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Abstract

Background and Objectives: With the current advanced data-driven approach to 

health care, machine learning is gaining more interest. The current study investigates 

the added value of machine learning to linear regression in predicting anastomotic 

leakage and pulmonary complications after upper gastrointestinal cancer surgery.

Methods: All patients in the Dutch Upper Gastrointestinal Cancer Audit (DUCA) 

undergoing curatively intended esophageal- or gastric cancer surgery in 2011-2017 

were included.  Anastomotic leakage was defined as any clinically or radiologically 

proven anastomotic leakage. Pulmonary complications entailed: pneumonia, pleural 

effusion, respiratory failure, pneumothorax and/or acute respiratory distress syndrome. 

Different machine learning models were tested. Nomograms were constructed using 

logistic regression.

Results: Between 2011-2017, 4,228 patients underwent surgical resection for 

esophageal cancer of which 18% developed anastomotic leakage and 30% a pulmonary 

complication. Of the 2,199 patients with surgical resection for gastric cancer, 7% 

developed anastomotic leakage and 15% a pulmonary complication. In all cases, linear 

regression had the highest predictive value with area under the curves (AUCs) varying 

between 61.9-68.0, but the difference with machine learning models did not reach 

statistical significance. 

Conclusion: Machine learning models can predict postoperative complications in 

upper gastrointestinal cancer surgery, but they do not outperform the current gold 

standard, linear regression.

Introduction

The incidence of esophageal cancer in the western world has increased over the 

past decades and is currently the seventh most common malignancy worldwide and 

accounts for 5% of the cancer-related mortality in 2018. Although the incidence of 

gastric cancer decreased over the last years, it is still the fifth most common malignancy 

worldwide and was responsible for 8% of the cancer-related mortality in 2018. [1] 

Curative treatment of these upper gastrointestinal cancers consists in most cases of 

(neo)adjuvant therapy and surgical resection. These resections are complex procedures. 

Present-day, the 5-year survival rates of resectable esophageal- and gastric carcinoma 

lie around 28-42%. [2]. Although in centers of excellence, postoperative mortality is 

around 2%, the overall-complication rate of around 60-65% after esophagectomy is 

high compared to most procedures for gastrointestinal malignancies. [3] Of all severe 

postoperative complications, anastomotic leakage and pulmonary complications are 

the most common. [2-5] The incidence of major complications (Clavien-Dindo ≥ IIIa) 

is 20-31%, with a failure-to-rescue rate of 13-25%. [6, 7] Postoperative complications 

are associated with higher tumor recurrence and lower overall (cancer-related) survival. 

[8] Reduction of postoperative complications will enhance recovery, lead to fewer 

readmissions and may increase long-term quality of life. 

With the present increase of data-driven approaches in healthcare, preoperative risk 

factors can be appraised by analyzing large datasets. Machine learning holds the 

potential to unravel subtle associations that are not—or cannot—be identified using 

conventional regression analyses. In the current literature, no consensus exists on the 

added value of machine learning in predicting postoperative outcomes. [9, 10] 

The aim of this study is twofold. First, to investigate the added value of machine 

learning methods in predicting postoperative outcomes after esophageal- and gastric 

carcinoma surgery and compare it to conventional regression analyses. Second, to use 

the best performing method to develop a predictive model for anastomotic leakage 

and cardiopulmonary complications after esophagectomy and gastrectomy. 

Methods

Data source and study population
Data were retrieved from the Dutch Upper GI Cancer Audit (DUCA). A prospective 

nationwide audit, initiated in 2011, containing all patients undergoing surgery with 

the intention of resection for esophageal- or gastric cancer in the Netherlands. [11] 

Participation in the DUCA has been incorporated as a mandatory quality standard, 
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leading to data completeness of 99.8% and accuracy of 94%-100%. Validation of 

completeness and accuracy of this data registration has been performed by external 

data verification. [3] All Dutch hospitals register detailed patient, tumor, and treatment 

characteristics, pathology, 30-day morbidity, and 30-day/in-hospital mortality. [12]

Patient selection
Patients that underwent elective surgery with curative intent for primary esophageal- or 

gastric cancer were selected. Only patients with histologically proven adenocarcinoma 

or squamous cell carcinoma, a known surgery date between 2011 and 2017 and 

a recorded surgical technique were included. Patients with surgery with palliative 

or prophylactic intent and patients with non-epithelial tumors were excluded. 

Additionally, patients with missing essential values (age, sex, length, weight, surgical 

approach, American Society of Anesthesiologists (ASA)-score, preoperative therapy and 

TMN-stage) were excluded.

Definitions of complications
The studied postoperative outcomes were anastomotic leakage and pulmonary 

complications in patients with esophageal carcinoma, and anastomotic leakage in 

patients with gastric carcinoma. Anastomotic leakage was defined as any clinically 

or radiologically proven anastomotic leakage. Pulmonary complications entailed: 

pneumonia, pleural effusion, respiratory failure, pneumothorax and/or acute respiratory 

distress syndrome (ARDS). 

Statistical analysis For each outcome, the dataset was randomly divided in training 

(75%) and testing (25%) data. All models used variables documented in the Dutch 

Upper GI Cancer Audit (DUCA), which covers patient characteristics, comorbidity, 

treatment characteristics and outcome [13]; a total of 28 prognostic variables were 

included. The following machine learning models, which are frequently described 

in literature, were used: k-Nearest Neighbors (KNN), support vector machine (SVM), 

Neural Networks, Random Forest, AdaBoost and SuperLearner. [14-16] These models 

were compared with linear regression, for which a generalized linear model (GLM) was 

used. Background information on the models used can be found in table 1. Afterwards, 

nomograms were constructed using a regression model fit. The predictive strength of 

the models was measured by the Area Under the Receiver Operating Characteristics 

(ROC) Curve (AUC). Odds ratios (OR) with 95% confidence intervals and P-values were 

reported for each variable to assess the impact on the risk of all patient characteristics. 

All analyses were done using R version 3.6.1 in RStudio. The Caret packages were used 

for pipelining and data splitting. ROC curves and AUC scores were calculated using 

the pROC package, plots were made using the ggplot2 package. The rms package was 

used to make the nomograms.

Table 1 - Explanation of the models used

Logistic Regression

Describes the relationship between a discrete binary outcome and one or several predictor variables. 
The outcome is expressed as the log odds of one class over the other. This can be transformed to odds 
or probabilities.

Lasso Regression

The difference between the logistic regression model and the lasso model is that the lasso model can 
exclude coefficients that have little weight in the solution. This may increase interpretability.

k-Nearest Neighbour (kNN)

Predicts new instances of a class by looking at k other instances in the neighborhood. The predictor 
variables are transformed by centering and scaling to improve numerical stability. For each outcome a 
separate kNN model is fit.

Neural Networks (NN)

The inspiration for NN comes from the architecture of the human brain. The idea is that artificial 
neurons send the next neuron a signal based on the input they are receiving. A network of artificial 
neurons is called a neural network. A NN consists of layers. The first being an input layer (the predictor 
variables), followed by one or more hidden layers (the artificial neurons) and finally resulting in an 
output layer (the prediction). For each outcome in the data a NN is fit.

Support Vector Machine (SVM)

A classification (and regression) algorithm that can classify non linearly separable data by constructing 
a hyperplane (or a set of hyperplanes) in high dimensional space. A SVM tries to find a hyperplane that 
best separates two groups. This is the hyperplane whose distance to the nearest element of each class 
is the largest. For data that is not linearly separable the kernel trick is used. This is a method of adding 
dimensions to the data while at the same time keep the calculations feasible. For each outcome a 
polynomial (kernel) SVM and a radial (kernel) SVM is fit.

Random Forest

A random forest is an ensemble of decision trees. The model is trained with a technique called 
bootstrap aggregation (bagging). Bagging reduces variance and avoids overfitting in ensemble 
methods. With this technique many bootstrap samples are taken and a decision tree is trained on 
each sample. The outcome of all trees together is averaged, which leads to the final outcome. For each 
outcome a random forest is trained.

Adaboost

Boosting is similar to a random forest. The main differences are that the trees are now built 
sequentially and the results are averaged along the way. Boosting is an ensemble method that 
combines weak classifiers to output a single strong predicted response. The technique is considered to 
be an improvement over random forests in some occasions. For each outcome an Adaboost.m1 model 
is trained. 

Super Learner

The super learner finds an optimal weighted combination of candidate learners. The candidate 
learners can be any prediction algorithm. The super learner itself is a prediction algorithm as well. 
The performance of the candidate learners is assessed by cross-validation. For each outcome a super 
learner model is trained. The candidate learners consist of all models mentioned above. With the 
exception of Adaboost.m1, which is replaced by XGBoost (an alternative boosting algorithm).
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Results

Study population 
Between 2011 and 2017, 8,173 patients were included in the DUCA. Of these, 6,427 

were included in the final dataset (figure 1). Of the excluded patients, 403 were a result 

of missing essential values; the outcomes of these patients were not significantly 

different from those included. In total, 4,228 patients underwent a surgical resection for 

esophageal carcinoma, of which 2,540 had a postoperative complication (60%). Of the 

2199 patients with a resection for gastric carcinoma, 883 patients had a postoperative 

complication (40%). Patient characteristics are described in table 2, and figure 2 

presents an overview of the type of postoperative complications. 

Esophageal carcinoma
Anastomotic leakage occurred in 31% (799 of 4,228) patients following esophagectomy 

and pulmonary complications in 54% (1380 of 4228), figure 2. From all prediction 

models, the generalized linear model had the highest AUC, both for anastomotic 

leakage (61.9; 95%CI 57.9-65.9) and for pulmonary complications (64.4; 95%CI 60.9-

67.9), figures 3a and 3b. Closely followed by the machine learning models: Neural 

Networks (AUC 61.7; 95%CI 57.7-65.6), LASSO (AUC 61.7; 95%CI 57.7-65.7) and 

SuperLearner (AUC 61.7; 95%CI 57.7-65.8) for anastomotic leakage. And the machine 

learning model LASSO (AUC 64.3; 95%CI 60.9-67.8) for pulmonary complications. For 

preoperative prediction, nomograms, based on a generalized linear model, have been 

constructed for anastomotic leakage (figure 5a) and pulmonary complications (figure 

5b). For anastomotic leakage: steroid use, advanced tumor stage, distant metastasis, 

surgical approach and preoperative weight loss factors with the most prognostic value. 

For pulmonary complications, these are weight loss, ASA III/IV, advanced tumor stage, 

type of resection and location of anastomosis. 

Gastric carcinoma
After gastrectomy, anastomotic leakage was reported in 18% (156 of 2,199) patients. 

Generalized linear model had the highest AUC (68.0; 95%CI 60.2-75.8) (Figure 4), 

followed by the machine learning model Neural Networks (AUC 67.9; 95%CI 60.4-75.5). 

A nomogram for the preoperative prediction of anastomotic leakage after gastric 

resection is displayed in figure 5c. Tumor histology and lymph node involvement are 

factors with the most prognostic value. Figure 1 - Patient selection
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Table 2 - Patient characteristics

Esophageal cancer resection Gastric cancer resection

(n = 4,228) (n = 2,199)

Age, median (IQR) 66 (59-71) 70 (62-77)

Gender

     Male 3,272 (77%) 1,366 (62%)

     Female 956 (23%) 833 (38%)

BMI

     < 20 276 (7%) 170 (8%)

     20-24 1,614 (38%) 949 (43%)

     25-29 1,663 (39%) 789 (36%)

     ≥ 30 675 (16%) 291 (13%)

Comorbidity

     None 998 (24%) 433 (20%)

     Yes 3,229 (76%) 1,764 (80%)

          Of which   cardiac 978 (30%) 676 (31%)

                               diabetes    639 (20%) 375 (17%)

                               pulmonary 769 (18%) 352 (16%)

                               thrombotic 173 (5%) 154 (7%)

     Unknown 1 (<1%) 2 (<1%)

Preoperative weight loss

     None 1,138 (27%) 639 (29%)

     1-5 kg 1,184 (28%) 543 (25%)

     6-10 kg 891 (21%) 473 (22%)

     11-15 kg 279 (7%) 146 (7%)

     16-20 kg 106 (3%) 55 (3%)

     21-35 kg 56 (1%) 24 (1%)

     Unknown 574 (14%) 319 (15%)

Previous surgery*

     No 2,943 (70%) 1,313 (60%)

     Yes 1,276 (30%) 882 (40%)

     Unknown 9 4

Histology

     Adenocarcinoma 3,383 (80%) 2195 (>99%)

     Squamous cell carcinoma 845 (20%) 4 (<1%)

Type of surgery

    Transhiatal 1,395 (33%) -

    Transthoracic 2,833 (67%) -

McKeown 1,353 (48%)

Esophageal cancer resection Gastric cancer resection

(n = 4,228) (n = 2,199)

    Total gastrectomy - 924 (42%)

cTNM-7 stage

     Stage 0 6 (<1%) 16 (1%)

     Stage I 566 (13%) 465 (21%)

     Stage II 1,116 (26%) 842 (38%)

     Stage III 2,155 (51%) 185 (8%)

     Stage IV 40 (1%) 39 (2%)

     Stage X 345 (8%) 652 (30%)

Neoadjuvant treatment

     None 314 (7%) 848 (39%)

     Chemotherapy 286 (7%) 1,316 (60%)

     Chemoradiotherapy 3,628 (86%) 35 (2%)

ASA-score

     I 712 (17%) 305 (14%)

     II 2,592 (61%) 1,237 (56%)

     III 908 (22%) 639 (29%)

     IV 16 (<1%) 18 (1%)

Steroid use

     No 4,093 (97%) 2,118 (96%)

     Yes 107 (3%) 46 (2%)

     Unknown 28 (1%) 35 (2%)

* Thoracic- and/or abdominal surgery

Table 2 - Continued
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Figure 2 - Type of complications after surgery after (A) esophagectomy and (B) gastrectomy

A

B

AUC% (95% CI)

Generalized Linear Model 61.9 (57.9-65.9)

Lasso 61.7 (57.7-65.7)

kNN 56.9 (52.6-61.2)

Neural Networks 61.7 (57.7-65.6)

SvmPoly 59.3 (55.2-63.4)

SvmRadial 54.0 (49.6-58.4)

Random Forest 59.0 (54.7-63.2)

Adaboost 61.3 (57.4-65.2)

SuperLearner 61.7 (57.7-65.8)

Figure 3a - Anastomotic leakage after esophageal cancer resection
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AUC% (95% CI)

Generalized Linear Model 64.4 (60.9-67.8)

Lasso 64.3 (60.9-67.8)

kNN 61.1 (57.6-64.6)

Neural Net 63.6 (60.2-67.1)

SvmPoly 61.1 (57.5-64.6)

SvmRadial 58.4 (54.7-62.1)

Random Forest 61.1 (57.5-64.7)

Adaboost M1 63.1 (59.7-66.6)

SuperLearner 63.9 (60.5-67.4)

Figure 3b - Pulmonary complications after esophageal cancer resection

AUC% (95% CI)

Logistic Regression 68.0 (60.2-75.8)

Lasso 67.7 (59.4-76.0)

kNN 59.4 (50.8-68.1)

Neural Net 67.9 (60.4-75.5)

SvmPoly 63.0 (55.3-70.8)

SvmRadial 56.4 (47.7-65.2)

Random Forest 62.0 (53.7-70.3)

Adaboost M1 64.9 (56.7-73.1)

SuperLearner 67.8 (59.5-76.1)

Figure 4 - Anastomotic leakage after gastric cancer resection
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Discussion

This study presents the development of various (machine learning) models for the 

prediction of anastomotic leakage and pulmonary complications in a population-

based cohort of 4,228 patients that underwent esophagectomy and 2,199 patients 

that underwent gastrectomy in the Netherlands. Linear regression had the highest 

accuracy of all models for the prediction of anastomotic leakage after esophagectomy 

and gastrectomy, as well as for pulmonary complications after esophagectomy. Of the 

machine learning models, the Neural Networks had the highest accuracy for predicting 

anastomotic leakage after esophageal cancer surgery and after gastric cancer surgery. 

LASSO had the highest accuracy of the machine learning models for the prediction of 

pulmonary complications following esophageal cancer surgery. Furthermore, highest 

accuracy of all studied models was 68.0%, suggesting that none of the models had 

superior predictive ability for postoperative complications in this patient cohort.

It is thought that for the development of machine models, a large population is 

necessary to adequately train the models. For example, the study of Nudel et al. 

included over 436,000 patients and 40 different variables. In their study, artificial 

neural networks and gradient boosting machines outperformed the traditional linear 

regression in predicting anastomotic leakage after weight loss surgery. [10] However, 

a study that included merely 321 patients successfully designed a support vector 

classification model to predict postoperative complications in patients undergoing 

gastrectomy, using 23 clinical features. Their model had an accuracy of 78% in external 

validation. Like in the current study, age and tumor stage were the most predictive for 

the development of complications. [17]. With a broad array of machine learning models 

available, it is difficult to decide which model to use for each particular outcome. The 

systematic review of Elfanagely et al. reviewed 45 papers published between 2015 

and 2020. [18] They concluded that machine learning in surgical research is still in its 

infancy, but these early-published papers show potential. However, they found great 

heterogeneity exists between the different studies; various models are being used, 

and different variables and outcomes are being investigated.[18] They have also shown 

large variation in sample sizes, ranging from 71 to 130,945, implying that sample 

size is not the only factor for successful machine learning models. However, it might 

be possible that a certain publication and confirmation bias is present in the current 

literature, which could be deceiving. 

In line with current literature, our study has demonstrated that ASA-score ≥III is associated 

with anastomotic leakage and pulmonary complications. [17, 19] Both patients with 

advanced age and high ASA-classification are thought to have lower healing capacity 
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causing higher susceptibility to postoperative complications. Patients with a more 

advanced tumor stage may require more extensive resections and technically more 

demanding surgery to reach an R0 resection. This may lead to more intraoperative organ 

damage and subsequent postoperative complications. [20] Furthermore, lymph node 

involvement and, therefore, extensive lymph node dissections and possibly additional 

splenic resection are high-risk procedures. [21] As shown in this study, chronic use of 

steroids preoperatively is associated with postoperative complications, which is thought 

to be due to a reduced healing capacity. [22, 23] 

In daily practice, it is difficult to estimate the surgical risk and make treatment decisions 

based on individual predictive factors. Therefore incorporating multiple factors into 

prediction models can be used to combine information in a simple and more useful 

manner. [24] However, the use of these models is often limited since they are often 

created in a selected patient population or specialized centers, making generalization 

hard; hence this study used a nationwide population-based cohort. [25, 26] 

Furthermore, clinical judgment and expertise are still needed for correct interpretation 

and usage of clinical prediction models. With the current more data-driven approach to 

health care and the availability of nationwide clinical audits, big data becomes available, 

eliminating this limitation of generalization of models. In addition, with big data, the 

interest in machine learning for prediction models has increased. In our study, linear 

regression was superior to the machine learning models. Another study, which used 

a more extensive amount of variables, did show favor for machine learning models. 

[10] However, one could question the use in daily clinical practice when using more 

extensive models, which subsequently leads to more administrative burden to include 

all variables unless being automated. Furthermore, in some machine learning models 

(e.g., neural networks) individual prognostic factors are not known, in contrast to inear 

regression. As demonstrated in this study, linear regression can be used to construct 

nomograms, which are easy to use in daily practice and might expose improvable 

prognostic factors (e.g., weight loss, steroid use) for postoperative complications. 

Subsequently, nomograms can easily be formed into web-based models of mobile 

phone applications, which might increase usability in daily practice.

As part of the currently ongoing implementation and standardization of perioperative 

care into enhanced recovery after surgery (ERAS) protocols, preoperative optimization 

of patients has gained interest. [27] Research towards improving perioperative care 

for upper gastrointestinal surgery also focuses on identifying preoperative high-

risk patients and developing prehabilitation programs for these patients. Upper 

gastrointestinal cancer patients are at high risk for malnutrition due to the anatomical 

localization of the tumor. Therefore, nutritional interventions are important in 

preoperative prehabilitation. [28] Prehabilitation programs for patients with esophageal 

carcinoma have been shown to improve objective measures of physical fitness but 

are less clear on postoperative outcomes. [29] However, good physical fitness and 

nutritional status are widely recognized as a protective factor against postoperative 

complications. It has shown to lead to sooner return to bowel function, oral feeding 

and restored metabolic equilibrium and is therefore currently being standardized 

and implemented into ERAS protocols. [27, 30] This may indicate that prehabilitation 

programs might have to be more specific towards certain risk factors. 

Although our study provides insight on a different aspect of the clinical applicability 

of machine learning models, it has some limitations. The use of Dutch national audit 

data, DUCA, might lead to less generalizability to other countries. However, in The 

Netherlands, participation in the DUCA has been incorporated as a mandatory quality 

standard, leading to an exceptionally complete and reliable database. Voluntary 

participation of some other audits and registries could give a distorted view if 

their participation did not concern all patients. External validation of the models 

did not occur in this study. However, the accuracy of the models was tested using a 

random internal sample of 25% of patients. Another limitation of the study is that 

the experience and expertise of the individual centers and/or surgeons could not 

be included. Hospital volume is thought to be a predictor of mortality after high-risk 

surgery. [31] Patients treated in high-volume hospitals benefit from more experience 

and more advanced expertise. However, according to the DUCA research regulations, 

no data is provided that can be used to derive individual hospitals. If these restrictions 

are lifted in the future, this variable could be implemented in the model to improve 

accuracy. Additionally, accuracy may be improved by adding more variables, which 

are currently not in the the DUCA registry, such as preoperative laboratory results 

(e.g., C-reactive protein (CRP), albumin) [32] and other predictors such as smoking 

and alcohol usage [33, 34] were not included in our models, whereas these variables 

may serve as strong preoperative predictors. The use of intraoperative variables such 

as intraoperative hypotension or blood transfusion may improve predictive accuracy 

of the model. However, these factors cannot be used during patient selection for 

prehabilitation programs or for surgery. [35-37] Additionally, the anastomotic leakage 

rate of 18% following esophagectomy in the Netherlands is relatively high compared to 

other countries, an explanation is the learning curve for new techniques (e.g., minimally 

invasive) in recent years. Around 2010 minimally invasive surgery was introduced and 

many surgeons changed from a McKeown to an Ivor Lewis technique. [38] Furthermore, 

both clinically and radiologically proven anastomotic leakages were included. Finally, 

all patients included in this study were selected to be fit for surgery by expert opinion 

preoperatively, leading to allocation bias. However, occurrence of this type of bias is 

unavoidable in this type of study. 
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Conclusion

This study demonstrates that the studied machine-learning models are able to predict 

postoperative complications in upper gastrointestinal cancer surgery, but they are not 

superior to the current gold standard, logistic regression. However, the accuracy of all 

studied models was relatively low. Furthermore, the use of prediction models does 

serve a purpose for preoperative risk estimation and treatment decisions, but clinical 

expertise is still needed. Additionally, identifying predictive individual factors within 

prediction models (e.g., malnutrition) may improve perioperative care and might lead to 

improved preoperative physical fitness of patients, which can improve ERAS protocols 

and therewith surgical outcomes.
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