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4 Supercell symmetry
modified spectral statistics
of Kramers-Weyl fermions

4.1 Introduction

The Wigner surmise P (s) ∝ sβ for the probability distribution of level
spacings [75] is a quantum signature of chaos [76]. The exponent β, the
Dyson index [77], can take on the values 1, 2 or 4, depending on the pres-
ence or absence of time-reversal symmetry and spin-rotation symmetry.
Electrons in zero magnetic field have β = 1 in the absence of spin-orbit
coupling and β = 4 with spin-orbit coupling, while β = 2 in a magnetic
field irrespective of the spin degree of freedom. In the context of random-
matrix theory one says that the Hamiltonian belongs to the universality
class of the Gaussian Orthogonal Ensemble (β = 1, GOE), Gaussian Uni-
tary Ensemble (β = 2, GUE), or Gaussian Symplectic Ensemble (β = 4,
GSE).1

This classification applies both to massive electrons [78] (e.g. in a metal
grain or in a semiconductor quantum dot) and to massless electrons [79]
(e.g. in graphene or on the surface of a topological insulator). Here we
consider a specific model in the latter category: Massless electrons (Weyl
fermions) with a band crossing (Weyl point) enforced by Kramers de-
generacy [9, 10]. These low-energy excitations known as Kramers-Weyl
fermions appear at time-reversally invariant momenta Π in the Brillouin
zone (such that Π and −Π differ by a reciprocal lattice vector). A strong
spin-orbit coupling without reflection or mirror symmetry produces a lin-
ear band splitting ±(p −Π) · σ near each of the high-symmetry points.
The ± sign designates the chirality of the excitations.

On a three-dimensional (3D) cubic lattice (unit lattice constant a0) the

1The orthogonal, unitary, and symplectic matrices in this nomenclature refer to the
matrix that diagonalizes the Hamiltonian.
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4 Supercell symmetry modified spectral statistics of Kramers-Weyl fermions

Figure 4.1: Distribution of the level spacings δE (normalized by the mean
spacing 〈δE〉 ≡ δ = 4.04 · 10−3 v/a0) of the Hamiltonian (6.2), for t = 0 (blue)
and t 6= 0 (red), on a 20×20×20 cubic lattice. The potential V was chosen inde-
pendently on each site from a uniform distribution in the interval (−V0/2, V0/2)
with V0 = 1.5 v/a0. The solid and dashed black curves give the Wigner surmise
for β = 1 and β = 4, respectively.

Hamiltonian

H = v(σx sin px + σy sin py + σz sin pz)

+ tσ0(cos px + cos py + cos pz) + V (r)σ0 (4.1)

describes Kramers-Weyl fermions of positive chirality with momenta near
(0, 0, 0), (π, π, 0), (π, 0, π), (0, π, π) and of negative chirality near (π, π, π),
(π, 0, 0), (0, π, 0), (0, 0, π). The Hamiltonian contains spin-independent
terms, hopping terms ∝ cos pα and a scalar potential V , as well as spin-
orbit coupling terms ∝ σα sin pα.

The numerical study of the spectral statistics of Kramers-Weyl fermions
that prompted our investigation is shown in Fig. 4.1. A quantum dot is
formed by restricting the lattice to a small region and chaotic dynamics is
produced by a random potential. For t = 0 the level spacing distribution
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4.2 Supercell symmetry

is well described by the β = 1 Wigner surmise (orthogonal statistics),
while the spin-orbit coupling would have suggested symplectic β = 4
statistics. Paradoxically, the β = 4 distribution requires the addition of
spin-independent hopping.

In the next section we construct the “fake” time-reversal operation T ∗
that squares to +1 and is responsible for the β = 1 spacing distribution
when t = 0. The supercell symmetry that enables T ∗ is broken by the
cos p terms, which reveal the true T , squaring to −1 with a β = 4 spac-
ing distribution. In Sec. 4.3 we investigate how the symmetry breaking
manifests itself in a transport property (the magnetoconductance). The
analytical results are compared with numerical simulations in Sec. 6.A. In
the concluding section we make contact with the spectrum of lattice Dirac
operators on a torus, which shows a similar shift of symmetries when the
number of lattice sites changes from even to odd [80, 81].

4.2 Supercell symmetry

4.2.1 Zero magnetic field

The tight-binding Hamiltonian of a spin-1/2 degree of freedom with nearest-
neighbor hopping and on-site disorder on an orthorhombic lattice (lattice
constants ax, ay, az) has the generic form [9]

H =
∑

α=x,y,z

[
tασ0 cos aαpα + vασα sin aαpα

]
+ V (r)σ0. (4.2)

Both the spin-independent hopping energies tα and the spin-orbit coupling
amplitudes vα may be anisotropic. We set ~ equal to unity, pα = −i∂/∂xα
is the momentum operator, the Pauli spin matrices are σ = (σx, σy, σz),
and σ0 is the 2× 2 unit matrix.

The Hamiltonian (7.5) is constrained by the symplectic symmetry

H = σyH∗σy ≡ T HT . (4.3)

This is a time-reversal operation that changes the sign of both σ and p =
−i∇, leaving H invariant. The operator T = σy × complex conjugation
squares to −1, thus we expect GSE statistics, while GOE statistics would
require a time-reversal operator that squares to +1.

The eight flavors of Kramers-Weyl fermions at pα ∈ {0, π/aα} are dis-
placed in energy from E = 0 by the tα terms. Without these terms, the
Hamiltonian

H0 =
∑
α

vασα sin aαpα + V (r)σ0 (4.4)
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has the supercell symmetry2

UyH0U
†
y = H0, Uy = σye

iπnx+iπnz , nα =
xα
aα
∈ Z, (4.5)

which transforms px → px + π/ax, pz → pz + π/az, while leaving py
unaffected. The operator Uy thus maps each Kramers-Weyl fermion onto
a partner of the same chirality.

Since U2
y = 1 its eigenvalues are ±1 and we can block-diagonalize H0

in sectors of the Hilbert space where UyΨ = ±Ψ. In a given sector the
time-reversal operator T = σy × complex conjugation can be replaced by

T ∗ = ±T Uy = ∓eiπnx+iπnz × complex conjugation. (4.6)

The “fake” time-reversal operator T ∗ squares to +1, so each sector has
an orthogonal time-reversal symmetry.

The spin-independent hopping terms in the full Hamiltonian (7.5) break
the supercell symmetry if two or more of the tα’s are nonzero. (If only

a single tα 6= 0 the symmetry Uα = σαe
iπ

∑
α′ 6=α nα′ remains unbroken.)

We would thus expect a β = 1 to β = 4 transition in the level spacing
distribution P (s) ∝ sβ when t becomes larger than the mean level spacing
δ.

4.2.2 Nonzero magnetic field

A magnetic field B breaks time-reversal symmetry, driving both orthogo-
nal (β = 1) and symplectic (β = 4) level spacing distributions towards the
unitary (β = 2) result. The degeneracy of the β = 2 spectra is different
in the two cases.

For B = 0 each energy level is twofold degenerate (Kramers degener-
acy). In a magnetic field the degeneracy is broken for a nonzero tα, but
it remains when tx, ty, tz = 0 if the magnetic field enters only via the
substitution p→ p+ eA — so only as an orbital effect, no Zeeman effect
on the spin.

This persistent degeneracy is due to the fact that the supercell symme-
try Uα is not broken by the substitution p → p + eA. Starting from a
Hamiltonian which commutes with Ux and Uy and an energy eigenstate Ψ
such that UyΨ = Ψ we can then construct another eigenstate Ψ′ = UxΨ

2The unitary transformation (4.5) has a periodicity of twice the lattice constant,
hence the name “supercell symmetry”, suggested to us by Anton Akhmerov.
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at the same energy eigenvalue. The two states Ψ and Ψ′ are orthogonal,

〈Ψ|Ψ′〉 = 〈Ψ|Ux|Ψ〉 = 〈Ψ|U†yUxUy|Ψ〉
= −〈Ψ|Ux|Ψ〉 = −〈Ψ|Ψ′〉 ⇒ 〈Ψ|Ψ′〉 = 0, (4.7)

so the energy eigenvalue is twofold degenerate.

4.3 Supercell symmetry effects on the
conductance

The appearance of the supercell symmetry can be probed via the electrical
conductance G. In a magnetic field, the β = 1 → β = 2 transition gives
an increase in G (weak localization), while the β = 4→ β = 2 transition
gives a decrease in G (weak antilocalization). The theoretical prediction
for this quantum correction δG = G(B)−G(0) is [82]

δG =
2e2

h
×
{

1/3 for β = 1→ 2,

−1/6 for β = 4→ 2.
(4.8)

This result applies to the disorder-averaged conductance in a wire geom-
etry (length L large compared to the width W ), with a large number
N � 1 of propagating modes, in the diffusive regime (L much larger
than the mean free path l, but much smaller than the localization length
ξ = Nl).

An alternative way to probe the symmetry class is via the sample-
to-sample fluctuations of the conductance. According to the theory of
universal conductance fluctuations [83, 84], the variance VarG of the con-
ductance is proportional to g2/β, where g is the level degeneracy factor.
In our case the β = 1 → β = 2 transition happens at fixed g = 2, while
the β = 4 → β = 2 transition is accompanied by g = 2 → g = 1, hence
in both cases the magnetic field reduces the variance by a factor of two.
The predicted values in a wire geometry are [82]

VarG =

(
2e2

h

)2

×
{

2/15→ 1/15 for β = 1→ 2,

1/30→ 1/60 for β = 4→ 2.
(4.9)

For these quantum interference effects the crossover to β = 2 hap-
pens when the magnetic flux through the wire becomes larger than a flux
quantum h/e. Which of the two transitions applies, β = 1 → β = 2 or
β = 4 → β = 2, depends on whether the supercell symmetry breaking
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term t is small or large compared to the Thouless energy ET = (h/e2)Gδ.
In a diffusive multimode wire G � e2/h ⇒ ET � δ, hence the range
of t governed by the supercell symmetry is much larger for the conduc-
tance, when we need t� ET, than it is for the level repulsion, when the
condition is t� δ.

4.4 Numerical results

We have studied the effect of the supercell symmetry numerically, using
the Kwant tight-binding package [47, 85]. For computational efficiency
we took a 2D square lattice, rather than a 3D lattice, given by the Hamil-
tonian

H = v(σx sin a0px + σy sin a0py)

+ tσ0(cos a0px + cos a0py) + V (r)σ0. (4.10)

The random potential V was chosen independently on each site, uniformly
in the interval (−V0/2, V0/2).

For the level statistics we took a square geometry,3 on a lattice of size
200 a0 × 200 a0. We calculated the distribution of the nearest-neigbor
spacings of the twofold degenerate levels in the interval |E−0.2 v/a0| < 4 ·
10−3 v/a0 (mean level spacing δ = 3.56·10−4 v/a0, approximately constant
in this energy range), averaging over some 2000 disorder realizations. Note
that the disorder potential breaks chiral symmetry,4 so there is no ±E
symmetry in the spectrum.

As an extra check, we also calculated the ratio distribution [86], mean-
ing the probability distribution P (r) of the ratio rn = sn/sn−1 of two
consecutive level spacings sn = En+1 − En.

For the conductance we took a disordered wire of width W = 200 a0

and length L = 1000 a0. The end points are connected to heavily doped
metal leads, modelled on the lattice by breaking the transverse bonds. The
transmission matrix t at Fermi energy E determines the zero-temperature
two-terminal conductance G = (e2/h) Tr tt†. We took E = 0.2 v/a0, when
the number of propagating modes through the disordered region equals
N = 52 (counting degeneracies). The mean free path for V0 = 0.5 v/a0 is
estimated at l = 150 a0, from the Drude formula G ≈ (Ne2/h)(1+L/l)−1.

3In all our systems we truncate the lattice without applying periodic boundary con-
ditions. The parity of the number of lattice sites then does not matter.

4Chiral symmetry means that the Hamiltonian σx sin px + σy sin py anticommutes
with σz , enforcing a ±E symmetry in the spectrum. This symmetry plays no role
in our analysis, because it is broken by the V σ0 disorder potential.
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The localization length ξ = Nl is then larger than L, so we are in the
diffusive regime.

Fig. 4.2 shows the transition from the β = 1 to β = 4 level spacing
and ratio distributions. The transition from weak localization to weak
anti-localization is shown in Fig. 4.3, as well as the transition from β = 1
to β = 4 conductance fluctuations. It is difficult to fully reach the large-N
regime where the analytical results (4.8) and (4.9) apply, so the agreement
analytics–numerics remains qualitative for the conductance.

In Fig. 4.4 we show that the effect of the supercell symmetry is sup-
pressed more rapidly by the spin-independent hopping energy t if we con-
sider the level spacings (when we need t & δ) than it is if we consider
the conductance (when we need t & ET). In the conductance calcula-
tions G ≈ 7e2/h⇒ ET/δ ≈ 7, so we expect about an order of magnitude
difference in the onset of the two transitions, in accord with Fig. 4.4.

4.5 Conclusion

In summary, we have identified a supercell symmetry and a resulting
“fake” time-reversal symmetry operation, squaring to +1 rather than −1,
which explains the β = 1 spectral statistics of the Kramers-Weyl Hamilto-
nian (6.2) in the absence of the spin-independent hopping term ∝ t cos p.
The same symmetry is responsible for the appearance of weak localization
in the magnetoconductance.

The crossover from β = 1 to β = 4 level repulsion happens quickly,
when t becomes larger than the mean level spacing δ. The crossover from
weak localization to weak antilocalization happens at larger t, larger by a
factor of conductance G × h/e2. This delayed crossover in the magneto-
conductance may make the effect of the supercell symmetry more easily
observable.

A similar shift of symmetries has been observed when comparing two
discretization schemes of lattice Dirac operators on a torus [80, 81]. The
Dirac Hamiltonian −i∇ · σ needs a special “staggered” discretization of
the spatial derivative to make sure that the low-energy states are only
near p = 0. The “naive” discretization ∂f/∂x 7→ (2a)−1[f(x+ a)− f(x−
a)] introduces an additional Dirac cone at p = π/a (fermion doubling
[88, 89]).

If one then imposes periodic boundary conditions, the naive discretiza-
tion obeys the supercell symmetry (4.5) if the number of lattice sites is
even but not if it is odd. The way this works out for the spectral statistics
is different in Refs. [80, 81] than it is here, because of the presence of chiral
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symmetry, but the mechanism is the same.
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4.5 Conclusion

Figure 4.2: Top panel: Same as Fig. 4.1, but now for a 2D square lattice
(size 200 × 200, disorder strength V0 = 0.5 v/a0) and for four values of the
spin-independent hopping energy t. The bottom panel shows the corresponding
ratio distribution (with the β = 1 and β = 4 limits from Ref. 86).
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Figure 4.3: Magnetic field dependence of the conductance mean δG = 〈G(B)〉−
〈G(0)〉 (top panel) and conductance variance VarG = 〈G(B)2〉− 〈G(B)〉2 (bot-
tom panel), averaged over disorder in a conducting wire (length L = 1000, width
W = 200, disorder strength V0 = 0.5 v/a0, Fermi energy E = 0.2 v/a0). The
blue data points are in the presence of the supercell symmetry (t = 0), for the
gold data points the symmetry is broken (t = 0.1 v/a0). The arrows and dashed
lines indicate the analytical predictions (4.8) and (4.9) in the limit N →∞.
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Figure 4.4: Transition from β = 1 to β = 4 with increasing spin-independent
hopping energy t, as measured via the level spacing distribution (red data points,
same parameters as in Fig. 4.2) or via the variance of the conductance (blue
data points, same parameters as in Fig. 4.3, at B = 0). The transition is
quantified by an effective parameter βeff . For the conductance this is defined
by βeff = 8

15
(e2/h)2(VarG)−1. For the level spacing we fitted the data to the

Wigner surmise interpolation [87] P (s) = csβeff exp(−c′s2), with s = δE/δ and
coefficients c, c′ such that the zeroth and first moments of P (s) are equal to
unity.
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