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When 300 kV cryo-EM images at Scherzer focus are acquired from �100 nm

thick three-dimensional protein nanocrystals using a Falcon 2 direct electron

detector, Fourier transformation can reveal the crystalline lattice to surprisingly

high resolutions, even though the images themselves seem to be devoid of any

contrast. Here, it is reported how this lattice information can be enhanced by

means of a wave finder in combination with Wiener-type maximum-likelihood

filtering. This procedure paves the way towards full three-dimensional structure

determination at high resolution for protein crystals.

1. Introduction

Previously, we demonstrated that electron diffraction of

protein three-dimensional nanocrystals could yield 2 Å reso-

lution data (Nederlof, van Genderen et al., 2013). Recently,

we collected hundreds of high-resolution electron images at

Scherzer focus from cryopreserved, randomly orientated

three-dimensional nanocrystals of our test protein lysozyme

(Nederlof, Li et al., 2013). Although appearing to be devoid of

signal, Fourier transformation revealed crystalline order to a

resolution of 4 Å or better in about 50% of cases. Crystals with

a thickness of about 100 nm (corresponding to 15–30 unit

cells) yielded data with the best quality. The resolution of the

Bragg spots in the Fourier transform of the electron micro-

graph is the lower threshold of the crystalline order. If the

crystal occupies only part of the electron image, the remainder

of the image contributes nothing but noise. If the crystal

is cracked, twinned, warped or contains mosaic blocks, the

resolution of the Fourier transform is reduced because the unit

cells do not align perfectly. In two-dimensional crystallo-

graphy the resolution is enhanced by computationally

‘unbending’ the crystal (Gil et al., 2006; Henderson et al., 1990;

Kühlbrandt & Wang, 1991). Firstly, the two-dimensional lattice

repeat is identified and the frequencies that do not conform to

this repeat are filtered from the Fourier transform of the image

by setting them to zero, thus enhancing the translationally

repeating features of the image. This is equivalent to averaging

the image with shifted versions of itself, whereby the magni-

tude and direction of the shifts are determined by the lattice

parameters. This procedure will therefore average out noise

that does not have translational symmetry, as it is not corre-

lated to the signal. The image of the crystal is then subdivided

into patches, which are subsequently aligned and averaged

(Zeng et al., 2012; Stahlberg et al., 2001; Scherer et al., 2014).

One of the main differences between two-dimensional

crystals and three-dimensional crystals is that projection images
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of randomly oriented three-dimensional crystals usually show

moiré patterns, rather than regular two-dimensional lattices.

Hence, it is not possible in the general case to extract a

repeating unit: the moiré is not usually defined as a rational

sum of the other two independent lattice vectors. The moiré

pattern (a potentially nonrepeating pattern that results from

the superposition of multiple lattices) exists because of the

three independent lattice parameters characterizing the three-

dimensional crystal. Owing to Ewald sphere curvature, beam

divergence and/or crystal mosaicity, repeats corresponding to

each of these three translational symmetries can co-exist in

one and the same image. If one of the translation operators

cannot be expressed as an integer sum of the other two, a

moiré pattern results. While this pattern does not directly

show the crystal lattice, it does contain information on this

lattice.

Here, we discuss a procedure for enhancing the moiré

lattice information in the analysis of three-dimensional

nanocrystals that does not require knowledge of the lattice

parameters or orientation of the crystal, and even allows the

the lattices to be enhanced if multiple crystals are present in

the image.

A high-resolution image of a (three-dimensional) crystal

will have translational symmetry. Although this symmetry may

not be obvious because of noise, the amplitudes of a Fourier

transformation of the image will reveal the reciprocal lattice.

One way of enhancing the translational symmetry in the image

therefore is to identify the parameters that describe the

reciprocal lattice, then to zero all reciprocal pixels that do not

belong to this lattice and reverse the Fourier transform as in

two-dimensional crystallography. However, this approach has

a mathematical flaw, which can be understood intuitively as

follows. Suppose a high background and a weak Bragg spot in

the Fourier transform of the image. If all reciprocal pixels are

set to zero but the Bragg pixels are kept at their original value,

then this will lead to an incorrect estimation of the relative

strength of this particular Bragg spot. This is equivalent to

overweighting a weak Bragg spot relative to a stronger Bragg

spot that is higher above the background. The Wiener filter

addresses this problem in a maximum-likelihood approach.

An improvement over existing methods is obtained by

assuming that the power spectrum of the noise and the lattice

signal are uncorrelated. This is equivalent to establishing a

Wiener filter that optimally enhances the lattice. Our

approach does not need knowledge of the crystal lattice

constants nor of the crystal orientation or location to obtain a

good result.

Assume a structure factor of the Fourier transform of the

image: Fm(y). It is the sum of the structure factor of the crystal

lattice Fl(y) and the structure factor of the noise Fn(y),

FmðyÞ ¼ FlðyÞ þ FnðyÞ: ð1Þ

Neither Fl(y) nor Fn(y) are known. We can only assume that

they are uncorrelated. Their expected absolute phase differ-

ence will therefore be �/2; hence, together with Fm(y) they

define a right-angled triangle,

jFmðyÞj
2
¼ jhFlðyÞij

2
þ jhFnðyÞij

2: ð2Þ

We can infer |hFn(y)|i2 from the power spectrum of the

image and use the result to calculate the expected amplitude

of Fl(y). However, we also require its phase, and the only

reasonable estimate is the phase of Fm(y). Therefore, we need

to project hFl(y)i onto Fm(y) to obtain the best estimate of the

expected lattice structure factor Fl,b(y) (Fig. 1).

Geometry implies the following equality, which is equiva-

lent to an optimal (Wiener) filter (Press et al., 2007),

Fl;bðyÞ ¼ FmðyÞ
jhFlðyÞij

2

jFmðyÞj
2
: ð3Þ

Substituting with (1) gives

Fl;bðyÞ ¼ FmðyÞ 1�
jhFnðyÞij

2

jFmðyÞj
2

� �
: ð4Þ

Thus, scaling the structure factors of the original image by

this likelihood will recover the phases of the waves as well as

their amplitudes. This theory leads to a more robust algorithm

as described below.

2. Method

In order to prevent wrap-around artifacts, we padded the

images with pixel values which were set to the average value of

the original image. The amount of padding can be defined by

the user and corresponds to the expected size of the crystalline

domains. The default value (used throughout the paper) is

1/16th of the image size (corresponding to 256 pixels for

Falcon 2 images). The pixels of the Fourier transform Fm(y) of

an electron image I(x) = F
�1
½FmðyÞ� contain complex numbers

(hence they carry phase information). Firstly, we calculate the

radially averaged power spectrum |Fn(|y|)|2 of the image in

order to approximate the power spectrum of the noise,
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Figure 1
The measured structure factor Fm(y) is the sum of the unknown structure
factor corresponding to the lattice signal Fl(y) and the unknown structure
factor corresponding to the noise Fn(y). On average, Fl(y) and Fn(y) are
uncorrelated; hence, the expected absolute phase difference between
them is �/2. We can only infer the absolute values of the expected
structure factors. We cannot infer their phases because there are two
equally valid solutions mirrored over Fm(y). The best estimate for Fl(y) is
denoted by Fl,b(y). It can be calculated by projecting hFl(y)i onto Fm(y).



jFnðjyjÞj
2
¼
R
jFmðjyjfcos � sin �gÞj2 d�: ð5Þ

The radial average (2) is not completely smooth because of

the contributions of the spots at certain spacings. In order to

correct for this, we assumed that the radial average of the

‘noise’ power spectrum is a decreasing function of |y|. Thus, if

Fn(y) increases, this must be caused by the signal of Bragg

spots. In this case, we keep Fn(y) constant until is decreases

below this value. An example of such a radial average is shown

as a linear plot in Fig. 2; this is the result from the image in Fig.

3(a). Then, for each pixel, we calculate its significance s(y) as a

normalized signal-to-noise ratio,

sðyÞ ¼
jFmðyÞj

2
� jFnðjyjÞj

2

jFmðyÞj
2

: ð6Þ

In the absence of noise [s(y) = 1] and when the norm1 of the

signal is equal to the norm of the noise, [s(y) = 0]. Note that

s(y) can be negative owing to fluctuations in the noise level. In

fact, in the absence of signal, fluctuations in the noise level will

cause s(y) = 1 to be negative for half of the reciprocal pixels!

We consider a pixel to contribute significant information about

the lattice when s(y) is higher than a specified cutoff value.

Pixels lower than the cutoff value are then set to zero. As a

default, we used a cutoff value (c = 0.0) for all of the examples

in this paper. Thus, for all examples given, all pixels of the

lattice filter L(y) which had a norm below the radially aver-

aged norm of F(y) were set to zero. The value of the remaining

pixels of the lattice filter L(y) were set to

LðyÞ ¼
sðyÞ � c

1� c
: ð7Þ

This lattice filter L(y) can be still be noisy, especially if the

signal is low, so we included the option of only considering

pixels that are likely to belong to a Bragg spot. The lattice

parameters of the image are usually unknown at this stage of

data analysis. Thus, to identify potential Bragg spots, we used

a method that does not require lattice parameters. Firstly, we

selected 3� 3 clusters of pixels in which each of the pixels had

a norm that is above a specified acceptance level a. We only

allowed pixels to have nonzero values if they are less then a

specified distance r away from any pixels within clusters which

represent spots. This cutoff distance r is proportional to the

reciprocal-space equivalent of the expected size of the crys-

talline domains. All pixels of L(y) that are further away than r

pixels from such a cluster of significant pixels [for which

L(y) > a] were set to zero. As defaults, we used an acceptance

value of a = 0.4 and a Bragg spot radius of r = 4 pixels for all of

the examples in this paper. This distance criterion can be

suppressed by setting a = c.

In addition to the lattice, this procedure also enhances other

repetitive features of the image. Detector artifacts in parti-

cular can be a major source of such spurious features. We

found these artifacts to produce high-resolution features. We

therefore included an option to filter out such artificial signals

by setting L(y) to zero for all |y| > n|y|max. As a default value

we used a Nyquist cutoff of n = 2/3 for all examples in this

paper.

After having constructed the lattice filter L(y) according to

the procedure outlined above, we calculated the filtered image

If(x),

If ðxÞ ¼ F
�1
½LðyÞFðyÞ�: ð8Þ

The nanoprotein crystal images used here as an illustration

of the method were acquired on an FEI Titan Krios electron

microscope at Scherzer focus from crystals with a thickness of

approximately 100 nm. The data were collected using a Falcon

2 FEI camera on 4048 � 4048 pixels with 0.5 s exposure time.

The mean dose of the exposures was 3 to 10 e� Å�2 (for

further details, see Nederlof, Li et al., 2013).

3. Results

Three example images (see Fig. 3) from lysozyme nanocrystals

show the merits of our new algorithm.

The processed images show moiré patterns that are typical

of non-oriented three-dimensional crystals. Owing to trunca-

tion errors, some spurious repeating features will also be

visible in areas of the image where no crystal is present, but

here the amplitudes are much lower than in the crystal. Thus,

the processed images will give a clear indication of where the

crystal might be located. The result of the filter algorithm is

shown in Fig. 3. This information can then be used for further

analysis as described in Nederlof, Li et al. (2013)

If the images are not padded as described in x2, a wrap-

around effect will occur and the information tends to bleed

over the edge of the image into the opposite side of the image.

This can be circumvented by padding the image, but when this

padding is removed after lattice filtering the resulting

discontinuities at the image edges can lead to crosses centred

on the Bragg spots in reciprocal space, which could be unde-

sirable for certain applications. Crosses can be prevented by

choosing not to pad the images, or they can be suppressed by

writing out filtered images without removing their padding

(not shown).
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Figure 2
Plot of the rotational average of Fig. 3(c).

1 The real-valued norm of a complex value is the square of its absolute value:
|a + bi|2 = a2 + b2.



Close inspection of the power spectrum shows that

the spots do not have a uniform shape (Fig. 4). The shapes

of the spots differ when the projection of the crystal contains

separate crystallites. The latter we call mosaicity and it shows

that domains can exist within a crystal and can each have a

slightly different orientation. While this does not change

the metastructure of the lattice, it will disrupt the moiré

pattern and makes interpreting the structure more

difficult. To put a positive twist on this, it also provides

more orientations of the

crystal.

How does our filter behave

when applied to a image

consisting of generated noise with

the same median intensity and

standard deviation as an image

containing a crystal (values have

been obtained from Fig. 3a)? The

result of such a filtering is shown

in Fig. 5. While some weak lattice

structures can be seen, the

amplitude of the wave structures

is only slightly above the median

pixel level. This shows that the

filter is able to discriminate

between an image consisting of

random noise and a low signal-to-

noise ratio image which contains

a crystal lattice.

The algorithm includes the

possibility to set a resolution

cutoff corresponding to a factor

of the Nyquist frequency. While

this is a powerful tool for

removing certain detector arti-

facts or selecting a filter quality,

misuse can introduce artifacts.

Fig. 6 demonstrates the effect of

the lattice filter when using

a sub-optimal Nyquist cutoff. If it

is too low, the high-resolution

spots will be obliterated and

therefore the high-resolution

details of the crystal lattice will be

lost. Choosing a value that is too

high can result in a severe

checkerboard striping and

patterning owing to detector

artifacts2.

The other important filter

parameter is the spot-selection

threshold. If a value is chosen

above the noise level it will lead

to the selection of bogus Bragg

spots. This will introduce spurious

noise in the filtered image.

Another case is when the criteria

for selecting the spots are too stringent and only a few of the

brightest spots remain. In this case the final lattice image
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Figure 3
Images of 100 nm thick three-dimensional protein crystals produced by a Titan Krios 300 kV FEG
transmission EM and captured with a Falcon 2 camera (4096 � 4096 pixels) using an 0.5 s exposure time
and an illumination of 3–10 e� Å�2. Left, original unprocessed images; right, processed images. (a, b)
Lysozyme crystal; (c, d) lysozyme crystal with several ice crystals included (shown in detail); (e, f ) crystal of
a cross-� peptide. Notice that in the cutout of the results after filtering of the middle image (d) we can
distinguish an ice crystal (with a small unit cell and dominant spacings at �3.8 Å at the left side of the
cutout) from the protein crystal (right side of the cutout).

2 The artifacts introduced by a detector have structure-like features and will be
of major influence in the final filtered image, and should be taken into account.
In the case of the Falcon 2 camera used for the showcase sample images, this
can include chip-to-chip fluctuations and read-out gain reference artifacts. The
latter effects are most clearly visible at the Nyquist frequency in the power
spectrum of the image. The Nyquist frequency artifact reveals itself as a bright
line of pixels around the edge of the power spectrum and a checkerboard or
striped patterning over the whole filtered image..



usually shows a one-dimensional or two-dimensional lattice

pattern over the whole image, no longer discriminating

between the crystal and its disordered surroundings.

4. Discussion

In earlier work we reported interactive image processing to

enhance the lattice. Although this produced good results, it

was slow, tedious and required expert knowledge. Here, we

show the mathematical proof of our new approach, captured

in an automatic algorithm that is very fast (half a second for a

4096 � 4096 image on a standard 2014 desktop computer).

The lattice filter is a very powerful tool for selecting and

analyzing extremely low contrast cryo-images of three-

dimensional protein/peptide nanocrystals. It confirms that the

three-dimensional crystals are made up from multiple domains

which are slightly differently oriented. Indeed, the algorithm

can comfortably deal with multiple crystals with very different

orientations, unit cells and/or space groups, as is witnessed in

the middle panel of Fig. 3, which shows that the lattice of an

ice crystal is enhanced just as well as the lattice of a protein

crystal. Since more than two lattice parameters are required

to describe the moiré lattice of a projected three-dimensional

crystal, approaches from two-dimensional crystallography

cannot be applied straightforwardly or without considerable

reprogramming. While one can argue that patches of the

crystal with different orientations should not be back-

transformed together, it is something that can be performed

directly after the filtering process (Nederlof, Li et al., 2013).

Our method does not correct for the contrast-transfer

function (CTF), but since it does not affect the phases of the

projection image, a CTF correction can be performed after

lattice filtering. Although in principle a CTF correction could

precede the lattice filter, it advisable to first perform the

filtering, since this also takes care of background removal. In

the examples that we give here we did not perform any CTF

corrections, as the data were collected at Scherzer focus, where

the first sign reversal of the CTF occurs beyond the resolution

limit of our images.

We propose the new lattice filter as a powerful tool for

processing very noisy images with crystal structure factors
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Figure 6
Results from the same area as in Fig. 3. (a) Image obtained by selecting
only spots at a very low resolution. (b) Including the Nyquist frequency.
The detector artifacts are visible as well as the effects of wrapping effects
in reciprocal space. (c) Low spot-threshold selection; by including spots
that are not Bragg spots more noise is present, but more detail in the
lattice is also visible. (d) Very high spot-selection threshold, thereby
selecting only the strongest spots.

Figure 5
(a) Nonfiltered random-noise image with an intensity and standard
deviation comparable to the image of a crystal in Fig. 3(a). (b) Filtered
random-noise image.

Figure 4
Unique half of the centrosymmetric lattice filter of the lysozyme crystal
image from Fig. 3. The spots that make up the lattice of the real image are
clearly visible. Because of mosaicity and crystal shape, the spots are not
uniform in shape.



(and thus with phase information) hidden within them. The

filter is able to discriminate between noise images and the very

noisy images with very low contrast which contain crystal-like

structures. The lattice filter retains the shape of the spots in

Fourier space and also retains any phase gradients within the

Bragg spots (which determine the domain structure within the

crystal). Thus, it retains all of the significant information from

the Bragg spots. This will open the way to combining the

phases acquired from stationary, two-dimensional images with

intensities of rotation diffraction data taken from the same

type of crystals. In this way, we expect to be able to phase the

diffraction information of protein and peptide crystals.
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