to the projected potential of the
sample and converts a uniform incoming plane wave into an exit
plane wave that has non-uniform phases and no amplitude contrast (if
there is no absorption). The lens system of the electron microscope
diffracts the exit plane wave into a diffraction pattern in which the
Friedel pairs have different intensities if the exit wave is non-centro-
symmetric (this asymmetry follows from the mathematical properties
of the Fourier transform).

2 =ð Þ signifies the forward Fourier transform.
3 For kinematic X-ray data, the equivalent relation is:

Fkinð~hhmÞ ¼
P

n
cr?ð~xxnÞ e�2ip~xxn�~hhm ð3Þ

Note that in the absence of anomalous effects, this is the discrete
Fourier transform of the real-valued real space function cr?ð~xxnÞ,
whereas (4) is the discrete Fourier transform of the complex-valued
real space function c e�qr?ð~xxnÞ, which is complex because q is a com-
plex number.



correlated:

Fkinð~hmhmÞ ¼
P

n
cr?ð~xnxnÞ e�2pi~xnxn � ~hmhm ¼ Fkinð�~hmhmÞ ð6Þ

From (5) and (6) Friedel’s law can be deduced, which
states that the distribution of measured intensities in reci-
procal space is centrosymmetric when the real space den-
sity is real-valued (or has a uniform phase):

Ikinð~hmhmÞ ¼ Ikinð�~hmhmÞ ð7Þ
Friedel’s law reduces the number of independent equations

as expressed in (5) to
N

2
(one for each positive ~hmhm), but

there are still N independent real-valued electrostatic po-
tential parameters (all r?ð~xxÞ). This dashes all hopes for a
solution of the crystallographic phases in the absence of
additional knowledge in the case of kinematic diffraction.
Crystallographic symmetry reduces the number of inde-
pendent (unknown) density parameters. However, this
symmetry is maintained when switching from real to reci-
procal space, so it also reduces by an equal amount the
number measured independent data points and indepen-
dent equations. However, other types of knowledge can
successfully reduce the number of independent parameters
and hence allow phasing. Additional information like
atomicity (at high resolution), non-crystallographic sym-
metry, solvent flatness and (local) structural similarities
will most certainly help in specific cases, but are by no
means universal and may not apply to single diffraction
images (which correspond to projections of structures).
Hence these additional types of information cannot be part
of a general solution of the phase problem.

However, for dynamical electron diffraction the prob-
lem appears to be more tractable than for kinematic dif-
fraction. In order to understand this, one has to consider
that for dynamical scattering, the number of independent
measurements defined by (5) does equal the number of
independent unknown electrostatic potential parameters
(all r?ð~xxÞ). Briefly, in the case of dynamic scattering, if
there are N independent real-valued measurements, corre-
sponding to N equations (all Ið~hmhmÞ), then there are also N
independent real-valued projected electrostatic potential
parameters (all r?ð~xxÞ). The reason is that, in contrast to
kinematical diffraction, Friedel’s law does not apply to dy-
namical electron diffraction, as inspection of (4) reveals:
the Fourier terms of (4) have an imaginary component,
which is not the case in kinematical approximations. For
dynamical diffraction, the number of independent measure-
ments expressed in (5) therefore does match the number
of unknown parameters, kindling the hope for a solution
to the phase problem in the case of dynamical diffraction.
Attempts (some more successful than others) have been
made to use this knowledge for ab initio determination of
small molecule structures (e.g. Spence et al., 1999 and re-
ferences therein), but so far no practical applications have
emerged.

If the terms summed in (5) would be linear and inde-
pendent, there would be a unique solution, even for struc-
tures as large as protein crystals. Although the equations
are independent, they are not linear, so there might be
multiple solutions. In general, solving such a set of non-

linear equations is not straightforward and the usual strat-
egy involves iteratively improving reasonable starting val-
ues. Here, a maximum likelihood approach including a
conjugate gradient minimization is discussed, that recon-
structs phase information from a (very) poor initial esti-
mate.

Methods

Minimization

Several strategies can be envisaged to extract phase infor-
mation from (5). In the absence of additional information,
all these strategies, in one way or another, aim to solve
the set of non-linear equations that result upon substituting
(4) into (5). As a first exploration, a probabilistic approach
is followed here. Assuming a Gaussian error model, mini-
mizing c2 will identify the most probable solutions of the
phases4:

c2 ¼
P
m

ðIoð~hmhmÞ � Ið~hmhmÞÞ2

�2ð~hmhmÞ
ð8Þ

The number of free parameters (exit wave phase shifts de-
fined by r?ð~xxÞ in (4) equals the number of summations in
(8) if just a single diffraction pattern is observed, so there
are no degrees of freedom. If 3D diffraction data are col-
lected, the number of degrees of freedom becomes more
favourable. A positive number of degrees of freedom al-
lows calculating the probability of the model of the elec-
trostatic potential, given the measured diffraction data and
its (inferred) variance, and using an incomplete gamma
function. However, full 3D data collection is not consid-
ered in this study, but the benefit of limited 3D data col-
lection through precessing the sample is investigated (see
below). The partial derivatives of c2 to the projected den-
sity r?ð~xxÞ are given by5:

@c2

@r?ð~xnxnÞ
¼ 4c q e�qr?ð~xnxnÞ =�1 Fð~hmhmÞ

Ioð~hmhmÞ � Ið~hmhmÞ
�2ð~hmhmÞ

 !" #
real

ð9Þ
These partial derivatives define the gradient of c2. This
gradient can be conditioned in orthogonal directions by
dividing it by the second partial derivatives. This curvature
is approximated by6:

@2c2

@r2
?ð~xxÞ

� 4c2qq e�ðqþqÞ r?ð~xnxnÞP
m

Ið~hmhmÞ
�2ð~hmhmÞ

ð10Þ

Dividing (9) by (10) results in the Newton step Nsð~xxÞ:

Nsð~xxÞ ¼
=�1 Fð~hmhmÞ

Ioð~hmhmÞ � Ið~hmhmÞ
�2ð~hmhmÞ

 !

cq e�qr?ð~xnxnÞ
P
m

Ið~hmhmÞ
�2ð~hmhmÞ

2
66664

3
77775

real

ð11Þ
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4 Ioð~hhmÞ is the observed intensity with standard deviation �ð~hhmÞ.
5 =ðÞ�1 signifies the inverse Fourier transform, �qq is the complex

conjugate of q; for a proof of lemma (9) see Appendix II.
6 For a proof of lemma (10), see Appendix III.



If this Newton step is subtracted from any estimate of
r?ð~xxÞ, it would minimize c2 in a single iteration if (8)
was truly quadratic and if there were no correlations be-
tween its terms. Even though this is not the case, taking
Newton steps down the multidimensional gradient is a lo-
gical approach towards minimizing c2. Although it would
be feasible to specifically introduce the correlations be-
tween the terms of (8) by also considering off-diagonal
terms in (10), the matrix operations would quickly become
unwieldy for larger problems. Another reason for ignoring
off-diagonal terms is that the Hessian is diagonally domi-
nant (see Appendix III). Instead, correlations can be taken
into account by adopting a variant of the Polak–Ribière
conjugate gradient minimisation algorithm. At iteration p
of the minimization procedure, the corresponding Newton
step Ns;pð~xpxpÞ can be calculated and the target c2 function
explored in a direction dpð~xxÞ that is essentially orthogonal
to directions explored in earlier iterations7:

dpð~xnxnÞ ¼ bdp�1ð~xnxnÞ � Ns;pð~xnxnÞ ð12Þ
Improved density at iteration p was calculated using the
following equation, where the magnitude of a is itera-
tively reduced by half (starting from unity) until c2 is
smaller than in the previous iteration8:

r?;pð~xnxnÞ ¼ r?;p�1ð~xnxnÞ þ adpð~xnxnÞ ð13Þ

The procedures outlined above were implemented in
Cþþ, using the FFTW3 library (Frigo & Johnson, 2005)
for calculating the Fourier transforms.

Simulating electron precession data

It has been documented that precessing the beam during
the electron diffraction experiment, reduces the observed
dynamic scattering (Vincent & Midgley 1994). It was
therefore investigated whether it is beneficial to include
electron precession data as additional constraints in the
optimization procedure outlined above. Testing this hy-
pothesis required modelling the effect of electron preces-
sion on dynamic electron diffraction patterns. Precession
was simulated by calculating diffraction patterns of the
sample, each tilted by a fixed angle � about an axis within
the plane of wð~xxÞ. The direction of the tilt axis within the
plane of wð~xxÞ is defined by w. Since the sample is peri-
odic in the z-direction, tilting the crystal by a small angle

will result in slightly misaligning the projections of the
stacked unit cells in the direction normal to the tilt axis,
which results in a smearing of the projected electrostatic
potential in this direction. At larger tilt angles (or at high-
er resolution), other periodicities of the crystal would
come into view, corresponding to the next Laue zones in
the reciprocal lattice. In these cases, knowledge of the full
3D structure is required to calculate the projected poten-
tial. This was not what was simulated, however. Instead, a
small angle tilt of a the 3D crystal was simulated by
smearing the projected density in the direction of the tilt
by convoluting the exit wave-function with an anisotropic
2D Gaussian function Bwð~xxÞ defined by9:

Bwð~xnxnÞ ¼ exp � ~xnxn
cos w sin w
�sin w cos w

� �
� ~bb

� �2
 !

ð14Þ

Rather than calculating the full convolution, the Fourier
convolution theorem was applied in order to generate the
projected potential of the tilted sample:

r?;wð~xnxnÞ ¼ =�1ð=ðr?;wð~xnxnÞÞ =ðBwð~xnxnÞÞÞ ð15Þ

After simulating the effect of tilting the crystalline sample
on the projected potential, the exit wave wwð~xnxnÞ of the
tilted crystal was calculated using lemma (4), replacing
r?ð~xnxnÞ by the tilted potential r?;wð~xnxnÞ. The corresponding
structure factors were simulated by calculating the Fourier
transform according to lemma (4), using wwð~xnxnÞ as input.
This result was then used to calculate the tilted crystallo-
graphic diffraction intensities Iwð~hmhmÞ using lemma (5).

In this study the effect of separately collecting a set of
diffraction patterns, each obtained at a different in-plane
rotation axis w was investigated, rather than collecting a
single diffraction pattern, fully integrated over w. In prac-
tice this type of data collection has very recently been
realized for radiation hard crystals (S. Hovmöller, pers.
comm.). With fast, low-noise detectors and by slowing
down the precession rate, this is also within the current
technical capabilities for protein crystals. Using a set of
diffraction patterns, rather than a single diffraction pattern,
marginally complicates the minimization algorithm out-
lined above. Essentially, c2 is accumulated over all angles
w at which diffraction patterns were collected10:

c2 ¼
P
w

P
m

ðIo;wð~hmhmÞ � Iwð~hmhmÞÞ2

�2
wð~hmhmÞ

ð16Þ

Minimizing (16) requires the Newton steps to be accumu-
lated over all angles w.

Generating test data

The strong phase object approximation only considers the
projected electron scattering potential of the sample, not
on the distribution of its potential in z. Hence, only a sin-
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7 In the Polak-Ribière variant of conjugate gradient minimisation,
the scalar b is calculated from previous gradient information:

b ¼ max 0;
Ns; pð~xx Þ � ðNs; pð~xx Þ � Ns; p�1ð~xx ÞÞ

Ns; p�1ð~xx Þ � Ns; p�1ð~xx Þ

� �

In the Fletcher-Reeves variant, the scalar b is given by:

b ¼ Ns; pð~xx Þ � Ns; pð~xx Þ
Ns; p�1ð~xx Þ � Ns; p�1ð~xx Þ

For steepest descent minimisation, b ¼ 0.
8 Note that this implies that there are no elaborate (time consum-

ing) line minimisations in the search direction. As a side effect, it
turned out that there is not much difference in performance between
steepest descent, Polak-Ribière and Fletcher-Reeves algorithms for
overall minimisation, the latter two being marginally faster, but also
having a marginally increased tendency to stop prematurely.

9 In this equation, the vector ~bb defines the width of the Gaussian
in the directions along and normal to the axis defined by w. For all
tests reported in here, ~bb ¼ f0; 0:2g, expressed in pixels.

10 Io;wð~hnhnÞ and �2
wð~hmhmÞ are the observed intensities and intensity

variances of the diffraction pattern collected at an in-plane rotation
axis w.



gle 2D projection of the scattering potential needs to be
considered when evaluating restrictions on the reciprocal
space phases of a single diffraction pattern that are im-
posed by the strong phase approximation.

Random, discrete 2D images of projected electron scat-
tering potential of various sizes and using various random
number seeds were generated and tested. Here only the
results of projection images with a size of 64 by 64 data
points are discussed, but for smaller and larger sizes simi-
lar results were obtained. Each data point of the image
was assigned a random electron scattering potential be-
tween 9 and 10 (arbitrary units). The images were margin-
ally smoothed with an exponential decay filter, to simulate
the high resolution correlations that are present in protein
density due to its secondary structure, and which, for in-
stance, contribute to the well known Wilson distribution of
protein diffraction data. No other restraints, like crystallo-
graphic or non-crystallographic symmetry, solvent flatness,
atomicity, expected histograms or support- or windowing
functions were imposed on the projection images. A typi-
cal example is shown in Fig. 2 and this simulated density
was used for all the tests reported here. Using other simu-
lated densities with similar statistics led to similar conclu-
sions. Initial guesses were generated from the true struc-
ture by filtering it with another, much stronger and more
selective exponential decay function11:

rið~xnxnÞ ¼ =�1 =ðr?ð~xnxnÞÞ exp � j
~hmhmj
j~hhjmax

bi

 ! !
ð17Þ

For those reciprocal points in which the exponent in (17)
was smaller than a specified cut-off value, this exponent
was set to zero. This allowed completely discarding part
of the phase information from the initial guess in a resolu-
tion dependent manner. For all tests reported here, 5000
cycles of minimization were performed, taking approxi-

mately 10 milliseconds per cycle on a normal desktop
computer. For the tests reported, the parameters defining
the relation between wð~xxÞ and r?ð~xxÞ defined in lemma (1)
were set to ðc ¼ 1Þ, ðqr ¼ 0:01Þ and either ðqi ¼ 2pÞ for

full phase scrambling or qi ¼
p

6

� �
for simulating less ex-

treme dynamic scattering. For evaluating the results, corre-
lation coefficients between the true projection structure
and test projection structures were calculated after having
optimized the translational alignment between the true
structure and the test structure.

Results

The spiral constraint minimization procedure outlined
above, iteratively improves an initial estimate of the
phases. It was therefore tested how poor such an initial
estimate can be, yet still allow phase extension. Many
tests were performed in order to identify the limits of the
spiral constraint and a consistent picture emerges that is
illustrated here with some examples. Included in these
tests were various values for qi, including zero, in order to
test whether absorption effects had any significant influ-
ence on the results. This did not appear to be the case.

Most of the tests described here assumed a complete
phase scrambling: the pixels with the highest potential in
r?ð~xnxnÞ would then result in a 2p phase shift in wð~xnxnÞ,
relative to the pixels with the lowest potential. In protein
crystals this is a worst case scenario, as it results in a
complete lack of correlation between Friedel pairs. This is
not what is typically observed in diffraction patterns of 3D
protein nano-crystals (e.g. Georgieva et al., 2009). Tests
with less extreme dynamic scattering tended to give better
results.

For single diffraction patterns, the spiral constraint al-
lows the crystallographic phases to be reconstructed mod-
erately well. An initial guess (shown in Fig. 3a) in which
almost half of the crystallographic phase information had
been discarded, can be improved to a projection image
that essentially captures the high resolution details of the
true structure (Fig. 3b), provided the phases are not fully
scrambled. If the phases are fully scrambled, the result is
somewhat poorer (Fig. 3c). More impressive results are
obtained when using precession data (Fig. 4). A very poor
initial guess, only containing information from a 3% rem-
nant of all the low resolution crystallographic phases
(Fig. 4a) could be improved to a projected density that is
indistinguishable from the true structure (Fig. 4d). In this
particular case, 40 separate diffraction patterns were fed
into the spiral constraint routine, each the result of tilting
about a different axis in the plane of the projection image.
Figure 4b and 4c show examples of the real space pro-
jected potential, from which two of these diffraction pat-
terns were calculated. If only a single, non-tilted diffrac-
tion pattern is used, the result bears only little resemblance
to the true projection structure, indicating that precession
data enhances the phasing procedure outlined above
(Fig. 4e).
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Fig. 2. A simulated projection of a single unit cell in P1 with a ran-
dom structure. The minimum density is 9 arbitrary units, the maxi-
mum density is 10 arbitrary units.

11 j~hmhmj is the length of ~hmhm in reciprocal pixels; j~hhjmax is the max-
imum length of ~hh in reciprocal pixels (32

ffiffiffi
2
p

in the tests reported
here, as a unit cell of 64 by 64 pixels is assumed); bi is a constant
that was changed for generating different starting models.



Discussion

The results indicate that the spiral constraint is a promis-
ing option for attempting to phase dynamical electron dif-
fraction data, especially in the case of protein diffraction
data. Such data do not tend to extend to high resolution,
whilst also the unit cell is so large that the restraint of
atomicity cannot be imposed, since the potential of so
many atoms partially overlap in projection. Initial tests
suggest that inclusion of electron precession data substan-
tially enhance the procedure, when the diffraction frames
at different tilt angles are collected separately. Currently
this mode of data collection has not been thoroughly ex-
plored, but there are no technical limitations that would
prevent such a data collection strategy.

Phase improvement could also have been implemented
in a Gerchberg–Saxton type algorithm (Gerchberg & Sax-
ton, 1972), as in Fourier cycling (e.g. phase extension by
solvent flattening (Wang, 1985)), or flipping procedures
for reducing model bias (Abrahams, 1997; Oszlanyi &
Suto, 2004). Such implementation would entail alternately
imposing constraints in real space12 and the crystallo-
graphic structure factor amplitude constraints in reciprocal
space, whilst switching between real and reciprocal space
by forward and reverse Fourier transforms. The Fourier
cycling approach does not allow the satisfactory inclusion
of the (inferred) standard deviations that are due to count-
ing statistics or other sources of variability. For including
such information, the c2 statistic as expressed in (8) is a
much more attractive minimisation target. Assuming the

Central Limit Theorem, the c2 statistic even allows esti-
mating the probability of the outcome, using c2 and the
degrees of freedom as inputs to an incomplete gamma-
function. Nevertheless, a Fourier cycling algorithm was
also evaluated in view of its almost trivial implementation.
It turned out not to be very successful, most likely be-
cause it cycles between two unconstrained complex func-
tions, whereas lemma (1) indicates that the complex func-
tion in the real space domain has a very special shape,
being confined to running along a logarithmic spiral – as
pointed out in the introduction. The spiral constraint im-
poses that the real space function runs along this spiral
track, substantially reducing its scope. Indeed, it is pre-
cisely this constraint of wð~xxÞ as a highly restricted func-
tion in the complex domain that allows extracting phase
information in the first place!

If the illuminating beam is structured and especially if
its structure results in sharp features in the real space pro-
jection image, knowledge of its precise shape can be used
for phasing (e.g. Guizar–Sicairos & Fienup, 2008; Martin
& Allen, 2008). The procedure outlined here does not re-
quire such additional information, though the presence of
such information might enhance its success rate.

There are many other sources of additional information
that can be included in the outlined procedure. These in-
clude solvent flatness, histogram information (e.g. Zhang
& Main, 1990), atomicity (at high resolution), non-crystal-
lographic symmetry, heavy atom information, molecular
replacement solutions. Perhaps most relevant in the case
of electron diffraction is to include image information (e.g.
Henderson & Unwin, 1975; Weirich et al., 1996), which
allows phasing of the low resolution crystallographic struc-
ture factors. The spiral constraint method outlined here,
might then be used to extend these phases.
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a� b� c�
Fig. 3. (a) An initial estimate of the projection structure for refinement against a single diffraction pattern, obtained by setting bi to �20 and
using a cut-off for the exponential of 10�5 in (17), resulting in 2129 non-zero structure factors (from a total of 4096). This initial estimate has a

correlation coefficient of 0.16 with the true projection structure and a starting c2 of 105
�

for q ¼
�

0:01;
p

6

��
or 2.9� 107 (for q ¼ ð0:01; 2pÞ).

(b) Projection structure after 5000 rounds of refinement against diffraction data calculated using (5), after setting q ¼ 0:01;
p

6

� �
and c ¼ 1 in (4).

This results in a maximum phase difference in the exit wave of
p

6
. The correlation coefficient with the true projection structure is 0.076, with a

c2 of 4.3. The result indicates the projection structure can be reconstructed well. (c) Result after 5000 rounds of minimisation, but this time
setting q ¼ ð0:01; 2pÞ, resulting in complete phase scrambling and a much stronger simulated dynamical scattering effect. The correlation coeffi-
cient with the true projection structure is 0.14, with a c2 of 2550, indicating poor reconstruction of the phases.

12 Such constraints would minimally include the absence of am-
plitude contrast, or a strict correlation between the phase and the am-
plitude contrast as defined in (8).



If it becomes possible to collect full 3D electron dif-
fraction data sets of single protein nano-crystals, addi-
tional sources of crystallographic phase information can be
tapped. This would be the ultimate expansion of minimis-
ing (16), and the assumption of a small precession angle
should be abandoned. In this case Iwð~hmhmÞ would have to
be calculated differently, assuming the full 3D density13:

IWð~hmhmÞ ¼ =ðc exp ð�q
Ð

Vðð~xx ; zÞWÞ @zÞÞ

The advantage of such 3D diffraction data is that substan-
tially more mutually independent data can be gathered
than in the 2D approach. This should allow phasing the
crystallographic structure factors using the spiral constraint
from very poor initial estimates and might even allow ab
initio phasing.

Appendix I: The strong phase object approximation
as a special case of the multislice approach
to dynamic scattering

In the multislice simulation of dynamical high-energy elec-
tron scattering, the sample is computationally divided into
thin slices (with thickness Dz) that are orthogonal to the
direction of the electron beam. At each slice, the electron
wave function experiences a local phase shift due to the
potential through which it travels. The slices are thin en-
ough to allow this phase shift to be calculated from the
projected atomic potential according to lemma (1); within
a slice, no lateral diffractive spreading of the electron
wave function is assumed. After the electron beam has
passed though a slice, Fresnel diffraction is assumed as
the beam travels onward towards the next slice. This Fres-
nel diffraction is simulated by convoluting the electron
wave function that exits the slice, with the Fresnel propa-
gator function. The phases of this modified electron wave
function are then shifted according to the projected den-
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a� b� c�

d� e�
Fig. 4. An initial estimate of the projection structure for refinement against 40 diffraction patterns from a precession series, obtained by setting bi

to �20 and using a cut-off for the exponential of 0.06 in (17), resulting in 129 non-zero structure factors (from a total of 4096). This initial
estimate has a correlation coefficient of 0.161 with the true projection structure and a starting c2 of 109 against the 40 diffraction patterns. (b) and
(c) show two examples of projected potentials corresponding to two diffraction patterns from the precession series. The angles of the tilt axes are 0

and
p

2
, respectively. The tilt angle corresponding to these projection simulations would be defined by the thickness of the crystal and the coherence

length of the electrons. Within reasonable limits, this can be estimated to be about 0.14 radians for the densities shown, which is well within the
experimental capabilities of current equipment. (d) Result after 5000 rounds of minimisation against all 40 patterns from the precession series,
setting q ¼ ð0:01; 2pÞ, resulting in complete phase scrambling. The correlation coefficient with the true projection structure is 0.003 with a c2 of
2.3, indicating excellent, full reconstruction of the phases. (e) Result after 5000 rounds of minimisation starting with the guess depicted in (a)
against a single, non-tilted diffraction pattern, whilst setting q ¼ ð0:01; 2pÞ. The correlation coefficient with the true projection structure is 0.205
with a c2 of 3.7� 103, indicating failure to reconstruct phases.

13 Rather than a single rotation angle w defining the tilt axis of
crystalline sample as in (16), a rotation matrix W would be required
to calculate all possible diffraction patterns.



sity of the next slice, followed by another convolution
with the Fresnel propagator function. The procedure is re-
peated until the electron wave has passed through all the
slices of the sample.

Following the notation in (Kirkland, 1998), this can be
formulated as a recursive function14:

wð~xx ; zþ DzÞ ¼ pð~xx ;DzÞ � ½tð~xx ; zÞ wð~xx ; zÞ� ð18Þ

The recursive function starts with wð~xx ; 0Þ being a plane
wave. The transmission functions tð~xx; zÞ of the recursive
multislice equation are defined analogously to (1) as:

tð~xx ; zÞ ¼ c exp ð�qrDzð~xx ; zÞÞ ð19Þ

The projected potential rDzð~xx ; zÞ is integrated between the
planes at the slice boundaries:

rDzð~xx ; zÞ ¼
ÐzþDz

z
Vð~xx ; zÞ @z ð20Þ

The Fresnel propagator pð~xx ;DzÞ that determines the off-
axial diffraction is defined as:

pð~xx ;DzÞ ¼ � i

l Dz
exp ip

j~xxj2

l Dz

 !
ð21Þ

At given microscope settings, the Fresnel propagator
pð~xx ;DzÞ is a complex function with a constant modulus or
amplitude: jpð~xx ;DzÞj ¼ ðl DzÞ�1. It is rotationally symme-
trical, is purely complex at the origin and its argument
(phase) varies with jxj2, the squared distance from the ori-
gin.

In practice, the convolutions of the recursive multislice
function (18) are calculated assuming a discrete real space
potential function rDzð~xx ; zÞ, requiring the Fresnel propaga-
tor (or its Fourier transform) to also be turned into a dis-
crete function. The mathematical properties of this propa-
gator function dictate that this discretization needs to be
done with great care. At larger distances from the origin,
the argument of pð~xx ;DzÞ is highly critically dependent on
the variable jxj2, and can go through many cycles between
adjacent spatial sampling intervals. In this light, it would
clearly be a bad idea to use sampling for calculating the
value of pð~xx ;DzÞ at discrete points using lemma (21). Far
from the origin, even a shift in the spatial parameter that
is much smaller than the experimental accuracy or compu-
tational significance, would result in a completely different
argument of pð~xx ;DzÞ, which would lead to unpredictable
results. Instead it is much better to discretize pð~xx ;DzÞ by
locally integrating this function around the discrete spatial
sampling points.

At what spatial resolutions is this local average of
pð~xx ;DzÞ no longer significant for the convolution? The
integrals are not analytical, but a good estimate of the ex-
tent of the locally smeared pð~xx ;DzÞ can be made. At

j~xxj2

l Dz
¼ 2

 !
, the Fresnel propagator will have gone fully

round the complex circle, compared to its value at the
origin. Clearly, this sampling of pð~xx ;DzÞ is already far too
course. At 100 kV (l � 0:035 �A) and a slice thickness Dz
of 2 �A (corresponding to a typical resolution of protein
crystals), the Fresnel propagator will already have made a
full revolution at (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 0:035:2
p

¼ 0:37 �A). This is signifi-
cantly smaller than a spatial sampling interval justified by
the typical resolution of protein crystals.

We can conclude that if we sample the potential of a
typical protein crystal at spatial intervals that are war-
ranted by its resolution, both in x and y (the plane of the
slice) and in the direction of the beam, the dampened
Fresnel propagator (which must be used for the multislice
calculations), is practically zero everywhere, except at the
origin, where it is ðl DzÞ�1. This being the case, the con-
volutions of (18) become trivial multiplications with a
constant, reducing the multislice equation to the strong
phase object approximation given by lemma (1).

Appendix II: Proof of Eq. (9)

First it is assumed that all the density parameters defined
by r?ð~xnxnÞ are uncorrelated over ~xx , which implies:

@r?ð~xnxnÞ
@r?ð~xixiÞ

¼ 0 8i 6¼ n

This independency is an extreme assumption, being a
worst-case for minimisation. However, it does allow an

important simplification when calculating
@Fð~hmhmÞ
@r?ð~xnxnÞ

and

@Fð~hmhmÞ
@r?ð~xnxnÞ

from (4):

@Fð~hmhmÞ
@r?ð~xnxnÞ

¼
P
n

@ðc e�qr?ð~xnxnÞÞ
@r?ð~xnxnÞ

e�2pi~xnxn � ~hmhm

¼ �qc e�qr?ð~xnxnÞ e�2pi~xnxn � ~hmhm ð22Þ

@Fð~hmhmÞ
@r?ð~xnxnÞ

¼ �qc e�qr?ð~xnxnÞ e2pi~xnxn � ~hmhm ¼ @Fð~hmhmÞ
@r?ð~xnxnÞ

 !
ð23Þ

These equations are substituted into
@Ið~hmhmÞ
@r?ð~xnxnÞ

, which

results after by applying the product rule to (5):

@Ið~hmhmÞ
@r?ð~xixiÞ

¼ @Fð~hmhmÞ
@r?ð~xnxnÞ

Fð~hmhmÞ þ
@Fð~hmhmÞ
@r?ð~xnxnÞ

Fð~hmhmÞ

¼ 2
@Fð~hmhmÞ
@r?ð~xnxnÞ

 !
Fð~hmhmÞ

2
4

3
5

real

¼ �2c½q e�qr?ð~xnxnÞ e2pi~xnxn � ~hmhm Fð~hmhmÞ�real ð24Þ
Applying the chain rule to (8) results in:

@c2

@r?ð~xnxnÞ
¼ 2

P
m

@Ið~hmhmÞ
@r?ð~xnxnÞ

Ioð~hmhmÞ � Ið~hmhmÞ
�2ð~hmhmÞ

ð25Þ
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14 The symbol ‘�’ is the convolution operator. The multislice
equation shown here, omits an additive truncation error term that re-
sults from combining the strong phase approximation with the propa-
gator function and that is a function of Dz2 rsð~xx ; zÞ.



Substituting (24) into (25) results in:

@c2

@r?ð~xnxnÞ

¼ 4c
P
m
½q e�qr?ð~xnxnÞ e2pi~xnxn � ~hmhm Fð~hmhmÞ�real

Ioð~hmhmÞ � Ið~hmhmÞ
�2ð~hmhmÞ

¼ 4c q e�qr?ð~xnxnÞP
m

Fð~hmhmÞ
Ioð~hmhmÞ � Ið~hmhmÞ

�2ð~hmhmÞ
e2pi~xnxn � ~hmhm

" #
real

Appendix III: proof of Eq. (10)

The second derivates of (25) are:

@c2

@r?ð~xixiÞ @r?ð~xjxjÞ
¼ 2

P
m

@Ið~hmhmÞ
@r?ð~xixiÞ

@Ið~hmhmÞ
@r?ð~xjxjÞ

1

�2ð~hmhmÞ

þ 2
P
m

@2Ið~hmhmÞ
@r2
?ð~xnxnÞ

Ioð~hmhmÞ � Ið~hmhmÞ
�2ð~hmhmÞ

ð26Þ
The second summation term can safely be ignored if we
assume Ioð~hmhmÞ and Ið~hmhmÞ to be uncorrelated, since in this
case the summation

P
m
ðIoð~hmhmÞ � Ið~hmhmÞÞ will cancel to

zero. Substituting with (24) gives:

@c2

@r?ð~xixiÞ@r?ð~xjxjÞ
� 2

P
m

@Ið~hmhmÞ
@r?ð~xixiÞ

@Ið~hmhmÞ
@r?ð~xjxjÞ

1

�2ð~hmhmÞ

� 2
P
m
ðq e�qr?ð~xixiÞ Fð~hmhmÞ e�2pi~xixi � ~hmhm

þ q e�qr?ð~xixiÞ Fð~hmhmÞ e2pi~xixi � ~hmhmÞ

� ðq e�qr?ð~xjxjÞ Fð~hmhmÞ e�2pi~xjxj � ~hmhm

þ q e�qr?ð~xjxjÞ Fð~hmhmÞ e2pi~xjxj � ~hmhmÞ 1

�2ð~hmhmÞ

� 2q2c2 P
m

e�qðr?ð~xixiÞþr?ð~xjxjÞÞ Fð~hmhmÞ
2

�2ð~hmhmÞ
e�2pið~xixiþ~xjxjÞ � ~hmhm

þ 2qqc2 P
m

e�qr?ð~xixiÞ�qr?ð~xjxjÞ Ið~hmhmÞ2

�2ð~hmhmÞ
e�2pið~xixi�~xjxjÞ � ~hmhm

þ 2qqc2 P
m

e�qr?ð~xixiÞ�qr?ð~xjxjÞ Ið~hmhmÞ2

�2ð~hmhmÞ
e�2pið~xixi�~xjxjÞ � ~hmhm

þ 2q2c2 P
m

e�qðr?ð~xixiÞþr?ð~xjxjÞÞ Fð~hmhmÞ2

�2ð~hmhmÞ
e�2pið~xixiþ~xjxjÞ � ~hmhm

ð27Þ
All of the four summations are additions of complex num-
bers. Assuming that these complex numbers are uncorre-
lated, that counting statistics apply (in which case
Ið~hmhmÞ ¼ �2ð~hmhmÞ and jF2ð~hmhmÞj ¼ �2ð~hmhmÞ) and that absorp-
tion is negligible ðqr ¼ 0Þ, the central limit theorem im-
plies that the expected value of each of these summations
will be 2qqc2

ffiffiffiffi
N
p

, where N is the number of terms in the
summation. There is an exception, however, when ~xixi ¼ ~xjxj.
In this case, the second and third terms of (27) are sum-

mations of positive real numbers. These diagonal elements
of the Hessian are:

@c2

@r2
?ð~xixiÞ

� 4c2P
m

qq e�ðqþqÞr?ð~xixiÞ Ið~hmhmÞ2

�2ð~hmhmÞ

þ 4c2 P
m

q2 e�2qr?ð~xixiÞ Fð~hmhmÞ2

�2ð~hmhmÞ
e4pi~xixi � ~hmhm

" #
real

ð28Þ
In this case, the expected value of the diagonal terms of
the Hessian is 4qqc2ðN þ

ffiffiffiffi
N
p
Þ. Since N is large, the fol-

lowing approximation of the second partial derivatives is
therefore good enough for conditioning the gradient of c2:

@c2

@r2
?ð~xixiÞ

� 4c2qq e�ðqþqÞ r?ð~xixiÞP
m

Ið~hmhmÞ2

�2ð~hmhmÞ
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