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A B S T R A C T   

Modern direct electron detectors (DEDs) provided a giant leap in the use of cryogenic electron microscopy (cryo- 
EM) to study the structures of macromolecules and complexes thereof. However, the currently available com-
mercial DEDs, all based on the monolithic active pixel sensor, still require relative long exposure times and their 
best results have only been obtained at 300 keV. There is a need for pixelated electron counting detectors that 
can be operated at a broader range of energies, at higher throughput and higher dynamic range. Hybrid Pixel 
Detectors (HPDs) of the Medipix family were reported to be unsuitable for cryo-EM at energies above 80 keV as 
those electrons would affect too many pixels. Here we show that the Timepix3, part of the Medipix family, can be 
used for cryo-EM applications at higher energies. We tested Timepix3 detectors on a 200 keV FEI Tecnai Arctica 
microscope and a 300 keV FEI Tecnai G2 Polara microscope. A correction method was developed to correct for 
per-pixel differences in output. Timepix3 data were simulated for individual electron events using the package 
Geant4Medipix. Global statistical characteristics of the simulated detector response were in good agreement 
with experimental results. A convolutional neural network (CNN) was trained using the simulated data to predict 
the incident position of the electron within a pixel cluster. After training, the CNN predicted, on average, 
0.50 pixel and 0.68 pixel from the incident electron position for 200 keV and 300 keV electrons respectively. The 
CNN improved the MTF of experimental data at half Nyquist from 0.39 to 0.70 at 200 keV, and from 0.06 to 0.65 
at 300 keV respectively. We illustrate that the useful dose-lifetime of a protein can be measured within a 1 
second exposure using Timepix3.   

1. Introduction 

Cryogenic electron microscopy (cryo-EM) of biological samples 
depends on the recording of a small number of incident electrons that 
can be used to form an image before the sample is destroyed by ra-
diation damage. Therefore the detector plays a more important role for 
these samples than for less or non-radiation sensitive samples. The 
emergence of direct electron detectors in the form of the monolithic 
active pixel sensors (MAPS) has been a breakthrough in cryo-EM (re-
viewed in [1]). Combined with advances in processing and software 
algorithms, the direct electron detector has enabled structural biologists 
to reveal macromolecular structures at near-atomic resolution using 

cryo-EM (reviewed in [2,3]). 
One of the key performance indicators used for a detector in cryo- 

EM is its modulation transfer function (MTF) [4,5]. The MTF measures 
the transfer of contrast as function of spatial frequency and is thereby a 
direct measure of the spatial resolution of a detector. An ideal detector 
has MTF of unity at all frequencies, however, due to a detectors finite 
pixel size, it decreases with increasing spatial frequency. A second, 
often used, performance indicator is the Detective Quantum Efficiency 
(DQE), which gives the ratio between the squared signal to noise of the 
outgoing signal and the squared signal to noise of the incoming signal  
[6,7]. The detectors ability to maintain signal and not add noise is 
especially important for experiments where the available signal is 
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limited by radiation damage to the sample. 
The MAPS technology already existed but considerable improve-

ment for cryo-EM was achieved by back-thinning the sensor to, even-
tually, less than 30 µm thickness. The effect of back-thinning is the 
reduced chance of an electron scattering back into the sensor layer and 
depositing its energy in pixels adjacent to the point of impact. This back 
scattering will degrade the MTF performance of a detector [8]. With the 
current generation of MAPS detector (Thermo Fisher Falcon3 [9]1, 
Gatan K3 and Direct Electron DE-64) the limit of back-thinning has 
been reached (Guerrini, personal communication). 

Combined with back-thinning, a further enhancement was the in-
troduction of electron counting mode in which every electron is loca-
lised and given an equal weight [11]. A number of different algorithms 
for event localisation have been published [12,13]. For the current 
range of MAPS detectors, these algorithms require a sufficiently low 
electron flux to prevent the signal from adjacent incident electrons from 
overlapping with each other within one frame. Low electron fluxes 
provide multiple downsides; (a) The lengthy exposure times, up to one 
minute or more for Falcon3 detectors, compromises the total 
throughput during a Single Particle Analysis (SPA) study. Sample drift 
is very significant during long exposures and needs to be corrected for. 
(b) These detectors are unsuitable for diffraction experiments, which 
would wreck the counting algorithm and might even damage the de-
tector by radiation [14]. (c) At the onset of the exposure of a pristine 
biological sample, one would expect to be able to observe the highest 
resolution features of such sample. However, in practice, the high re-
solution information of the early frames within a recording are down 
weighted or even removed as they are disturbed by factors such as 
beam induced movements [15–17]. These fast movements cannot be 
accurately corrected for from the data from the current DEDs. Details of 
the specific algorithms used by commercial MAPS detectors have not 
been released, but accurate event localisation is still seen as a bottle-
neck [1]. 

An alternative approach to back-thinning of the detector is to fully 
absorb the electron and to obtain as much information about it as 
possible, thereby optimising the ability to computationally localise the 
point of impact. Hybrid pixel detectors (HPD) allow this alternative 
approach and can have a much higher readout speed. HPDs are char-
acterised by having their application-specific integrated circuit (ASIC) 
separate from the sensor layer. The sensor layer consists of a pixelated 
piece of semiconductor with individual bump bonds connecting it to the 
readout electronics chip. Such detector has recently been used to collect 
preliminary SPA data at 100 keV [18,19]. The Medipix family of HPDs 
have a relatively large pixel size of 55 µm when compared to MAPS 
detectors, but this allows for more per-pixel electronics. In the Medipix 
HPDs, each pixel has its own signal threshold and counter and this gives 
it a noise-free readout and high dynamic range (reviewed in [20]). 
These properties have made them very appropriate sensors for electron 
diffraction and STEM [21–24]. Any electron moving through silicon 
with an energy over 80 keV will spread well beyond the 55 µm pixel 
pitch. It was shown that by increasing the signal threshold far beyond 
the noise edge of the Medipix such that each electron will be recorded 
in one single pixel, a near perfect MTF could be restored [25]. However, 
in that case some electrons remain undetected and this reduces the 
detectors DQE. To overcome the problem of the electron affecting 
multiple pixels, Mir et al. employed the Medipix3RX equipped with a 
charge sharing mode (CSM) that effectively combines the charge of a 
particle in four adjoining pixels to one pixel [26,27]. It accomplishes 
this by having additional logic in the analog front-end of the ASIC. They 
also showed that the Medipix3RX using CSM for 80 keV and 120 keV 
can maximise the MTF without leaving electrons undetected [28]. 
Above 120 keV the charge is spread beyond the four pixels used by the 

CSM and the MTF still degrades. Therefore, at those energies, more 
information about the primary electron track is required to localise the 
point of impact accurately. 

The Timepix3 is currently the latest generation of the Medipix HPD 
family [29]. This ASIC is capable of simultaneously measuring the time 
that a signal is over the comparator threshold (Time over Threshold; 
ToT) and the timing of when the signal crosses the comparator 
threshold (Time of Arrival; ToA). The ToT effectively gives a measure 
for the amount of energy deposited in a pixel. The ToA accuracy is 
determined by the ASIC’s fast ToA clock which can achieve a time 
binning of 1.5625 ns (640 MHz). Any 200 keV incident electron will 
travel most of a 300 µm thick silicon sensor layer at a velocity higher 
than 50% light speed and thus at much shorter time scales than 
1.5625 ns. However, in passing, the incident electron will create elec-
tron hole pairs (E-H pairs) in the sensor. These charge carriers will drift 
towards the electrodes under influence of the bias voltage and will have 
a drift time well over 1.5625 ns. Drift velocity for holes in silicon are in 
the order of 106 cm s-1 [30]. Therefore in a fully depleted 300 µm si-
licon sensor layer drift times for holes can range up to 30 ns. The ToA 
information thus effectively gives a z-position where the incident 
electron created a E-H pair in the sensor layer [31]. This principle was 
used by Bergmann et al. for the 3D reconstruction of a 120 GeV high 
energy pion particles and accompanying 2 to 3 MeV delta rays [32]. 

Here, we show that the ToT and ToA information can be used to 
reconstruct the point of impact of the electron in the sensor layer at 
energies typically used in cryo-EM (200–300 keV). Instead of at-
tempting to directly reconstruct the point of impact using the ToT and 
ToA information, we present an ad hoc prediction model using a con-
volutional neural network (CNN). Neural networks have become an 
increasingly popular machine learning method over recent years and 
CNNs are well suited for extracting 2D feature information from 
training input. Neural networks have been used in other detector ap-
plications for reconstructing the impact position of a particle hitting a 
sensor layer. At the ATLAS experiment of the Large Hadron Collider (at 
CERN) neural networks are being employed to separate and determine 
the direction of high energy particles hitting their detector planes [33]. 
For Positron Emission Tomography (PET) neural networks have been 
employed to determine the incident position of a 512 keV X-ray hitting 
a scintillating crystal block [34,35]. A notable difference between both 
the high energy particles (> TeV) detected in the ATLAS experiment 
and the visible light photons detected from a scintillating crystal in the 
case of PET, is that electrons will undergo multiple scattering events 
while travelling the sensor layer. This trajectory of the electron through 
multiple pixels, while erratic, follows rules and patterns. The neural 
network is, by training, recognising the pattern and able to deduct the 
trajectory and thereby the incident position of the electron. 

For training a neural network, usually a ground-truth dataset is 
used; here, this would mean a dataset with known incident positions 
and their corresponding detector output. Within an electron microscope 
the electron beam cannot easily be limited to a sub-pixel area of the 
detector and therefore the incident position is not known with enough 
accuracy for training purposes. Instead, in here, we have chosen to 
generate training data by means of simulation. After training the neural 
network, the obtained prediction model can be applied to experimental 
data to improve the MTF of the Timepix3. We implement a method for 
correcting the non-uniform ToT response of the Timepix3. Finally, we 
illustrate that we are able to image, in electron counting mode, the 
useful dose-lifetime of a protein within one second. 

2. Installation of detector 

The Timepix3 detector chip assembly, camera housing, SPIDR 
readout electronics board and control software were provided by 
Amsterdam Scientific Instruments (ASI) [23]. The vacuum camera 
housing provided temperature control through water cooling, X-ray 
shielding and a mechanical aluminium shutter positioned 5 mm above 

1 During the review process of this manuscript the Falcon4 was announced  
[10]. 
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the sensor layer. The Timepix3 was assembled in a quad configuration 
giving a total of 512 by 512 pixels. In this configuration we reached a 
maximum readout speed of 110 Mhit/s. The SPIDR readout board de-
veloped by the Dutch National Institute for Subatomic Physics (Nikhef) 
provided a 10 Gbit/s fibre optic connection to the detector PC [36]. The 
detector control and SPIDR readout software SoPhy were developed by 
ASI. Using SoPhy, a detector equalisation method was performed where 

the global threshold and the per pixel thresholds were set close to the 
electronic noise edge. The detector was mounted under a FEI Tecnai 
Arctica operating at 200 keV at Maastricht University (Fig. 1), the 
Netherlands and under a FEI Tecnai G2 Polara operating at 300 keV at 
C-CINA, Basel, Switzerland. The sensor consisted of 300 µm and 500 µm 
of silicon in Maastricht and Basel, respectively. The sensor was con-
nected as a single slab, via bump bonds, to the quad configured ASIC. 
The thickness was chosen to optimally absorb the respective 200 keV 
and 300 keV incident electrons within the sensor. Whereas the camera 
housing is identical in both setups, the flight tubes have different 
lengths, resulting in a post-magnification of 2.06 and 1.28 relative to 
the nominal magnification for Maastricht and Basel, respectively. The 
field of view of the images collected on the Polara was restricted in a 
circular fashion by the dimensions of the flight tube. Full dose radiation 
shielding checks were performed successfully on both sites. 

3. Monte Carlo simulations 

Monte Carlo simulations provided us with the training data of an 
incident electron hitting a known position on the sensor layer and its 
potential detector responses. The Geant4 framework has been widely 
applied for Monte Carlo simulations of particles passing through matter  
[37]. Using the Geant4 framework, the simulation tool Geant4Medipix 
has been developed to simulate a number of chips from the Medipix 
family, including the Timepix3 [38,39]. We used it to simulate the 

Fig. 1. Timepix3 camera installed at a FEI Tecnai Arctica (200 keV, cryo-EM) in 
Maastricht, the Netherlands. 

Fig. 2. 2D histogram of the number of pixels contributing to an event (cluster size) versus the ToT sum (sum of ToT values of a cluster) at 200 keV (a and c) and 
300 keV (b and d) using simulated (a and b) or experimental data (c and d). The red box in (c) and (d) denotes the boundaries used for filtering electrons from other 
detected events (Section 6). On average, after filtering, 4.9 pixels are contributing to a 200 keV electron event and 8.9 pixels are contributing to a 300 keV electron 
event. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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passing of electrons through the sensor, the drifting of the E-H pairs to 
the electrodes as well as the readout electronics response. The 
Geant4Medipix code was adapted to be multi-threaded and provide 
HDF5 output such that a large number (n=50000) of events can be 
simulated efficiently. Simulations were performed for a 300 µm or 500 
µm thick silicon slab with 20x20 pixels at a 55 µm pitch. The simulated 
readout electronics were configured to match the properties of the 
Timepix3. Each simulation event consisted of one electron accelerated 
at 200 keV or 300 keV hitting a random position within one pixel of the 
20x20 matrix. This ensured an even distribution of incident positions 
within one pixel. For each simulation event multiple pixels are con-
tributing and this led to a variable number of hits in the output. Each hit 
contained information of both ToT and ToA. The lowest ToA value of a 
cluster was set to 0 where after the ΔToA of each hit in the cluster was 
calculated. The cluster output of each event was normalised to a 10x10 
matrix with each cluster starting at the 0,0 position. This last step en-
sured that the simulated cluster output could be compared to the output 
obtained from the detector. 

The output of the simulations were globally validated with experi-
mental detector output using a variety of histograms. For each cluster, 
either experimental or simulated, the sum of ToT values was calculated. 
The simulations were scaled to the experimental data by adjusting the 
simulated Krummenacher current such that the most abundant summed 
ToT values would coincide [40]. The simulator includes a parameter to 
describe electronic noise contributions from the analogue front end. 
This parameter required minor tuning to further optimise the con-
currence between simulation and experiment. 

Fig. 2 shows a 2D histogram of the number of hits in a cluster versus 
the summation of the ToT values of all hits within such a cluster. The 
2D histogram for simulated data (Fig. 2a) is in good agreement with 
experimental data (Fig. 2b). The main difference occurs in the lower left 
corner of the histograms, where the experimental data shows more 
counts. The histogram bin at [1,1] can be attributed to X-rays generated 
in the electron microscope which were not simulated. There is a tail 
visible between the [1,1] bin and the peak of the histogram in both the 
experimental and simulated data which can be attributed to back-
scattered electrons from the sensor. These electrons are not fully ab-
sorbed and leave smaller clusters behind with less energy deposited. 
They account for about 10% of the total number of electrons. The ex-
perimental data also contained data points such as stray cosmic rays, 
edge events, edge pixels, masked or unresponsive pixels, and coincident 
electrons, which were not included in the simulation. 

4. Correcting for non-uniform pixel response in Time over 
Threshold 

Every pixel of the Timepix3 has its own correlation between the 
amount of energy deposited and the time the signal is over the 
threshold (ToT). A transmission electron microscope provides a very 
monochromatic beam of less than 1 keV spread. This means that every 
pixel should have a similar distribution of the ToT signal. By using a flat 
field of the electron beam and sampling a large number of events it is 
possible to correct for non-uniformities in the silicon sensor layer and 
the pixel electronics. These inhomogeneities can be attributed to local 
differences in the lithography process. Using a minimum of 10 Ghit of 
flat field data, a per-pixel correction was calculated. For this correction, 
an average response was calculated with roughly 50% of the active 
pixels. Pixels with a response too far from the average were discarded. 
This average response was then transformed into a normalised cumu-
lative curve. This curve was used as an ideal reference cumulative 
distribution curve and was fitted with multiple 3th-order polynomial. 
For every pixel the cumulative distribution curve was calculated and by 
means of histogram matching a new ToT distribution was created for 
each of these pixels by being matched to the conclusive 3th-order 
polynomial curves (Fig. 3a and b). This created a per-pixel correction 
look-up table (512x512x1024) of a measured ToT value to a corrected 

ToT value (Fig. 3c). 

5. Methods for incident electron event localisation 

Six different algorithms for electron localisation were tested: 
random position (as a control), centroid, highest ToT, highest ToA, CNN 
trained on ToT (CNN-ToT) and CNN trained on ToT and ToA (CNN-ToT- 
ToA). The random method selects a random sub-pixel position within 
the pixels forming a cluster. The centroid method calculates the geo-
metrical center of a cluster where each hit has been weighted according 
to their ToT values. The highest ToT and highest ToA method selects 
the centre of the pixel with the highest ToT and ToA value respectively 
or randomly between them in case of a draw. 

Training of the CNN was performed using 50,000 independently 
simulated events on either just the ToT channel or on both the ToT and 
ToA channel. The CNN used the simulated 10x10 matrix as input and 
consists of a separable 2D convolutional layer followed by three times a 
drop-out/dense layer to gradually reduce to an x and y output. It used 
the Adam optimiser and ReLU activation method [41,42]. It was trained 
for 200 epochs towards convergence. The CNN has been implemented 
in Tensorflow 1.4 using Python3 and Keras 2.1. 

The event localisation methods were tested using 50,000 events for 
both 200 keV electrons and 300 keV electrons and calculated the mean 
distance, the root mean square deviation (RMSD) as well as the median 
between the simulated incident positions and the predicted electron 
positions. Fig. 4 shows three example prediction plots and Fig. 5 shows 
the prediction accuracies for each method. The CNN-ToT-ToA method 
predicts the point of impact of the incident electrons within 0.50 (0.62, 
0.41) and 0.68 (0.92, 0.50) pixel on average (RMSD, median) at 
200 keV and 300 keV respectively. 

6. Processing pipeline to form an image from raw data 

The Timepix3 ASIC delivered, in data driven mode, a stream of hits, 
each hit containing positional, ToT and ToA information. Several steps 
were needed to process these raw hits into a final image or movie 
(Fig. 6). First, the ToT values within the raw data stream were corrected 
using the obtained ToT lookup table (Section 4). Subsequently, we 
searched for clusters of hits which are formed by a single incident 
electron. The DBSCAN clustering algorithm [43] was chosen experi-
mentally for its speed in handling clusters of various sizes. The eu-
clidean distance between all hits was calculated and the DBSCAN 
parameter ϵ (eps), specifying the radius of a neighbourhood with re-
spect to another hit, was set to 1. Clusters were formed by hits which 
were directly adjacent to each other in time and space: adjacent hits 
were selected that occur within a time interval of 50 ToA clock ticks 
( ≈  78 ns). The 50 ToA clicks were scaled to a value of 1, to match the 
euclidean distance of 1. Then, clusters were filtered based on their 
cluster size and cluster ToT sum. These values were between 2 and 10 
for the cluster size and between 200 and 400 for cluster ToT sum for 
200 keV and 4 and 14 for the cluster size and between 350 and 525 for 
the cluster ToT sum for 300 keV (Fig. 2c and d). The lowest ToA value 
of a cluster is set to 0 and thereby the ΔToA of each hit in the cluster 
was calculated. A sub-pixel position was determined for each individual 
cluster by the selected event localisation algorithms. Finally, these 
obtained positions were placed within the complete image frame. To 
compensate for a skewed sub-pixel distribution the edges of the sub- 
pixels within the original pixel were adjusted such that the distribution 
became uniform. These adjustments were at most 5% (Fig. 7). 

The processing pipeline, including event localisation, was written in 
Python3 making use of the Numpy, Scipy, Keras and Tensorflow li-
braries [44]. Processing of 70 MHit (typical 1 second exposure at an 
electron flux of 40 e /Å2/s at 200 keV) still lacks significantly behind 
with the exposure time. Data conversion currently takes about 2 min, 
the event localisation step about 3 min (Intel Xeon E5-2680, 20 cores, 
NVIDIA GeForce GTX 1080 Ti). The current cluster finding algorithm 
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needs further optimisation. 
Fig. 6b and c show the unprocessed hit image and the processed 

CNN-ToT event localised image of a protein sample recorded in Maas-
tricht. A truncated mutant of the Mycobacterium tuberculosis protein 
EspB was expressed in Escherichia coli, affinity purified using a nickel- 
column on a His6-tag, SEC purified, concentrated to 1.3 mg/ml, pre-
pared on R1.2/1.3 Quantifoil grids 300 Au mesh (www.quantifoil.com), 

using the Vitrobot (Blot force 5, blot time 4). Images were recorded 
over 2 seconds, using a pixel magnification of 1.24 Ångström and an 
electron flux of 40 e /Å2/s. At 200 keV each electron hits on average 
4.9 pixels (Fig. 2c). This electron flux corresponded to 51.3 Mhit/s at 
the detector and thus well within the achieved maximum of 110 Mhit/s. 

Fig. 3. The percentile deviation from 
the average for the uncorrected (blue) 
and the corrected (orange) cumulative 
response for 200 keV (a) and 300 keV 
(b). In (c) an example spatial distribu-
tion of ToT correction values is shown 
(at 200 keV and ToT = 100) . In (d) 
the normalised occurrence of clusters 
versus the cluster ToT sum is plotted 
for both corrected and uncorrected 
data at 200 keV and 300 keV. From the 
FWHM of the corrected curves an en-
ergy resolution of 13.6 keV and 
23.5 keV for 200 keV and 300 keV re-
spectively has been determined. (For 
interpretation of the references to 
colour in this figure legend, the reader 
is referred to the web version of this 
article.) 

Fig. 4. Three examples of simulated detector output at 300 keV. The simulated incident position is shown as red square and all event localisation methods are circles 
in their respective colour. Light blue pixels did not receive a hit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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7. Validation of prediction model 

A visual way to asses the performance of various event localisation 
methods is to analyse the image of an EM grid [45]. We obtained low 
magnification images to ensure sample drift is minimal. The resulting 
images had high contrast with well-defined spots in their power spectra 
that extends beyond the Nyquist frequency of the detector. Fig. 8 shows 

the image taken of UltrAuFoil 200 mesh grids at 225x magnification. To 
quantify the differences between an event localisation method and the 
original image, spots at increasing spatial resolution were chosen. From 
the ratio of the normalised amplitudes the MTF enhancement could be 
obtained (Fig. 8 and supplemental Figure S1 and S2) [12]. 

The MTF of the detector with and without event localisation 
methods applied was measured using the knife edge method. The 

Fig. 5. Distances (in pixels) between incident position and the determined position of different localisation methods for 200 keV (a) and 300 keV (b). Boxes 
represents Q1-Q3. Orange line is median. 

Fig. 6. Schematic overview of steps taken during processing (a). Images of a truncated mutant of the Mycobacterium tuberculosis EspB protein without (b) and with (c) 
event localisation (CNN-ToT-ToA). 
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benefit of this method is that it measures the MTF over all spatial fre-
quencies [8]. Knife edge images were obtained using the aluminium 
shutter positioned approximately one centimetre above the detector. 
The shutter was positioned to partially cover the detector. MTFs were 
calculated from the images formed by hits alone as well as from images 
reconstructed by the event localisation method (Fig. 9) [46]. DQE is a 
less relevant measure here as, among others, the noise spectrum cannot 
be accurately determined due to replacement of events in counting 
algorithms [9]. The MTFs shown in Fig. 9 validates the benefits of the 
presented event localisation methods described in here. 

8. Discussion, conclusion and outlook 

Every electron counts when using cryo-EM for the imaging of ra-
diation sensitive samples. Accurate event localisation is seen as a bot-
tleneck for optimal cryo-EM detector performance [1]. In here, we have 

shown a new method for event localisation using the Timepix3, with its 
unique ToT and ToA channels. 

Like most pixelated detectors, the Timepix3 detector displays a non- 
uniform pixel response that needs to be corrected (Fig. 3). The histo-
gram normalisation described in Section 4 corrects for ToT in-
homogeneities. Upon correction, we can measure the energy of each 
incident electron with a resolution of 13.6 and 23.5 keV for 200 keV 
and 300 keV respectively (Fig. 3d). This allows us to distinguish pri-
mary electrons from other events such as cosmic and X-rays (Fig. 2). 
The energy resolving power may have some applications for thick 
specimens, albeit its resolution remains far above the energy resolutions 
used in energy-filtered EM or electron energy loss spectroscopy. 

Unfortunately, there was still a systematic pattern left after event- 
localisation using the CNN trained on both ToT and ToA information 
(Figure S3), which can be attributed to inhomogeneities in the ΔToA 
data. Our data suggests that there is a systematic difference in ToA 

Fig. 7. Image of UltrAuFoil 200 mesh grids at 225x magnification. Recorded at 200 keV and with event localisation (CNN-ToT). Images are shown at super-resolution 
(1032 pixels) without (a) and with sub-pixel correction (b). The insets show a 2D histogram of the normalised quad sub-pixel distribution. 

Fig. 8. Images of UltrAuFoil 200 mesh 
grids at 225x magnification at 200 keV 
(a,b and c) or 300 keV (d, e and f) with 
their corresponding power spectra. 
Images are shown with (b and c) and 
without (a and d) event localisation 
(CNN-ToT-ToA). The rectangle box in 
the power spectrum is shown zoomed 
in on the bottom left of the image. The 
MTF enhancement (c and f) was ob-
tained from the normalised ratio of 
amplitudes measured with and without 
event localisation of the randomly 
chosen spots which are encircled in the 
images. In Supplemental Figure S1 and 
S2 all other described event localisa-
tion methods are included for 200 keV 
and 300 keV data respectively. 
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response between pixels in the ASIC. The observed pattern hints at the 
source being the super pixel structure of the Timepix3 ASIC. Others 
have also reported seemingly similar systematic patterns and reported 
solutions in the form of extra calibration steps [47]. Such calibration 
steps would have required us to unmount the detector from the mi-
croscope. Future alternative calibration steps may overcome that re-
quirement. 

We could simulate the response of the Timepix3 detector using 
Monte Carlo simulations (Section 3). This enabled us to numerically 
evaluate the performance of the detector at different energies, for dif-
ferent sensor layers and thickness. The simulations confirmed that 
primary electrons would excite multiple pixels of a silicon sensor layer 
at energies > 80 keV, calling for accurate sub-pixel localisation 
schemes. The availability of the simulated electron events allowed us to 
use these as training data for machine learning methods. 

We show that selecting the centre of a pixel with the highest ToT 
value (the pixel which received the most energy), provides the least 
accurate point-of-impact location, both at 200 keV and 300 keV (Figs. 4 
and 7). This may be due to the electron losing most of its energy in the 
last part of its trajectory [7]. The highest-ToT method may thus, in 
many cases, be selecting the last pixel of an electron trajectory. Simi-
larly, the centroid method is therefore selecting a pixel away from the 
point-of-impact. 

The ToA channel provides unique data about the relative timing of 
the signal that each pixel within a cluster received. The ΔToA value of a 
pixel proved to be a very effective measure for the z-position of the 
trajectory of the incident electron (Section 1). A high ΔToA value re-
flects a pixel where the trajectory of the incident electron was high in 
the sensor layer. Such a high ΔToA value is therefore likely to be close 
to the incident electron position as the electrons travel mainly down-
wards. 

Machine learning methods can improve on the point-of-impact lo-
calisation accuracy compared to traditional methods. We arrived at 
using a convolutional neural network (CNN) due to its suitability for 
handling multi-channel 2D features and ease of use in the available 
software frameworks. A CNN, capable of exploiting both ToA and ToT 
channels simultaneously, gave the best point-of-impact localisation 
results. Surprisingly, the CNN trained on only ToT information is, at 
both 200 keV and 300 keV, performing nearly as well as the model 
trained on both ToT and ToA information. 

Analysing the sub-pixel assignments of the event localisation 

methods showed a non-uniform distribution (Fig. 7). For both the ex-
perimental and the simulated data, an even distribution of electrons 
across each pixel was used. However, the different event localisation 
methods do not provide an even distribution as outcome. While it 
cannot be excluded that some of the non-uniform distribution origi-
nates from the event localisation model itself, it is striking that others 
have also reported non-uniform sub-pixel distributions using the 
Timepix3 [48]. This could hint at a possible problem with the ASIC. We 
applied a pragmatic approach to correct for the observed non-uniform 
sub-pixel assignments (Section 6). 

We validated our CNN event localisation scheme by analysing high 
contrast images of UltrAuFoil grids and determining the MTF using the 
knife edge method (Section 7, Figs. 8 and 9). Both CNN models show 
significant improvements. We compared the obtained MTF curves with 
the theoretical MTF values using Eq. 10 and Eq. 14 of [7]. By calcu-
lating the point spread function from the data underlying Fig. 5 and 
fitting Eq. 10 to find λ, theoretical MTF curves (Eq. 14) were obtained 
that were better than the observed ones (supplemental Figure S4). 
Future work on providing improved neural network training data and 
better accounting for residual ΔToA inhomogeneities, could minimise 
these differences. 

Our results indicate that hybrid pixel detectors can be used as a 
counting direct electron detector for cryo-EM at 200 keV or 300 keV in 
imaging or diffraction mode. Using the Timepix3 we were able to image 
the entire useful dose lifetime (40 e /Å2) of a protein within a single 
second exposure. This provides great prospects for single particle ap-
plications. Being able to work with a higher flux mitigates sample-stage 
drift issues and enhances throughput. As the Timepix3 in data driven 
mode does not record frames, but rather a stream of events, alternative 
data collection and storage schemes could be envisioned. A synchro-
nised sample-beam movement with a continuous streaming of localised 
electrons could accelerate cryo-EM by at least an order of magnitude  
[49]. This will require several improvements. These include the hand-
ling of the area in between the adjacent quadrants of the chip, the effect 
of masked pixels and the systematic pattern in the ΔToA data. The tile- 
ability of the Timepix4 should address the limited field of view of the 
Timepix3, whereas the maximum count rate per detector area and ToA 
time resolution should also be improved for the Timepix4. As of this 
writing, the Timepix4 is being developed, just like numerous alternative 
detector developments. These could all make huge impact in getting 
better data faster, both in imaging and diffraction mode. 

We envision that the use of neural networks could also help in 

Fig. 9. The modulation transfer function (MTF) at 200 keV (a) and 300 keV (b) as obtained from knife edge measurements. The shading represents the 3-sigma 
confidence interval. The super-resolution (SR) data is shown at the recorded spatial frequency. 
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improving the point-of-impact localisation procedures implemented for 
current MAPS detectors. Electrons make erratic tracks through the 
sensor layer which can be trained to a neural network when an accurate 
simulator is available. Alternatively, the neural network could be 
trained with experimental data provided a small sub-pixel beam could 
be directed to a known position within a pixel of such a detector. The 
success of a CNN trained on ToT alone makes us optimistic that the gap 
between actual and ideal detectors can be further narrowed in the years 
to come. 
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