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Abstract
Background and Aims: Non- alcoholic fatty liver disease (NAFLD) is characterized by 
the pathological accumulation of triglycerides in hepatocytes and is associated with 
insulin resistance, atherogenic dyslipidaemia and cardiometabolic diseases. Thus far, 
the extent of metabolic dysregulation associated with hepatic triglyceride accumula-
tion has not been fully addressed. In this study, we aimed to identify metabolites as-
sociated with hepatic triglyceride content (HTGC) and map these associations using 
network analysis.
Methods: To gain insight in the spectrum of metabolites associated with hepatic 
triglyceride accumulation, we performed a comprehensive plasma metabolomics 
screening of 1363 metabolites in apparently healthy middle aged (age 45– 65) indi-
viduals (N = 496) in whom HTGC was measured by proton magnetic resonance spec-
troscopy. An atlas of metabolite– HTGC associations, based on univariate results, was 
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1  |  INTRODUC TION

Non- alcoholic fatty liver disease (NAFLD) is a highly prevalent liver 
condition and a common cause of liver disease. It is estimated that 
NAFLD has a global prevalence of approximately 25% (95% CI: 22– 
28).1,2 NAFLD is considered a metabolic disease and is strongly as-
sociated with cardiovascular disease, insulin resistance (IR), type 2 
diabetes (T2D), obesity, dyslipidaemia and hypertension. NAFLD is 
diagnosed when the accumulation of triglycerides in the liver exceeds 
5%, in people without excessive alcohol intake and alternative causes 
for liver disease, such as hepatitis infection.1 Assessment of triglyc-
eride content in the liver is commonly measured by ultrasonography, 
due to its low coast and wide availability, but quantitative assessment 
is mostly performed using proton magnetic resonance spectroscopy 
(1H- MRS).3 The term NAFLD covers a wide range of liver damage lev-
els, including minor steatosis to major cirrhosis. Triglyceride deposition 
occurs depending on, among other factors, diet and fasting status.4 
Pathological hepatic triglyceride accumulation is the consequence of 
an imbalance between hepatic uptake of endogenous triglycerides 
and fatty acids, hepatic triglyceride secretion, de- novo lipogenesis 
and fatty acid oxidation. Disturbances in these processes are strongly 
associated with IR and may also cause further progression of meta-
bolic diseases such as T2D and NAFLD.4 The development of NAFLD 
as well as the progression to steatosis and cirrhosis varies greatly be-
tween individuals. This is due to the complex and multifactorial patho-
genesis of fatty liver diseases.5 In addition to environmental acquired 
factors,6,7 genetic factors also play an important role.8

Several studies have been performed to gain insight into the 
complex aetiology of NAFLD by applying metabolomics.9 Changes 
in circulating metabolites are thought to reflect the compos-
ite of environmental, acquired and genetic factors of an individ-
ual. Metabolomics can thus provide holistic insight to capture the 
complexity of multi- factorial diseases such as NAFLD.10,11 Current 
high- throughput untargeted metabolomic platforms are capable of 
measuring and mapping over 1000 metabolites from an array of bi-
ological pathways from a single biological sample (e.g. blood, urine 
or saliva). In addition to well- annotated endogenous metabolites, 

created using correlation- based Gaussian graphical model (GGM) and genome scale 
metabolic model network analyses. Pathways associated with the clinical prognosis 
marker fibrosis 4 (FIB- 4) index were tested using a closed global test.
Results: Our analyses revealed that 118 metabolites were univariately associated with 
HTGC (p- value <6.59 × 10−5), including 106 endogenous, 1 xenobiotic and 11 partially 
characterized/uncharacterized metabolites. These associations were mapped to sev-
eral biological pathways including branched amino acids (BCAA), diglycerols, sphingo-
myelin, glucosyl- ceramide and lactosyl- ceramide. We also identified a novel possible 
HTGC- related pathway connecting glutamate, metabolonic lactone sulphate and X- 
15245 using the GGM network. These pathways were confirmed to be associated 
with the FIB- 4 index as well. The full interactive metabolite- HTGC atlas is provided 
online: https://tofaq uih.github.io/Atlas Liver/.
Conclusions: The combined network and pathway analyses indicated extensive as-
sociations between BCAA and the lipids pathways with HTGC and the FIB- 4 index. 
Moreover, we report a novel pathway glutamate- metabolonic lactone sulphate- 
X- 15245 with a potential strong association with HTGC. These findings can aid elu-
cidating HTGC metabolomic profiles and provide insight into novel drug targets for 
fibrosis- related outcomes.

K E Y W O R D S
dysregulation, genetic targets, liver triglyceride content, metabolomics, pathway analysis

Key points

In this study, we aimed to investigate the biological factors 
that contribute to the accumulation of triglycerides in the 
liver, which is associated with non- alcoholic fatty liver dis-
ease. To achieve this, we measured metabolites, which are 
the end products of chemical reactions in the body's me-
tabolism. Our study found 118 metabolites associated with 
higher levels of liver fat. Some of these associations were 
previously unknown and may be useful for future studies 
and drug development. We also provided an interactive 
atlas of networks to aid researchers explore the complex 
relationships between metabolites and liver fat accumula-
tion that we reported in this study.
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both xenobiotic metabolites derived from the diet and medications 
as well as uncharacterized metabolites are reported.12 Although me-
tabolomic analysis has been previously performed in patients with 
NAFLD,13 most studies had limited sample sizes or focused on a spe-
cific subset of metabolites using targeted metabolomics methods.9,14

Here we aimed to elucidate the HTGC metabolomic profile as 
assessed by 1H- MRS, in a middle- aged population (N = 496) using an 
untargeted metabolomics platform (1363 metabolites). We further 
created a comprehensive atlas of HTGC- associated metabolites and 
pathways from our results using two pathway analysis approaches 
that allow flexible and interactive examination of our results. In addi-
tion, we examined the associations using global testing between the 
different pathways with the fibrosis 4 (FIB- 4) index.

2  |  METHODS

2.1  |  Study population

For our present study, we included 599 participants from the 
Netherlands Epidemiology of Obesity (NEO) with available me-
tabolomics data from the general Leiderdorp subpopulation. The 
Leiderdorp subpopulation was included based on postcode and age 
(45– 65 years) only. We excluded 103 participants who did not undergo 
direct assessment of the hepatic triglyceride content (HTGC) by 1H- 
MRS. Therefore, final number of participants included in this study was 
496. The characteristics of the included participants are presented in 
Table 1. Metabolites were measured using the Metabolon™ Discovery 
HD4 platform (Metabolon Inc., Durham, North Carolina, USA). In total, 
1363 serum metabolites were measured of which 840 metabolites 
were from various endogenous pathways (56% lipids, 31% amino acids 
and 13% other), 227 xenobiotic metabolites and 296 metabolites that 
were uncharacterized (unknown chemical structure and biological 
properties). Further details regarding the study design, HTGC assess-
ment procedure and metabolite measurements are described in detail 
in previous works15,16 and in the Supplementary Materials.

The NEO study was approved by the Medical Ethics committee 
of the Leiden University Medical Centre under protocol P08.109. 
The study is also registered at clini caltr ials.gov under number 
NL21981.058.08/P08.109. All participants gave written informed 
consent.15

2.2  |  Multiple linear regression

For the analysis, we used multiple linear regressions to test the asso-
ciations between the metabolites from the untargeted platform with 
the outcome HTGC. We further adjusted for potential confounding 
by including sex, age, total body fat, alcohol intake and lipid- lowering 
medication in the models.

Natural log- transformation was applied to the outcome variable, 
HTGC, as it was heavily skewed. One individual had a measurement 
of 0 units of HTGC and was imputed to half the minimum (0.1) before 

the log- transformation. Missing values in the measured metabo-
lites were imputed using multiple imputation by chained equations 
as described in our previous work.12 Details regarding the analy-
sis, imputation and scaling of the metabolites are described in the 
Supplementary Methods.

In addition, to examine the known sex differences in metabo-
lites, we performed the analysis separately for men and women. 
We further stratified the women subgroup by menopausal status 
to examine the metabolomic profile after menopause. Menopausal 
status was defined as a binary variable based on a questionnaire 
(Supplementary Material) wherein postmenopausal women were 
coded as 1 and premenopausal and perimenopausal women were 
coded as 2. Finally, as sensitivity analysis, we adjusted for HOMA- IR 
to investigate whether the associations of metabolites with HTGC 
were dependent on IR, particularly for those known to be associated 
with IR, that is, amino acids and carbohydrates.

2.3  |  Pathway analysis

Significant metabolites from the main analysis and the sex stratified 
analysis were subsequently analysed with two pathway/network 
analysis methods: Gaussian Graphical Model (GGM) and Genome 
Scale Metabolic Model (GSMM). GGM has been used and described in 
previous studies as a viable approach for the visualization and recon-
struction of biological pathways from correlation data. This method 
is particularly useful for our study and other studies with large dense 
metabolomic datasets from untargeted platforms.10,17,18 In contrast, 
GSMM methods are based on a priori defined and curated pathways 
and have also been used in metabolomic and non- metabolomic stud-
ies.19 In addition, we used an inhouse developed GSMM tool to con-
struct the networks. Both methods are thus complementary in their 
basis, that is, without and with prior pathway knowledge. Full details 
regarding the methodology used to create both networks are avail-
able in the Supplementary Methods. These interactive networks can 
be accessed on https://tofaq uih.github.io/Atlas Liver/.

2.4  |  Global test between pathways and FIB- 4

To further explore the clinical relevance of the biochemical pathways 
associated with HTGC, we performed a global test to assess associa-
tion of reported biochemical pathways with the FIB- 4 index for liver 
fibrosis. The FIB- 4 index is a non- invasive diagnosis tool used in the 
clinic to drive decisions regarding the risk of fibrosis and prioritizing 
appropriate treatment.20 The FIB- 4 index was first calculated for 394 
individuals using the measurements for aspartate transaminase (AST), 
alanine aminotransferase (ALT) and platelet (PLT) count in the formula 
Age (years) × AST(IU/L)/PLT (109/L) × ALT1/2 (IU/L). We used multiple 
imputation using chained equations to impute the FIB- 4 index values 
for an additional 100 individuals with AST and ALT values, but missing 
PLT count measurements. Sex, age, triglyceride concentration, alcohol 
consumption, fat percentage, AST and ALT were used as the imputation 

 14783231, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15575 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [16/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://clinicaltrials.gov
https://tofaquih.github.io/AtlasLiver/


    |  1461FAQUIH et al.

covariates. Two participants did not have measurements for AST, ALT or 
PLT and were not imputed. Therefore, the FIB- 4 index was derived for 
494/496 participants in total. The participants with FIB- 4 values were 
dichotomized into high risk vs low risk of fibrosis progression using the 
standard cut off point 1.45 (Sterling, Lissen et al. 2006). In the unim-
puted dataset, 97 of the 394 participants with the calculated FIB- 4 
index had a FIB- 4 > 1.45. After imputation, 116– 124 participants out of 
494 were had a FIB- 4 index of 1.45 or more in the imputed dataset. 
These imputed datasets were combined for the subsequent global test.

For metabolomics data, the closed global test has been de-
veloped to identify biochemical pathways associated with an 

outcome.21 We exploited this variant of the global test to assess 
the associations of the different metabolite pathway groups with 
the FIB- 4 index. The global test is considered an unbiased method 
for assessing the overall effects of groups of exposures, particularly 
those with weak pathway effects in high- dimensional data.21,22 We 
used the pathways defined in the Metabolon dataset as prior for se-
lecting the metabolite pathway groups. Those pathways were lipids, 
amino acids, carbohydrates, xenobiotics, ‘cofactors and vitamins’, 
nucleotides, energy- related metabolites, peptides, uncharacterized 
and partially characterized molecules. As the partially character-
ized molecules group was small (N = 7), we combined them with 

TA B L E  1  Characteristics of the participants from Leiderdorp with metabolomics and HTGC measurement. Continuous variables are 
represented by mean (SD) unless stated otherwise; dichotomous variables are represented by percentage (%).

Total

Men Women Women Women

All All Postmenopausal Premenopausal

n 496 233 263 159 104

Age (years) 55.8 (6) 55.9 (6.2) 55.6 (5.8) 59.4 (3.8) 49.9 (2.7)

HTGC (mean; median [IQR]) 6.1; 2.74 [1.36, 6.75] 7.5; 4.18 [2.18, 9.74] 4.8; 1.79 [1.08, 4.27] 5.5; 2.09 [1.23, 5.90] 3.8; 1.36 [0.89, 3.17]

HTGC >= 5.56 (%) 153 (30.8) 96 (41.2) 57 (21.7) 43 (27.0) 14 (13.5)

FIB- 4 1.2 (0.4) 1.3 (0.4) 1.2 (0.4) 1.3 (0.3) 1.0 (0.4)

FIB- 4 imputed 1.2 (0.4) 1.3 (0.4) 1.2 (0.4) 1.3 (0.4) 1.0 (0.4)

BMI (kg/m2) 25.9 (4.1) 26.6 (3.4) 25.3 (4.5) 25.5 (4.4) 25.0 (4.7)

Total body fat 30.6 (8.3) 24.5 (5.1) 36.1 (6.5) 35.2 (6.7) 36.6 (6.4)

Aspartate transaminase 
(IU/L)

24.4 (6.6) 25.6 (6.2) 23.2 (6.6) 24.0 (5.9) 22.0 (7.5)

Alanine aminotransferase 
(IU/L)

25.3 (51.4) 28.9 (11.8) 22.2 (9.2) 22.8 (7.7) 21.2 (11.0)

Platelet count (109/L) 236.2 (11.0) 219.1 (47.2) 252.3 (50.2) 251.1 (492) 254.1 (51.8)

Alcohol consumption (g/
day)

14.2 (15.9) 19.5 (19.3) 9.4 (10) 9.7 (9.8) 8.9 (10.3)

Smoking (%)

Never 202 (40.7) 89 (38.2) 113 (43.0) 59 (37.1) 54 (51.9)

Former 237 (47.8) 117 (50.2) 120 (45.6) 81 (50.9) 39 (37.5)

Current 57 (11.5) 27 (11.6) 30 (11.4) 19 (11.9) 11 (10.6)

HOMA1- IR 2.6 (2.4) 2.92 (2.9) 2.2 (1.7) 2.4 (1.7) 2.02 (1.8)

Hypertension (%) 183 (36.9) 96 (41.2) 87 (33.1) 59 (37.1) 28 (26.9)

CVD (%) 21 (4.3) 11 (4.7) 10 (3.8) 8 (5.1) 2 (1.9)

Fasting plasma glucose 
(mmol/L)

5.5 (1.0) 5.63 (1.2) 5.3 (0.9) 5.5 (0.9) 5.09 (0.5)

Serum triglycerides 
(mmol/L)

1.2 (0.8) 1.5 (0.9) 1.0 (0.6) 1.1 (0.7) 0.9 (0.5)

LDL (mmol/L) 3.6 (1.0) 3.6 (0.9) 3.6 (1.0) 3.4 (0.8) 3.4 (0.7)

HDL (mmol/L) 1.6 (0.5) 1.3 (0.3) 1.8 (0.4) 1.8 (0.4) 1.8 (0.4)

Cholesterol (mmol/L) 5.7 (1.1) 5.6 (1.0) 5.8 (1.1) 5.3 (0.8) 5.6 (0.8)

Hypertension medication 
(%)

95 (19.2) 43 (18.5) 52 (19.8) 39 (24.5) 13 (12.5)

Lipid- lowering medication 
(%)

41 (8.3) 26 (11.2) 15 (5.7) 15 (9.4) 0 (0.0)

Abbreviations: CVD, cardiovascular disease; FIB- 4, fibrosis 4 index; HOMA1- IR, homeostatic model assessment index for insulin resistance; HTGC, 
hepatic triglyceride content; IQR, interquartile range.
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uncharacterized group due to their similarity. Similar to the linear 
regression analyses, we adjusted for confounding by including sex, 
age, fat percentage, statin use and alcohol consumption as covari-
ates. Within the global test, familywise error rate is used to control 
for multiple testing within each pathway group tested.21 The full 
methodology is described in detail in previous works.21 The null 
hypothesis was defined as the absence of any associations within 
the pathway group with the FIB- 4 index. If the null hypothesis is 
rejected, we further report the proportion of true discovery in the 
pathway, that is, the number of associations within the pathway 
groups with the FIB- 4 index. For each group, we set the maximum 
number of test iterations to 5000.

3  |  RESULTS

3.1  |  Association analyses of metabolites and 
HTGC

Univariate linear regression analyses were performed to examine 
the associations between the 1365 metabolites and the outcome 
HTGC, adjusting for sex, age, total body fat, alcohol intake and 
lipid- lowering medication. In total, and after considering multiple 
testing correction (p- value <6.59 × 10−5), 118 metabolites were as-
sociated with HTGC, of which 101 were associated with higher 
levels of HTGC. From these metabolites, many were from the li-
pids and amino acid classes, as well as a few from the vitamin, 
nucleotide, carbohydrate classes, uncharacterized metabolites, 
1 partially characterized metabolite and 1 xenobiotic (Table S1). 
Excluding individuals with lipid- lowering medications did not alter 
the results (data not shown).

Additional analyses after stratification for sex and menopausal 
status were performed, which showed complete overlap in the direc-
tions of the effects between men and women, between men above 
and below the age of 60, and women before and after menopause. 
In general, a higher number of associations present and the effect 
estimates were larger in women (particularly post- menopause) com-
pared to men, with 82 and 35 metabolites associated with HTGC, 
respectively (Figure 1). As the direction of the effects was identical 
between men and women for all metabolites (Figure 2), all subse-
quent descriptions and analyses were performed in the full set of 
118 associated metabolites.

3.2  |  Amino acid and carbohydrate metabolism

In total, 37 out of the 264 measured amino acids and peptides were 
associated with HTGC, of which 34 were associated with higher HTGC 
levels— particularly BCAA and their keto forms. The amino acids and 
derivatives with the strongest association were glutamate [β: 2.41 
(95% CI 1.93; 2.9)], 3- methyl- 2- oxovalerate [β: 2.36 (95% CI 1.75; 2.97)], 
isoleucine [β: 2.28 (95% CI 1.75; 2.82)], tyrosine [β: 2.03 (95% CI 1.5; 
2.55)] and lactoylvaline [β: 1.97 (95% CI 1.5; 2.44)] in addition to the 

carbohydrates, glucose [β: 1.84 (95% CI 1.21; 2.47)] and pyruvate [β: 
1.44 (95% CI 0.93; 1.95)]. Sensitivity analyses adjusting for HOMA- IR 
were also performed for the IR- related subgroup of amino acid and 
carbohydrate metabolites (n = 264). Accordingly, 33 metabolites were 
associated with HTGC in this model, of which 32 overlapped with the 
findings in the main model, with the exception of lysine. Moreover, 10 
metabolites, including pyruvate and glucose, were not associated with 
HTGC in the sensitivity analysis. For the overlapping associations be-
tween the two models, the effect of the metabolites on HTGC was 
weaker after adjusting for HOMA- IR. These results are detailed and 
discussed in the Supplementary Materials and Figure S1.

3.3  |  Lipids

Out of the 475 measured lipid- related metabolites, 62 lipid metabo-
lites belonging to 19 lipid subclasses were associated with HTGC, 
including phosphatidylcholines (PCs), phosphatidylethanolamines 
(PEs), phosphatidylinositols (PIs), sphingomyelins, glycerolipids, cor-
ticosteroids, ceramides and dihydroceramides.

Among these lipid metabolites. 52 were associated with higher 
HTGC levels. Some of these strongly associated lipids were as fol-
lows: palmitoyl- oleoyl- glycerol (16:0/18:1) [β: 2.23 (95% CI 1.72; 
2.73)], 1- palmitoyl- 2- palmitoleoyl- glycerophosphorylcholine (GPC; 
16:0/16:1) [β: 2.16 (95% CI 1.63; 2.69)], myristoyl linoleoyl glycerol 
(14:0/18:2) [β: 2.12 (95% CI 1.61; 2.63)], and two isomers of diacyl-
glycerol (14:0/18:1, 16:0/16:1) [β: 2.09 (95% CI 1.57; 2.6)] and [β: 
1.94 (95% CI 1.46; 2.42)]. All dihydrosphingomyelin species had pos-
itive associations with HTGC of which three metabolites had a p- 
value above the significance threshold, with the most salient being 
sphingomyelin (d18:0/18:0, d19:0/17:0) [β: 2.15 (95% CI 1.63; 2.66)].

Ten lipid metabolites were associated with lower levels of HTGC, 
among which were several ether- PC species and glycosylceramide 
(HCER) and lactosylceramide (LCER) species. Among those metabolites 
were two sphingomyelins with long fatty acyl chains— sphingomyelin 
(d18:2/24:1, d18:1/24:2) [β: −1.29 (95% CI −1.79; −0.78)] and sphin-
gomyelin (d18:2/24:2) [β: −1.68 (95% CI −2.27; −1.09)]. For the HCER 
and LCER metabolites, the HCER glycosylceramide (d18:2/24:1, 
d18:1/24:2) [β: −1.31 (95% CI −1.87; −0.74)] and two LCER metabo-
lites lactosyl- N- nervonoyl- sphingosine (d18:1/24:1) [β: −1.57 (95% 
CI −2.06; −1.08)] and lactosyl- N- palmitoyl- sphingosine (d18:1/16:0) 
[β: −1.17 (95% CI −1.68; −0.65)] reduced HTGC levels. Finally, GPC, a 
derivate of choline and a breakdown product of PCs, reduced HTGC 
levels as well [β: −1.13 (95% CI −1.68; −0.59)].

3.4  |  Other metabolites

Metabolonic lactone sulphate, a partially characterized metabo-
lite, was found to be strongly associated with higher HTGC lev-
els [β: 2.18 (95% CI 1.73; 2.63)]. Only one xenobiotic metabolite, 
4- ethylcatechol, was associated with HTGC and it was strongly as-
sociated with the reduction of HTGC levels [β: −1.63 (95% CI −2.43; 
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    |  1463FAQUIH et al.

−0.84)]. Ten uncharacterized metabolites were associated with 
higher HTGC. Other metabolites included two nucleotides: xanthine 
and guanine. Xanthine was associated with the higher HTGC levels 
[β: 1.25 (95% CI 0.76; 1.75)] while guanine had the opposite effect 
[β: −1.09 (95% CI −1.55; −0.63)]. Finally, tocopherol metabolites in-
cluding alpha- tocopherol [β: 1.27 (95% CI 0.77; 1.78)] and gamma- 
tocopherol/beta- tocopherol [β: 1.18 (95% CI −0.62; 1.73)] also 
associated with higher HTGC levels.

3.5  |  Correlation- based network analysis 
using GGM

GGM networks were generated including all significantly (p- value 
<6.59 × 10−5) associated metabolites (N = 118). This method identi-
fied two major clusters: amino acids and lipids (Figure 3).

The amino acids and related metabolites can be organized into 
three groups: (1) primary amino acids, for example, glutamate; (2) 

F I G U R E  1  Comparison of the point estimates and confidence intervals for the 118 metabolites associated with hepatic triglyceride 
content (HTGC) in the primary analysis and the sex stratified analysis. The first ring shows the effect estimates in the sex combined analysis. 
The second ring shows analysis in women; and the final ring is for the men stratified analysis. Hollow circles are estimates that are not 
significant (p- value ≤6.5E−5). Metabolites are grouped by super pathway in each section.
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1464  |    FAQUIH et al.

derivates of amino acids with either a carbon group (lactoylvaline), 
oxo-  and methyl groups (e.g. 3- methyl- 2- oxovalerate) or an acetyl 
group (e.g. N- acetyltryptophan); (3) ketoacids, products of incom-
plete breakdown of amino acids (e.g. 4- methyl- 2- oxopentanoate).

Overall, the network pattern shows the primary BCAA connect-
ing to each other via the amino acids derivates and ketoacids. The 
common endpoint of these connections led to glutamate, pyruvate 
and glucose. Moreover, all uncharacterized metabolites related to 
BCAAs were intermediates for glucose, pyruvate and alpha ketoglu-
tarate (AKG). Some amino acids were correlated with metabolites 
in the lipid cluster such as the connection between leucine and N- 
palmitoyl- sphinganine (d18:0/16:0).

Regarding the lipids cluster, the GGM network showed strong 
interconnectivity between diacylglycerols, monoacylglycer-
ols, as well as links to PIs PCs, and PEs (https://tofaq uih.github.
io/Atlas Liver/ Netwo rks/Liver FatNe twork s/Model 2/SexAd j/
netwo rk/). Moreover, all 10 of the negatively associated lipids— 
which included sphingomyelins, ether PC and glucosyl-  and 

lactosylceramide species— were connected to each other and 
formed a subcluster within the lipids. The partially characterized 
metabolite metabolonic lactone sulphate showed a positive cor-
relation with glutamate only in the stratified analyses in men and 
post- menopausal women (data not shown). Alpha- tocopherol and 
gamma- tocopherol/beta- tocopherol were correlated and con-
nected in the GGM network and, interestingly, alpha- tocopherol 
was also connected to cholesterol.

3.6  |  GSMM pathway- based analyses

To assess how and whether HTGC- associated metabolites were 
linked biochemically to one another through metabolic pathways, 
a network analysis based on the genome scale metabolic model 
Human1 was performed (Figure 4). The network showed several 
amino acids subclusters that were associated with higher HTGC, 
among which the BCAAs and their keto and 2- hydroxy form, the 

F I G U R E  2  Beta– Beta plot comparing the effect estimates of 118 metabolites associated with hepatic triglyceride content (HTGC). 
Overall, effect estimates of the metabolites were stronger in women than men.
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clusters of aromatic amino acids and intermediates, and glutamate 
and alpha- ketoglutarate. The lipid cluster showed the relation be-
tween the positively and negatively correlated lipids, providing in-
sight into the enzymatic conversions which are potentially affected 
by HTGC. The pathway mapping of the 10 lipid metabolites that were 
associated with lower level HTGC reported in GGM network were 

also confirmed in the GSMM. Biochemical reactions were found to 
connect sphingomyelin species to the glucosylceramide and lacto-
sylceramide species (labelled as LacCer in the GSMM network) via 
the ceramides. An additional connection not shown in the GSMM 
network included the reactions connecting glucosylceramide to glu-
cose via its breakdown to ceramide and glucose.

F I G U R E  3  Gaussian Graphical Model for the sex adjusted network showing the amino acids cluster in blue and the lipids clusters in 
orange/yellow. Size of the metabolite circles (nodes) are proportional to the effect size on hepatic triglyceride content (HTGC). Lines 
between the nodes (edges) are proportional to the correlation between the metabolites.
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1466  |    FAQUIH et al.

To improve the interpretability of the network, only the main lipid 
classes were shown as nodes. The full network of associated metab-
olites is available as an interactive, single page website: https://tofaq 
uih.github.io/Atlas Liver/ Netwo rks/Liver FatNe twork s/.

3.7  |  Global test analysis

The null hypothesis for the closed global test was rejected for four of 
the nine pathway groups (Table 2). These were lipids (number of true 
discoveries (TD) = 168), amino acids (TD = 48), xenobiotics (TD = 1) 
and the uncharacterized/partially characterized groups (TD = 68). 
These tests did not require any further test iterations to reject the 
null hypothesis (with the exception on xenobiotics which required 
8 iterations), indicating that the associations were strong between 
the metabolites in these pathways and the FIB- 4 index. Results for 

the nucleotides were inconclusive and the null hypothesis was not 
rejected.

4  |  DISCUSSION

In the present work, we establish a comprehensive atlas of me-
tabolites associated with HTGC in a Dutch population composed of 
middle- aged men and women. We used an untargeted metabolomics 
approach to measure 1361 metabolites and 1H- MRS measurement 
of HTGC. In total, 118 metabolites were associated with HTGC after 
correction for sex and other confounders, of which 101 associated 
with higher levels of HTGC. Stratification by sex and menopause in 
women revealed that a larger number of associations was significant 
in the women strata and the estimates of the effect sizes were higher 
in women, particularly post- menopause. However, the directions of 

F I G U R E  4  A section of the full genome scale metabolic model- based network showing how metabolites (nodes) that are significantly 
associated with hepatic triglyceride content (HTGC) are related to each other via biochemical reaction paths (edges). Metabolites are colour 
coded according to their β value, where red indicates a positive β and blue a negative β. The network also contains metabolites that are not 
associated with HTGC but that lie in the conversion path between significant metabolites. Intermediate metabolites that have not been 
measured are coloured white. To facilitate the interpretation of the network visualization, all intermediates of the traditional pathways of 
glycolysis, branched amino acid (BCAA) degradation and the Krebs cycle have been added, irrespective of whether they have been measured 
or not.
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the effects for the overlapping metabolite- HTGC associations were 
uniform in all strata. This difference was observed despite a higher 
average level of HTGC in men but similar mean FIB- 4 index in men 
and women. Apparently, metabolites have strong correlations even 
with smaller HTGC ranges. Pathway analyses revealed two clusters 
of interrelated metabolites, one primarily involving amino acid- 
related metabolism and the other lipid metabolism.

4.1  |  Branched chain amino acids and branched 
chain keto acids

Our analysis showed that amino acids levels were overall associ-
ated with higher levels of HTGC. Moreover, these amino acids had 
clear clustering in both the GGM-  and the GSMM- based pathway 
network analyses. These results coincided with previous literature 
findings that elevated levels of BCAAs associated with HTGC and 
NAFLD.9,23,24 The primary metabolites from the amino acids asso-
ciated with higher HTGC were glutamate, leucine, isoleucine and 
valine. In addition, untargeted metabolomics enabled us to screen 
metabolite derivatives and subclasses, several of which we also 
found to be strongly associated with the higher levels of HTGC. 
These derivatives form during normal or abnormal breakdown of 
BCAAs and include BCAAs with acetyl, lactoyl or methyl groups, 
as well as metabolites categorized as branched chain keto acids 
(BCKA), their 2- hydroxy form and gamma- glutamyl alpha- amino 
acids. Furthermore, these metabolites were shown in the GGM 
and GSMM at the intersection of the BCAAs, glutamate and pyru-
vate. The derivatives, particularly BCKAs, are an indication of an 
association between BCAA catabolism with HTGC levels.25,26 It is 
interesting that the BCAAs and derivates, known to be associated 
with body fat and IR,25 remained associated with HTGC despite 
the adjustment for total body fat and after further adjustment for 
HOMA- IR in the sensitivity analysis. These results indicate that 
the associations of amino acids and carbohydrates metabolites 
with the levels of HTGC were overall largely independent from 
body fat and IR.

A few amino acids that were previously found to be associated 
with HTGC and NAFLD using ultrasonography assessment did not 
replicate in our study. For example, serine and glycine were not asso-
ciated with HTGC in our analysis contrary to the results of previous 
studies.9,27 Moreover, the proposed glutamate– serine– glycine index 
in those studies was not replicated in our analysis despite our larger 
sample size (N = 496 vs. N = 64 [N = 20 controls]). The previous stud-
ies focused on NAFLD and NASH patients in a case– control study 
design in contrast to our study that included participants from the 
general population with an average HTGC of 5.6%. Therefore, it may 
be possible that serine and glycine are better markers for advanced 
stages of HTGC, as observed in NAFLD/NASH patients, due to the 
stronger metabolic dysregulation but are not markers for lower lev-
els of HTGC.

4.2  |  Lipid metabolites

Lipids have the largest effect estimates in the GGM and GSMM 
networks and reflect a strong association of lipid metabolism 
with HTGC. This cluster contained lipids from various subclasses 
of which di-  and mono- glycerides were predominant. These as-
sociations with HTGC, particularly from di-  and mono- glycerides, 
are supported by previous studies.28 The GGM network showed 
strong correlations between diglycerols, PCs, PEs, PIs and other 
lipid subclasses, consistent with our GSMM- based network and 
the established biological pathways.29 Overall, most of the lipids 
(52/62) were associated with higher HTGC levels. Notable excep-
tions were the group of 10 lipids comprising of ether- PC species, 
sphingomyelin, HCER and LCER species, which the highest re-
duction effect on HTGC levels in our results. In addition, these 
lipids were highly connected in the GGM network and shared the 
same biological pathways in the GSMM network. Interestingly, 
the aforementioned sphingomyelins with long fatty acyl chains 
reduced HTGC levels, in contrast to dihydrosphingomyelins which 
associated with higher HTGC. Other interesting metabolite groups 
were the beforementioned HCER and LCER. Unlike the ceramide 

Pathway
Number of 

metabolites
Global test 
hypothesis

Number of 
iterations

Number 
of true 
discoveries

Lipids 475 Rejected 0 168

Amino acids 215 Rejected 0 41

Carbohydrates 22 Not rejected 0 0

Xenobiotics 220 Rejected 8 1

Cofactors and vitamins 30 Not rejected 0 0

Nucleotides 38 Unsure 5000 0

Energy 11 Not rejected 0 0

Peptides 49 Not rejected 0 0

Uncharacterized/
partially 
characterized

303 Rejected 0 68

TA B L E  2  Closed global test results 
for the pathways associated with the 
FIB- 4 index as well as the number of true 
discoveries in each pathway.

 14783231, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15575 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [16/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1468  |    FAQUIH et al.

and dihydroceramide metabolites, which associated with higher 
HTGC level, both HCER and LCER had the opposite effect. In this 
case, the breakdown of these metabolites seems to contribute to 
the upregulation of ceramides and dihydroceramides, as well as 
glucose, specifically via HCER.30

The associations of the ceramides and dihydroceramides with 
higher HTGC are analogous to previous studies on NAFLD.31– 33 
However, the associations of sphingomyelins and dihydrosphin-
gomyelins with HTGC and NAFLD in humans are less studied and 
understood compared to the associations of ceramides.34 Since di-
hydroceramides are precursors for the synthesis of dihydrosphin-
gomyelins,33,35 it could explain their association with higher HTGC. 
However, a small study by Lovric et al. (N = 75)36 reported contrary 
pattern using the same metabolomic platform used in our study, in 
which higher sphingomyelins but lower dihydrosphingomyelins were 
associated with NAFLD. In mice, dietary sphingomyelins were asso-
ciated with a decrease in HTGC in the liver.37 Regarding HCER and 
LCER, as stated earlier, HCER is involved in the synthesis of LCER, ce-
ramide and glucose.30 In addition, both LCER and HCER are involved 
in glycosphingolipid metabolism.38 One small study (n = 28) reported 
a positive association HCER and LCER with NASH.34 Finally, a re-
cent a study reported similar results of higher dihydrosphingolipid 
classes being associated with increased fibrosis in animal models and 
NAFLD patients.39

Overall, our study presents a deeper look into these metabolite 
subclasses in a larger sample size in a general population. Further 
studies focusing on the contrasting associations of sphingomyelins 
versus dihydrosphingomyelins and ceramide versus HCER could elu-
cidate their specific function and relationship to HTGC and NAFLD 
in humans.

4.3  |  Other metabolites strongly associated 
with HTGC

In addition to the amino acids and lipids results, our analysis and 
the GGM network included uncharacterized and xenobiotic me-
tabolites, not previously reported in HTGC or NAFLD studies. A 
particularly interesting finding was the relatively novel metabolite 
metabolonic lactone sulphate (formerly assigned the ID X- 12063). 
Metabolonic lactone sulphate had a large effect estimate in the 
adjusted and the stratified models and was associated with higher 
HTGC levels. Previous studies have found this metabolite to be a 
biomarker and a predictor for T2D40– 42 and acute- on- chronic liver 
failure.43 Moreover, metabolonic lactone sulphate was associated 
with cardiometabolic disease44 and was positively correlated with 
BMI, waist hip ratio and HOMA- IR.45 Metabolonic lactone sulphate 
was also reported to be associated with the CYP3A5/ZSCAN25 
locus via the rs1024245546 and rs780802247 single nucleotide 
polymorphisms (SNPs), respectively. This locus is highly expressed 
in liver and shares the same regulatory promoters.48 CYP3A is par-
ticularly expressed in the liver and produces the CYP3A protein, 
a highly abundant drug- metabolizing liver enzyme.44,48 Although 

the specific functionality and underlying biological pathways of 
metabolonic lactone sulphate remains unelucidated, the evidence 
indicates a link with the liver, cardiometabolic disease, and our 
findings with higher HTGC levels.

4- Ethylcatechol is a xenobiotic metabolite that is primarily ac-
quired from the ingestion of coffee beverages and products.49,50 In 
our analysis, 4- Ethylcatechol was negatively associated with HTGC 
levels and was not connected to any metabolites in the GGM or 
GSMM networks. Protective effects of coffee and caffeine intake 
against liver fibrosis have been suggested before due to its anti- 
fibrotic and antioxidant effects.51,52 Several studies examining the 
association of coffee consumption with liver fat found similarly re-
duced HTGC.51,53,54 For instance, a recent large systematic review 
and meta- analysis study found that coffee consumption was neg-
atively associated with liver fibrosis and suggested protection from 
severe liver fibrosis and cirrhosis.51 Results for patients with NAFLD 
were less conclusive with some showing that increased coffee con-
sumption was associated with reduction of NAFLD.54

Uncharacterized metabolites, such as X- 15245, X- 24295, X- 
19438 and X- 25343, are associated with HTGC with strong con-
nections to pyruvate, glucose and AKG. Further analysis into the 
structure of these metabolites is needed to determine their identi-
ties and their biological relationships to HTGC and the other metab-
olites in the network.

Our analysis also shows associations with vitamin E me-
tabolites. Briefly, vitamin E metabolites (alpha- tocopherol and 
gamma- tocopherol/beta- tocopherol) are positively associated 
with HTGC, and alpha- tocopherol was directly correlated with 
cholesterol in the GGM network. This finding is supported by one 
study that found a positive correlation between vitamin E and 
NAFLD.55 Moreover, vitamin E is known to bind to lipoproteins 
in the blood which promoted the usage of cholesterol- adjusted 
vitamin E in several studies as a superior measurement of vitamin 
E.56 However, the mechanism linking vitamin E with HTGC remains 
unclear and clinical trials present mixed results regarding the re-
lationships. Some studies have shown a negative or no relation 
while others suggested possibly therapeutic benefits of vitamin E 
supplementation for NAFLD and NASH patients via the suppres-
sion of HTGC.57,58

4.4  |  Pathway analysis

Pathway analysis was performed using two approaches. The first 
approach— GGM— is data driven and uses the partial correlations 
between the HTGC- associated metabolites to create a network. 
The second approach maps metabolites to a GSMM, which con-
sists of known functionally annotated biochemical conversions that 
can occur in humans. An advantage of the GGM is that all meas-
ured and associated metabolites in the study are included in the 
network, even the unannotated and xenobiotic metabolites ones. 
However, a GGM is data driven and does not necessarily reflect ac-
tual biological pathways, and only shows metabolites measured by 
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the platform. That is, metabolites can be directly linked in the GGM 
even though they are distant in terms of intermediate biochemical 
reactions.17 The GSMM- based network analysis, on the other hand, 
includes measured associated metabolites as well as relevant inter-
mediate metabolites regardless of whether they were measured or 
associated with HTGC. In addition, the created network shows the 
directionality of the biological reactions for the biosynthesis and 
degradation of the metabolites and provides relevant details regard-
ing the enzymes involved in each reaction.

Although both types of pathway analysis are complementary in 
their approach, we found that the network resulting from GGM had 
a good alignment with the metabolic reaction paths that resulted 
from the GSMM approach. This is in concordance with previous 
work,17 which showed that strongly associated metabolites gener-
ally corresponded to the same pathways.

4.5  |  Pathways associated with the FIB- 4 index

The results of the closed global test were in line with the findings 
we did for HTGC in the linear regression analyses and in the GGM 
and GSMM networks. Namely, all analyses identified the lipids and 
amino acids metabolite groups. In addition, the metabolite groups 
xenobiotics, uncharacterized and partially characterized groups 
were also found to be associated with the FIB- 4 index. The failure 
to reject the null hypothesis for the carbohydrates was in line with 
the results of sensitivity analysis adjusting for HOMA- IR. This in-
dicates that the carbohydrates were indeed weak and not directly 
associated with HTGC or the FIB- 4 index. The FIB- 4 index is clinical 
diagnosis tool to rule out high fibrosis risk20,59 and has been shown 
to have a comparable performance as the assessment of liver biopsy 
samples.59 Accordingly, the global test results provide a strong indi-
cation that our beforementioned metabolites and pathways, found 
to be associated with HTGC and the FIB- 4 index, are also potentially 
clinically relevant.

4.6  |  Key findings and potential targets for 
genetic and drug research

In summary, our analyses and atlas showed interesting pathway as-
sociations for HTGC which may be relevant for fatty liver disease re-
search. The pathways connecting glutamate, BCAAs and derivatives 
of BCAAs during normal/abnormal metabolism were particularly 
associated with the higher HTGC levels. Among the wide variety 
of lipid metabolites, higher metabolite concentrations in the path-
ways connecting diglycerols, PCs, PEs and PIs had a strong associa-
tion with higher HTGC levels. Notably, the pathways connecting the 
ceramide species and their relationship with sphingomyelin species, 
as shown in the GGM and GSMM networks, were particularly inter-
esting due to the contrasting associations with HTGC. Thus, it ap-
pears that the metabolomic flux between these metabolite species 
is associated with an overall higher HTGC level. These metabolites 

and pathways are of interest to explore in future HTGC and liver 
fibrosis studies.

The most interesting finding was the in our study was the 
strong association of glutamate and the novel metabolites cor-
related with it. Glutamate itself is a well- known biomarker for liver 
fat and NAFLD.9,27 However, our pathway analyses revealed two 
metabolites to be strongly correlated with glutamate and were 
also shown to be associated with HTGC. These were metabolonic 
lactone sulphate and the uncharacterized metabolite X- 15245. 
These metabolites were associated with HTGC in all models and 
specifically interconnected with glutamate in the GGM networks 
for men and postmenopausal women, hence indicating that these 
metabolites share common biochemical pathways. As discussed 
earlier, metabolonic lactone sulphate has been found to be as-
sociated with several cardiometabolic related outcomes in other 
studies. For example, the uncharacterized metabolite X- 15245 is 
associated with rs1260326 SNP in the GCKR gene.47 This partic-
ular SNP was reported to be strongly associated with NAFLD.8 
The aforementioned findings from the literature regarding the 
associations of metabolonic lactone sulphate with the liver and 
cardiometabolic disease support our reported association with 
HTGC and pathway associations with FIB- 4 index from global test. 
Therefore, glutamate, metabolonic lactone sulphate and X- 15245 
and their potentially shared pathway are important candidates for 
further etiological studies on HTGC and NAFLD. Furthermore, 
the genetic SNPs associated with these metabolites can be used 
as possible new genetic marker for HTGC/NAFLD. This can be 
achieved similar to the approach used by Mancina et al.60, in which 
SNPs associated with triglycerides were tested for their associa-
tion with liver fat and subsequently used to identify a protective 
link between PSD3 and HTGC. Moreover, future studies should 
aim to identify the uncharacterized metabolite X- 15245 and elu-
cidate the biological properties for it and metabolonic lactone 
sulphate.

Exploration of the aforementioned metabolites and the various 
other metabolites and pathways we have discussed here, in combi-
nation with metabolomic and genetic studies, can be key to identi-
fying causal associations and possible drug targets for liver fibrosis 
in the future.

4.7  |  Strengths and limitations

Previous literature on metabolite– HTGC associations focused 
mainly on a small number of well- established metabolites or me-
tabolites involved in specific pathways. A strength of our study is 
the use of an untargeted metabolomics platform with over a thou-
sand measured metabolites from 10 metabolite pathway classes 
in a relatively large population of middle- aged individuals in the 
Netherlands. Our study population was a random selection of vol-
unteers from the Leiderdorp area and was not selected on NAFLD 
or NASH diagnosis. Moreover, HTGC measurements in this co-
hort were assessed by 1H- MRS, which provides high accuracy and 
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sensitivity in measuring HTGC even at low levels.61 Furthermore, 
we expanded our analysis by combining linear regression with cor-
relation and biochemical pathway analysis methods to construct 
a comprehensive atlas of metabolomic profiles of HTGC and an 
atlas for men and women separately. A limitation of our study was 
the selection of only individuals of white ethnicity from a high 
social economic status area, which limits generalizability to other 
ethnicities and social status. Another limitation of our study is 
the lack of biological validation. Future studies with liver biopsy 
samples will aid in validating our findings. However, studies on 
NAFLD are extensive but usually focused on specific metabolites 
such as amino acids or lipids. Our study itself can be considered 
as a validation of the various results from the previous literature 
by taking advantage of the wide range of the metabolites from 
various biochemical pathway classes. Moreover, we addressed 
this limitation by conducting a global test using the FIB- 4 index, 
reported to be comparable in performance with liver biopsy, as 
the outcome. The GSMM network provided useful insight into 
the biochemical relation between the metabolites associated with 
HTGC and their intermediates. The directionality of the edges 
in the network, however, is based on knowledge regarding the 
thermodynamic reversibility of the corresponding reactions and 
makes no assertion about causality or potential association with 
HTGC. Although the GSMM network provides some information 
regarding known gene- pathway associations, genetic analysis for 
some HTGC or metabolite- related SNPs would have benefited our 
study. However, we did not include a genetic analysis as our cur-
rent sample size is underpowered for such analysis. Finally, fur-
ther investigation for sex differences in the number of metabolite 
associations with HTGC levels, particularly for postmenopausal 
women, requires a larger longitudinal study for validation.

5  |  CONCLUSION

In this study, we performed a cross- sectional analysis in 496 middle- 
aged men and women to gain insight the metabolomic profile associ-
ated with hepatic triglyceride accumulation as assessed by 1H- MRS. 
We used a hypothesis- free approach to study metabolites associ-
ated with HTGC using an untargeted platform that measured 1363 
metabolites. Using this platform, associations were found between 
118 known and novel metabolites with HTGC levels. These findings 
were combined by pathway analyses using a correlation- driven net-
work (GGM) and a biologically driven network (GSMM) to create an 
atlas of metabolites associated with HTGC. Analysis of these net-
works indicated strong associations between the BCAA, diglycerol, 
ceramide and sphingomyelin pathways with HTGC levels. These 
pathways were additionally found to reject the null hypothesis of 
the closed global test when using the FIB- 4 index as the outcome. In 
addition, our atlas of networks, enriched with pathway knowledge, 
provided interesting insights regarding pathways associated with 
HTGC. These included the pathways connecting BCAA and BCAA 
derivates, the flux between the ceramide species (i.e. HCER and 

LCER), sphingomyelins and their dihydro forms, and the potentially 
novel pathway linking glutamate with the novel metabolites metabo-
lonic lactone sulphate and X- 15245. Thus, our atlas provides novel 
insight in metabolomic profiles associated with liver fat accumula-
tion and may facilitate further studies to find causal links between 
the metabolites reported here and liver fibrosis.

ACKNO WLE DG E MENTS
The authors of the NEO study thank all participants, all participat-
ing general practitioners for inviting eligible participants, all research 
nurses for data collection and the NEO study group: Pat van Beelen, 
Petra Noordijk and Ingeborg de Jonge for coordination, laboratory 
and data management.

FUNDING INFORMATION
The NEO study is supported by the participating Departments, 
the Division, and the Board of Directors of the Leiden University 
Medical Centre, and by the Leiden University, Research Profile Area 
‘Vascular and Regenerative Medicine’. The analyses of metabolites 
are funded by the VENI grant (ZonMW- VENI Grant 916.14.023) of 
D.O.M.- K., D.v.H. and R.N. were supported by a grant of the VELUX 
Stiftung [grant number 1156]. T.O.F. was supported by the King 
Abdullah Scholarship Program and King Faisal Specialist Hospital & 
Research Center [No. 1012879283].

CONFLIC T OF INTERE S T S TATEMENT
R.L.- G. is a part- time clinical research consultant for Metabolon, 
Inc. P.A.S. is an associate director and G.M. is the science director 
at Metabolon, Inc. All other co- authors have no conflicts of interest 
to declare.

ORCID
Tariq O. Faquih  https://orcid.org/0000-0001-8026-2251 

R E FE R E N C E S
 1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer 

M. Global epidemiology of nonalcoholic fatty liver disease- meta- 
analytic assessment of prevalence, incidence, and outcomes. 
Hepatology. 2016;64:73- 84.

 2. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 
2002;346:1221- 1231.

 3. Stern C, Castera L. Non- invasive diagnosis of hepatic steatosis. 
Hepatol Int. 2017;11:70- 78.

 4. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride ac-
cumulation in non- alcoholic fatty liver disease. J Gastroenterol. 
2013;48:434- 441.

 5. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 
2015;62:S47- S64.

 6. Zou B, Yeo YH, Nguyen VH, Cheung R, Ingelsson E, Nguyen MH. 
Prevalence, characteristics and mortality outcomes of obese, non-
obese and lean NAFLD in the United States, 1999– 2016. J Intern 
Med. 2020;288:139- 151.

 7. Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, 
Lonardo A. NAFLD as a sexual dimorphic disease: role of gender 
and reproductive status in the development and progression of 
nonalcoholic fatty liver disease and inherent cardiovascular risk. 
Adv Ther. 2017;34:1291- 1326.

 14783231, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15575 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [16/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8026-2251
https://orcid.org/0000-0001-8026-2251


    |  1471FAQUIH et al.

 8. Speliotes EK, Yerges- Armstrong LM, Wu J, et al. Genome- wide as-
sociation analysis identifies variants associated with nonalcoholic 
fatty liver disease that have distinct effects on metabolic traits. 
PLoS Genet. 2011;7:e1001324.

 9. Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations 
in NAFLD: impact of obesity and insulin resistance. Hepatology. 
2018;67:145- 158.

 10. Fearnley LG, Inouye M. Metabolomics in epidemiology: from me-
tabolite concentrations to integrative reaction networks. Int J 
Epidemiol. 2016;45:1319- 1328.

 11. Alonso A, Marsal S, Julia A. Analytical methods in untargeted metab-
olomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.

 12. Faquih T, van Smeden M, Luo J, et al. A workflow for missing val-
ues imputation of untargeted metabolomics data. Metabolites. 
2020;10:486- 508.

 13. Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the 
pathophysiology, diagnosis and treatment of non- alcoholic fatty 
liver disease. Metabolism. 2020;111:154320.

 14. Hasegawa T, Iino C, Endo T, et al. Changed amino acids in NAFLD 
and liver fibrosis: a large cross- sectional study without influence of 
insulin resistance. Nutrients. 2020;12:1450.

 15. De Mutsert R, Den Heijer M, Rabelink TJ, et al. The Netherlands 
Epidemiology of Obesity (NEO) study: study design and data col-
lection. Eur J Epidemiol. 2013;28:513- 523.

 16. Boone S, Mook- Kanamori D, Rosendaal F, et al. Metabolomics: 
a search for biomarkers of visceral fat and liver fat content. 
Metabolomics. 2019;15:139.

 17. Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. Gaussian graphical 
modeling reconstructs pathway reactions from high- throughput 
metabolomics data. BMC Syst Biol. 2011;5:21.

 18. Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis 
of high- throughput metabolomics data. Comput Struct Biotechnol J. 
2013;4:e201301009.

 19. Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. Current status and applica-
tions of genome- scale metabolic models. Genome Biol. 2019;20:121.

 20. European Association for the Study of the Liver (EASL), 
European Association for the Study of Diabetes (EASD), (EASO) 
EAftSoO. EASL- EASD- EASO Clinical Practice Guidelines for 
the management of non- alcoholic fatty liver disease. J Hepatol. 
2016;64:1388- 1402.

 21. Xu N, Solari A, Goeman JJ. Closed testing with Globaltest, with 
application in metabolomics. Biometrics. 2022. doi:10.1111/
biom.13693

 22. Goeman JJ, Van De Geer SA, Van Houwelingen HC. J R Statist Soc 
B. 2006;68:477- 493.

 23. Kalhan SC, Guo L, Edmison J, et al. Plasma metabolomic profile in 
nonalcoholic fatty liver disease. Metabolism. 2011;60:404- 413.

 24. Sookoian S, Castaño GO, Scian R, et al. Serum aminotransferases 
in nonalcoholic fatty liver disease are a signature of liver metabolic 
perturbations at the amino acid and Krebs cycle level. Am J Clin 
Nutr. 2016;103:422- 434.

 25. Lynch CJ, Adams SH. Branched- chain amino acids in metabolic sig-
nalling and insulin resistance. Nat Rev Endocrinol. 2014;10:723- 736.

 26. Shimomura Y, Honda T, Shiraki M, et al. Branched- chain amino acid 
catabolism in exercise and liver disease. J Nutr. 2006;136:250s- 253s.

 27. Leonetti S, Herzog RI, Caprio S, Santoro N, Tricò D. Glutamate- 
serine- glycine index: a novel potential biomarker in pediatric non- 
alcoholic fatty liver disease. Children (Basel). 2020;7:270.

 28. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalco-
holic fatty liver disease. Hepatology. 2007;46:1081- 1090.

 29. Berg J, Tymoczko J, Stryer L. Biochemistry. W H Freeman; 2002.
 30. Ichikawa S, Hirabayashi Y. Glucosylceramide synthase and glyco-

sphingolipid synthesis. Trends Cell Biol. 1998;8:198- 202.
 31. Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism 

in non- alcoholic fatty liver diseases. Biochimie. 2019;159:9- 22.

 32. Carlier A, Phan F, Szpigel A, et al. Dihydroceramides in triglyceride- 
enriched VLDL are associated with nonalcoholic fatty liver disease 
severity in type 2 diabetes. Cell Rep Med. 2020;1:100154.

 33. Magaye RR, Savira F, Hua Y, et al. The role of dihydrosphingolipids 
in disease. Cell Mol Life Sci. 2019;76:1107- 1134.

 34. Apostolopoulou M, Gordillo R, Koliaki C, et al. Specific hepatic 
sphingolipids relate to insulin resistance, oxidative stress, and 
inflammation in nonalcoholic steatohepatitis. Diabetes Care. 
2018;41:1235- 1243.

 35. Lachkar F, Ferré P, Foufelle F, Papaioannou A. Dihydroceramides: 
their emerging physiological roles and functions in can-
cer and metabolic diseases. Am J Physiol Endocrinol Metab. 
2021;320:E122- E130.

 36. Lovric A, Granér M, Bjornson E, et al. Characterization of different 
fat depots in NAFLD using inflammation- associated proteome, lipi-
dome and metabolome. Sci Rep. 2018;8:14200.

 37. Chung RWS, Kamili A, Tandy S, et al. Dietary sphingomyelin lowers 
hepatic lipid levels and inhibits intestinal cholesterol absorption in 
high- fat- fed mice. PLoS One. 2013;8:e55949.

 38. Mullen Thomas D, Hannun Yusuf A, Obeid LM. Ceramide synthases 
at the centre of sphingolipid metabolism and biology. Biochem J. 
2012;441:789- 802.

 39. Babiy B, Ramos- Molina B, Ocaña L, et al. Accumulation of dihydro-
sphingolipids and neutral lipids is related to steatosis and fibrosis 
damage in human and animal models of non- alcoholic fatty liver 
disease. 2022. doi:10.1101/2022.03.10.22271048

 40. Diboun I, Al- Mansoori L, Al- Jaber H, Albagha O, Elrayess MA. 
Metabolomics of lean/overweight insulin- resistant females reveals 
alterations in steroids and fatty acids. J Clin Endocrinol Metabol. 
2020;106:e638- e649.

 41. Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify 
potential targets for the prevention of type 2 diabetes. Diabetologia. 
2017;60:1740- 1750.

 42. di Giuseppe R, Koch M, Nöthlings U, et al. Metabolomics signature 
associated with circulating serum selenoprotein P levels. Endocrine. 
2019;64:486- 495.

 43. Bajaj JS, Reddy KR, O'Leary JG, et al. Serum levels of metabolites 
produced by intestinal microbes and lipid moieties independently 
associated with acute- on- chronic liver failure and death in patients 
with cirrhosis. Gastroenterology. 2020;159:1715- 1730.e12.

 44. Das SK, Ainsworth HC, Dimitrov L, et al. Metabolomic architecture 
of obesity implicates metabolonic lactone sulfate in cardiometa-
bolic disease. Mol Metab. 2021;54:101342.

 45. Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analy-
sis of genomics, longitudinal metabolomics, and Alzheimer's 
risk factors among 1, 111 cohort participants. Genet Epidemiol. 
2019;43:657- 674.

 46. Yin X, Chan LS, Bose D, et al. Genome- wide association studies 
of metabolites in Finnish men identify disease- relevant loci. Nat 
Commun. 2022;13:1644.

 47. Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influ-
ences on human blood metabolites. Nat Genet. 2014;46:543- 550.

 48. Collins JM, Wang D. Cis- acting regulatory elements regulating 
CYP3A4 transcription in human liver. Pharmacogenet Genomics. 
2020;30:107- 116.

 49. Miranda AM, Steluti J, Fisberg RM, Marchioni DM. Dietary intake 
and food contributors of polyphenols in adults and elderly adults of 
Sao Paulo: a population- based study. Br J Nutr. 2016;115:1061- 1070.

 50. Lang R, Mueller C, Hofmann T. Development of a stable isotope 
dilution analysis with liquid chromatography−tandem mass spec-
trometry detection for the quantitative analysis of di-  and trihy-
droxybenzenes in foods and model systems. J Agric Food Chem. 
2006;54:5755- 5762.

 51. Ebadi M, Ip S, Bhanji RA, Montano- Loza AJ. Effect of coffee con-
sumption on non- alcoholic fatty liver disease incidence, prevalence 

 14783231, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15575 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [16/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/biom.13693
https://doi.org/10.1111/biom.13693
https://doi.org//10.1101/2022.03.10.22271048


1472  |    FAQUIH et al.

and risk of significant liver fibrosis: systematic review with meta- 
analysis of observational studies. Nutrients. 2021;13:3042.

 52. Dranoff JA. Coffee consumption and prevention of cirrhosis: in 
support of the caffeine hypothesis. Gene Expr. 2018;18:1- 3.

 53. Kennedy OJ, Fallowfield JA, Poole R, Hayes PC, Parkes J, Roderick 
PJ. All coffee types decrease the risk of adverse clinical outcomes 
in chronic liver disease: a UK biobank study. BMC Public Health. 
2021;21:970.

 54. Chung HK, Nam JS, Lee MY, et al. The increased amount of coffee 
consumption lowers the incidence of fatty liver disease in Korean 
men. Nutr Metab Cardiovasc Dis. 2020;30:1653- 1661.

 55. Jeon D, Son M, Shim J. Dynamics of serum retinol and alpha- 
tocopherol levels according to non- alcoholic fatty liver disease sta-
tus. Nutrients. 2021;13:1720.

 56. Thurnham DI, Davies JA, Crump BJ, Situnayake RD, Davis M. The 
use of different lipids to express serum tocopherol: lipid ratios for 
the measurement of vitamin E status. Ann Clin Biochem. 1986;23(Pt 
5):514- 520.

 57. Nagashimada M, Ota T. Role of vitamin E in nonalcoholic fatty liver 
disease. IUBMB Life. 2019;71:516- 522.

 58. Amanullah I, Khan YH, Anwar I, Gulzar A, Mallhi TH, Raja AA. Effect 
of vitamin E in non- alcoholic fatty liver disease: a systematic review 
and meta- analysis of randomised controlled trials. Postgrad Med J. 
2019;95:601- 611.

 59. Lee J, Vali Y, Boursier J, et al. Prognostic accuracy of FIB- 4, NAFLD 
fibrosis score and APRI for NAFLD- related events: a systematic re-
view. Liver Int. 2021;41:261- 270.

 60. Mancina RM, Sasidharan K, Lindblom A, et al. PSD3 downregu-
lation confers protection against fatty liver disease. Nat Metab. 
2022;4:60- 75.

 61. Springer F. Liver fat content determined by magnetic resonance im-
aging and spectroscopy. World J Gastroenterol. 2010;16:1560- 1566.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Faquih TO, van Klinken JB, Li- Gao R, 
et al. Hepatic triglyceride content is intricately associated 
with numerous metabolites and biochemical pathways. Liver 
Int. 2023;43:1458-1472. doi:10.1111/liv.15575

 14783231, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15575 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [16/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/liv.15575

	Hepatic triglyceride content is intricately associated with numerous metabolites and biochemical pathways
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study population
	2.2|Multiple linear regression
	2.3|Pathway analysis
	2.4|Global test between pathways and FIB-4

	3|RESULTS
	3.1|Association analyses of metabolites and HTGC
	3.2|Amino acid and carbohydrate metabolism
	3.3|Lipids
	3.4|Other metabolites
	3.5|Correlation-based network analysis using GGM
	3.6|GSMM pathway-based analyses
	3.7|Global test analysis

	4|DISCUSSION
	4.1|Branched chain amino acids and branched chain keto acids
	4.2|Lipid metabolites
	4.3|Other metabolites strongly associated with HTGC
	4.4|Pathway analysis
	4.5|Pathways associated with the FIB-4 index
	4.6|Key findings and potential targets for genetic and drug research
	4.7|Strengths and limitations

	5|CONCLUSION
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	REFERENCES


