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5 Chiral charge transfer along
magnetic field lines in a
Weyl superconductor

5.1 Introduction

Three-dimensional Weyl fermions have a definite chirality, given by the ±
sign in the Weyl Hamiltonian ±p ·σ. Three spatial dimensions are essen-
tial, if p · σ = pxσx + pyσy contains only two Pauli matrices, then +p · σ
and −p·σ can be transformed into each other by a unitary transformation
(conjugation with σz). The chirality is therefore a characteristic feature
of 3D Weyl semimetals, not shared by 2D graphene.

The search for observable signatures of chirality is a common theme
in the study of this new class of materials [13, 66, 90, 91]. The basic
mechanism used for that purpose is the chirality dependent motion in
a magnetic field: Weyl fermions in the zeroth Landau level propagate
parallel or antiparallel to the field lines, dependent on their chirality [92].
A population imbalance between the two chiralities then produces the
chiral magnetic effect [93, 94]: An electrical current along the field lines,
which changes sign if the field is inverted.

Here we present a novel, albeit less dramatic, signature of chirality:
An electrical conductance which depends on the magnetic field direction.
The effect appears if superconductivity is induced in a magnetic topo-
logical insulator, in the layered geometry of Meng and Balents [6] (see
Fig. 7.1). The superconductor cannot gap out the Weyl points of oppo-
site chirality, provided that the induced pair potential ∆0 remains smaller
than the magnetization energy β. The main effect of the superconduc-
tor is to renormalize the charge of the quasiparticles [95], by a factor
κ =

√
1−∆2

0/β
2.

A magnetic field B perpendicular to the layers penetrates in an array
of h/2e vortices. The zeroth Landau level is a dispersionless flat band
in the plane of the layers — the chirality of the Weyl fermions prevents
broadening of the Landau band by vortex scattering [96].
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

Figure 5.1: Left panel: Weyl superconductor formed by alternating layers of
magnetic topological insulator (TI, magnetization β) and s-wave superconduc-
tor (S, pair potential ∆0, chemical potential µ), between normal-metal contacts
(N1 and N2. A magnetic field B perpendicular to the layers (along z) produces
a Landau band that is dispersionless in the x–y plane, with free propagation
in the z-direction. Right panel: Weyl points of opposite chirality at kz = ±K.
For µ 6= 0 the conductance G = I2/V1 depends on whether the magnetic field
points parallel or antiparallel to the vector from −K to +K.

Following Ref. 97 we probe the Landau band by electrical conduction: A
voltage V1 applied to contact N1 induces a current I2 = GV1 in contact N2.
This is a three-terminal circuit, the grounded superconductor being the
third terminal. The chemical potential µN in the normal-metal contacts
is assumed to be large compared to the value µ in the superconductor.
We calculate the dependence of the conductance G(±B) on the direction
of the magnetic field B, relative to the separation of the Weyl points of
opposite chirality.

When the chemical potential is at the Weyl point (µ = 0) the conduc-
tance is determined by the renormalized charge and B only enters via the
Landau band degeneracy [97],

G = κ2G0, G0 = (e2/h)NΦ, at µ = 0, (5.1)

with NΦ = eBS/h the flux through an area S in units of h/e. We gener-
alize this result to nonzero µ and find that

δG = G(B)−G(−B) = (4µ/β)(κ2 − κ)G0. (5.2)
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5.2 Weyl superconductor in a magnetic vortex lattice

The conductance thus depends on whether the magnetic field points from
+ chirality to − chirality, or the other way around.

The outline of the chapter is as follows. In the next section we formulate
the problem of electrical conduction along the magnetic vortices of a Weyl
superconductor. The key quantity to calculate is the charge e∗ transferred
by the quasiparticles across the normal-superconductor interface. At µ =
0 this is simply given by the renormalized charge κe of the Weyl fermions
[97], but that no longer holds at nonzero µ. In Secs. 5.3 and 5.4 we apply
a mode matching technique developed in Ref. 98 to calculate e∗. The
conductance then follows in Sec. 5.5. These are all analytical results, we
test them on a computer simulation of a tight-binding model in Sec. 6.A.
We conclude in Sec. 7.6.

5.2 Weyl superconductor in a magnetic
vortex lattice

We consider a three-dimensional Weyl superconductor [6] (Fermi velocity
vF, chemical potential µ, s-wave pair potential ∆0e

iφ), sandwiched be-
tween metal contacts N1 and N2 at z = ±L/2 (see Fig. 7.1). A magnetic
field B > 0 in the z-direction penetrates the superconductor in the form
of a vortex lattice. The superconducting phase φ winds by 2π around
each vortex (at position Rn),

∇×∇φ = 2πẑ
∑
n

δ(r −Rn). (5.3)

The Bogoliubov-De Gennes Hamiltonian is

H = vFνzτz(k · σ)− evFν0τz(A · σ) + ν0τ0β · σ
− µνzτ0σ0 + ∆0(νx cosφ− νy sinφ)τ0σ0. (5.4)

The Pauli matrices σα, τα, να act respectively on the spin, subband, and
electron-hole degree of freedom. We set ~ to unity and choose the electron
charge as +e. The magnetization β = βnβ (with nβ a unit vector) may
point in an arbitary direction relative to B = ∇×A = Bẑ. We choose a
gauge in which Az = 0 and both A and φ are z-independent.

The Weyl points in zero magnetic field are at momentum k = ±K =
±Knβ with

vFK = κβ, κ =
√

1−∆2
0/β

2. (5.5)
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

The Weyl cones remain gapless provided that ∆0 < β. In a magnetic
field the states condense into Landau bands, dispersionless in the plane
perpendicular to B, but freely moving along B.

A quasiparticle in a Landau band, at energy E, has charge expectation
value Q = −e∂E/∂µ. At the Weyl point, µ = 0 = E, this equals [95]

Q0 = κe = e
√

1−∆2
0/β

2. (5.6)

We seek the charge e∗ transferred into the normal-metal contact by a
quasiparticle in the Landau band. At µ = 0 this was calculated in Ref.
97, with the result e∗ = Q0. We wish to generalize this to nonzero µ. For
that purpose we apply a methodology developed for a different problem
in Ref. 98, as described in the next section.

5.3 Fractional charge transfer

5.3.1 Matching condition

The particle current operator v̂z and charge current operator ĵz, both in
the z-direction, are given by

v̂z = ∂H/∂kz = vFνzτzσz,

ĵz = −∂H/∂Az = evFν0τzσz.
(5.7)

In what follows we set vF and e equal to unity, for ease of notation.

The chirality χ = ±1 of a mode in the superconductor (S) determines
whether it propagates in the +z direction or in the −z direction. We
position the normal-superconductor (NS) interface at z = 0, so that the
mode in S approaches it from z < 0 for χ = +1 and from z > 0 for
χ = −1.

We assume that the chemical potential µN in N is large compared to the
value µ in S. The potential step at the NS interface boosts the momentum
component kz perpendicular to the interface, without affecting the parallel
components kx, ky, so in N only modes are excited with |kz| � |kx|, |ky|.
These are eigenstates of νzτzσz with eigenvalue χ, moving away from the
interface in the +z direction if χ = +1 and in the −z direction for χ = −1.
Continuity of the wave function Ψ at the interface then gives the matching
condition

νzτzσzΨ = χΨ at z = 0. (5.8)

84



5.3 Fractional charge transfer

5.3.2 Projection

Because the Hamiltonian (7.5) commutes with τz we can replace this Pauli
matrix by the subband index τ = ±1 and rewrite the matching condition
(5.8) as χτνzσzΨ = Ψ. We define the projection operator

P = 1
2 (1 + χτνzσz), such that PΨ = Ψ at z = 0, (5.9)

and project the Hamiltonian (7.5),

PHP = (τβz − χµ)P ĵzP + P k̂z v̂zP. (5.10)

We have used that A only has components in the x–y plane. The hat on
k̂z = −i∂/∂z is there to remind us it is an operator.

We take the z-dependent inner product

〈Ψ1|Ψ2〉z =

∫
dx

∫
dyΨ∗2(x, y, z)Ψ2(x, y, z) (5.11)

of Eq. (5.10),

(τβz − χµ)〈Ψ|P ĵzP|Ψ〉z = 〈Ψ|PδHP|Ψ〉z,
with δH = H− k̂z v̂z.

(5.12)

At the NS interface z = 0 the projector may be removed,

(τβz − χµ)〈Ψ|ĵz|Ψ〉0 = 〈Ψ|δH|Ψ〉0, (5.13)

since neither ĵz nor δH contain a z-derivative, so that these operators
commute with the limit z → 0 and we may replace PΨ by Ψ in view of
the matching condition (5.9). Eq. (5.13) is the key identity that allows us
to calculate the transferred charge.

5.3.3 Transferred charge

Let Ψ be an eigenstate of H at energy E. The transferred charge e∗

through the NS interface is given by the ratio

e∗ =
〈Ψ|ĵz|Ψ〉0
〈Ψ|v̂z|Ψ〉0

. (5.14)

Substitution of Eq. (5.13) equates this to

e∗ = (τβz − χµ)−1 〈Ψ|H − k̂z v̂z|Ψ〉0
〈Ψ|v̂z|Ψ〉0

(5.15a)

= (τβz − χµ)−1

(
χE − 〈Ψ|k̂z v̂z|Ψ〉0〈Ψ|v̂z|Ψ〉0

)
. (5.15b)
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

The term χE appears because

〈Ψ|H|Ψ〉0 = E〈Ψ|Ψ〉0 = χE〈Ψ|v̂z|Ψ〉0, (5.16)

where in the last equality we used the matching condition (5.8).
Particle current conservation requires that

d

dz
〈Ψ|v̂z|Ψ〉z = 0. (5.17)

More generally, for our case of a z-independent Hamiltonian it holds that

d

dz
〈Ψ|f(k̂z)v̂z|Ψ〉z = 0 (5.18)

for any function of f of k̂z (see App. 5.A for a proof). Each of the two
expectation values 〈· · · 〉0 on the right-hand-side of Eq. (5.15b) can thus be
replaced by 〈· · · 〉z. This ratio can then be evaluated for large |z|, far from
the NS interface, where evanescent waves have decayed and Ψ ∝ eikzz is
an eigenstate of k̂z.

We finally obtain the transferred charge

e∗ = e
χE − vFkz
τβz − χµ

, (5.19)

reinstating units of e and vF. For µ = 0 = E, β = βz, kz = K = κβ/vF

we recover the result e∗ = ±κe = ±Q0 of Ref. 97.
It remains to relate the momentum kz of a propagating mode at the

Fermi level to the parameters of the Weyl superconductor. For that we
need the dispersion relation E(kz) of the Landau band, which we calculate
in the next section.

5.4 Dispersion relation of the Landau band

5.4.1 Block diagonalization

We calculate the dispersion relation of the Landau band by means of
the block diagonalization approach of Ref. 96. Starting from the BdG
Hamiltonian (7.5) we first make the Anderson gauge transformation [99]

H 7→ Ω†HΩ, with Ω =

(
eiφ 0
0 1

)
. (5.20)

86



5.4 Dispersion relation of the Landau band

The subblocks of Ω refer to the electron-hole (να) degree of freedom. The
resulting Hamiltonian is

H = νzτz(k + a) · σ + ν0τzq · σ + ν0τ0β · σ
− µνzτ0σ0 + ∆0νxτ0σ0, (5.21)

a = 1
2∇φ, q = 1

2∇φ−A. (5.22)

Both fields a and q have only components in the x–y plane and are z-
independent.

To focus on states near K we set k = κβ + δk and consider δk small.
The component parallel to β of a vector v is denoted by v‖ = v · nβ .

One more unitary transformation H 7→ U†HU with

U = σ‖ exp
(

1
2 iανyτzσ‖

)
,

tanα = −∆0

K
, cosα = −(1 + ∆2

0/K
2)−1/2 = −κ,

(5.23)

followed by a projection onto the ν = τ = ±1 blocks, gives a pair of 2× 2
low-energy Hamiltonians,

Hτ = τκµσ0 − (δk + a− τκq) · σ
+ (1− κ)(δk‖ + a‖ + τq‖)σ‖. (5.24)

Eq. (5.24) is an anisotropic Dirac Hamiltonian, the velocity parallel to
the magnetization is reduced by a factor κ. The same factor renormalizes
the quasiparticle charge,

Q = −e∂Hτ

∂µ
= −eτκ. (5.25)

The two Hamiltonians Hτ = H± near k = K thus describe quasiparticles
of opposite charge. Another pair of oppositely charged Weyl cones exists
near k = −K.

If β = (β sin θ, 0, β cos θ) makes an angle θ with the magnetic field we
have

Hτ = τκµσ0 −
∑
α=x,y

(δkα + aα − τκqα)σα − δkzσz

+ (1− κ)(δkx sin θ + δkz cos θ + ax sin θ + τqx sin θ)(σx sin θ + σz cos θ),
(5.26)

where we used that az = 0 = qz.
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

5.4.2 Zeroth Landau band

A major simplification appears if the magnetization β and the magnetic
field B are either parallel or perpendicular, so cos θ ≡ γ ∈ {0,±1}. In
these cases the Hamiltonian (5.26) anticommutes with σz when µ = 0 =
δkz. This socalled chiral symmetry implies that the zeroth Landau band
is an eigenstate of σz, with eigenvalue −τ [96]. The dispersion relation
then follows immediately,

E(kz) = τκµ+ τδkz[1− (1− κ)γ2]

= χκµ+ χ(kz − κβγ)[1− (1− κ)γ2]. (5.27)

In the second equation we have identified the chirality index χ ≡ sign (dE/dkz) =
τ .

Equating E(kz) = E and solving for kz gives

kz = κβγ − κµ− χE
1− (1− κ)γ2

, (5.28)

to first order in E and µ. (Higher order terms are not captured by the
linearization around the Weyl point.)

We substitute Eq. (5.28) in the expression (5.19) for the transferred
charge,

e∗ =
χe

µ− βγ

(
κβγ − κµ− χE

1− (1− κ)γ2
− χE

)
. (5.29)

For β ‖ B this gives

e∗ = −χe ±κβ − µ+ χE(1/κ− 1)

±β − µ , γ = ±1. (5.30)

In contrast, for β ⊥ B the µ and E dependence drops out,

e∗ = −χκe, γ = 0. (5.31)

These are the results for the charge transferred by a mode with kz near
+K. The mode with kz near −K is its charge-conjugate, the transferred
charge is given by e∗(E) 7→ −e∗(−E).

5.4.3 Comparison of transferred charge and charge
expectation value

For the case χ = 1 that β is parallel to B we can use the more accurate
dispersion relation from Ref. 96, without making the linearization around
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5.4 Dispersion relation of the Landau band

Figure 5.2: Comparison of the transferred charge e∗ across the NS interface and
the charge expectation value Q of the Weyl fermions. The curves are computed
from Eqs. (5.33) and (5.36a) using k0 from the full nonlinear dispersion (5.32).

the Weyl point:

E(kz) = −χM(kz)− χM ′(kz)µ, M(kz) = β −
√

∆2
0 + k2

z . (5.32)

The solution kz = k0(µ) of the equation E(kz) = 0 then gives the trans-
ferred charge at the Fermi level (E = 0) via

e∗ = −χe k0(µ)

β − µ. (5.33)

As a check for the linearization, to first order we find

k0(µ) =
√
β2 −∆2

0 − µ+O(µ2), (5.34)

in agreement with Eq. (5.28) for E = 0, γ = 1. We checked that higher
order terms are relatively insignificant for |µ/β| . 0.1.

The resulting transferred charge

e∗ = −χeκ
[
1 + (µ/β)(1− 1/κ) +O(µ2)

]
(5.35)

can be compared with the charge expectation value

Q = χeM ′(k0) = − χek0√
∆2

0 + k2
0

(5.36a)

= −χeκ
[
1 + (µ/β)(κ− 1/κ) +O(µ2)

]
, (5.36b)

89



5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

see Fig. 6.4. We conclude that the µ-dependence of the transferred charge
e∗ is not simply accounted for by the µ-dependence of the charge expec-
tation value Q.

5.5 Conductance

5.5.1 Transmission matrix

The Landau band contains NΦ = eBS/h modes propagating along the
magnetic field through a cross-sectional area S. For each of these modes
the transmission matrix t(E) at energy E from contact N1 to N2 is a
rank-two matrix of the form

t(E) = eikzL|Ψ+
2 〉〈Ψ+

1 |+ e−ikzL|Ψ−2 〉〈Ψ−1 |. (5.37)

The incoming mode |Ψ±1 〉 from contact N1 is matched in S to a Landau
band mode at ±kz. This chiral mode propagates over a distance L to
contact N2, picking up a phase e±ikzL, and is then matched to an outgoing
mode |Ψ±2 〉. The matching condition gives a charge ±e∗(±E) to Ψ±n ,

〈Ψ±n |νz|Ψ±n 〉 = ±e∗(±E). (5.38)

The transmission matrix t(E) has electron and hole submatrices tee
and the (transmission of an electron as an electron or as a hole). These
determine the differential conductance

dI2
dV1

= G0 lim
E→eV1

Tr
(
t†eetee − t†hethe

)
= 1

2G0 Tr (1 + νz)t
†(eV1)νzt(eV1), (5.39)

with G0 = NΦe
2/h.

5.5.2 Linear response

The linear response conductance G = limV1→0 dI2/dV1 simplifies because
at the Fermi level we can use the particle-hole symmetry relations

νyσytνyσy = t∗

|Ψ+
n 〉 = νyσy|Ψ−n 〉∗

}
at E = 0. (5.40)

These two relations imply that

Tr t†νzt = 0

〈Ψ+
n |νz|Ψ−n 〉 = 0

}
at E = 0. (5.41)
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5.6 Numerical results

Figure 5.3: Dependence of the conductance G on the pair potential ∆0, com-
puted from the tight-binding model for B parallel to β (left panel) and for B
perpendicular to β (right panel). The parameters are d0 = 18 a0, L = 30 a0,
and µ = 0 (so there is no difference between parallel or antiparallel orientation
of B). The red and blue curves show the results with and without a large po-
tential step at the NS interfaces. The black curve is the µ = 0 result G = κ2G0

from Ref. 97.

The equation (5.39) for the differential conductance thus reduces in
linear response to

G = 1
2G0 Tr νzt

†νzt

= 1
2G0

∑
s=±
〈Ψs

2|νz|Ψs
2〉〈Ψs

1|νz|Ψs
1〉 = NΦ

(e∗)2

h
. (5.42)

The charge e 7→ e∗ quadratically renormalizes the conductance [97].

Application of Eq. (5.29) at E = 0 then gives the result

G/G0 =

{
κ2 ± (2µ/β)(κ2 − κ) if β ‖ B,
κ2 if β ⊥ B, (5.43)

to first order in µ. The ± sign refers to β parallel (+) or antiparallel (−)
to B. The difference δG = G(B) − G(−B) is thus given by the formula
(5.2) announced in the introduction.

5.6 Numerical results

To test these analytical results, we have calculated the conductance nu-
merically from a tight-binding model obtained by discretizing the Hamil-
tonian (7.5) of the Weyl superconductor on a cubic lattice (lattice constant
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

Figure 5.4: Dependence of the conductance on the orientation of B, when it is
perpendicular to β and there is a large potential step at the NS interfaces (limit
µN → ∞). The colored curves show δG = G(B) − G(−B) as a function of µ,
computed from the tight-binding model (d0 = 18 a0, three values of ∆0/β, two
values of L). The black dotted line is the linear µ-dependence following from
Eq. (5.43).

a0):

HS = (vF/a0)τz
∑

α=x,y,z

σα sin(a0νzkα − ea0ν0Aα)

+ ν0τ0β · σ − µνzτ0σ0

+ ∆0(νx cosφ− νy sinφ)τ0σ0

+ (vF/a0)νzτxσ0

∑
α=x,y,z

(1− cos a0kα). (5.44)

The term on the last line is added to avoid fermion doubling.
The vortex lattice (a square array with lattice constant d0 and two

h/2e vortices per unit cell) is introduced as described in Ref. 96. The
scattering matrix is calculated using the Kwant code [47], and then the
linear-response conductance follows from

G =
I2
V1

=
e2

h
Tr (t†eetee − t†hethe), (5.45)
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5.7 Conclusion

where the trace is taken over all the NΦ modes in the magnetic Brillouin
zone and the transmission matrices are evaluated at the Fermi level (E =
0).

In Fig. 5.3 we compare the conductance with and without a potential
step at the NS interfaces. In the absence of a potential step, when the
Hamiltonian HN in N equals HS with ∆0 = 0, the conductance has the
bare value of G0 = NΦe

2/h, as long as ∆0 remains well below β. When
∆0 exceeds β a gap opens up at the Weyl point and the three-terminal
conductance G vanishes: All the carriers injected into the superconductor
by contact N1 are then drained to ground before they reach contact N2.

The theory developed here does not apply to this case µN = µ, but
instead addresses the more realistic case µN � µ of a large potential step
at the NS interfaces. In the numerics we implement the large-µN limit by
removing the transverse hoppings from the tight-binding Hamiltonian in
the normal-metal leads, which is then given by

HN = (vF/a0)νzτzσz sin a0kz + ν0τ0β · σ
+ (vF/a0)νzτxσ0(1− cos a0kz). (5.46)

As shown in the same Fig. 5.3, in that case the conductance at µ = 0
follows the predicted κ2 = 1−∆2

0/β
2 parabolic profile [97]. The agreement

is better for B perpendicular to β than it is for B parallel to β.
Fig. 5.4 is the test of our key result, the difference (5.2) of the conduc-

tance for B parallel or antiparallel to β. The linear µ-dependence has the
predicted slope, without any adjustable parameter. Backscattering from
the NS interfaces produces Fabry-Perot-type oscillations around this lin-
ear dependence, more rapidly oscillating when the separation L of the NS
interfaces is larger (compare dashed and solid curves).

5.7 Conclusion

In summary, we have calculated the charge e∗ that Weyl fermions in
a superconducting vortex lattice transport into a normal-metal contact.
When the chemical potential µ in the superconductor is at the Weyl point,
the transferred charge equals the charge expectation value Q0 of the Weyl
fermions [97] (in the limit of a large chemical potential µN in the metal
contacts). There is then no dependence on the relative orientation of
the magnetic field B and the separation vector β of the Weyl points of
opposite chirality. But when µ 6= 0 a dependence on B · β appears.

This signature of chirality shows up in the conductance, which differs
if B is parallel or antiparallel to β. It is not a large effect, a few percent
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

(see Fig. 5.4), but since it is specifically tied to the sign of the magnetic
field it should stand out from other confounding effects.

We have taken a simple layered model for a Weyl superconductor [6],
to have a definite form for the pair potential. We expect the effect to be
generic for Weyl semimetals in which superconductivity is intrinsic rather
than induced [7, 100]. We also expect the effect to be robust to long-
range disorder scattering, in view of the chirality of the motion along the
magnetic field lines (backscattering needs to couple states at ±K).
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Appendices

5.A Derivation of Eq. (5.18)

We wish to show that the derivative

d

dz
〈Ψ|f(k̂z)v̂z|Ψ〉z

= 〈Ψ|f(k̂z)v̂z∂zΨ〉z + 〈∂zΨ|f(k̂z)v̂zΨ〉z
= i〈Ψ|f(k̂z)k̂z v̂zΨ〉z − i〈k̂z v̂zΨ|f(k̂z)Ψ〉z (5.47)

vanishes for any function f(k̂z) of k̂z = −i∂/∂z.
We rewrite

k̂z v̂zΨ = (H− δH)Ψ = (E − δH)Ψ (5.48)

and use firstly that

〈Ψ1|δHΨ2〉z = 〈δHΨ1|Ψ2〉z, (5.49)

because δH does not contain any z-derivatives, and secondly that

[f(k̂z), δH] = 0, (5.50)

because δH does not depend on z. This gives the sequence of identities

〈Ψ|f(k̂z)k̂z v̂zΨ〉z = 〈Ψ|f(k̂z)(H− δH)Ψ〉z
= 〈Ψ|f(k̂z)(E − δH)Ψ〉z
= 〈(E − δH)Ψ|f(k̂z)Ψ〉z
= 〈(H− δH)Ψ|f(k̂z)Ψ〉z
= 〈k̂z v̂zΨ|f(k̂z)Ψ〉z. (5.51)

Substitution into Eq. (5.47) then proves Eq. (5.18) from the main text.

95


