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Abstract 

Sepsis is a life-threatening condition driven by the dysregulation of the host 
immune response to an infection. The complex and interacting mechanisms 
underlying sepsis remain not fully understood. By integrating prior knowledge 
from literature using mathematical modelling techniques, we aimed to obtain 
deeper mechanistic insight into sepsis pathogenesis and to evaluate promising 
novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated 
pathways. A Boolean network of regulatory relationships was developed for key 
immune components associated with sepsis pathogenesis after TLR4 activation. 
Perturbation analyses were conducted to identify therapeutic targets associated 
with organ dysfunction or antibacterial activity. The developed model consisted of 
42 nodes and 183 interactions. Perturbation analyses suggest that over-expression 
of tumour necrosis factor alpha (TNF-α) or inhibition of soluble receptor sTNF-R, 
tissue factor (TF), and inflammatory cytokines (IFN-γ, IL-12) may lead to a reduced 
activation of organ dysfunction related endpoints. Over-expression of complement 
factor C3b and C5b led to an increase in the bacterial clearance related endpoint. 
We identified that combinatory blockade of IFN-γ and IL-10 may reduce the risk 
of organ dysfunction. Finally, we found that combining antibiotic treatment with 
IL-1β targeted therapy may have the potential to decrease thrombosis. In summary, 
we demonstrate how existing biological knowledge can be effectively integrated 
using Boolean network analysis for hypothesis generation of potential treatment 
strategies and characterization of biomarker responses associated with the early 
inflammatory response in sepsis. 
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Introduction 

Sepsis is a complex syndrome with high morbidity and mortality associated with 
multi-organ dysfunction driven by the host inflammatory response to an infection. 
The initial inflammatory response is mainly activated by pattern recognition 
receptors, where Toll-like receptor 4 (TLR4) activation is one of the key receptors 
associated with Gram-negative bacterial infections commonly producing 
sepsis[1][2]. Organ dysfunction is a major cause of sepsis-associated mortality and 
morbidity, although the underlying mechanisms for these effects are only partly 
understood [3]. Besides treatment with antibiotics, very limited treatment options 
are currently available for sepsis. Considerable efforts in the past decades towards 
developing novel therapeutics against sepsis have failed during clinical trials [4][5]. 
The complexity of underlying immune system interactions in sepsis in relation to 
harmful effects on organ systems may be an important reason for these failures, 
warranting more holistic approaches.  

A wealth of knowledge of isolated cellular and biochemical processes and 
their interactions associated with inflammation and sepsis is available in literature, 
but the utility of this is hampered by a lack of integration. To this end, the use of 
mechanistic mathematical modelling may help to integrate this knowledge in order 
to rationalize the design of treatment strategies, and the discovery of novel 
biomarkers that may be used to stratify patients and individualize therapies[6][7]. 
Indeed, quantitative ordinary differential equation models have been used 
extensively in systems biology and systems pharmacology for this purpose. 
However, a requirement for constructing such models is the availability of kinetic 
parameters, which are lacking for various sepsis and inflammation associated 
interactions and processes.  

Boolean network (BN) models offer an attractive mathematical modelling 
strategy where inhibitory and stimulatory interactions that are commonly available 
in literature can be utilized, allowing a much more comprehensive integration of 
available biological knowledge. BN modelling approaches have been used 
previously to describe the behaviour of complex systems and to support 
identification of treatment targets[8][9]. Briefly, a BN model consists of nodes and 
edges. Nodes can have an active or inactive state and typically represent biological 
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components such as cells, mediatory molecules or genes[10]. Edges represent the 
interactions between the different nodes. The BN network is defined according to 
logic functions that determine the activation state of each node, which will also 
depend on the activation state of other nodes in the network. Within specific 
Boolean modelling tools, e.g. SPIDDOR[10], interactions between components can 
also be refined to cause specific activation, inhibition, and modulation of the nodes. 
Performing simulations with BNs can be used to identify stable states (known as 
attractors) of the system, which may be considered to correspond to 
phenotypes[11], thus providing insight into the probability of activation of 
endpoint nodes with clinical relevance. Comparing the attractors under different 
perturbations of nodes alone or in combination may be used to identify novel 
treatment strategies[12]. 

The aim of this study is to identify cellular or mediator-specific factors which 
modulate key clinically-relevant endpoints of sepsis, either as explanatory factors 
of inter-individual variation in treatment outcome, or, as target for potential mono- 
and combination treatment strategies. To this end, we developed a BN model for 
the TLR4-mediated host inflammatory response that plays an important role in the 
systemic inflammatory response in the early phase of sepsis.  

Methods 

Model development 

An extensive literature search was performed in order to build the Boolean 
network model for TLR4-mediated sepsis. We collected experimental in vitro and 
in vivo data on activation or inhibitory events between key immune cells, 
intracellular signalling mediatory molecules such as inflammatory cytokines and 
membrane receptors, and sepsis pathogenesis endpoints including bacterial 
phagocytosis and thrombosis. The development of the initial version of the model 
was guided by several comprehensive reviews of the inflammatory response after 
TLR4 activation and sepsis, from where we systematically searched for each cell 
and/or mediator for all relevant additional interactions. The BN model was created 
by translating regulatory interactions between identified cells, receptors and 
molecules into Boolean functions: interactions of activation or inhibition between 
nodes were described as flexible combinations of Boolean operators AND, OR and 
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NOT in a mathematical expression. The network was visualized using Cytoscape 
(v3.8.2)[13]. 

Model implementation 

The Boolean network analysis was performed in R (v 4.1.2) using the package 
SPIDDOR (v 1.0)[10], which has multiple essential functionalities for capturing the 
behaviour of immune responses. One of these functionalities is the introduction of 
time delays in the network interactions. Such delays are incorporated using 
threshold arguments (THR) that represent lag times for the initiation of node 
activation or inhibition. In addition, SPIDDOR allows for modulating the intensity 
of the activations and inhibitions of the network, by adding a duration for these 
interactions to occur[10]. In that sense, a regulator node could activate or inhibit 
the regulated node for only some time steps in the simulation.  

To capture the stochasticity associated with biological systems, an 
asynchronous updating method was implemented for the simulations. This 
method assumes that only one node can be updated in a single time step and every 
node is equally likely to be updated[14]. In a BN simulation, each node is updated 
according to its Boolean function over the time steps, to either remain in, or switch 
to, one of the two possible states: 0 (inactive) or 1 (activated). The initial state of this 
BN is the onset of infection (i.e. Infection = 1, all other nodes = 0). The state sets of 
attractors for each simulated scenario, i.e. the percentage of activation (% activation) 
of each node in 100 repetitions, were used as readout.  

Simulation endpoints 

Simulation scenarios were evaluated based on two types of endpoints: the ability 
of the immune system to fight the infection, through endpoint nodes Phagocytosis 
and membrane attack complex (MAC), and endpoints associated with organ damage, 
i.e. Thrombosis and angiopoietin-2 (Ang2). These aspects could be indirectly 
represented by nodes in the Boolean network. The extent of activation of these 
endpoint nodes was used to assess the effect of perturbations of the network. 

Node activation analysis to explore inter-individual variation in clinical 
endpoints 
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We studied how variation in immune cell nodes activation can explain differences 
in activation of selected endpoint nodes to better understand potential causes for 
variation in clinical outcomes between patients. To this end, we performed a 
sensitivity analysis by specifying the % activation of each immune cell node in the 
network from 0% to 100% activation. The sensitivity analysis allowed us to 
investigate the impact of immune components on clinical endpoint node activation. 
These analyses were implemented using the polymorphism functionality in 
SPIDDOR, which modifies the fractional activation patterns of nodes. For instance, 
when a polymorphism of 50% activity is introduced in a node, this node is only 
activated 50% of the times in which its regulator nodes are activated[10], therefore, 
decreasing the normal activity of the node by 50%.  

Perturbation analysis to identify novel mono- and combination treatment targets 

Mediatory molecules such as pro-inflammatory cytokines TNF-α and IL-1 are 
commonly investigated as therapeutic targets in drug development for sepsis[5]. 
For this analysis, we evaluated the potential of targeting each individual mediatory 
molecule that was included in the final network. Perturbations were performed via 
knocking-out or over-expressing a certain mediator node, either at infection onset 
or at a later stage of the infection until the activation of all nodes in attractors would 
not change over time steps. We then repeated this analysis where we modulate two 
nodes at the same time to study the effect of a combination treatment. Here, either 
we targeted to mediator nodes, or we combined modulation of a mediator with 
inhibition of the bacterial node to mimic antibiotic treatment. The resulting 
endpoints activations of attractors were compared to their activations without 
perturbation. An efficacy cut-off of 20% for the relative activation change between 
perturbed and non-perturbed scenarios was used to identify promising therapeutic 
targets. 

Results  

Boolean network development 

A Boolean network (Fig 4.1) associated with early phase TLR4-mediated sepsis was 
informed by data extracted from 108 publications (Table S4.1). The developed BN 
consisted of 42 nodes and 183 interactions. The underlying Boolean functions are 



Boolean network model for sepsis 
 

101 
 

defined further in Table 4.1 and Table S4.1. The developed network describes 
several different mechanisms underlying the disease progression of sepsis, 
including the regulation of immune cells, endothelial cells, complement and 
coagulation cascades, which contribute to bacterial clearance but may also lead to 
activation of harmful effects associated with organ damage. 

 

Fig 4.1 Boolean network model structure representation for the TLR4 activation in early 
sepsis. Shapes and colors represent different node types, including 3 pathogen related nodes 
(in red), 13 host cell nodes (in blue), 19 mediator nodes (in green), 4 selected outcome nodes 
(in yellow) and 3 other nodes (in grey). Size of nodes represents the number of interactions 
related to a certain node, with the bigger size indicating more interactions. Lines represent 
the regulations where black solid lines for activation, black dashed lines for positive 
modulation including auto-secretion and red dashed lines for inhibition.  

 

The network used modulations to account for changes in expression, auto-
secretion and feedback relationships in a more refined manner (Fig 4.1). Threshold 
parameters (see Methods) were applied to account and differentiate biological time 
delays for different events, including the clearance of bacteria (B_CL), early and 
late phagocytosis (Phag_E and Phag_L), cell apoptosis (Apop), production of tissue 
factor (T_TF), formation of membrane attack complex (T_MAC) and the release of 
anti-inflammatory cytokines (Anti_inflam). Thresholds were set to two time steps 
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to represent the binding and functioning steps, while the threshold relating to early 
phagocytosis was set to one since it occurs earlier than the phagocytosis caused by 
other immune cells. The threshold of anti-inflammatory cytokines production, 
mainly IL-10, was set to three due to an additional required signal transduction for 
the cytokine synthesis[15]. 

Table 4.1 Boolean functions of the developed model for TLR4-mediated early sepsis. 

Nodes Boolean functions1 

Infection Infection = Infection 

Bacteria Bacteria = Infection &! (Bacteria & (THR_MAC[B_CL]2 | 

THR_Phagocytosis[B_CL] | THR_ROS[B_CL] | THR_NETs[B_CL])) 

LPS LPS = Bacteria 

TLR4 TLR4 = LPS | (TLR4 & IFN-gamma) 

Act-Mon Act-Mon = (TLR4 | IL-1B | (Act-Mon & IFN-gamma)) &! (Act-Mon & 

(Apoptosis &! IFN-gamma)) 

Act-Mac Act-Mac = (TLR4 | Act-Mon | C5a | (Act-Mac & (TNF-a | IFN-gamma)) 

| (IFN-gamma & TNF-a) | (Act-Mon & IL-1B)) &! (Act-Mac & (IL-10 | 

(Apoptosis &! IFN-gamma))) 

Mac-M1 Mac-M1 = (Act-Mac & (TNF-a | IFN-gamma)) | (Act-Mon & IL-1B) | 

(Mac-M2 & (TNF-a | IFN-gamma | IL-1B)) 

Mac-M2 Mac-M2 = (Act-Mac & (IL-10 | IL-1Ra)) | (Mac-M1 & (IL-10 | IL-1Ra)) 

Act-DC Act-DC = (TLR4 | Act-Mon) &! (Act-DC & (Treg | IL-10 | Apoptosis)) 

Act-Neu Act-Neu = (TLR4 | C5a | IL-8) &! (Act-Neu & Apoptosis) 

Act-NK Act-NK = (IL-12 | Act-DC | (Act-NK & (IL-12 & IL-18))) &! (Act-NK & 

Apoptosis) 

Act-EC Act-EC = (TNF-a | NETs) &! (Act-EC & Apoptosis) 

Phagocytosis Phagocytosis = (THR_C3b[Phag_L] & THR_Bacteria[Phag_L]) | 

THR_Act-Mon[Phag_L] | THR_Act-Mac[Phag_L] | THR_Act-

Neu[Phag_E] | THR_Act-DC[Phag_L] | (Phagocytosis & IFN-gamma) | 

(Phagocytosis & IL-18) 

Apoptosis Apoptosis = THR_TNF-a[Apop] | THR_Bcell[Apop] | (Apoptosis & 

LPS) 

ICAM-1 ICAM-1 = Act-EC | (ICAM-1 &TNF-a) 
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VCAM-1 VCAM-1 = Act-EC | (VCAM-1 & TNF-a) 

E-selectin E-selectin = Act-EC | (E-selectin & ROS) 

P-selectin P-selectin = Act-EC | Act-PLT 

NETs NETs = Act-Neu | ROS | (Act-Neu & C5a) | (NETs & Act-PLT) 

Act-PLT Act-PLT = LPS | TLR4 | TF | Thrombosis | (Act-PLT & (NETs | IFN-

gamma)) 

TF TF = THR_Act-Mon[T_TF] | (TF & (THR_Act-EC[T_TF] & (TNF-a | 

LPS))) | (TF & (THR_Act-Mon[T_TF] & (TNF-a | LPS))) 

Thrombosis Thrombosis = NETs & (TF & Act-PLT) 

C3b C3b = Bacteria 

C5a C5a = C3b 

C5b C5b = C3b 

MAC MAC = THR_C5b[T_MAC] 

ROS ROS = Act-Neu | (Act-Mac | Mac-M1) | Act-EC | (ROS & (TNF-a | IL-

18)) 

Ang2 Ang2 = Act-EC 

TNF-a TNF-a = (Mac-M1 | Act-Mon | Act-NK | Act-DC | CD4T | CD8T | 

(TNF-a & (IFN-gamma | Act-Mac | ROS )) | (IL-1B & Act-EC)) &! (TNF-

a & ((IL-10 &! IFN-gamma) | sTNF-R)) 

IL-1B IL-1B = (Act-Mon | Mac-M1 | (IL-1B & (TNF-a | Act-Mon | Act-PLT))) 

&! (IL-1B & (IL-10 | IL-1Ra)) 

IFN-gamma IFN-gamma = (Act-NK | (IFN-gamma & (Act-DC & IL-12)) | (Mac-M1 

& (IL-12 & IL-18)) | ((CD4T | CD8T) & (IL-12 | (IL-12 & IL-18))) | (IFN-

gamma & (CD4T & IL-6))) &! (IFN-gamma & IL-10) 

IL-6 IL-6 = ((Act-Mon & IL-1B) | Mac-M1 | Act-EC | Act-DC | Bcell) &! (IL-

6 & IL-10) 

IL-8 IL-8 = (Act-Mon | Mac-M1 | Act-EC | (IL-8 & TNF-a)) &!  (IL-8 & IL-

10) 

IL-12 IL-12 = (Act-Mon | Mac-M1 | Act-DC | (IL-12 & (Act-NK | IFN-gamma 

| IL-1B)))  &!  (IL-12 & IL-10) 

IL-18 IL-18 = (Mac-M1 | Act-DC | Act-EC) &! (IL-18 & IL-10) 

IL-10 IL-10 = (THR_Mac-M2[Anti_inflam] | THR_Act-DC[Anti_inflam] | 

(THR_CD4T[Anti_inflam] | THR_CD8T[Anti_inflam] | 
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THR_Treg[Anti_inflam] | THR_Bcell[Anti_inflam]) | (IL-10 &(Act-DC | 

IL-12)) | THR_Apoptosis[Anti_inflam]) &! (IL-10 & IFN-gamma) 

sTNF-R sTNF-R = THR_Act-Mon[Anti_inflam] | THR_CD4T[Anti_inflam] | 

THR_CD8T[Anti_inflam] | (sTNF-R & IL-10) 

IL-1Ra IL-1Ra = (THR_Act-Neu[Anti_inflam] | THR_Act-Mon[Anti_inflam]) &! 

(IL-1Ra & IFN-gamma) 

CD4T CD4T = (Act-DC | IL-6 | (CD4T & (IL-12 | IFN-gamma))) &! (CD4T & 

(IL-10 | Treg | Apoptosis)) 

CD8T CD8T = (Act-DC | IL-18 | (CD8T & Act-NK)) &! (CD8T & (Treg | IL-10 

| Apoptosis)) 

Treg Treg = (CD4T | (Treg & IL-10)) &! (Treg & (IL-6 | Apoptosis)) 

Bcell Bcell = (TLR4 | (Act-DC & LPS) | (Bcell & IL-6)) &! (Bcell & (Treg | IL-

10 | Apoptosis)) 
1Boolean functions were mathematical expressions with different nodes and flexible combinations 
of logic operators AND (&), OR (|) and NOT (!), where “&” and “|” mainly represented for 
different activation mode and “!” for inhibition. For example, the Boolean function for node 
bacteria, “Bacteria = Infection &! (Bacteria & (THR_MAC[B_CL]** | THR_Phagocytosis[B_CL] | 
THR_ROS[B_CL] | THR_NETs[B_CL]))”, means bacteria appears upon infection while either 
membrane attack complex or host cell phagocytosis or reactive oxygen species or neutrophil 
extracellular traps works to clear bacteria with certain time delays. Definitions of all nodes and 
related regulatory interactions were shown in supplemental table S4.1.    
2Threshold arguments were shown in [ ] referring to time delay, where for bacterial clearance 
(B_CL), late phagocytosis (Phag_L), apoptosis (Apop), membrane attack complex (T_MAC) and 
tissue factor (T_TF) the thresholds were set as 2, for early phagocytosis (Phag_E) and anti-
inflammatory markers (Anti_inflam) thresholds were set as 1 and 3, respectively. 

 

Node activation analysis to explore inter-individual variation in clinical 
endpoints 

We performed a sensitivity analysis to evaluated the impact of node activation 
alterations on innate and adaptive immune cell nodes as well as activated 
endothelial cells, by performing simulations where we decreased the activation of 
these nodes a 10% in each simulation and then compared the effect caused on the 
endpoints with the state of these endpoints on attractors with no alteration (100% 
activation). As a result, we identified three cell nodes whose activation situation 
had considerable effect on the selected endpoints: (1) activated endothelial cells 
(Act-EC) on angiopoietin-2 (Ang2), (2) activated monocytes (Act-Mon) on 
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thrombosis (Thrombosis), and (3) activated platelets (Act-PLT) on thrombosis 
(Thrombosis) (Fig 4.2).  

 

Fig 4.2 Sensitivity analysis of the effect of immune cells activation on four selected 
endpoints. The heatmap (A) showed the effect of decreased activation of different immune 
cells, ranging from 0% (deactivated) to 100% (normal activation), on four endpoints 
compared with their normal activation pattern (100% activation), colors of the heatmap 
represented the negative, neutral and positive relative changes of endpoints % activation on 
attractors with blue, white and orange, respectively; The scatter plot (B) with lines showed 
three identified effects of immune cells on selected endpoints: of activated endothelial cells 
(Act-EC) on angiopoietin-2 (Ang2), and activation variations of activated monocytes (Act-
Mon) and activated platelets (Act-PLT) on thrombosis (Thrombosis). Effect of B cells (Bcell) 
activation on Thrombosis and Ang-2 were not identified due to the small relative changes of % 
activation of endpoints on attractors. 
 
 

The activation level of endothelial cells was positively correlated with 
angiopoietin-2 activity, with higher activation of Act-EC as initial state leading to a 
higher activation of Ang2 on attractors. This finding is in line with previous studies, 
where activated endothelial cells have been shown to release more angiopoietin-2 
into circulation during inflammation compared to non-inflammatory condition[16]. 
The risk of thrombosis, i.e., activation of the Thrombosis node in our network, was 
correlated with increasing monocyte and platelet activation. These two cell types 
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play key roles in thrombosis as monocytes are the direct production source of tissue 
factor (TF)[17], while tissue factor and platelet activation form the very foundation 
of thrombotic events. The increased activation of platelets could partly explain the 
increased risk of thrombosis and thromboembolism seen in the elderly patients[18]. 

Perturbation analysis to identify novel mono- and combination treatment targets 

We compared the relative change (Eq. 4.1) in % activation of endpoints between 
scenarios with different perturbation initiation times. In this analysis, we found 
that the relative changes were similar over perturbation initiation time in both 
singular and combination perturbation analysis. The result may indicate that 
variation in timing of the perturbation does not lead to relevant differences on the % 
activation on attractors of our selected endpoints (Fig S4.1A-B).  

𝑅𝑅𝑤𝑤𝑚𝑚𝑅𝑅𝐵𝐵𝐵𝐵𝑣𝑣𝑤𝑤	𝑐𝑐ℎ𝑅𝑅𝑙𝑙𝑤𝑤𝑤𝑤 =	%	34567356,8	98:/;	</;59;=356,8	%	%	34567356,8	>65?,95	</;59;=356,8
%	34567356,8	>65?,95	</;59;=356,8

   (Eq. 4.1) 

We identified a set of potential mono-therapeutic targets that were associated 
with a decreased activation of Ang2 and Thrombosis and/or to increase MAC (Fig 
4.3A). Two targets (sTNF-R and TNF-a) were identified for Ang2, six targets (IL-12, 
sTNF-R, IFN-gama, TNF-a and TF) were selected for Thrombosis, and two targets 
(C3b and C5b) were selected for MAC. No single perturbation displayed an impact 
on Phagocytosis based on our evaluation criteria. Furthermore, we found that either 
over-expressing tumour necrosis factor alpha (TNF-α) or blocking soluble TNF 
receptor (sTNF-R) could lead to a reduction of both of the organ dysfunction 
endpoints (Ang2 and Thrombosis). Blocking TLR4, TF or inflammatory cytokines 
interferon (IFN)-γ or interleukin (IL)-12 could reduce the risk of thrombosis but 
showed no beneficial effect on activation of Ang2. For the bacterial clearance related 
endpoint MAC, the over-expression of complement component C3b and C5b 
showed to increase its average long-term activation. This is in line with the well-
established role of C5b as an essential composition of membrane attack complex  
(MAC) and that the cleavage of C5 to C5b requires C3b[19]. Although the 
interaction between the complement system and MAC is not an unexpected 
finding, it adds towards building confidence in the model predictions. 
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We identified a total of six multi-target treatment strategies that showed 
potential benefit (Fig 4.3B) in which one combination, by blocking IFN-γ and IL-10 
together, could reduce both the risk of thrombosis and vessel leakage which is 
represented by activation of node Ang2 based on our network. Another 
combination shown to decrease the activation of Ang2 was blocking cytokines IL-
10 and IL-12 together. Three of all the other four combinations to decrease the 
activation of Thrombosis included targeting TLR4, while the last one relied on the 
simultaneous blocking of IL-1β and IL-18. For therapy directed towards improving 
bacteria clearance by increasing MAC or Phagocytosis, no effective combinations 
were identified. 

 

Fig 4.3 Therapeutic targets identified through perturbation analyses. The bar plots A 
represented the effect of selected mono-therapeutic targets on endpoints; B represented the 
effect of both mono and combine-therapeutic targets on their corresponding endpoints; C 
represented the effect of antibiotic and/or combined therapeutic target with antibiotic on 
endpoint thrombosis. Colors of the bar plots represented the no perturbation, knocking out 
and over expression with blue, dark blue and orange, respectively. 
 

When combining an immune targeting therapy with antibiotic treatment, 
where the antibiotic has a rapid and direct effect on bacterial clearance, the time of 
initiation of treatment is of importance. The effect of clearing bacteria on our 
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selected endpoints differed over time and showed to be most beneficial during the 
early stage of infection (i.e. before 4 time steps, Fig S4.2). This finding adds to the 
evidence of rapid initiation of antibiotic therapy improves outcomes in septic 
patients[20]. Although the use of antibiotics as mono-therapy showed a reduction 
of Thrombosis activation by more than 20%, our perturbation analysis suggests that 
there are still potential beneficial options of combining antibiotics with a Thrombosis 
focused therapy.  

Overall, we identified four therapeutic targets that could be beneficial to target 
in combination with antibiotic therapy to decrease the activation of Thrombosis (Fig 
4.3C), in which three of them were already identified in mono-therapy evaluation, 
i.e. IFN-γ, sTNF-R or TF, but blocking them could almost deactivate Thrombosis 
when combined with antibiotics. Another identified target, pro-inflammatory 
cytokine IL-1β, was not identified in mono-therapy but appeared in combined 
mediators specific therapies. For node Ang2, no combination showed a benefit to 
decrease its activation. Predictably, no increased immune regulated antibacterial 
effect could be identified due to the rapid bacterial eradication mediated by the 
antibiotics. 

Discussion 

A novel Boolean network model was developed, which leveraged prior knowledge 
of immune response-related processes for the TLR4-mediated host response 
associated with early phase sepsis. The developed network incorporated key 
immune cells and mediatory molecules, as well as key clinical endpoint nodes to 
assess inter-individual variability and treatment interventions. By using a 
simulation approach, we identified several potential targets showing promise of 
improving bacterial clearance and/or reducing the possibility of organ dysfunction. 
The identified mediators might constitute potential therapeutic targets for 
treatment of sepsis and could be considered in further clinical studies. 

The long-term behaviour, i.e. attractors, of this developed network showed to 
be stable according to the overall single perturbation analysis, where either 
knocking-out or over-expression of most nodes did not trigger considerable 
changes on the activation of the rest nodes on attractor (Fig S4.3). This stabilization 
could be a result of the complex interactions within the network, which might 
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explain in part the failures of many clinical trials investing treatments against 
sepsis. Recently, selective or non-selective targeting of endogenous mediator 
molecules have been investigated as strategies to modify the systemic 
inflammatory response, such as blocking TNF-α and IL-1β[4][5]. However, none of 
these agents showed significant improvement on septic survival rate. These results 
are comparable to our single node perturbations in which knocking-out TNF-α 
mainly lead to decreasing cell apoptosis while knocking-out IL-1β showed no big 
influence on other nodes.  

We utilized a Boolean network as a tool to screen promising treatment targets 
for sepsis based on endpoints related to bacteria clearance (Phagocytosis and MAC) 
and vessel leakage and multi-organs dysfunction (Ang2 and Thrombosis). When 
evaluating mono-target therapies, we found over-expressing TNF-α, instead of 
blocking it, was associated with a decreased activation of Ang2 and Thrombosis, 
which can be related to decreased organ dysfunctions. This finding is inconsistent 
with previous clinical studies where TNF-α was blocked but have not shown a 
significantly improved survival rate in sepsis patients[5]. Additionally, treatments 
blocking either TF or IFN-γ were identified to reduce Thrombosis in our analysis. 
These targets have also been studied in clinical trials, but so far no clinical effect 
has been identified[4]. One reason for these inconsistent results might be the 
differences in selected endpoints. Clinical trials for sepsis mainly use mortality as 
the primary endpoint, while we used four surrogate endpoints.   

Our simulations suggest a decrease in activation of Ang2 after over-expressing 
TNF-α. In contrast, a previous in vitro study suggested TNF-α can induce both 
angiopoietin-2 mRNA expression and protein levels in human umbilical vein 
endothelial cells[21] at 2 hours after TNF-α exposure. Importantly, the positive 
interaction between angiopoietin-2 and TNF-α is in fact included in our model, 
with activated endothelial cells as intermediate node (Table 4.1). However, unlike 
the in vitro experiment involving a single cell type, our Boolean model also 
incorporates other relevant interaction events derived from other additional 
experiments, thereby illustrating the value of deriving expected outcomes which 
are the results of multiple cellular interaction events.  
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The effect of TNF-α on thrombosis remains inconclusive. Previous studies 
suggested either an antithrombotic activity through the stimulation of nitric 
oxide[22] or a prothrombotic effect via acting on TNF-α receptor subtype 2[23]. 
Recently, a in vivo study in mice showed a positive regulation of TNF-α/TNF 
receptor p55 singling axis in the resolution of venous thrombus[24]. In our 
simulations, long term over-expression of TNF-α was likely to decrease the 
activation of node Thrombosis, which might be a result of its beneficial role in 
thrombus resolution as indicated in the animal study. Worth noting are the 
inevitable inter-species differences when using animal models to mimic 
pathophysiological features in humans[25]. 

For multi-target treatment strategies, the combination of blocking IFN-γ and 
IL-10 was identified as a potential treatment to decrease the risk of organ 
dysfunction, via reducing activation of both Ang2 and Thrombosis. Cytokine IFN-γ 
functions as a positive modulator of activated platelets[26], which plays a crucial 
role in the process of thrombosis. Although IL-10 shows an inhibitory effect on the 
production of most pro-inflammatory cytokines, increased IL-10 blood levels has 
been associated with the development of organ failure in septic shock[27]. 
Nevertheless, since IFN-γ and IL-10 are negative modulators of each other, few 
studies have addressed the co-operative action of these combination, while Yoshiki 
et al found simultaneous treatment with IL-10 and IFN-γ can significantly suppress 
the function of murine bone marrow-derived dendritic cells[28]. Due to the 
complexity of regulatory interaction between cytokines, the blockage of IFN-γ and 
IL-10 together could potentially reduce the risk of organ dysfunction.  

When treating with antibiotics in the very early phase of infection, all nodes 
in this network remained inactive or returned to baseline immediately (Fig S4.2). 
This behaviour is in line with the clinical recommendation of administering 
antibiotics as early as possible for adults with possible septic shock or a high 
likelihood for sepsis[2]. A delayed start of antibiotic therapy, simulated by 
removing bacteria after 4 time steps, showed to be ineffective in inhibiting the 
initiation of the immune cascade reaction, which can be seen from the unchanged 
activation on attractors (Fig S4.4). This phenomenon may explain the failures of 
clinical trial focusing on anti-endotoxin agents[5], where neither human antiserum 
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to endotoxin nor monoclonal IgM antibodies that inactivates endotoxin could 
significantly improve survival in sepsis.  

Local thrombosis contributes to the initial defence against bacterial invasion 
in mammals[29]. We find that combination therapies with delayed initiation of 
antibiotic therapy, such as antibiotic treatment combined with IL-1β blockade, may 
show beneficial effects, decreasing Thrombosis node activation. These results are in 
line with a previous study where an increase in IL-1β mRNA expression in patients 
who suffered thrombotic episodes compared with healthy age-matched controls[30] 
was observed. Another clinical study showed the anti-inflammatory therapy 
targeting IL-1β pathway led to a significantly lower rate of recurrent cardiovascular 
events than placebo[31]. These data indicate that IL-1β might be a relevant 
therapeutic target, although treatment of inhibiting IL-1β alone did not show 
sufficient decrease of Thrombosis activation in our analysis.  

Interleukins have been of recent interest as potential treatment in sepsis due 
to their contribution to thrombosis and their potential therapeutic effect in animal 
models[32], including pro-inflammatory IL-6[33] and anti-inflammatory IL-10[34]. 
However, a population-based study suggested that an altered inflammatory profile 
of these interleukins is more likely to be associated with a result rather than an 
increased risk of venous thrombosis[35]. IL-12 was another identified target in our 
simulations. However, a previous study concluded that IL-12 can activate both 
coagulation and fibrinolysis in patients with renal cell carcinoma[36]. The potential 
of these inflammatory targets thus still need to be evaluated in well-controlled 
clinical studies.  

Antibiotic treatment was mimicked by setting the node Bacteria to 0% 
activation in our simulation. The dynamic pattern over time steps of other nodes 
varies after deactivating Bacteria (Fig S4.2), in which the simulated activation of 
complement factors, i.e., C3, C5a and C5b, as well the complex MAC returned to 
baseline immediately. This consistency indicates the potential of complement 
factors as biomarkers for monitoring antibiotic treatment efficacy in early sepsis. 
Indeed, a recent prospective study evaluated complement levels in bacteremia 
patients, and hypothesized the measurement of C3, C4 and C9 levels may help 
stratify gram-negative bacteremia patients at increased risk for mortality[37]. 
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Activation of complement system is a key event in the pathogenesis of sepsis[38], 
adapting crucial complement factors as biomarkers might be of prognostic value, 
when their sensitivity and specificity were carefully evaluated. 

Although the use of a Boolean network approach can support developing 
understanding the behaviour of complex systems, especially in the lack of 
quantitative data, the approach is associated with inherent limitations. The time 
steps in a Boolean network are not related to real time. Thus, simulation results 
cannot be directly linked to time-concentration data, such as specific biomarker 
peak times, which further complicates model validation using clinical data. The 
attractors of mono perturbations on our BN were compared with previous 
experimental results under certain intervention, revealing some similarities 
between our simulations and in vivo animal studies. However, human studies with 
comparable endpoints are still required to validate both of the identified mono and 
multi therapeutic targets.  

The development of the Boolean network model in this study was guided by 
including key biological processes previously identified as key consensus 
mechanisms associated with TLR4-activation and early sepsis. We systematically 
searched the literature to identify interaction partners between involved cell types, 
receptors and their ligands to populate a complete network. Nonetheless, the 
developed Boolean network model may need further revision and additions 
depending on new findings and specific objectives for applying this model. With 
respect to (clinical) endpoint nodes we have selected biological events which may 
closely relate to key clinical events in the disease pathology of sepsis. Yet, it is 
important to recognize this model does not directly predicts clinical outcomes, 
which also complicates the comparison of our results to existing clinical trials. 
These two shortcomings could be overcome by gradually by extending this 
network with a higher number and clinically related nodes.     

In conclusion, the developed Boolean network model for TLR4-mediated host 
immune response in early phase of sepsis exemplifies the value of using Boolean 
networks to increase the knowledge of complex biological systems, and constitutes 
a relevant strategy to deepen our understanding of systemic inflammatory diseases, 
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analyse the influences of immune cells diversity among patient groups, and 
identify potential therapeutic targets for sepsis. 
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Supplemental materials 

 

 
Fig S4.1 Relative changes of four selected endpoint activation under mono and combined 
perturbations on mediatory molecules. Upper heatmap (A) showed the effect of knock-out 
or over-express of identified mono therapeutic targets on four endpoints over different 
perturbation initiation time steps; below heatmaps (B) showed the an example of effect of 
knocking-out or over-expressing combined therapeutic targets on four endpoints at time 
step 20. Colors of the heatmap represented the negative, neutral and positive relative 
changes of endpoints activation with blue, white and orange, respectively. 
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Fig S4.2 Average activation profiles for each node under antibiotic treatment (i.e. 
knocking out node Bacteria) at different time step with 100 repetitions. When removing 
bacteria at an early phase (before time step 4), most nodes were not activated or returned 
back to baseline immediately; when removing bacteria at a later phase, it showed varying 
decline patterns for different nodes. Colors of the lines represented different perturbation 
initiation time steps. 
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Figure S4.4 Activation of each node on attractors under antibiotic treatment (i.e. knocking 
out node Bacteria) at different time steps. The activations on attractors stayed unchanged 
when removing bacteria at a later phase (i.e. after time step 4). 
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