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7 Magnus effect on a
Majorana zero-mode

7.1 Introduction

A topological superconductor can bind a Majorana fermion as a midgap
state in the core of a magnetic vortex [8, 127, 128]. This Majorana zero-
mode has been dubbed the “Zen particle” [129], because it embodies noth-
ingness: it has zero charge, zero spin, zero energy, and zero mass [130–132].
It does have a definite chirality, set by the sign of the ±2π winding of the
superconducting phase around the vortex [109].

A superflow couples to the circulating phase, producing a sideways force
on the vortex known as the Magnus force [133–136]. It was recently shown
[137] that the superflow also acts on the zero-mode, causing a deconfine-
ment transition when the Cooper pair momentum K exceeds the critical
value ∆0/vF (with ∆0 the superconducting gap and vF the Fermi veloc-
ity).

Here we follow up on that work and investigate the dynamics of the
transition, when the superconductor is quenched by the sudden appli-
cation of a superflow. Computer simulations show that the Majorana
zero-mode escapes from the vortex core as a wave packet with a constant
velocity vescape. A key result of our analysis is a calculation of the depen-
dence of this quantity on K,∆0, and vF, in a semiclassical approximation
that is found to agree well with the simulations. That calculation is pre-
sented in Sec. 7.4, after we have formulated the problem (Sec. 7.2) and
solved for the short-time dynamics (Sec. 7.3). We compare with computer
simulations in Sec. 7.5 and conclude in Sec. 7.6.

7.2 Quenched topological superconductor

The effect of a superflow on a topological superconductor has been demon-
strated experimentally [138] at the proximitized surface of a topological
insulator [8]. We focus on that platform [11, 12], see Fig. 7.1, described
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7 Magnus effect on a Majorana zero-mode

Figure 7.1: Schematic of a topological insulator with induced superconduc-
tivity (gap ∆0) in a perpendicular magnetic field B. A vortex (red, with a
2π winding of the superconducting phase φ) binds a Majorana zero-mode. An
in-plane supercurrent (blue arrows, Cooper pair momentum K) can deconfine
the zero-mode, producing a Majorana fermion wave packet that escapes with
velocity vescape in a direction perpendicular to the superflow.

by the four-band Bogoliubov-De Gennes Hamiltonian

H0 = vF(kxσx + kyσy)νz − evF(Axσx +Ayσy)ν0

− µσ0νz + ∆σ0(νx cosφ− νy sinφ). (7.1)

The surface is in the x–y plane, the in-plane momentum is k = −i∂r.
The electron charge is taken as +e, the Fermi velocity is vF and ~ is set
to unity. The Pauli matrices σα, να act, respectively, on the spin and
particle-hole degree of freedom. The corresponding 2 × 2 unit matrices
are σ0 and ν0. An s-wave superconducting pair potential ∆eiφ couples
electrons and holes. Time-reversal symmetry is broken by a perpendicular
magnetic field B, with vector potential A.

Charge-conjugation symmetry C = σyνyK is expressed by

CH0C = σyνyH∗0σyνy = −H0. (7.2)

The complex conjugation operation K is taken in the real-space basis, so
the momentum changes sign. When the Fermi energy µ = 0 is at the
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7.2 Quenched topological superconductor

Figure 7.2: Majorana fermion wave packet that escapes from a vortex (white
circle) in response to a quench of the superflow momentum K (in the x-
direction). The images show a color scale plot of |Ψ(x, y, t)|2 in the plane
of the superconductor, at different times following the quench at t = 0.
This is a numerical solution of the evolution equation (7.6), with Hamilto-
nian (7.5) discretized on a square lattice (lattice constant a, ∆0 = 0.04 ~vF/a,
B = (h/e)(302 a)−2, µ = 0). The initial condition at t = 0 is the Majorana
zero-mode Ψ+.

Dirac point there is additionally a chiral symmetry,

σzνzH0σzνz = −H0. (7.3)

We consider an h/2e vortex at the origin. The gap ∆ increases from
0 at the vortex core to ∆0 outside, on the scale of the superconducting
coherence length ξ0 = ~vF/∆0. The superconducting phase φ(r) winds
by ±2π around the vortex, eiφ(r) = r−1(x ± iy). In a strong type-II
superconductor (ξ0 much less than the London penetration length) the
magnetic field is approximately uniform. We take the gauge where A =
−Byx̂.

The vortex contains a Majorana zero-mode, a charge neutral bound
state with zero excitation energy [8]. Its wave function Ψ is an eigen-
state of the charge conjugation operator C. For µ = 0 chiral symmetry
demands that Ψ is also an eigenstate of σzνz. The combination of the two
symmetries enforces the form

Ψ+ = (eiγψ+, 0, 0, e
−iγψ+),

Ψ− = (0, eiγψ−, e
−iγψ−, 0),

(7.4)
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7 Magnus effect on a Majorana zero-mode

for a phase shift γ and a pair of real scalar functions ψ±(r). The sign
of the vorticity selects either Ψ+ or Ψ−. An explicit solution [8, 109] of
H0Ψ = 0 gives γ = π/4 and an exponential decay of ψ± on the scale of
ξ0.

The gapped surface is brought out of equilibrium by a superflow momen-
tum quench K(t). The superflow exerts a Magnus force on the Majorana
zero mode, which may cause it to escape from the vortex core [137]. A
computer simulation of the escape is shown in Fig. 7.2.

The superflow momentum quench enters the Hamiltonian in the form

H = H0 −K ·
∂H0

e∂A
= H0 + vF(K · σ)ν0, (7.5)

in accord with Galilean invariance. We assume an instantaneous quench
in the x-direction, K(t) = Kθ(t)x̂, so we seek the solution of the evolution
equation

i∂tΨ(t) = (H0 + vFKσxν0)Ψ(t), (7.6)

with initial condition Ψ(0) = Ψ± given by Eq. (7.4) The quench preserves
both particle-hole and chiral symmetries.

The full superflow momentum

P (r) = ps(r) +K (7.7)

includes also the contribution from the circulating momentum field ps
around the vortex cores. This divergence-free field has the gauge invariant
expression [139]

ps(r) = 1
2∇φ(r)− eA(r). (7.8)

For later use we note that the gauge transformation

H 7→ e−iφ(r)νz/2Heiφ(r)νz/2

= vF(k · σ)νz + vF(P · σ)ν0 − µσ0νz + ∆σ0νx (7.9)

explicitly writes the Hamiltonian in terms of the full superflow momentum.

7.3 Short-time dynamics

For the initial time dependence we may truncate the Taylor expansion of
the propagator e−itH,

Ψ(t) = e−itHΨ± =

∞∑
n=0

(−it)n
n!
HnΨ±. (7.10)
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7.3 Short-time dynamics

We calculate Ψ(t) to order t4, with the help of the polar-coordinate iden-
tity

(kx ± iky)f(r, ϕ) = ∓e±iϕ
(
±i∂f
∂r
− r−1 ∂f

∂ϕ

)
, (7.11)

and then compute the expectation value of the velocity,

〈ṙα(t)〉 = 〈Ψ(t)|∂H/∂kα|Ψ(t)〉 = vF〈Ψ(t)|σανz|Ψ(t)〉. (7.12)

We focus on the case µ = 0 of chiral symmetry.
To simplify the calculation we note that the magnetic field only affects

the dynamics on the scale of the magnetic length lm =
√
~/eB, which is

large compared to the vortex size ξ0 for magnetic fields small compared to
the upper critical field of the superconductor. For the short-time dynamics
we may ignore the magnetic field. In terms of the gap profile ∆(r) the
scalar function ψ± in the initial state (7.4) is then given by [8, 109]

ψ+(r) = ψ−(r) = c exp

(
−v−1

F

∫ r

0

dr′∆(r′)

)
, (7.13)

with c a normalization constant.
A simple closed-form expression results for a constant ∆ ≡ ∆0,

〈ẋ(t)〉 = − 2v2
F∆2

0Kt
3 cos 2γ +O(t5), (7.14a)

〈ẏ(t)〉 = − 2v2
FKt+ 4

3v
4
FK

3t3

+ 2
3v

2
F∆2

0Kt
3(10− 9 sin 2γ) +O(t5). (7.14b)

These are the formulas for +2π vorticity (initial condition Ψ+); for −2π
vorticity (initial condition Ψ−) the component 〈ẋ〉 is unchanged while 〈ẏ〉
changes sign.

The zero-mode has γ = π/4, hence the motion is fully in the y-direction,
with initial velocity

〈ẏ(t)〉 = ±2v2
FKt

(
−1 + 1

3 t
2(∆2

0 + 2v2
FK

2) +O(t4)
)
, (7.15)

for ±2π vorticity. Because of the dependence on the vorticity, we interpret
the initial acceleration ±2v2

FK as a manifestation of the Magnus force
acting on the zero-mode.

One may wonder whether the Lorentz force, which we have ignored in
this calculation, would deflect the particle away from the y-axis. This
is not the case, chiral symmetry enforces 〈ẋ(t)〉 = 0 for all t > 0 when
γ = π/4, see App. 7.A.
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7 Magnus effect on a Majorana zero-mode

7.4 Semiclassical calculation of the escape
velocity

A semiclassical approximation will allow us to obtain a simple analytical
expression for the velocity at which the Majorana fermion escapes from
the vortex core. For simplicity, we set µ = 0, so chiral symmetry applies.

Quite generally, a wave packet at position r and with wave vector k
has the semiclassical equations of motion [140, 141]

ṙ = ∂kE − k̇ × (∂k ×A) + (ṙ · ∂r)A− ∂k(a · ṙ) (7.16a)

k̇ = −∂rE + ṙ × (∂r × a)− (k̇ · ∂k)a+ ∂r(A · k̇). (7.16b)

The energy E(r,k) is an eigenvalue of the 4× 4 matrix H(r,k), obtained
from the Hamiltonian H by treating r and k as parameters — not as
operators. The corresponding eigenfunction |u(r,k)〉 is a rank-4 spinor,
normalized to unity, 〈u|u〉 = 1.

The fields A and a are defined by the connections

A(r,k) = 〈u(r,k)|i∂k|u(r,k)〉, (7.17a)

a(r,k) = 〈u(r,k)|i∂r|u(r,k)〉. (7.17b)

The state |u〉 is defined up to a complex phase factor. If |u〉 7→ eif(r,k)|u〉
the connections transform as A 7→ A− ∂kf and a 7→ a− ∂rf . These two
transformations leave the right-hand-side of Eq. (7.16) unchanged.

We apply this general formalism to the Hamiltonian (7.9), to ensure that
the full gauge invariant superflow momentum appears in the equations
of motion. Diagonalization of H(r,k) for µ = 0 gives four eigenstates
|un(r,k)〉 with eigenvalues

En(r,k) = sn

√
v2

FP (r)2 + ∆(r)2 + v2
Fk

2 + 2s′nvF

√
P (r)2∆(r)2 + v2

F

(
k · P (r)

)2
,

{s1, s
′
1} = {+,+}, {s2, s

′
2} = {−,+}, {s3, s

′
3} = {+,−}, {s4, s

′
4} = {−,−}.

(7.18)

We find that the connections (7.17) do not contribute to the equations
of motion (7.16), because they are given by the gradient of a scalar field,

An(r,k) = ∂kfn(r,k), an(r,k) = ∂rfn(r,k), (7.19)

fn = 1
2 arctan

(
P 2 + s′n

√
(k · P )2 + P 2∆2/v2

F

kxPy − kyPx

)
− 1

2 arctan(Py/Px). (7.20)
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7.4 Semiclassical calculation of the escape velocity

The semiclassical dynamics is therefore fully determined by the energy
landscape,

ṙ = ∂kEn, k̇ = −∂rEn. (7.21)

We consider a rotationally symmetric vortex, ∆(r) = ∆(r), P (r) =
Kx̂+ps(r)ẑ× r̂, so that E(−x, y,−kx, ky) = E(x, y, kx, ky). A trajectory
that starts out with x = 0, kx = 0 at t = 0 then will retain these values
for t > 0. The motion along the y-axis is determined by the equations of
motion

ẏ = ∂kyEn = v2
Fky/En, (7.22a)

k̇y = − ∂yEn = − 1

2En

d

dy

[
s′nvFP (y) + ∆(y)

]2
. (7.22b)

We denote ∆(x = 0, y) ≡ ∆(y) and P (x = 0, y) ≡ P (y).

Since dEn/dt = 0, the energy En is equal to its value at t = 0. Assuming
∆(0) = 0 and P (0) = |K| (vanishing pair potential and no circulating
superflow deep inside the vortex core), we have En = snvF|K|.

Far outside of the core, where ∆ ≈ ∆0 and P ≈ |K| are both y-
independent, one has k̇y = 0. The terminal ky should satisfy

v2
FK

2 = E2
n ⇒ v2

Fk
2
y = −∆2

0 − 2s′nvF|K|∆0, (7.23)

which has a real solution for s′n = −1 if vF|K| > ∆0/2. That is the
condition for escape of the Majorana fermion. The escape velocity is
given by

|vescape| = |K|−1
√

2vF|K|∆0 −∆2
0. (7.24)

The maximum |vescape| = vF is reached at |K| = ∆0/vF.

Notice that the quenched superconductor supports a quasiparticle es-
cape even though the excitation gap has not closed: the reduced gap
∆eff = ∆0 − vF|K| only closes for vF|K| > ∆0, while quasiparticle escape
is possible for vF|K| > ∆0/2. The reason is that the quench gives a fi-
nite energy vF|K| to the quasiparticle, so escape becomes possible when
vF|K| > ∆eff ⇒ vF|K| > ∆0/2.

The escaping wave packet is a superposition of the two states |un〉 with
s′n = −1 and sn = ±1. They satisfy the same equation of motion

ÿ = −v2
FU
′(y),

U(y) =
1

2K2

([
P (y)−∆(y)/vF

]2 −K2
)
,

(7.25)

129



7 Magnus effect on a Majorana zero-mode

Figure 7.3: Plot of the potential U(y) that governs the equation of motion
(7.25) of the wave pet, calculated for the gap and superflow velocity profiles
(7.26). The arrows indicate the oscillatory motion for vF|K| < ∆0/2 and the
escape to infinity for vF|K| > ∆0/2. The direction in which the wave packet
escapes is minus the sign of K times the sign of the vorticity.

with initial conditions ẏ(0) = 0 and y(0) infinitesimal (needed to avoid the
discontinuous derivative ∆′(y) at y = 0) 1. This is the frictionless motion
in the potential landscape U(y), plotted in Fig. 7.3 for the functional
forms

∆(y) =
∆0|y|√
y2 + ξ2

0

, P (y) = |K|+ |y|/2
y2 + ξ2

0

(7.26)

appropriate for a vortex with coherence length ξ0 much smaller than the
London penetration length [139, 142].

For vF|K| > ∆0/2 one has U(∞) < U(0) so the motion escapes to
infinity, with a constant terminal velocity (7.24), for vF|K| < ∆0/2 the
motion is oscillatory.

The two states sn = ±1, at energies ±vF|K|, are related by particle-
hole symmetry, they have the same position but opposite momentum. The
semiclassical calculation neglects interference of the positive and negative
energy states, which is reliable for the long-time dynamics outside of the
vortex core, when the momentum difference is large and interference ef-
fects average out. In contrast, inside the vortex core the two states both

1The sign of the infinitesimal y(0) for the equation of motion (7.25) is minus the sign
of K times the sign of the vorticity, in accord with the short-time dynamics (7.15).
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7.5 Computer simulations

still have momentum approximately equal to zero, and their interference
cannot be neglected.

7.5 Computer simulations

We have simulated the wave packet dynamics by discretizing the Bogoliubov-
De Gennes Hamiltonian (7.1) on a square lattice (lattice constant a),

H = (vF/a)(σx sin akx + σy sin aky)νz − µσ0νz

+M(k)σzν0 − evF(Axσx +Ayσy)ν0

+ ∆σ0(νx cosφ− νy sinφ) + vFKσxν0, (7.27a)

M(k) = M0 − (M1/a
2)(2− cos akx − cos aky), (7.27b)

and evolving the zero-mode wave function via a finite-difference algorithm.
The M(k) term in Eq. (7.27) includes the effect of a small coupling be-
tween the top and bottom surfaces of the topological insulator of Fig. 7.1.
As in Ref. 137 we set M0 = 0, to avoid the opening of a gap at k = 0, but
retain a nonzero M1 = 0.2 avF in order to eliminate the fermion doubling
at k = (π/a, π/a).

We take a uniform magnetic field Bẑ = ∇×A, appropriate for a strong
type-II superconductor. The vortex array has a pair of h/2e vortices in
a magnetic unit cell of size d0 × d0, with d0 = 302 a (corresponding to a
magnetic field B = h/ed2

0.) The phase field φ(r) winds by 2π around each
vortex, at position Rn, as expressed by

∇×∇φ(r) = 2πẑ
∑
nδ(r −Rn), ∇2φ = 0. (7.28)

For the pair potential in a vortex core we take the gap profile ∆(r) =
∆0 tanh(r/r0), with ∆0 = 0.2 vF/a. The core size r0 is of order ξ0 =
vF/∆0, but for the sake of comparison with the semiclassics (which as-
sumes a smooth gap profile) we will also consider larger values of r0. The
gap ∆(r) is saturated at ∆0 for r > 70 a, to ensure that the vortex core is
fully contained within a single magnetic unit cell. We follow the dynamics
of the wave packet on a time scale that is sufficiently short that only a
single vortex plays a dominant role. To avoid interference from the other
vortex we set its core size to zero.

We use the package Tkwant for the calculations [85, 143]. See App. 7.B
for details on the simulation.

In Fig. 7.4 we show the time dependence of the propagation of the wave
packet along the y-axis, following a superflow quench at t = 0. We com-
pare

∫
|Ψ(x, y, t)|2 dx from the simulation with y(t) from the semiclassical
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7 Magnus effect on a Majorana zero-mode

Figure 7.4: Propagation of the zero-mode along the y-axis after the super-
flow momentum quench at t = 0. The color scale shows the density pro-
file

∫
|Ψ(x, y, t)|2 dx following from the computer simulation (∆0 = 0.2 vF/a,

r0 = 40 a, B = (h/e)(302 a)−2). The red curve results from integration of the
semiclassical equation of motion (7.25), for the same ∆(r) = ∆0 tanh(r/r0) gap
profile as in the numerics.

equation of motion (7.25) 2. The comparison has no adjustable param-
eters. As anticipated, the agreement is good outside of the vortex core
(K & ∆0/vF), where the interference of the positive and negative energy
wave packets can be neglected. The oscillatory motion of the wave packet
inside the vortex, for small K, is not well described by the semiclassics.

Fig. 7.5 compares the escape velocity obtained from the simulation with
the semiclassical formula (7.24). The numerical data nicely approaches
the semiclassics for larger and larger core sizes.

7.6 Conclusion

In summary, we have investigated the dynamics of the Majorana delocal-
ization transition reported in Ref. 137. A supercurrent can be used to
extract a Majorana fermion from the zero-mode bound to a vortex core.
The extraction process is governed by an effective potential well, see Fig.
7.3, which allows for escape with a constant terminal velocity vescape once
the supercurrent exceeds a critical value. A simple semiclassical calcula-
tion of this velocity agrees well with computer simulations.

The escape of the Majorana fermion should be observable by scanning
probe spectroscopy, as a current pulse when the probe is positioned near
a vortex, at right angles from the superflow. Close to the deconfinement

2For the comparison beween numerics and semiclassics in Fig. 7.4 it makes no signif-
icant difference whether we take P (y) ≡ K or include the near-field contribution
from the circulating superfluid momentum, as in Eq. (7.26).
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7.6 Conclusion

Figure 7.5: Escape velocity of a zero-mode wave packet from the vortex core,
as a function of the superflow momentum K. The data points follow from the
computer simulation, for different core sizes r0 (at fixed ∆0 = 0.2 vF/a). The
black dashed curve is the semiclassical result (7.24).

transition the escape velocity will be much smaller than the Fermi velocity
vF ≈ 105 m/s (see Fig. 7.5), which should make the observation more
feasible.

The internal degree of freedom of the Majorana zero-mode that couples
to the superflow via the Magnus effect is the chirality — zero-modes of
opposite chirality escape from the vortex in opposite directions. The
conformal field theory of non-Abelian anyons associates a “topological
spin” to a Majorana zero-mode [144–146]. As a topic for future research
we ask whether there is an analogous Magnus effect for the topological
spin. We note that the phase shift γ in the Majorana wave function (7.4)
affects the direction in which the superflow drives the quasiparticle, see
Eq. (7.14). The motion is strictly perpendicular to the superflow only for
γ = π/4. That this also happens to be the value of the topological spin
may or may not be accidental.
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Appendices

7.A Chiral symmetry prevents lateral
deflection by the Lorentz force

Fig. 7.2 shows that the Majorana fermion escapes from the vortex along
the y-direction, perpendicular to the superflow. We address the question
why the motion is not bent in the x-direction by the Lorentz force. Since
electrons and holes are deflected in the same direction by the Lorentz
force, charge-neutrality of the quasiparticle does not prevent the deflec-
tion. Chiral symmetry is essential.

To demonstrate this, we calculate the expectation value at µ = 0 of the
x-component of the velocity operator,

〈ẋ(t)〉 = vF〈Ψ(0)|eiHtσxνze−iHt|Ψ(0)〉. (7.29)

The superconducting vortex at the origin has pair potential ∆(r)e±iφ,
in polar coordinates (r, φ), with a rotationally symmetric amplitude ∆(r)
and a ±2π vorticity. The magnetic field B(r)ẑ is also assumed to be
rotationally symmetric, with vector potential A(r) = g(r)(−y, x, 0) [so
that B(r) = 2g(r) + rg′(r)].

The initial state Ψ(0) = Ψ± is a zero-mode bound to the vortex core,
given by [8, 109]

Ψ+ = c+e
+χ(r) exp

(
−v−1

F

∫ r

0

∆(r′)dr′
) eiπ/4

0
0

e−iπ/4

,

Ψ− = c−e
−χ(r) exp

(
−v−1

F

∫ r

0

∆(r′)dr′
) 0

eiπ/4

e−iπ/4

0

,
(7.30)

with c± a normalization constant and χ(r) chosen such that

∂yχ = eAx, ∂xχ = −eAy. (7.31)
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7 Magnus effect on a Majorana zero-mode

Note that χ(−x, y) = χ(x, y).
We introduce the operator Px which reflects x 7→ −x, kx 7→ −kx. Its

action on the Hamiltonian H = H0 + vFKσxν0 is given by

PxHPx = σxνyHσxνy if µ = 0, (7.32)

see Eq. (7.1). The zero-mode (7.30) is unchanged upon reflection, Ψ±(x, y) =
Ψ±(−x, y), and moreover

Ψ± = −σxνyΨ±. (7.33)

These identities imply that

Pxe−iHtΨ± = −σxνye−iHtΨ±. (7.34)

We now calculate, using also σxνz = PxσxνzPx, the expectation value
(7.29),

〈ẋ(t)〉 = vF〈Ψ±|eiHtσxνze−iHt|Ψ±〉
= vF〈Ψ±|eiHtPxσxνzPxe−iHt|Ψ±〉
= vF〈Ψ±|eiHt(−σxνy)(σxνz)(−σxνy)e−iHt|Ψ±〉
= − vF〈Ψ±|eiHtσxνze−iHt|Ψ±〉
= − 〈ẋ(t)〉 ⇒ 〈ẋ(t)〉 ≡ 0. (7.35)

The velocity component in the x-direction has zero expectation value for
all t, there is no lateral deflection by the Lorentz force at µ = 0.

7.B Details of the numerical calculations

The velocity operator is given by v = ∂H/∂k, with H the tight-binding
Hamiltonian (7.27). (In the continuous limit this reduces to vi = vFσiνz.)
We compute the expectation value 〈vy〉(t) as function of time. As a con-
sistency check we show in Fig. 7.6 the short-time dynamics together with
the analytical result (7.15). For longer times the wave packet may escape
from the vortex core. We determine the escape velocity by averaging
〈vy〉(t) over a brief time interval, see Fig. 7.7.

This is all data for µ = 0, when the expectation value of the velocity
component vx parallel to the superflow vanishes. A nonzero µ breaks
chiral symmetry and introduces a nonzero 〈vx〉, see Fig. 7.8. The sign of
µ dictates the direction of the deflection away from the y-axis.
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7.B Details of the numerical calculations

Figure 7.6: Initial time dependence of the expectation value of the velocity
vy of the Majorana wave packet (perpendicular to the superflow), for ∆0 =
0.04 vF/a, K = 2∆0/vF, in the limit r0 → 0 of a small vortex core. The dashed
curve is the analytical result from Eq. (7.15).

The short-time result (7.14) indicates that a deflection in the x-direction
is also possible without breaking chiral symmetry, if the initial wave packet
has a phase shift γ 6= π/4. Such a phase shift between the electron and
hole components could be induced by a voltage pulse. In Fig. 7.9 we show
that the numerics confirms this analytical expectation.
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7 Magnus effect on a Majorana zero-mode

Figure 7.7: Time dependence of the velocity when the Majorana wave packet is
driven out of the vortex core by the Magnus force. Four values of the superflow
momentum K are shown at fixed ∆0 = 0.2 vF/a. The average over the time
interval between the dashed lines is the escape velocity plotted in Fig. 7.5 (green
curve, for r0 = 20 a). For much shorter times the wave packet is still trapped
in the vortex core. For longer times the wave packet reaches the boundary of
the magnetic unit cell.

Figure 7.8: Dependence of the direction of the escape velocity on the chemical
potential µ (for fixed ∆0 = 0.2 vF/a, K = 2∆0/vF, and vortex core size r0 =
40 a).
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7.B Details of the numerical calculations

Figure 7.9: Dependence of the velocity vx parallel to the superflow on the
phase shift γ = π/4 + δγ between the electron and hole components of the
initial wave packet (for ∆0 = 0.04 vF/a, K = 2∆0/vF, r0 → 0). This is data
for µ = 0, the deflection in the x-direction happens when γ is pushed away
from π/4 by an initial voltage pulse. The solid curves are numerical results, the
dashed curves are the short-time analytics (7.14).
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