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3 Magnetic breakdown
spectrum of a Kramers-Weyl
semimetal

3.1 Introduction

Kramers-Weyl fermions are massless low-energy excitations that may ap-
pear in the Brillouin zone near time-reversally invariant momenta (TRIM).
Their gapless nature is protected by Kramers degeneracy, which enforces
a band crossing at the TRIM. Crystals that support Kramers-Weyl fer-
mions have strong spin-orbit coupling and belong to one of the chiral point
groups, without reflection or mirror symmetry, to allow for a linear rather
than quadratic band splitting away from the TRIM. The materials are
called topological chiral crystals or Kramers-Weyl semimetals — to be
distinguished from generic Weyl semimetals where Kramers degeneracy
plays no role. Several candidates were predicted theoretically [9, 10] and
some have been realized in the laboratory [48–52].

These recent developments have motivated the search for observables
that would distinguish Kramers-Weyl fermions from generic Weyl fer-
mions [53–55]. Here we report on the fundamentally different Landau
level spectrum when the semimetal is confined to a thin slab in a perpen-
dicular magnetic field.

Generically, Landau levels are dispersionless: The energy does not de-
pend on the momentum in the plane perpendicular to the magnetic field
B. In contrast, we have found that the Landau levels of a Kramers-Weyl
semimetal are broadened into a Landau band. The band width oscillates
periodically in 1/B, producing an oscillatory contribution to the magne-
toconductance.

The phenomenology is similar to that encountered in a semiconductor
2D electron gas in a superlattice potential [56–60]. In that system the
dispersion is due to the drift velocity of cyclotron orbits in perpendicular
electric and magnetic fields. Here the surface Fermi arcs provide for open
orbits, connected to closed orbits by magnetic breakdown at Weyl points
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.1: Electron orbits in a thin slab geometry perpendicular to a magnetic
field (along the x-axis), for a generic Weyl semimetal [61, 62] (at the left) and
for a Kramers-Weyl semimetal (at the right). In each case we show separately
a front view (in the x–y plane, to show how the orbits switch between top and
bottom surfaces of the slab) and a top view (in the y–z plane, to indicate the
magnetic flux enclosed by the orbits). The Kramers-Weyl semimetal combines
open orbits (red arrows) with closed orbits enclosing either a large flux Φ or
a small flux δΦ. Open and closed orbits are coupled by a periodic chain of
magnetic breakdown events, spaced by l2m/a0 (with a0 the lattice constant and
lm =

√
~/eB the magnetic length). The open orbits broaden the Landau levels

into a band, the band width varies from minimal to maximal when δΦ is in-
cremented by h/e. Because δΦ ∝ Bl4m ∝ 1/B, the band width oscillations are
periodic in 1/B.

(see Fig. 3.1).

No open orbits appear in a generic Weyl semimetal [61, 62], because
the Weyl points are closely separated inside the first Brillouin zone, so
the Fermi arcs are short and do not cross the Brillouin zone boundaries
(a prerequisite for open orbits). The Landau band dispersion therefore
directly ties into a defining property [9] of a Kramers-Weyl semimetal:
surface Fermi arcs that span the entire Brillouin zone because they connect
TRIM at zone boundaries.

In the next two sections 3.2 and 3.3 we first compute the spectrum of a
Kramers-Weyl semimetal slab in zero magnetic field, to obtain the equi-
energy contours that govern the orbits when we apply a perpendicular
field. The resonant tunneling between open and closed orbits via magnetic
breakdown is studied in Sec. 3.4. With these preparations we are ready
to calculate the dispersive Landau bands and the magnetoconductance
oscillations in Secs. 3.5 and 3.6. The analytical calculations are then
compared with the numerical solution of a tight-binding model in Secs.
3.7 and 6.A. We conclude in Sec. 7.6.
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3.2 Boundary condition for Kramers-Weyl fermions

3.2 Boundary condition for Kramers-Weyl
fermions

The first step in our analysis is to characterize the surface Fermi arcs in a
Kramers-Weyl semimetal, which requires a determination of the boundary
condition for Kramers-Weyl fermions. This is more strongly constrained
by time-reversal symmetry than the familiar boundary condition on the
Dirac equation [63]. In that case the confinement by a Dirac mass Vµ =
µ(n̂‖ · σ) generates a boundary condition

Ψ = (n̂⊥ × n̂‖) · σΨ. (3.1)

The unit vectors n̂‖ and n̂⊥ are parallel and perpendicular to the bound-
ary, respectively.

Although σ 7→ −σ upon time reversal, the Dirac mass may still preserve
time-reversal symmetry if the Weyl fermions are not at a time-reversally
invariant momentum (TRIM). For example, in graphene a Dirac mass +µ
at the K-point in the Brillouin zone and a Dirac mass −µ at the K′-point
preserves time-reversal symmetry. In contrast, for Kramers-Weyl fermions
at a TRIM the Vµ term in the Hamiltonian is incompatible with time-
reversal symmetry. To preserve time-reversal symmetry the boundary
condition must couple two Weyl cones, it cannot be of the single-cone
form (3.1).

In App. 3.A we demonstrate that, indeed, pairs of Weyl cones at a TRIM
are coupled at the boundary of a Kramers-Weyl semimetal. Relying on
that result, we derive in this section the time-reversal invariant boundary
condition for Kramers-Weyl fermions.

We consider a Kramers-Weyl semimetal in a slab geometry, confined to
the y–z plane by boundaries at x = 0 and x = W . In a minimal description
we account for the coupling of two Weyl cones at the boundary. To first
order in momentum k, measured from a Weyl point, the Hamiltonian of
the uncoupled Weyl cones is

H±(k) =

(
H0(k) + ε 0

0 ±H0(k)− ε

)
,

H0(k) =
∑
α=x,y,zvαkασα.

(3.2)

The ± sign indicates whether the two Weyl cones have the same chirality
(+) or the opposite chirality (−). The two Weyl points need not be at
the same energy, we allow for an offset ε. We also allow for anisotropy in
the velocity components vα.
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

The σα’s are Pauli matrices acting on the spin degree of freedom. We
will also use τα Pauli matrices that act on the Weyl cone index, with σ0

and τ0 the corresponding 2× 2 unit matrix. We can then write

H+ = H0τ0 + ετz, H− = H0τz + ετz. (3.3)

The current operator in the x-direction is j+ = vxσxτ0 for H+ and j− =
vxσxτz for H−. The time-reversal operation T does not couple Weyl cones
at a TRIM, it only inverts the spin and momentum:

T H±(k)T −1 = σyH
∗
±(−k)σy = H±(k). (3.4)

An energy-independent boundary condition on the wave function Ψ has
the general form [63]

Ψ = M± ·Ψ, M± = M†±, M2
± = 1, (3.5)

in terms of a Hermitian and unitary matrix M±. The matrix M± an-
ticommutes with the current operator j± perpendicular to the surface,
to ensure current conservation. Time-reversal symmetry further requires
that

σyM
∗
±σy = M±. (3.6)

These restrictions reduce M± to the single-parameter form

M+(φ) = τyσy cosφ+ τyσz sinφ,

M−(φ) = τxσ0 cosφ+ τyσx sinφ.
(3.7)

The angle φ has a simple physical interpretation in the case H+,M+

case of two coupled Weyl cones of the same chirality: It determines the
direction of propagation of the helical surface states (the Fermi arcs). We
will take φ = 0 at x = 0 and φ = π at x = W . This produces a surface
state that is an eigenstate of τyσy with eigenvalue +1 on one surface and
eigenvalue −1 on the opposite surface, so a circulating surface state in the
±y-direction. (Alternatively, if we would take φ = ±π/2 the state would
circulate in the ±z-direction.)

Notice that these are helical rather than chiral surface states: The eigen-
states Ψ of τyσy with eigenvalue +1 contain both right-movers (σyΨ =
+Ψ) and left-movers (σyΨ = −Ψ). This is the key distinction with sur-
face states in a magnetic Weyl semimetal, which circulate unidirectionally
around the slab [13, 64–66].

In the case H−,M− that the coupled Weyl cones have the opposite
chirality there are no helical surface states and the physical interpretation
of the angle φ in Eq. (3.7) is less obvious. Since our interest here is in the
Fermi arcs, we will not consider that case further in what follows.
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3.3 Fermi surface of Kramers-Weyl fermions in a slab

3.3 Fermi surface of Kramers-Weyl fermions
in a slab

3.3.1 Dispersion relation

We calculate the energy spectrum of H+ with boundary condition M+

from Eq. (3.7) along the lines of Ref. 67. Integration in the x-direction
of the wave equation H±Ψ = EΨ with kx = −i~∂/∂x relates the wave
amplitudes at the top and bottom surface via Ψ(W ) = eiΞΨ(0), with

Ξ =
W

~vx
σx(E − vykyσy − vzkzσz − ετz). (3.8)

As discussed in Sec. 3.2 we impose the boundary condition Ψ = M+(0)Ψ
on the x = 0 surface and Ψ = M+(π)Ψ on the x = W surface.

The round-trip evolution

Ψ(0) = M+(0)e−iΞM+(π)eiΞΨ(0) (3.9)

then gives the determinantal equation

Det
(
1 + τyσye

−iΞτyσye
iΞ
)

= 0, (3.10)

which evaluates to

[E2 − ε2 + (vzkz)
2 − (vyky)2]

sinw− sinw+

q−q+

= 1 + cosw− cosw+, (3.11)

with the definitions

q2
± = (E ± ε)2 − (vyky)2 − (vzkz)

2, w± =
W

~vx
q±. (3.12)

In the zero-offset limit ε = 0 Eq. (3.11) reduces to the more compact
expression(

vzkz
q

tan
Wq

~vx

)2

= 1, q2 = E2 − (vyky)2 − (vzkz)
2, (3.13)

which is a squared Weiss equation [67, 68].
The dispersion relation E(ky, kz) which follows from Eq. (3.11) is plot-

ted in Fig. 3.2. The surface states (indicated in red) are nearly flat as
function of kz, so they propagate mainly in the ±y direction. In the limit
ε → 0 the bands cross at kz = 0, this crossing is removed by the energy
offset.
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.2: Dispersion relation E(ky, kz) as a function of kz for fixed ky = 1/W
(left panel) and as a function of ky for fixed kz = 1/W (right panel), calculated
from Eq. (3.11) for vx = vy = vz ≡ vF and ε = ~vF/W . The surface states
are indicated in red. The avoided crossings at kz = 0 become real crossings for
ε = 0.

3.3.2 Fermi surface topology

The equi-energy contours E(ky, kz) = EF are plotted in Fig. 3.3 for several
values of W . The topology of the Fermi surface changes at a critical width

Wc =
π

2

~vx
EF

+O(ε). (3.14)

At W = Wc the surface bands from upper and lower surface touch at the
Weyl point ky = kz = 0, and for larger widths the upper and lower surface
bands decouple from a bulk band, in the interior of the slab.

For ε = 0 the surface and bulk bands intersect at kz = 0 when W > Wc.
The gap δky which opens up for nonzero ε is

δky =
4

πvy
|ε|+O(ε2), W > Wc. (3.15)

For later use we also record the area S0 enclosed by the bulk band,

S0 = 4
3π
√

2(W/Wc − 1)3/2k2
F +O(W/Wc − 1)2 +O(ε), (3.16)
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3.4 Resonant tunneling between open and closed orbits in a magnetic field

Figure 3.3: Solid curves: equi-energy contours E(ky, kz) = EF for ε = 0 at
three values of W (in units of ~vF/EF with EF > 0): W = π/2 = Wc (red curve
in left panel), W = 1.4 < Wc (blue curve in left panel), and W = 1.8 > Wc

(blue curve in right panel). The calculations are based on Eq. (3.11) with
vx = vy = vz ≡ vF. The red dashed curve in the right panel shows the effect
of a nonzero ε = 0.1EF: The intersecting contours break up into two open
and one closed contour, separated at kz = 0 by a gap δky. The dotted arrows,
perpendicular to the equi-energy contours, point into the direction of motion in
real space. The assignment of the bands to the upper and lower surface is in
accord with the time-reversal symmetry requirement that a band stays on the
same surface when (ky, kz) 7→ −(ky, kz).

where we have defined the 2D Fermi wave vector of the Weyl fermions via

EF = ~kF
√
vyvz. (3.17)

3.4 Resonant tunneling between open and
closed orbits in a magnetic field

Upon application of a magnetic field B in the x-direction, perpendicular
to the slab, the Lorentz force causes a wave packet to drift along an equi-
energy contour. Because k̇ = eṙ ×B the orbit in real space is obtained
from the orbit in momentum space by rotation over π/2 and rescaling by
a factor ~/eB = l2m (magnetic length squared).

Inspection of Fig. 3.3 shows that for W > Wc closed orbits in the
interior of the slab coexist with open orbits on the surface. The open
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.4: Electron orbits in a magnetic field perpendicular to the slab, fol-
lowing from the Fermi surface in Fig. 3.3 (W > Wc, ε > 0). The tunneling
events (magnetic breakdown) between open and closed orbits are indicated.
These happen with probability TMB given by Eq. (3.18). Backscattering of the
open orbit via the closed orbit happens with probability R given by Eq. (3.19).
The area Sreal ∝ 1/B2 of the closed orbit in real space determines the 1/B
periodicity of the magnetoconductance oscillations via the resonance condition
BSreal = nh/e.

and closed orbits are coupled via tunneling through a momentum gap δky
(magnetic breakdown [69, 70]), with tunnel probability TMB = 1 − RMB

given by the Landau-Zener formula

TMB = exp(−Bc/B), Bc ' (~/e)δk2
y ' (~ε/evF)2. (3.18)

In the expression for the breakdown field Bc a numerical prefactor of order
unity is omitted [70, 71].

The real-space orbits are illustrated in Fig. 3.4: An electron in a Fermi
arc on the top surface switches to the bottom surface when the Fermi
arc terminates at a Weyl point [61]. The direction of propagation (helic-
ity) of the surface electron may change as a consequence of the magnetic
breakdown, which couples a right-moving electron on the top surface to a
left-moving electron on the bottom surface. This backscattering process
occurs with reflection probability

R =

∣∣∣∣ TMB

1−RMBeiφ

∣∣∣∣2 =
T 2

MB

T 2
MB + 4RMB sin2(φ/2)

. (3.19)

The phase shift φ accumulated in one round trip along the closed orbit is
determined by the enclosed area S0 in momentum space,

φ = S0l
2
m + 2πν, (3.20)

with ν ∈ [0, 1) a magnetic-field independent offset.
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3.5 Dispersive Landau bands

Figure 3.5: Equi-energy contours in the ky–kz plane, showing open orbits
coupled to closed orbits via magnetic breakdown (red dotted lines). The closed
contours encircle Weyl points at K = (0, 0) and K′ = (0, π/a0) — periodically
translated by the reciprocal lattice vector G = (0, 2π/a0). Arrows indicate the
spectral flow in a perpendicular magnetic field. The large area SΣ (yellow)
determines the spacing of the Landau bands, while the small area S0 and the
magnetic breakdown probabilities TMB, T

′
MB determine the band width.

Resonant tunneling through the closed orbit, resulting in R = 1, hap-
pens when φ is an integer multiple of 2π. We thus see that the resonances
are periodic in 1/B, with period

∆(1/B) =
2πe

~S0
≈ e

h
(W/Wc − 1)−3/2k−2

F . (3.21)

(We have substituted the small-ε expression (3.16) for S0.)
The Shubnikov-de Haas (SdH) oscillations due to Landau level quanti-

sation are also periodic in 1/B. Their period is determined by the area
SΣ ≈ 2πkF/a0 in Fig. 3.5, hence

∆(1/B)SdH =
2πe

~SΣ
≈ ea0

~kF
. (3.22)

Comparison with Eq. (3.21) shows that the period of the SdH oscillations
is smaller than that of the magnetic breakdown oscillations by a factor
kFa0(W/Wc − 1)3/2, which is typically � 1.

3.5 Dispersive Landau bands

Let us now discuss how magnetic breakdown converts the flat dispersion-
less Landau levels into dispersive bands. The mechanism crucially relies
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

on the fact that the surface Fermi arcs in a Kramers-Weyl semimetal
connect Weyl points at time-reversally invariant momenta. Consider two
TRIM K and K ′ in the (ky, kz) plane of the surface Brillouin zone. We
choose K = (0, 0) at the zone center and K ′ = (0, π/a0) at the zone
boundary, with G = (0, 2π/a0) a reciprocal lattice vector.

In the periodic zone scheme, the Weyl points can be repeated along the
kz-axis with period 2π/a0, to form an infinite one-dimensional chain (see
Fig. 3.5). The perpendicular magnetic field B induces a flow along this
chain in momentum space, which in real space is oriented along the y-axis
with period

L = (2π/a0)l2m = 2πvy/ωc, ωc = eBvya0/~. (3.23)

In the weak-field regime lm � a0 the period L of the magnetic-field in-
duced superlattice is large compared to the period a0 of the atomic lattice.
We seek the band structure of the superlattice.

We distinguish the Weyl points atK andK ′ by their different magnetic
breakdown probabilities, denoted respectively by TMB = 1 − RMB and
T ′MB = 1 − R′MB. We focus on the case that TMB and T ′MB are close to
unity and the areas S0 and S′0 of the closed orbits are the same — this
is the small-ε regime in Eqs. (3.16) and (3.18). (The more general case is
treated in App. 3.C.)

The phase shift ψ accumulated upon propagation from one Weyl point
to the next is gauge dependent, we choose the Landau gaugeA = (0,−Bz, 0).
For simplicity we ignore the curvature of the open orbits, approximating
them by straight contours along the line ky = E/~vy. The phase shift is
then given by

ψ =
E

~vy
π

a0
l2m =

πE

~ωc
, (3.24)

the same for each segment of an open orbit connecting two Weyl points.
The quantization condition for a Landau level at energy En is 2ψ+φ =

2πn, n = 1, 2, . . ., which amounts to the quantization in units of h/e of
the magnetic flux through the real-space area SΣl

4
m. Since SΣ � S0 the

Landau level spacing is governed by the energy dependence of ψ,

En+1 − En ≈ π(dψ/dE)−1 = ~ωc. (3.25)

The Landau level spacing increases ∝ B and not ∝
√
B, as one might have

expected for massless electrons. The origin of the difference is explained
in Fig. 3.6.

The Landau levels are flat when TMB = T ′MB = 1, so that there are no
open orbits. The open orbits introduce a dispersion along ky, see Fig. 3.7.
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3.6 Magnetoconductance oscillations

Figure 3.6: Equi-energy contours in the ky–kz plane for surface Fermi arcs
coupled by magnetic breakdown (left panel, schematic) and for the bulk cy-
clotron orbit of a Weyl fermion (right panel). The quantization condition for
the enclosed area is indicated, to explain why the Landau level spacing is ∝ B
for the Fermi arcs, while it is ∝

√
B for the cyclotron orbit.

Full expressions are given in App. 3.C. For RMB, R
′
MB � 1 and S0 = S′0

we have the dispersion

E(ky) = (n− ν)~ωc ± (~ωc/π) sin(φ/2)

×
(
RMB +R′MB + 2

√
RMBR′MB cos kyL

)1/2
, (3.26)

where the phase φ is to be evaluated at E = (n− ν)~ωc.
Each Landau level is split into two subbands having the same band

width

|E(0)− E(π/L)| =
2(~ωc/π)| sin(φ/2)|min(

√
RMB,

√
R′MB). (3.27)

The band width oscillates periodically in 1/B with period (3.21).

3.6 Magnetoconductance oscillations

The dispersive Landau bands leave observable signatures in electrical con-
duction, in the form of magnetoconductance oscillations due to the res-
onant coupling of closed and open orbits. These have been previously
studied when the open orbits are caused by an electrostatic superlattice
[56–60]. We apply that theory to our setting.

From the dispersion relation (3.26) we calculate the square of the group
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.7: Dispersion relation of the slab in a perpendicular magnetic field B,
calculated from Eqs. (3.47) and (3.48) (for W = 20 a0, TMB = 0.85, T ′MB = 0.95,
S0=S′0, ν = 0). In the left panel B is chosen such that the phase φ accumulated
by a closed orbit at E = 0.08 ~vF/a0 equals 11π, in the right panel φ = 10π.
When φ is an integer multiple of 2π the magnetic breakdown is resonant, all
orbits are closed and the Landau bands are dispersionless. When φ is a half-
integer multiple of 2π the magnetic breakdown is suppressed and the Landau
bands acquire a dispersion from the open orbits.

velocity V = ∂E/~∂ky, averaged over the Landau band,

〈V2〉 =
L
2π

∫ 2π/L

0

(
dE(ky)

~dky

)2

dky

= 2v2
y sin2(φ/2) min(RMB, R

′
MB). (3.28)

For weak impurity scattering, scattering rate 1/τimp � ωc, the effective
diffusion coefficient [60],

Deff = τimp〈V2〉, (3.29)

and the 2D density of states N2D = (π~vya0)−1 of the Landau band, de-
termine the oscillatory contribution δσyy to the longitudinal conductivity
via the Drude formula for a 2D electron gas,

δσyy = e2N2DDeff

=
4e2

h

vyτimp

a0
sin2(φ/2) min(RMB, R

′
MB). (3.30)
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3.7 Tight-binding model on a cubic lattice

The magnetoconductance oscillations due to magnetic breakdown (MB)
coexist with the Shubnikov-de Haas (SdH) oscillations due to Landau level
quantization. Both are periodic in 1/B, but with very different period,
see Eqs. (3.21) and (3.22).

The difference in period causes a different temperature dependence of
the magnetoconductance oscillations. A conductance measurement at
temperature T corresponds to an energy average over a range ∆E ≈ 4kBT
(being the full-width-at-half-maximum of the derivative of the Fermi-
Dirac distribution). The oscillations become unobservable when the en-
ergy average changes the area S0 or SΣ by more than π/l2m. This results
in different characteristic energy or temperature scales,

∆ESdH =
π

l2m

(
∂SΣ

∂E

)−1

' 1
2~ωc, (3.31a)

∆EMB =
π

l2m

(
∂S0

∂E

)−1

' 1
4

√
2(W/Wc − 1)−1/2 ~ωc

kFa0
. (3.31b)

(In the second equation we took W/Wc & 1.) For kFa0 � 1 and W/Wc

close to unity we may have ∆ESdH � ∆EMB, so there is an intermediate
temperature regime ∆ESdH . 4kBT . ∆EMB where the Shubnikov-de
Haas oscillations are suppressed while the magnetic breakdown oscillations
remain.

3.7 Tight-binding model on a cubic lattice

We have tested the analytical calculations from the previous sections nu-
merically, on a tight-binding model of a Kramers-Weyl semimetal [9]. In
this section we describe the model, results are presented in the next sec-
tion.

3.7.1 Hamiltonian

We take a simple cubic lattice (lattice constant a, one atom per unit cell),
when the nearest-neighbor hopping terms are the same in each direction
α ∈ {x, y, z}. There are two terms to consider, a spin-independent term
∝ t0 that is even in momentum and a spin-orbit coupling term ∝ t1σα
that is odd in momentum,

H = t0
∑
α

cos(kαa) + t1
∑
α

σα sin(kαa)− t0. (3.32)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.8: Slice at y = 0 through the cubic lattice, rotated around the y-axis
by an angle φ = arctan(M/N) with M = 1, N = 2. The enlarged unit cell
(red square), parallel to a lattice termination at x = 0 and x = W , has volume
a′ × a′ × a = (N2 +M2)a3.

The offset is arbitrarily fixed at −t0.
There are 8 Weyl points (momenta k in the Brillouin zone of a linear

dispersion), located at kx, ky, kz ∈ {0, π} modulo 2π. The Weyl points
at (kx, ky, kz) = (0, 0, 0), (π, π, 0), (π, 0, π), (0, π, π) have positive chirality
and those at (π, π, π), (π, 0, 0), (0, π, 0), (0, 0, π) have negative chirality [9].

The geometry is a slab, with a normal n̂ in the x–z plane at an angle
φ with the x-axis (so the normal is rotated by φ around the y-axis). The
boundaries of the slab are constructed by removing all sites at x < 0 and
x > W . In the rotated basis aligned with the normal to the slab one has(

k′x
k′z

)
=

(
cosφ sinφ
− sinφ cosφ

)(
kx
kz

)
, k′y = ky. (3.33)

We will work in this rotated basis and for ease of notation omit the prime,
writing kx or k⊥ for the momentum component perpendicular to the slab
and (ky, kz) = k‖ for the parallel momenta.

3.7.2 Folded Brillouin zone

The termination of the lattice in the slab geometry breaks the translation
invariance in the perpendicular x-direction as well as in the z-direction
parallel to the surface. If the rotation angle φ ∈ (0, π/2] is chosen such that
tanφ = M/N is a rational number (M and N being coprime integers), the
translational invariance in the z-direction is restored with a larger lattice
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3.7 Tight-binding model on a cubic lattice

Figure 3.9: Slice at ky = 0 through the Brillouin zone of the rotated cubic
lattice, for rotation angles φ = arctan(M/N) with M = 1, N = 0, 1, 2, 3. Weyl
points of opposite chirality are marked by a green or red dot. The panel for
N = 3 shows how translation by reciprocal lattice vectors (blue arrows) folds
two Weyl points onto each other.

constant a′ = a
√
N2 +M2, see Fig. 3.8. There are then N2 +M2 atoms

in a unit cell.
In reciprocal space the enlarged unit cell folds the Brillouin zone. Rel-

ative to the original Brillouin zone the folded Brillouin zone is rotated by
an angle φ around the y-axis and scaled by a factor (N2 + M2)−1/2 in
the x and z-directions, see Fig. 3.9. The reciprocal lattice vectors in the
rotated basis are

ex = (2π/a′)x̂, ey = (2π/a)ŷ, ez = (2π/a′)ẑ. (3.34)

The corner in the ky = 0 plane of the original Brillouin zone (the M
point) has coordinates

π

a
(cosφ+ sinφ, cosφ− sinφ, 0) =

π

a′
(N +M,N −M, 0)

in the rotated lattice. Upon translation over a reciprocal lattice vector this
is folded onto the center of the Brillouin zone (the Γ point) when N +M
is an even integer, while it remains at a corner for N + M odd. The
midpoints of a zone boundary, the X and Z points, are folded similarly,
as summarized by

M 7→ Γ, Γ 7→ Γ, X 7→ M, Z 7→ M, for N +M even,

M 7→ M, Γ 7→ Γ, X 7→ X, Z 7→ Z, for N +M odd.

Since the Weyl points at Γ and M have the same chirality, for N + M
even we are in the situation that the surface of the slab couples Weyl

55



3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

points of the same chirality — which is required for surface Fermi arcs to
appear (see Sec. 3.2). For N + M odd, in contrast, the Weyl points at
the Γ and X points of opposite chirality are coupled by the surface, since
these line up along the k⊥ axis. Then surface Fermi arcs will not appear.
In App. 3.B we present a general analysis, for arbitrary Bravais lattices,
that determines which lattice terminations support Fermi arcs and which
do not.

3.8 Tight-binding model results

We present results for M = N = 1, corresponding to a φ = π/4 rotation
of the lattice around the y-axis. The folded and rotated Brillouin zone
has a pair of Weyl points of + chirality at K = (0, 0, 0) and a second pair
of − chirality at K ′ = (π/a′, 0, π/a′) in the rotated coordinates (see Fig.
3.9, second panel, with a′ = a

√
2). There is a second pair translated by

ky = π/a.
Each Weyl point supports a pair of Weyl cones of the same chirality,

folded onto each other in the first Brillouin zone. The Weyl cones at K
have energy offset ε = |2t0|, while those atK ′ have ε′ = 0. We may adjust
the offset by adding a rotational symmetry breaking term δH = δt0 cos kza
to the tight-binding Hamiltonian (3.32). This changes the offsets into

ε = |2t0 + δt0|, ε′ = |δt0|. (3.35)

In Fig.3.10 we show how the Fermi arcs appear in the dispersion relation
connecting the Weyl cones at kz = 0 and kz = π/a′. This figure extends
the local description near a Weyl cone from Fig. 3.2 to the entire Brillouin
zone. The corresponding equi-energy contours are presented in Fig. 3.11.
Increasing the spin-independent hopping term t0 introduces more bands,
but the qualitative picture near the center of the Brillouin zone remains
the same as in Fig. 3.3 for W > Wc.

The effect on the dispersion of a magnetic field B, perpendicular to the
slab, is shown in Fig. 3.12 (see also App. 3.D). The field was incorpo-
rated in the tight-binding model via the Peierls substitution in the gauge
A = (0,−Bz, 0), with coordinate z restricted to |z| < L/2. Translational
invariance in the y-direction is maintained, so we have a one-dimensional
dispersion E(ky). The boundaries of the system at z = ±L/2 introduce
edge modes, which are visible in panel a as linearly dispersing modes near
ky = ± 1

2L/l
2
m (modulo π/a). Panels b,c,d focus on the region near ky = 0,

where these edge effects can be neglected. The effect on the dispersion of
a variation in ε and ε′ is qualitatively similar to that obtained from the
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3.9 Conclusion

Figure 3.10: Dispersion relations of a slab (thickness W = 10
√

2 a in the
x-direction, infinitely extended in the y–z plane) in zero magnetic field. The
plots are calculated from the tight-binding model of Sec. 6.A (with t0 = 0.04 t1,
δt0 = −0.02 t1, corresponding to ε = 0.06 t1, ε′ = 0.02 t1). The left and right
panels show the dispersion as a function of kz and ky, respectively. The curves
are colored according to the electron density on the surfaces: red for the bottom
surface, blue for the top surface, with bulk states appearing black.

analytical solution of the continuum model, compare the four panels of
Fig. 3.12 with the corresponding panels in Fig. 3.16.

The width δE of the dispersive Landau bands (from maximum to min-
imum energy) is plotted as a function of 1/B in Fig. 3.13 and the peri-
odicity ∆(1/B) is compared with the predicted Eq. (3.21) in Fig. 3.14.
To remove the rapid Shubnikov-De Haas (SdH) oscillations we averaged
over an energy interval ∆E around EF. This corresponds to a thermal
average at effective temperature Teff = ∆E/4kB. From Eq. (3.31), with
kFa ≈ 0.2, W/Wc ≈ 1.5, we estimate that the characteristic energy scale
at which the oscillations average out is five times smaller for the SdH os-
cillations than for the oscillations due to magnetic breakdown, consistent
with what we see in the numerics.

3.9 Conclusion

In conclusion, we have shown that Kramers-Weyl fermions (massless fer-
mions near time-reversally invariant momenta) confined to a thin slab
have a fundamentally different Landau level spectrum than generic mass-
less electrons: The Landau levels are not flat but broadened with a band
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.11: Panels a (full Brillouin zone) and b (zoom-in near ky = 0) show
equi-energy contours at E = 0.167 t1 (when W ≈ 1.5Wc), for the same system
as in Fig. 3.10. In panels c and d the spin-independent hopping term t0 is
increased by a factor 5 (at the same δt0 = −0.02 t1).

width that oscillates periodically in 1/B. The origin of the dispersion
is magnetic breakdown at Weyl points, which couples open orbits from
surface Fermi arcs to closed orbits in the interior of the slab.

The band width oscillations are observable as a slow modulation of
the conductance with magnetic field, on which the rapid Shubnikov-de
Haas oscillations are superimposed. The periodicities are widely sepa-
rated because the quantized areas in the Brillouin zone are very different
(compare the areas S0 and SΣ in Fig. 3.5). This is a robust feature of
the band structure of a Kramers-Weyl semimetal, as illustrated in the
model calculation of Fig. 3.11. Since generic Weyl fermions have only the
Shubnikov-de Haas oscillations, the observation of two distinct periodic-
ities in the magnetoconductance would provide for a unique signature of
Kramers-Weyl fermions.
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3.9 Conclusion

Figure 3.12: Dispersion relation of a strip (cross-section W × L with W =
10a′ and L = 30a′) in a perpendicular magnetic field B = 0.00707 (h/ea2)
(magnetic length lm = 4.74 a). The four panels correspond to t0/t1, δt0/t1
equal to 0, 0 (panel a), 0.04,−0.02 (panel b), 0.04,−0.04 (panel c), 0.16,−0.16
(panel d). The surface Fermi arcs near ky = 0 form closed orbits in panel a,
producing flat Landau levels, while in panel d they form open orbits with the
same linear dispersion as in zero field. Panels b,c show an intermediate regime
where magnetic breakdown between closed and open orbits produces Landau
bands with an oscillatory dispersion.

The dispersive Landau band is interpreted as the band structure of
a one-dimensional superlattice of magnetic breakdown centra, separated
in real space by a distance L = (eBa0/h)−1 — which in weak fields
is much larger than the atomic lattice constant a0. Such a magnetic
breakdown lattice has been studied in the past for massive electrons [70],
the Kramers-Weyl semimetals would provide an opportunity to investigate
their properties for massless electrons.

The tight-binding model calculations were performed using the Kwant
code [47].
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

t0 = 0.04 t1
t0 = 0.2 t1
t0 = 0.4 t1

Figure 3.13: Band width of the Landau levels versus inverse of magnetic field
for W = 10a′, L = 500a′, δt0 = −0.02 t1 and three different values of t0. The
band widths are averaged over an energy window ∆E = 0.004 t1 around the
Fermi energy EF = 0.167 t1. The rapid Shubnikov-de Haas oscillations are
averaged out, only the slow oscillations due to magnetic breakdown persist.

Figure 3.14: Periodicity in 1/B of the Landau band width oscillations as a
function of the Fermi energy, for W = 10a′, L = 500a′, t0 = 0.04 t1, and
δt0 = −0.02 t1. The filled data points are obtained numerically from the Landau
band spectrum, similarly to the data shown for one particular EF in Fig. 3.13.
The open circles are calculated from the area S0 of the closed orbit in momentum
space (as indicated in Fig. 3.11b), using the formula ∆(1/B) = 2πe/~S0.
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Appendices

3.A Coupling of time-reversally invariant
momenta by the boundary

The derivation of the boundary condition for Kramers-Weyl fermions in
Sec. 3.2 relies on pairwise coupling of Weyl cones at a TRIM by the
boundary. Let us demonstrate that this is indeed what happens.

Consider a 3D Bravais lattice and its Brillouin zone. A time-reversally-
invariant momentum (TRIM) is by definition a momentum K such that
K = −K+G withG a reciprocal lattice vector, or equivalently,K = 1

2G.
Now consider the restriction of the lattice to x > 0, by removing all lattice
points at x < 0. Assume that the restricted lattice is still periodic in the
y–z plane, with an enlarged unit cell. Fig. 3.8 shows an example for a
cubic lattice.

The enlarged unit cell will correspond to a reduced Brillouin zone, with
a new set of reciprocal lattice vectors G̃. The original set K1,K2,K3, . . .
of TRIM is folded onto a new set K̃1, K̃2, K̃3, . . . in the reduced Brillouin
zone. The folding may introduce degeneracies, such that two different
K’s are folded onto the same K̃. The statement to prove is this:

• Each TRIM K̃ in the folded Brillouin zone is either degenerate
(because twoK’s were folded onto the same K̃), or there is a second
TRIM K̃ ′ along the kx-axis.

Fig. 3.9 illustrates that this statement is true for the cubic lattice. We
wish to prove that it holds for any Bravais lattice.

Enlargement of the unit cell changes the primitive lattice vectors from
a1,a2,a3 into ã1, ã2, ã3. The two sets are related by integer coefficients
nij ,

ãi =

3∑
j=1

nijaj , nij ∈ Z. (3.36)

The corresponding primitive vectors b, b̃ in reciprocal space satisfy

bi · aj = 2πδij , b̃i · ãj = 2πδij . (3.37)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Any momentum k can thus be expanded as

k =
1

2π

3∑
i=1

(ãi · k)b̃i =
1

2π

3∑
i,j=1

nij(aj · k)b̃i. (3.38)

A TRIM Kα in the first Brillouin zone of the original lattice is given
by

Kα = 1
2

3∑
i=1

mα,ibi, mα,i ∈ {0, 1}. (3.39)

The index α labels each TRIM, identified by the 8 distinct triples (mα,1,mα,2,mα,3) ∈
Z2 ⊗ Z2 ⊗ Z2. Subsitution into the expansion (3.38) gives

Kα = 1
2

3∑
l=1

mα,l

 1

2π

3∑
i,j=1

nij(aj · bl)b̃i


= 1

2

3∑
i,j=1

mα,jnij b̃i. (3.40)

mα,1mα,2mα,3

ni1 ni2 ni3 (mod 2) 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 1

2 0 1
2 0 1

2 0 1
2

010 0 0 1
2

1
2 0 0 1

2
1
2

011 0 1
2

1
2 0 0 1

2
1
2 0

100 0 0 0 0 1
2

1
2

1
2

1
2

101 0 1
2 0 1

2
1
2 0 1

2 0
110 0 0 1

2
1
2

1
2

1
2 0 0

111 0 1
2

1
2 0 1

2 0 0 1
2

Table 3.1: Values of να,i calculated from Eq. (3.41), for each triple ni1 ni2 ni3
and each triple mα,1 mα,2 mα,3 (both ∈ Z2⊗Z2⊗Z2). If we select any two rows
and intersect with any column to obtain an ordered pair of values ν, ν′, we can
then find a second column with the same ν, ν′ at the intersection.

We now fold Kα 7→ K̃α into the first Brillouin zone of the b̃ reciprocal
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3.B Criterion for the appearance of surface Fermi arcs

vectors,

K̃α =

3∑
i=1

να,ib̃i, να,i ∈ [0, 1),

να,i = 1
2

3∑
j=1

mα,jnij (mod 1).

(3.41)

In Table 3.1 we list for each TRIM and each choice of (ni1, ni2, ni3) ∈
Z2 ⊗ Z2 ⊗ Z2 the corresponding value of να,i ∈ {0, 1

2}.
We fix the y and z-components of K̃α by specifying να,2 and να,3 ∈
{0, 1

2} and ask how many choices of α remain, so how many values of α
satisfy the two equations

να,2 = 1
2

3∑
i=1

n2imα,i (mod 1),

να,3 = 1
2

3∑
i=1

n3imα,i (mod 1).

(3.42)

Inspection of Table 3.1 shows that the number of solutions is even.
More specifically, there are

• 8 solutions if n21, n22, n23 and n31, n32, n33 both equal 000 mod 2;

• 4 solutions if only one of n21, n22, n23 and n31, n32, n33 equals 000
mod 2;

• 4 solutions if n21, n22, n23 and n31, n32, n33 are identical and different
from 000 mod 2;

• 2 solutions otherwise.

The multiple solutions correspond to pairs Kα and Kβ that are either

folded onto the same K̃α = K̃β (if detn = 0 mod 2), or onto K̃α and K̃β

that differ only in the x-component (if detn = 1 mod 2). These are the
TRIM that are coupled by the boundary normal to the x-axis.

3.B Criterion for the appearance of surface
Fermi arcs

When the boundary couples only Weyl cones of the same chirality, these
persist and give rise to surface Fermi arcs. If, however, opposite chiralities
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

are coupled, then the boundary gaps out the Weyl cones and no Fermi
arcs appear. Which of these two possibilities is realized can be determined
by using that the parity of mα1 +mα2 +mα3 determines the chirality of
the Weyl cone at Kα.

Table 3.2 identifies for each choice of n21, n22, n33 and n31, n32, n33 how
many pairs of Weyl cones of opposite chirality are folded onto the same
point of the surface Brillouin zone. We conclude that surface Fermi arcs
appear if either

• n2i + n3i = 1 mod 2 for each i, or

• n21, n22, n23 = 111 mod 2, or

• n31, n32, n33 = 111 mod 2.

n31 n32 n33 (mod 2)
n21 n22 n23 (mod 2) 000 001 010 011 100 101 110 111

000 4 2 2 2 2 2 2 0
001 2 2 1 1 1 1 0 0
010 2 1 2 1 1 0 1 0
011 2 1 1 2 0 1 1 0
100 2 1 1 0 2 1 1 0
101 2 1 0 1 1 2 1 0
110 2 0 1 1 1 1 2 0
111 0 0 0 0 0 0 0 0

Table 3.2: Number of pairs of opposite-chirality Weyl cones that are coupled
by a surface termination characterized by the integers n2i, n3i, i ∈ {1, 2, 3}.
When this number equals 0 the surface couples only Weyl cones of the same
chirality and surface Fermi arcs will appear. If the number is different from zero
the surface does not support Fermi arcs.

3.C Calculation of the dispersive Landau
bands due to the coupling of open and
closed orbits

To calculate the effect of the coupling of open and closed orbits on the
Landau levels we apply the scattering theory of Refs. 60, 70, 72 to the equi-
energy contours shown in Fig. 3.15. We distinguish the two Weyl points at
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3.C Calculation of the dispersive Landau bands due to the coupling of open and closed orbits

kz = 0 and kz = π/a0 by their different magnetic breakdown probability,
denoted respectively by TMB = 1−RMB and T ′MB = 1−R′MB. The areas
of the closed orbits may also differ, we denote these by S0 and S′0 and the
corresponding phase shifts by φ = S0l

2
m + 2πν and φ′ = S′0l

2
m + 2πν.

The coupling of the closed and open orbits at these two Weyl points is
described by a pair of scattering matrices, given by(

b−L
b+R

)
=

(
r t
t r

)
·
(
b+L
b−R

)
, r =

TMBe
iφ/2

1−RMBeiφ
, (3.43a)

t = −
√
RMB +

TMB

√
RMBe

iφ

1−RMBeiφ
, (3.43b)

for the Weyl point at kz = 0, and similarly for the other Weyl point at
kz = π/a0 (with TMB 7→ T ′MB, φ 7→ φ′). The coefficients can be rearranged
in an energy-dependent transfer matrix,(

b+R
b−R

)
= T (E)

(
b+L
b−L

)
, T =

(
t− r2/t r/t
−r/t 1/t

)
, (3.44)

and similarly for T ′ (with t 7→ t′, r 7→ r′). The transfer matrices are
energy dependent via the energy dependence of S0 and hence of φ.

We ignore the curvature of the open orbits, approximating them by
straight contours along the line ky = E/~vy. The phase shift accumulated
upon propagation from one Weyl point to the next, in the Landau gauge
A = (0,−Bz, 0), is then given by

ψ =
E

~vy
π

a0
l2m =

πE

~ωc
, ωc = eBvya0/~. (3.45)

The full transfer matrix over the first Brillouin zone takes the form

Figure 3.15: Equi-energy contours in the ky–kz plane. The labeled wave am-
plitudes are related by the scattering and transfer matrices (3.43)–(3.46).
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.16: Dispersion relation of the slab in a perpendicular magnetic field,
calculated from Eqs. (3.47) and (3.48) for W = 1.8 a0, S0=S′0, ν = 1/2,
B = 0.1 ~/ea2

0. The four panels correspond to different choices of the mag-
netic breakdown probabilities TMB and T ′MB at the two Weyl points. At the two
extremes of strong and weak magnetic breakdown we see dispersionless Lan-
dau levels (left-most panel) and linearly dispersing surface modes (right-most
panel).

(
c+R
c−R

)
= Ttotal(E)

(
a+

R

a−R

)
,

Ttotal =

(
t′ − r′2/t′ r′/t′

−r′/t′ 1/t′

)(
eiψ 0
0 e−iψ

)(
t− r2/t r/t
−r/t 1/t

)(
eiψ 0
0 e−iψ

)
,

(3.46)

tr Ttotal =

(
eiφ −RMB

)(
eiφ

′ −R′MB

)
+
(
1− eiφRMB

)(
1− eiφ′

R′MB

)
e2iψ

(
eiφ − 1

)(
eiφ′ − 1

)√
RMBR′MB

−2TMBT
′
MBe

1
2 i(φ+φ′)+2iψ

e2iψ
(
eiφ − 1

)(
eiφ′ − 1

)√
RMBR′MB

.

(3.47)

Because det Ttotal = 1, the eigenvalues of Ttotal come in inverse pairs
λ, 1/λ. The transfer matrix translates the wave function over a period L
in real space, so we require that λ = eiqL for some real wave number q,
hence λ+ 1/λ = eiqL + e−iqL, or equivalently [72]

tr Ttotal(E) = 2 cos qL. (3.48)

(In the main text we denote q by ky, here we choose a different symbol as
a reminder that q is a conserved quantity, while the zero-field wave vector
is not.) A numerical solution of Eq. (3.48) is shown in Figs. 3.7 and 3.16.
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3.D Landau levels from surface Fermi arcs

Figure 3.17: Magnetic field dependence of the energy spacing of the Landau
levels near E = 0. The numerical data is for the slab geometry of Fig. 3.12
(W = 11a′, L = 30a′) at t0 = δt0 = 0 so that the probability of magnetic
breakdown is unity and the Landau levels are dispersionless. The predicted
energy spacing ~ωc = eBvFa

′ is the black dotted line.

For TMB and T ′MB close to unity an analytical solution En(q) for the
dispersive Landau bands can be obtained. We substitute ψ = π(n− ν)−
(φ + φ′)/4 + πδE/~ωc into Eq. (3.47) and expand to second order in δE
and to first order in RMB, R

′
MB. Then we equate to 2 cos qL to arrive at

E±n (q) = (n− ν)~ωc ± δE(q), (3.49a)

(πδE/~ωc)2 = ρ+ ρ′ + 2
√
ρρ′ cos qL, (3.49b)

ρ = RMB sin2(φ/2), ρ′ = R′MB sin2(φ′/2), (3.49c)

where φ and φ′ are evaluated at E = (n−ν)~ωc. Corrections are of second
order in RMB and R′MB and we have assumed that the areas S0, S

′
0 of the

closed orbit are small compared to kF/a0 — so that variations of φ and φ′

over the Landau band can be neglected relative to the band spacing ~ωc.

3.D Landau levels from surface Fermi arcs

As explained in Fig. 3.6, the spacing of Landau levels formed out of surface
Fermi arcs varies ∝ B — in contrast to the

√
B dependence for unconfined

massless electrons. In the tight-binding model of Sec. 6.A we can test this
by setting ε = ε′ = 0, so that there are only closed orbits and the Landau
levels are dispersionless. The expected quantization is

En = (n− ν)~ωc, ωc = eBvFa
′/~, n = 0, 1, 2, . . . (3.50)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.18: Dispersion relation of the tight-binding model with t0 = δt0 = 0,
for B = 7.07 · 10−3 h/ea2, L = 30a′, and two values of W = 10a′ and 11a′. The
Landau levels are shifted by half a level spacing when W/a′ switches from odd
to even, indicating a shift of the offset ν from 0 to 1/2.

with vF the velocity in the surface Fermi arc, connecting Weyl points
spaced by π/a′. As shown in Fig. 3.17, this agrees nicely with the numer-
ics.

In an unconfined 2D electron gas, the offset ν equals 1/2 or 0 for massive
or massless electrons, respectively. For the surface Fermi arcs we observe
that ν depends on the parity of the number of unit cells between top
and bottom surface: ν = 0 if W/a′ is odd, while ν = 1/2 if W/a′ is
even. This parity effect suggests that the coupling of Fermi arc states on
opposite surfaces, needed to close the orbit in Fig. 3.1, introduces a phase
shift that depends on the parity of W/a′. We are not aware of such a
phase shift for generic Weyl semimetals [61, 62, 73, 74], it seems to be
a characteristic feature of Kramers-Weyl fermions that deserves further
study.
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