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Abstract

Many of our decisions take place under uncertainty. To successfully navigate the environment, individuals need to estimate
the degree of uncertainty and adapt their behaviors accordingly by learning from experiences. However, uncertainty is a
broad construct and distinct types of uncertainty may differentially influence our learning. We provide a semi-systematic
review to illustrate cognitive and neurobiological processes involved in learning under two types of uncertainty: learning
in environments with stochastic outcomes, and with volatile outcomes. We specifically reviewed studies (N = 26 studies)
that included an adolescent population, because adolescence is a period in life characterized by heightened exploration and
learning, as well as heightened uncertainty due to experiencing many new, often social, environments. Until now, reviews
have not comprehensively compared learning under distinct types of uncertainties in this age range. Our main findings show
that although the overall developmental patterns were mixed, most studies indicate that learning from stochastic outcomes,
as indicated by increased accuracy in performance, improved with age. We also found that adolescents tended to have an
advantage compared with adults and children when learning from volatile outcomes. We discuss potential mechanisms

explaining these age-related differences and conclude by outlining future research directions.

Keywords Adolescence - Uncertainty - Volatility - Stochasticity - Learning - Decision-making

Introduction

Uncertainty is a common feature of our everyday decisions
and actions, and we must deal with incomplete informa-
tion in many everyday situations. Despite its pervasiveness,
uncertainty comes in many shapes and forms. For instance,
think about trying a new coffee place; uncertainty may stem
from not knowing some of the products offered, it may stem
from uncertainty about the quality of their products, and it
may even stem from uncertainty about the quality-stability
of their products. At the counter, our decision may depend
on what we expect to be the best at that time (i.e., oat milk
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cappuccino). Consequently, we may need to update those
expectations or beliefs based on our experiences (i.e., How
tasty was it?). Choosing the best course of action (i.e.,
Should I order this here again?) depends on our ability to
learn from experiences and adjust our expectations accord-
ingly by keeping track of outcomes and the changes in those
outcomes over time. Specific periods in life, such as adoles-
cence, have been characterized by being attuned to learning
and navigating novel and inherently uncertain environments.
This study is a review of recent literature on adolescent
learning under different types of uncertainty.

Adolescence is a developmental phase between child-
hood and adulthood in which we transition into an
adult role and develop mature social goals (Crockett &
Crouter, 2014). The start of adolescence is biologically
marked by the start of puberty, although the end of ado-
lescence is less clearly defined (Sawyer et al., 2018).
In Western societies, adolescence approximately spans
the period between ages 10-24 years (including an age
range sometimes referred to as emerging adulthood;
Arnett, 2000; Sawyer et al., 2018; Jaworska & Mac-
Queen, 2015). Puberty is characterized by a rapid rise in
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gonadal hormones, including testosterone and estradiol,
which have a large influence on bodily characteristics,
brain development, and behavior (Laube & van den Bos,
2016; Schulz & Sisk, 2016). Although the exact role of
these hormones is unknown, conceptual models have
hypothesized that pubertal hormones trigger the limbic
brain system to flexibly recruit cortical control regions
and potentially boost development of higher cognitive
and self-regulatory functions important for learning.
For instance, recent animal work has shown that hor-
monal levels directly influence the organization of the
prefrontal cortex and accelerated performance in a rever-
sal learning paradigm (Piekarski et al., 2017). Despite
the link between hormonal changes and human learning
under uncertainty still being inconclusive, it is suggested
that these underlying neurobehavioral changes influence
adolescent learning.

Additionally, adolescence is characterized as a life-
phase in which individuals are confronted with new
environments that may result in temporarily heightened
uncertainty (Hartley & Somerville, 2015; Hofmans &
van den Bos, 2022). For example, adolescents find them-
selves confronted with new social groups when begin-
ning high school. They may also experience uncertainty
about their social position within a new group and about
newly formed social relationships that become more
profound in adolescence. Adolescents may form deeper
friendships, start romantic relations, or join certain
groups outside of their family environment where they
take on more roles and different responsibilities (Crock-
ett & Crouter, 2014; Suleiman et al., 2017). The poten-
tial sensitivity to learning in the adolescent brain may
help to rapidly reduce this heightened uncertainty and
flexibly adapt behavior to new and changing environ-
ments (Crone & Dahl, 2012). A specific hypothesis that
has been put forward is that adolescents may be more
attuned to detecting changing outcomes over time and
more readily adjust their behavior compared with chil-
dren and adults (Lin & Wilbrecht, 2022; Romer et al.,
2017). We examined this hypothesis by reviewing the
developmental literature on learning under two types of
outcome uncertainty: 1) stochastic outcomes, in which
the outcome variation remains stable over time; and 2)
volatile outcomes, in which there is a change in mean-
value or probabilities of outcomes over time.

As highlighted in these examples, many changes in the ado-
lescents’ environments may social, and it is debated whether
learning from social and nonsocial outcomes relies on the same
computational and neural mechanisms (Ruff & Fehr, 2014).
Although studies revealed overlap in neural mechanisms when
processing social and nonsocial rewards (i.e., a common cur-
rency; Corlett et al., 2022; Martinez-Saito & Gorina, 2022),
there is evidence for a degree of specificity, in which parts of
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the prefrontal cortex (e.g., the dorsal medial prefrontal cortex,
and lateral prefrontal cortex) may respond stronger or specifi-
cally to social than nonsocial learning outcomes (Corlett et al.,
2022; Greimel et al., 2018; Martinez-Saito & Gorina, 2022;
Apps & Sallet, 2017). However, given the limited set of stud-
ies in adolescents that contrasts learning under different types
of uncertainty in social and nonsocial situations, we do not
include this as a direct comparison in our review.

The goal of this review is to explore how the current
available studies support the hypothesis that adolescence is
particularly attuned to learning under uncertainty, in which
we group studies based on their outcome stochasticity and
outcome volatility. We first provide a definition of these
different types of uncertainty and elaborate on our semi-
structured literature search and inclusion strategy. Second,
we discuss computational methods to understand the various
manifestations of uncertainty, including the proposed neu-
robiological measures involved. Third, we review empirical
evidence from age-related comparisons in studies examin-
ing learning under stochastic or volatile outcomes. Finally,
we discuss the resulting implications for our understanding
of adolescent learning under different types of uncertainty
and present potential next steps for future research that also
target individual differences.

Different types of uncertainty: Stochasticity
and volatility

The definition of uncertainty has sparked discussion in
the literature. In general, uncertainty arises from outcome
variability or incomplete information about the outcomes.
Despite some conceptual overlap, different forms of uncer-
tainty have been defined (Bland & Schaefer, 2012; Huet-
tel et al., 2006; Piray & Daw, 2021; Pulcu & Browning,
2019; Soltani & Izquierdo, 2019; Yu & Dayan, 2005).
Although other and more fine-grained distinctions have
been made, we focus on stochasticity—also referred to as
risk, expected or irreducible uncertainty—and volatility—
sometimes referred to as unexpected uncertainty (e.g., dif-
ferences between volatility and unexpected uncertainty;
Bland & Schaefer, 2012). Both types of uncertainty can
play a role in learning from repeated choices (e.g., learn-
ing task, Fig. 1A). To illustrate these different types of
uncertainty in the lives of an adolescent, consider adoles-
cents’ interactions. Stochastic outcomes refer to situations
in which making the same decision may result in different
outcomes (i.e., when there is outcome variance), a pat-
tern that remains stable over time (Fig. 1B, upper panel).
For example, meeting a friend after school is usually fun,
but the friend is sometimes in a bad mood, which makes
some interactions less enjoyable but still overall good. In
contrast, volatile outcomes refer to situations in which the
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Fig.1 Example of a paradigm and outcome uncertainty types.
A Stimuli-choice-outcome sequence. In a simple two-choice probabil-
istic learning paradigm (e.g., two-armed bandit task), participants are
shown two options and asked to choose one. After making a choice,
they see the outcome contingent on their action. Choosing the yel-
low fractal resulted in obtaining 62 points on this trial. The goal is to
maximize reward by choosing the option that leads to better outcomes
over the course of the task. This goal is achieved by learning from past
outcomes. B Upper panel: the structure of a task environment where
outcomes (e.g., number of points won) are distributed with some vari-
ance (SD = 15) around a mean value (M = 80), resulting in stochas-
ticity. The mean value remains stable throughout the task. Due to the

outcomes have changed, resulting in a new mean value
and possibly different outcome variance (Fig. 1B, lower
panel). For example, this friend has decided that they want
to gain popularity in high school by joining a different
social group and often is not friendly to you anymore.
While seemingly dramatic, these examples are prevalent
and representative of the lives of adolescents as this devel-
opmental phase comes with erratic mood changes (Macie-
jewski et al., 2019), formation of self-identity (Klimstra
et al., 2010; Pfeifer & Berkman, 2018) and an increased
importance of peer status and evaluation by peers (LaFon-
tana & Cillessen, 2010; Sherman et al., 2016, 2018).
Making the distinction between stochastic and volatile out-
comes is important. The literature on reinforcement learning
suggests that these different types of uncertainty should opti-
mally elicit different choice and learning strategies. That is,
in an environment with high outcome stochasticity, an adap-
tive learner should integrate outcomes of their past decisions
to form and update their internal value representation of the
choice options. In an environment with high volatility, an adap-
tive learner should form and update expectations rapidly and
based on recent outcomes after detecting a change (Behrens
et al., 2007). Prior research has highlighted the importance for
individuals to distinguish between volatility and stochasticity
in their environment as these factors can interact (Piray & Daw,

variance in the outcomes, this type of environment is characterized by
high stochasticity. Similarly, the lower panel shows outcomes that are
distributed around a mean value with variance (SD = 6), but the mean
value (20 in the first 12 trials, 75 in the following 8 trials, 15 in the last
10 trials) changes throughout the experiment leading to increased vola-
tility in addition to the stochasticity in the environment. To optimally
adjust their learning speed, learners need to infer whether receiving an
unexpected outcome (either a better- or worse-than-expected outcome)
is caused by a change (due to volatility) or if it is a result of the random
variance in the outcomes (i.e., due to stochasticity). We illustrated dif-
ferent types of uncertainty using continuous outcomes in this example,
but other versions include similar setups with binary outcomes as well

2021; Yu & Dayan, 2005). For example, in environments with
high estimated outcome stochasticity, unexpected events are
more likely to be attributed to chance even when this event has
occurred due to a real change. In other words, the ability to infer
stochasticity and volatility can assist individuals in the challeng-
ing task of accurately estimating and responding to outcomes
that arise from chance (stochasticity) versus those that indicate
a change (volatility).

Despite the relevance of differentiating these two types of
uncertainty, most developmental studies primarily focus on
one of the two by making use of either probabilistic rein-
forcement learning paradigms targeting stochastic learning
environments or reversal-learning paradigms targeting mainly
volatility in learning environments, but also including a level
of stochasticity. In this way, it could be suggested that these
paradigms target, but do not isolate, learning under volatility.
For a more detailed description of the task paradigms typi-
cally used in developmental and adult samples, see Box 1.
Although relevant for understanding adolescent learning,
the developmental literature is yet to distinguish between the
behavioral and neural findings of learning under stochastic-
ity and volatility. Therefore, as a first step, we reviewed and
compared developmental studies that included an adolescent
age range in stochastic learning contexts (without volatility)
and volatile learning contexts (with or without stochasticity).
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Box 1. Commonly used paradigms to study learning and
decision-making under uncertainty

Probabilistic learning

Probabilistic learning paradigms commonly consist of two stimuli or
actions to choose from, and depending on the underlying probabilities
or contingencies, the choice leads to either a positive (e.g., reward,
absence of punishment) or a negative outcome (e.g., punishment,
absence of reward) with some variance. Thus, even after the associa-
tions are learned, it is not possible to always experience the same
(rewarding) outcome due to the noise or stochasticity in this environ-
ment. For example, in such a learning paradigm, choosing one option
could lead to a reward 80% of the time, whereas choosing the other
leads to a reward only 20% of the time. These outcomes for the two
options can be either perfectly anticorrelated or independent.

Reversal learning

Reversal learning paradigms are generally used to study cognitive
flexibility and appear similar to the probabilistic learning paradigms.
However, they require participants to detect when the contingen-
cies for different options are reversed after every few trials (e.g., a
previously more rewarding option becomes less rewarding and vice
versa). There are versions of reversal paradigms with deterministic and
probabilistic outcomes. In deterministic reversal learning paradigms,
the better option leads to the reward 100% of the time when chosen and
surprising outcomes signal a reversal. In probabilistic reversal learning
paradigms, the surprising outcomes may indicate that the stimulus or
action associated with reward most of the time has changed or it might
be a result of stochasticity. The frequent contingency reversals increase
the volatility in these task environments. Some of these paradigms
introduce reversals only after certain criteria are met (e.g., choosing the
more rewarding option at least three times in a row; Weiss et al., 2021).

Predictive inference

Instead of probabilities, a task environment might depend on more
continuous outcomes, such as points gained or the location of a
hidden stimulus. The outcomes of actions vary around a mean value,
which leads to stochasticity. While estimating the underlying mean
value, learners should not update their expectations too much due to
these random fluctuations (e.g., estimation and choice tasks in Jepma
et al., 2020). However, there also might be changes in the mean
value that are not due to stochasticity in which case learners should
update their predictions more quickly. In a task with continuous
outcomes, volatility would be reflected as a the rate of change in the
generative mean value (e.g., changepoint task; Nassar et al., 2016).

Risky decision-making

Finally, there may be alternative paradigms that include an element
of ambiguity (unknown probabilities) or risk (known probabilities)
when learning. These experience-based, decision-making tasks
require participants to make choices between risky and safe(r) options
that are presented (Christakou et al., 2013; Jepma et al., 2022; Nus-
senbaum et al., 2022; Rodriguez Buritica et al., 2019). Risky options
are generally operationalized as the ones with greater outcome
variability, and consistently choosing such risky options can be either
beneficial or detrimental in the long run based on their average value
(Jepma et al., 2022; Nussenbaum et al., 2022). Thus, both the average
expected outcome values and variability (akin to stochasticity) should
be learned or estimated over time for different options.

Neural and computational mechanisms
of learning under uncertainty

Neuroscientists have described well-defined, reward-learning
networks, including cortico-basal-ganglia loops, with the stri-
atum and medial prefrontal cortex being key regions in this
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network (Haber & Knutson, 2010). The interpretation of learn-
ing signals in the brain has benefited from cognitive computa-
tional modeling that quantifies different parameters of learning
that rely on deviations of expectations (i.e., prediction errors;
Box 2). Rewards that exceed our expectations generate posi-
tive prediction errors, which can reinforce behavior. Conversely,
worse-than-expected rewards generate negative prediction errors
and lead to extinction of behavior. When the prediction error
becomes zero, no further learning is possible and the prediction
remains stable (Schultz, 2015). The extent to which a prediction
error alters subsequent subjective valuation of choice options
depends on one’s learning rate (Box 2). Prediction-error (PE)
learning processes are assumed to depend on midbrain dopa-
mine signaling (i.e., ventral tegmental area, substantia nigra) and
their projections (Schultz, 2007; Schultz et al., 1997). Consist-
ently, findings have pointed to a distributed network for predic-
tion error coding, including dopamine-innervated regions, such
as the striatum, ventral medial prefrontal cortex (PFC), and ante-
rior cingulate cortex (Garrison et al., 2013), and also observed
PEs in regions, such as the insula and lateral PFC (e.g., extensive
meta-analysis on domain-general and domain-specific PEs, Cor-
lett et al., 2022). It is debated whether there are specific brain
networks involved in the updating of expectations (Bruckner
et al., 2022), but at least one study has observed learning rates
to be related to functional connectivity between the striatum and
ventral medial PFC (van den Bos et al., 2012). Developmental
research has aimed to quantify age-related changes in parameters
of reinforcement-learning models and relate these to age-related
changes in brain functioning. The use of computational models
in different age groups in combination with brain measures may
provide insights in how learning develops on multiple levels of
explanation (Lockwood et al., 2020), but see recent reviews for
discussion on the use of computational models in understanding
learning processes (Nassar & Frank, 2016; Eckstein et al., 2021).

Another neurobiological framework on learning under uncer-
tainty quantifies the importance of neurotransmitter systems,
such as acetylcholine and noradrenaline (NA). Volatility, or
unexpected changes, are thought to depend, at least partly, on
the locus coeruleus-NA system (Bruckner et al., 2022). This sys-
tem has been associated with uncertainty in Bayesian modeling
approaches (Box 2) with rapid learning-rate adjustments. There
is some evidence that inhibiting NA levels by using a pharma-
cological antagonist increases individuals’ learning rate through
which beliefs about volatility are updated (Marshall et al., 2016).
This indicates that NA stabilizes individual’s estimate of envi-
ronmental volatility. Brain regions that have been related to
coding uncertainty and surprise overlap partly with regions
that are sensitive to prediction errors and include the anterior
cingulate cortex (ACC; Behrens et al., 2007; d’Acremont &
Bossaerts, 2016), posterior cingulate cortex (Payzan-LeNestour
et al., 2013), and wider frontal-parietal brain regions (Kao et al.,
2020). Other work has suggested the basolateral amygdala to be
a key region for detecting outcome volatility, which may depend
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on the connections with the ACC, or potentially dopaminergic
innervations (Soltani & Izquierdo, 2019). Overall, these find-
ings point to a distributed network that includes regions of the
PFC, parietal cortex, and subcortical regions involved in learning
under uncertainty, as well as the neurochemical involvement of,
at least, dopamine and NA. Many of these regions undergo large
structural and functional development during adolescence and
into adulthood (Silverman et al., 2015; Tamnes et al., 2017),
and similarly changes in neurotransmitter systems are prevalent
across adolescence (Larsen et al., 2020; Wahlstrom et al., 2010).
It is at the moment, however, unclear how these changes contrib-
ute to adolescent learning under uncertainty.

Box 2. Computational models used to model learning and

choice in their simplest form

Reinforcement learning (RL) models

In their simplest and widely used form, RL models include the Rescorla-
Wagner learning rule (Equation 1b) combined with the Softmax
choice function (Equation 2). An important element of learning in
these models is the prediction error (PE), which is the difference
between an expected (EV) and a received (O) outcome as a result of
an action (e.g., choosing the right option) (Equation 1a).

PE, = Ot — EV(right), (1a)
EV(right),,, = EV(right), + a(PE,) (1b)

Parameters in RL models that are estimated from the data and used to calculate
PEs are a learning rate () and decision temperature (/). Learning rates
reflect the degree of updating of expectations (EV), i.e., expected value of
a stimulus or action. The EV is then updated for each stimulus or action
separately at time 7 (note that there might be variations of these models where
EVs for both options are updated simultaneously based on the outcome
received for one of them, i.e., when the options are perfectly anticorrelated).
Although these models can be extended in several ways, one common ver-
sion includes separate learning rates for positive (better-than-expected) and
negative (worse-than-expected) PEs.

. 1
plright), = 1 4+ e~B(EVight,—EV(efr),) @

The choice is then determined by the Softmax function, which assigns higher
choice probability to the option with the higher EV proportional to the dif-
ference of the EVs for different options with varying sensitivity (Equation 2).
The decision temperature (also called inverse temperature) indicates the
degree of this sensitivity and can indicate more or less exploratory choice
behavior depending on its value. Learning rates determine how much influ-
ence PEs have on the updating; a higher learning rate would lead to larger
influence of the most recent outcomes, whereas a lower learning rate would
lead to slower integration across a history of multiple outcomes.

Bayesian Updating Models

Simple reinforcement-learning models do not incorporate uncertainty
directly in their computational framework. In contrast, Bayesian mod-
els assume that individuals attempt to infer the environment’s hidden
states given an individual’s observations (i.e., given the outcomes). In
Bayesian models, uncertainty is explicitly built in. That is, in Bayesian
learning models, there is not a single estimation of EV, but there is a
belief distribution over the world state of interest given the observa-
tions. This belief distribution starts with a prior belief distribution and
is updated with each observation based on Bayes rule, resulting in the
posterior belief distribution of an individual. The posterior distribution
is then used in the decision rule by maximizing the expected utility
under the posterior (e.g., maximum a posteriori (MAP) decision rule),
while the width of the distribution corresponds to uncertainty about the
environment’s state. For more information see e.g. Ma et al. (2022a).

Semi-systematic review approach

Semi-systematic literature reviews are used to integrate
evidence on topics that are conceptualized and studied
in different ways which may impede the process of a full
systematic review and/or meta-analysis (Snyder, 2019).
We opted for a semi-systematic review to study the devel-
opmental differences in learning performance and strate-
gies from stochastic and volatile outcomes by making use
of an extant literature including a diverse set of studies
on belief updating and reinforcement learning. Thus, we
searched terms on the PubMed database related to Uncer-
tainty, Probability Learning, Reversal Learning, Reinforce-
ment; together with terms, such as Developmental, Ado-
lescent Development, Young Adult, Puberty (final search
date July 26, 2022; see full list of terms in Supplementary
Tables S1-2). In addition to screening these articles pub-
lished from 2010 (excluding review articles, studies that
did not include adolescent samples and those that did not
include any age-related analyses), we also used snowball-
ing methods by searching for the citing papers of these
articles, and articles cited by them to identify other rel-
evant papers and preprints (Supplementary Figure S1, flow
diagram). Tables 1 and 2 summarize all studies, including
age ranges and paradigms, model parameters, and whether
neuroimaging data were included. Supplementary Table 1
includes the means of parameters estimates in the studies
(if reported). We discuss the studies of learning under sto-
chasticity (Table 1) and volatility (Table 2) separately in
relation to age-related differences in behavioral, computa-
tional modeling, and neural findings and make suggestions
for future studies.

Results
Development of learning from stochastic outcomes

Table 1 lists empirical studies comparing developmental
samples using tasks that involve outcome stochasticity.
The majority of these studies employed probabilistic learn-
ing tasks with stable reward contingencies, and a few used
experience-based decision-making tasks. Among these are
studies that used a RL model (except Himmerer et al., 2011;
Humphreys et al., 2016; and Smith et al., 2012) and stud-
ies with (n = 7) or without (n = 12) neuroimaging. Only
four of the reviewed studies with stochastic but stable out-
come contingencies used social rewards or feedback, and the
nature of these were highly diverse (i.e., prosocial reward,
reciprocity of trust, acceptance, and feedback about others’
mental states), hindering our ability to directly compare
social to nonsocial tasks.
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When summarizing these developmental findings, we
first consider how quickly individuals at different ages
update values of different stimuli or actions in contexts
with stochastic but otherwise stable outcomes which should
evoke higher degrees of expected uncertainty. These find-
ings have been mixed. Whereas some studies reported that
adolescents had lower learning rates than adults (Davidow
et al., 2016; Jones et al., 2014; Rosenblau et al., 2018; Xia
et al., 2021), others reported a decrease in learning rates
with age (Decker et al., 2015; Jepma et al., 2020; van den
Bos et al., 2012; Westhoff et al., 2020, 2021) or no age-
related differences (Palminteri et al., 2016; Raab & Hartley,
2020). A subset of these studies (N = 6) reported asym-
metrical learning rates for positive (better-than-expected)
and negative (worse-than-expected) PEs—referred to as
positive and negative learning rates in short—instead of
single learning rates, which further added to divergent find-
ings in the literature (Christakou et al., 2013; Jones et al.,
2014; Nussenbaum et al., 2022; Rodriguez Buritica et al.,
2019; van den Bos et al., 2012; Xia et al., 2021). If we
look at these separately, however, positive learning rates in
children and adolescents showed mixed findings. One study
reported higher positive learning rates in children and adults
relative to adolescents (Jones et al., 2014); another reported
a marginal increase with age from childhood to adulthood
(van den Bos et al., 2012). Two studies reported opposite
patterns: one reported a decrease in positive learning rates
from early adolescence to adulthood (Christakou et al.,
2013), and the other reported an increase (Xia et al., 2021).
Yet others reported no difference in positive learning rates
across ages (Nussenbaum et al., 2022; Rodriguez Buritica
et al., 2019). Negative learning rates seemed to be relatively
more consistent where children showed either the highest
(Nussenbaum et al., 2022; Rodriguez Buritica et al., 2019;
van den Bos et al., 2012) or similar levels (Jones et al.,
2014) compared with other age groups. Adolescents showed
similar negative learning rates to adults (Jones et al., 2014;
Rodriguez Buritica et al., 2019) or negative learning rates
decreased with age (Nussenbaum et al., 2022; van den Bos
et al., 2012), except for one study that reported an increase
in negative learning rates with age in adolescence but not
in adulthood (Christakou et al., 2013).

In contrast, findings from most studies indicate a
decrease in choice stochasticity and exploration (i.e.,
inverse temperature) in adults compared with children
and adolescents in most studies (Decker et al., 2015;
Jepma et al., 2020; Nussenbaum et al., 2022; Palminteri
et al., 2016; Rodriguez Buritica et al., 2019; Westhoff
et al., 2021; Xia et al., 2021; but see Davidow et al.,
2016, and van den Bos et al., 2012). Moreover, learning
performance—as indicated by the proportion of choices
for the option with higher underlying mean value, cor-
rect responses, or more accurate predictions depending
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on the task characteristics—generally increased with age
(Christakou et al., 2013; Cohen et al., 2010; Humphreys
et al., 2016; Jepma et al., 2020; Jepma et al., 2022; Jones
et al., 2014; Nussenbaum et al., 2022; Palminteri et al.,
2016; Rosenblau et al., 2018; Westhoff et al., 2021; Xia
et al., 2021) . Compared with the number of studies
that reported an age-related increase in learning per-
formance, fewer studies reported a decrease in perfor-
mance from adolescence through adulthood (Davidow
et al., 2016; Raab & Hartley, 2020), or they reported no
age-related differences between adolescents and young
adults (Rodriguez Buritica et al., 2019) but found that
children and older adults performed worse than adoles-
cents and young adults (Decker et al., 2015; Himmerer
et al., 2011). One study also found a U-shaped relation-
ship with age from childhood to mid-late adolescence
with lowest performance between ages 10-13 years
(Smith et al., 2012).

Neuroimaging findings show that in a learning context
with outcome stochasticity, PEs scale with the activity in
the ventral striatum, and medial PFC (Cohen et al., 2010;
Davidow et al., 2016; Jones et al., 2014; van den Bos et al.,
2012; Westhoff et al., 2021). In a social learning task
where participants made predictions about the preferences
of peers, activation in the fusiform cortex was associated
with PEs (Rosenblau et al., 2018). In terms of age-related
differences, studies reported 1) no age-related change in PE
responses when learning for self (Westhoff et al., 2021), 2)
peak striatal activity in adolescence (Cohen et al., 2010),
3) greater hippocampal PE-related activity in adolescents
vs. adults (Davidow et al., 2016), and 4) greater activa-
tion in insula with positive PEs specific to adolescents
(Jones et al., 2014). The expected values and predictions
in these tasks correlated with the medial PFC responses,
which were stronger in adults relative to adolescents (Jones
et al., 2014; Rosenblau et al., 2018). In addition, one study
investigating the functional connectivity between striatum
and medial PFC reported enhanced connectivity during the
receipt of positive versus negative feedback, which also
increased with age (van den Bos et al., 2012).

Taken together, these findings are difficult to recon-
cile in terms of systematic developmental changes. The
reported inconsistencies seem due to the variety of tasks
(e.g., some requiring higher working-memory capacity
or social tasks) and computational models (e.g., single
vs. asymmetrical learning rates) used as well as sample
characteristics. For example, there are inconsistencies
in the cutoff ages that different studies used in order to
group participants as children, adolescents, and adults.
Combined with differences in analytic approaches (e.g.,
age used as a continuous variable vs. grouping vari-
able), such sample differences may have contributed
to mixed findings when comparing ages. Despite this,
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most studies using stable probabilistic learning tasks that
involve expected uncertainty (due to outcome stochastic-
ity) somewhat consistently reported a decrease in choice
stochasticity (Decker et al., 2015; Palminteri et al., 2016;
Westhoff et al., 2021; Xia et al., 2021 but see Davidow
et al., 2016; and van den Bos et al., 2012) and an increase
in performance from childhood to adulthood (Decker
et al., 2015; Hammerer et al., 2011; Jones et al., 2014;
Palminteri et al., 2016; Rosenblau et al., 2018; Westhoff
et al., 2021; Xia et al., 2021 but see Davidow et al., 2016;
Raab & Hartley, 2020; and Smith et al., 2012).

Results: Development of learning from volatile
outcomes

Dynamic and volatile environments contain reversals or sud-
den changes in the outcome statistics that evoke unexpected
uncertainty. In these environments, typically the challenge
is to optimally respond to unexpected outcomes, because
they might signal either a change or occur due to stochastic-
ity or noise in the environment. Table 2 shows the overview
of developmental studies that used tasks with high volatil-
ity, such as probabilistic or deterministic reversal learning
tasks (n = 6) and a predictive inference task (n = 1; Bruck-
ner et al., 2020). The majority (n = 6) of these studies also
employed computational models to analyze the behavioral
patterns. All studies recruited adolescents. Except for one
study, which compared children to adolescents (Weiss et al.,
2021), the others compared younger participants to adults.
A subset of studies (n = 3) included neuroimaging findings.
Except for one experimental condition in one of the reported
studies (i.e., videos showing an individual smiling and giv-
ing thumbs up; Weiss et al., 2021), all studies with volatile
outcomes focused on learning from nonsocial reward or
feedback.

Similar to tasks that involved outcome stochasticity but not
volatility, these studies using tasks with higher volatility also
reported mixed findings regarding age-related differences in
the patterns of learning rates. Some studies reported no dif-
ferences in learning rates (Bruckner et al., 2020; Javadi et al.,
2014; Waltmann et al., 2023). Others reported higher learn-
ing rates in adolescents compared with adults (particularly
for negative outcomes; Hauser et al., 2015), or found higher
learning rates in adolescents than in children (Bruckner et al.,
2020; Weiss et al., 2021). In contrast, a recent study reported
lowest negative learning rates in adolescents among all the
age groups (Eckstein et al., 2022). Only two of these studies
modeled and reported on both positive and negative learning
rates (Eckstein et al., 2022; Hauser et al., 2015), whereas oth-
ers reported on a single learning rate.

With regard to the inverse temperature parameter,
these studies reported either no age-related differences
(Hauser et al., 2015; Weiss et al., 2021) or increases with

@ Springer

age (Eckstein et al., 2022; Javadi et al., 2014), indicat-
ing less exploration or noisy choices with age. A recent
study found that adolescents were less sensitive to par-
ticularly positive reinforcement than adults, which leads
adolescents to show more response switching akin to
more exploratory/noisy choice behavior (Waltmann et al.,
2023). In addition, whereas some studies reported peak
performance in adolescence compared with other ages
(Eckstein et al., 2022; van der Schaaf et al., 2011; Weiss
et al., 2021), or better performance of adolescents than
adults in early trials of more volatile phases (Waltmann
et al., 2023), the others did not find any differences in per-
formance between adolescents and adults (Bruckner et al.,
2020; Hauser et al., 2015; Javadi et al., 2014).

Neuroimaging findings show that in a learning context
with high volatility, PEs were found to be associated with
the activity in the striatum, ventral medial PFC, and posterior
cingulate cortex, yet with neglectable or very limited age-
related differences (Hauser et al., 2015; Javadi et al., 2014,
Waltmann et al., 2023). One study reported an increased right
insula response to negative PEs in adolescents compared with
adults (Hauser et al., 2015). Another study reported that
activity in the medial PFC scaled with choice probability
predicted by the computational model and was stronger in
adults than adolescents (Waltmann et al., 2023).

Although all these studies involved volatility, the char-
acteristics of the experimental paradigms, computational
models used, and samples varied considerably. This group
of studies most commonly employed probabilistic learning
tasks. However, even when we only compare the probabilis-
tic reversal tasks that involve choosing between two options,
the exact probabilities associated with a given outcome were
80%, 75%, or 60% in different studies. The outcomes could
be gain and loss, gain and no gain, or loss and no-loss. In
addition, there were inconsistencies in the cutoffs used to
define different age groups along with differences in the ana-
lytic approach to assess age-related effects in these studies
similar to those in studies that employed tasks with stochas-
tic outcomes. Despite these differences, it seems that ado-
lescents either performed comparable to adults (Bruckner
et al., 2020; Hauser et al., 2015; Javadi et al., 2014) or bet-
ter (Eckstein et al., 2022; van der Schaaf et al., 2011; dur-
ing early reversal phases in Waltmann et al., 2023; recently
similar findings were reported in Chierchia et al., 2022) in
such dynamic and changing environments with higher levels
of volatility.

Interim summary: Comparing the development
of learning from stochastic to volatile outcomes

The results suggest that adolescents might have an advantage
over younger and older age groups when learning in dynamic
environments with volatile outcomes. Particularly, they might
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Table 1 (continued)
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Children and adolescents:

Age group (N)

The Butterfly task (Davidow et al., 2016)

Task details

Probabilistic learn-

Task type

Xia et al. (2021)

Author (yr)

Springer

age through early 20s and

then stabilized.

Increased with age

Inver

=157)
Adults: 18-30 (N =118)

8-17 (N

with 80% and 20% probability of prefer-
ence for a flower per butterfly. Correct

ing

re:

Increased with age

feedback led to 1 point; incorrect feedback

led to O point.

*Where results regarding parameters are entered as nonapplicable (NA), either the studies did not employ computational models or the fitted models did not include these parameters. If the

analyses related to a given parameter were not reported in the papers, then the parameter values were entered as “not reported.” Mean (or median) values of parameters are reported in Supple-

mentary Table S3

perform relatively better than adults when learning from vol-
atile outcomes compared with learning from only stochastic
outcomes where they generally seem to perform worse than
adults. More specifically, among the studies, three of six that
included adolescents and adults showed that adolescents were
better at learning from volatile outcomes than adults (note
that this was only true in early reversal phases in Waltmann
et al., 2023); the other three showed no age-related changes
from adolescence to adulthood. Interestingly, none of these
studies reported that adolescents performed worse (i.e., fewer
correct choices) at learning from volatile outcomes. Although
the results for stochastic outcomes appear to be somewhat
mixed, there seemed to be an improvement in learning from
stochastic but stable outcomes with age. Eleven of 17 studies
that reported on learning performance showed that adoles-
cent's learning improved with age, whereas two studies found
an age-related decline and three did not find age-related dif-
ferences in performance between adolescents and adults.

Only 10 among the 26 studies reviewed included neu-
roimaging data. Moreover, the heterogeneity of the learn-
ing paradigms and modeling approaches in the reviewed
studies makes it difficult to compare the neural correlates
of the processes involved in learning under stochastic and
volatile outcomes. Interestingly, most of these studies do
not find age-related differences in the processing of PEs in
these regions (but see Cohen et al., 2010). Also, we did not
identify any regions that dissociated learning from stochastic
outcomes and volatile outcomes. One explanation is that
these learning processes may overlap and depend on the
same learning systems in the brain. Alternatively, different
levels of volatility (or surprise) may target more specific
neural systems, although there are limited indications for a
distinction in learning systems in the developmental com-
parison we included.

Discussion and future directions

Mechanisms underlying adolescent learning
and decision-making under different types
of uncertainty

From this review, our findings indicate that adolescents,
compared with children and adults, seem to have a rela-
tive advantage when learning from volatile outcomes.
When learning from stochastic outcomes adolescents,
compared with adults, have a relative disadvantage,
but future studies are needed to identify the underly-
ing causal mechanisms for this effect. These empirical
studies may suggest at least several candidate mecha-
nisms. First, although the findings for learning rates
were largely mixed, explorative or noisy choices—e.g.,
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as indicated by the (inverse) temperature parameter—
decreased from adolescence to adulthood across learn-
ing tasks (Nussenbaum & Hartley, 2019). On average,
these exploratory or noisy choices can result in gaining
less reward or incurring greater loss in environments
where outcomes are stochastic, but stable. However, in
environments where outcomes are volatile, these choices
can result in faster detection of changes in outcomes,
as the lower value options keep being sampled instead
of avoided entirely (Denrell, 2005; Fan et al., 2022;
Lloyd et al., 2022). The decrease in exploratory or noisy
choices with age is therefore one potential mechanism by
which adolescents might perform better when learning
from volatile outcomes than when learning from only
stochastic outcomes relative to adults.

Second, adolescents may be more prone to perceive
volatility in environments in which outcomes are in real-
ity only stochastic (Jepma et al., 2020). This could indi-
cate that adolescents either expect more volatility in their
environment or that they mistake stochastic outcomes
as signals of volatility. Furthermore, adolescents who
estimate higher volatility in such environments may have
both higher learning rates and engage in more explora-
tory or noisy choices (Jepma et al., 2020). The majority
of studies we reviewed employed learning tasks with a
choice component. In such tasks, both the updating of the
expected values and choice behavior play a role in deter-
mining performance. Thus, making use of designs that
examine these processes partially independently (e.g., an
estimation task without a choice function, and a proba-
bilistic learning task with a choice function as in Jepma
et al., 2020) under different types of outcome uncertainty
may help better understand the mechanisms that give rise
to age-related differences in performance when learning
from volatile and stochastic outcomes.

Finally, neurobiological, hormonal, and environmental
changes that take place during adolescence may explain why
the developmental changes in learning from stochastic and
volatile outcomes occur and relate to the changes in explora-
tion, noise, and perceptions of volatility. In a developmen-
tal perspective, an interesting question for future research
is therefore whether, for instance, pubertal onset is tied to
these cognitive computations and expectations. In addition,
studies have suggested that pubertal changes may initiate a
cascade of neurobiological changes that influence learning
and brain plasticity, including for instance dopamine func-
tioning (Larsen & Luna, 2018). More research is needed to
combine learning in stochastic and volatile environments to
these developmental changes in hormonal and neurotrans-
mitter functioning. Longitudinal studies, in particular, could
be crucial in differentiating the effects of age versus puberty
on learning in diverse uncertain situations.

Understanding the links between volatility,
exploration, and noise in empirical studies

In decision making, noise refers to random fluctuations that
can affect the accuracy and consistency of our judgments or
actions, whereas exploration refers to the process of seeking
out new information or options to improve our understand-
ing of a situation, which would then be used to identify bet-
ter courses of action. Across our reviewed studies, one of the
more consistent developmental differences in computational
model parameters was observed in the inverse temperature.
Although historically considered to reflect exploration (Daw
et al., 2006), this parameter could be interpreted as a form of
exploration, as decision noise, and sometimes these accounts
are difficult to distinguish.

Recent frameworks, such as those proposed by Gershman
(2018) and Wilson et al. (2014), provide a more nuanced
view on exploration and are promising for future develop-
mental studies. For example, some decision contexts may
call for directed exploration (e.g., when there is relative
uncertainty, the more uncertain option may be favored).
Other decision contexts call for random exploration (e.g.,
when the total uncertainty is high, not dependent on rela-
tive uncertainty) (Fan et al., 2022; Gershman, 2018; Tomov
et al., 2020). When the outcomes of the options are volatile
as opposed to only stochastic, this also leads to more explo-
ration (Fan et al., 2022). Random exploration is thought to
be stable across development, but interestingly, the strategic
use of directed exploration has been suggested to emerge
across adolescence (Somerville et al., 2017). This puts for-
ward a promising hypothesis regarding age-related changes
in goal-directed exploration and its interactions with out-
come uncertainty, which can be targeted by using specific
experimental paradigms and models (Fan et al., 2022;
Tomov et al., 2020).

Another recent framework that would be interesting to
test using a developmental perspective disentangles deci-
sion noise from computation noise (Findling et al., 2019).
According to this framework, the variability in choice behav-
ior that would be traditionally attributed to decision noise
(or “exploration”) could be, to a large degree, explained by
noise in the updating of the action values (i.e., computation
noise; Findling et al., 2019; Findling & Wyart, 2021). An
interesting feature of computation noise is that it increases
with the magnitude of the prediction errors, particularly
in volatile environments (Findling & Wyart, 2021). The
potential benefits of increased computation noise in volatile
environments could be to support the flexibility to adapt to
unpredictable changes or balancing the cost of computa-
tion precision. It is a possibility that the increased choice
stochasticity in adolescents that we observed in the stud-
ies reviewed also can be attributed to computation noise.

@ Springer
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However, no study to date has directly examined age-related
changes in computation noise. This remains to be addressed
in future studies.

One important point to consider is that several of the
tasks analyzed in our review, including those that involve
volatile task environments (e.g., implementing a mean-level
shift in the reward structure), typically incorporate stochastic
elements (Fig. 1; Supplementary Table S3). At the moment
almost no developmental studies explicitly estimate stochas-
ticity and volatility (but see Jepma et al., 2020). However,
such an approach is important when the goal is to under-
stand the mechanisms that give rise to behavioral differences
when learning from outcomes that involve different types of
uncertainty. For example, adolescents may be more prone to
perceive volatility in environments in which outcomes are,
in reality, only stochastic (Jepma et al., 2020). Recent mod-
els that explicitly estimate both stochasticity and volatility
(Piray & Daw, 2021) can be combined with paradigms that
manipulate stochasticity and volatility within the same indi-
viduals while keeping other task characteristics as similar
as possible (Behrens et al., 2007). These experimental and
methodological advances would allow us to examine more
directly the developmental differences in learning under sto-
chasticity and volatility.

Testing these frameworks also requires studies with
larger samples or multiple studies using the same task and
models. As mentioned in our interim summary and Table 1
(see also Supplementary Table S3 for reported means of
parameter values), most studies include different para-
digms with slightly different computational approaches,
making it difficult to directly compare parameter values
across studies. The issue of generalizability of computa-
tional approaches is clearly outlined in previous reviews
(Eckstein et al., 2021; 2020). In brief, their findings show
that in many cases, computational parameters cannot be
directly compared between studies, because the processes
that are captured depend on task characteristics, such as
feedback valence, memory load, choice of parameters,
volatility, and others. We therefore capitalized on a com-
parison of age (groups) within studies and subsequently
summarized these findings for task environments that
differ in volatility versus stochasticity. Also, differences
between studies may occur due to variations in sample
characteristics. Studies covering the period of adolescence
have relied on different age ranges and cutoffs (Table 1),
in which the youngest adolescents included were aged 10,
12, 13, or 14 years and the oldest were aged 14, 15, 17, 18,
and 19 years. Finally, although not reported here, socio-
economic status, or education levels may differ between
studies and/or age groups. For future studies, these sample
characteristics are important to consistently report in the
literature (Qu et al., 2021).

@ Springer

Individual differences in learning
and decision-making with uncertainty

The developmental studies that were identified in this review
largely ignored the subjective experience of uncertainty.
Uncertainty is perceived to be threatening by most people
and is associated with stress (de Berker et al., 2016; Grupe
& Nitschke, 2013; Peters et al., 2017). Anxious individuals
have been shown to have difficulties processing the cues in
their environment to estimate the type of uncertainty and
adjust their learning accordingly (Piray & Daw, 2021; Pulcu
& Browning, 2019). For example, individuals with higher trait
anxiety and transdiagnostic anxious and depressive symp-
tomatology showed little difference in learning rates between
volatile compared with stable (stochastic) environments,
whereas optimal learners increase their learning rates (i.e.,
learn faster) in volatile environments (Browning, 2015; Gagne
et al., 2020). According to a recent conceptual framework
(Piray & Daw, 2021), learners simultaneously make infer-
ences about the stochasticity and volatility in an environment,
which are compensatory processes influencing the adjustment
of learning rates. Within this framework, anxiety is suggested
to be mainly associated with the maladaptive functioning of
the processes involved in stochasticity inference such that anx-
ious individuals assume higher volatility in environments that
are actually stable but highly stochastic. Alternatively, anxi-
ety might be related to reduced exploration and adaptation of
exploratory behavior to volatility where exploring more might
be beneficial (Fan et al., 2022; Lloyd et al., 2022). Anxiety
and depressive symptoms are particularly relevant to include
from a developmental perspective, as the onset of anxiety dis-
orders and depression are most prevalent during adolescence
(Blakemore, 2019; de Lijster et al., 2017; Kessler & Bromet,
2013; McLaughlin & King, 2015). To what extent uncertainty,
and the mechanisms that may drive the experience of uncer-
tainty, play a role in the development of mental health symp-
tomatology is an important question for future developmental
studies. A longitudinal perspective will be crucial to unravel
who is at risk for developing mental health illnesses.

Uncertainty in social environments

Our review includes paradigms that examine learning in both
social and nonsocial environments. However, most studies in
our review use abstract paradigms, which necessitate individ-
uals to learn a stimulus-outcome association based solely on
their personal experiences without any social cues. Although
learning through prediction errors can occur in both social and
nonsocial contexts (Ruff & Fehr, 2014), learning in a social
context may sometimes involve different strategies than learn-
ing in a nonsocial context (Hackel et al., 2020). Also, many
of the uncertainties that adolescents learn to navigate in this
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phase of life stem from social interactions as they begin to
interact with their environments as autonomous individuals,
take on various social roles, and form new friendships and
romantic relationships (Crockett & Crouter, 2014). Moreo-
ver, adolescence is a developmental phase in which social
reorientation takes place such that importance of peers and
salience of social information becomes more prominent
(Crone & Dahl, 2012; Nelson et al., 2005, 2016). This sup-
ports the relevance of learning and decision-making in social
contexts given that adolescents’ understanding of what their
peers value and think should considerably weigh into their
value estimations and influence their decisions (Pfeifer &
Berkman, 2018). It is therefore important for adolescents to
learn about and update their knowledge of the characteristics
of other people (e.g., what and whom they like; Jones et al.,
2014; Rosenblau et al., 2018, or how trustworthy they are; Ma
et al., 2022b) and social groups (e.g., how cooperative or trust-
worthy they are; Westhoff et al., 2020). For building social
ties, it is important to learn how consequences of our actions
influence ourselves and others (e.g., whether our actions are
harmful for others; Westhoff et al., 2021) or by observing oth-
ers and benefiting from their experiences (Rodriguez Buritica
et al., 2019). There have been efforts to address the impor-
tance of studying the uncertainty processing in social contexts
during adolescence (Blankenstein et al., 2016; Hofmans &
van den Bos, 2022; Ma et al., 2022b). For example, one study
used computational models to examine uncertainty in social
contexts directly and found that adolescents have weaker prior
expectations about the social behavior of their peers, which
resulted in faster learning about their peers (Ma et al., 2022b).

Additionally, it has been suggested that adolescents’ ability
to adapt to volatile social environments may manifest in the
increased variability of their moods (Gregorova et al., 2022).
For example, their positive or negative mood may signal a
general increase or decrease of social rewards in the adolescent
environment, thereby facilitating quick adjustment to interac-
tions with friendly (positive mood) or hostile (negative mood)
others. However, in cases where one’s mood largely biases
their learning or where one engages in suboptimal learning
(e.g., estimating higher volatility in an environment with stable
but stochastic outcomes), increased mood variability may pose
a risk for mental health problems (Gregorova et al., 2022).
Taken together, future research is needed to unpack how the
uncertainty in adolescents’ social environments may provide
rich and adaptive opportunities for learning.

Conclusions

The ability to tailor learning and decision-making under
uncertainty is crucial for adaptive behavior, especially given
that uncertainty is intrinsic to most real-life situations. In this
review, we discussed different types of uncertainty, focusing

mainly on two types of outcome uncertainty: stochasticity and
volatility, as these have different influences on learning and
decision-making. Taking a developmental approach, with a
focus on adolescence as a period characterized by change and
uncertainty, we summarized the recent findings from stud-
ies that compared different age groups in learning tasks that
involved different types of uncertainty. While we observed
that the findings were mixed, there were interesting consist-
encies in the age-related differences in model parameters and
performance. The findings suggest that the development of
learning under uncertainty might depend on the statistics of
the environment and the type of uncertainty that the individual
is exposed to. Interestingly, adolescents may have an advan-
tage when learning from volatile outcomes. In contrast, ado-
lescents’ more exploratory or noisy choice behavior seems a
disadvantage when learning from stochastic outcomes in rela-
tively stable contexts. This is possibly an adaptive response
to the rather complex and continuously changing environ-
ments that adolescents encounter in real life. Future studies
are needed to test this relationship more directly and expose
mechanisms through which adolescents gain this advantage
in learning. Together, these findings contribute to the under-
standing of adolescence as a sensitive period for learning in
uncertain and dynamically changing environments.
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