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2 Localization landscape for
Dirac fermions

2.1 Introduction

The localization landscape is a new tool in the study of Anderson lo-
calization, pioneered in 2012 by Filoche and Mayboroda [18], which has
since stimulated much computational and conceptual progress [19–28].
The “landscape” of a Hamiltonian H is a function u(r) that provides an
upper bound for eigenstates ψ at energy E > 0:

|ψ(r)|/|ψ|max ≤ E u(r), |ψ|max = maxr|ψ(r)|. (2.1)

This inequality implies that a localized state is confined to spatial regions
where u & 1/E. Extensive numerical simulations [26] confirm the expec-
tation that higher and higher peaks in u identify the location of states at
smaller and smaller E.

Such a predictive power would be unremarkable for particles confined to
potential wells (deeper and deeper wells trap particles at lower and lower
energies). But Anderson localization happens because of wave interfer-
ence in a random “white noise” potential, and inspection of the potential
landscape V (r) gives no information on the localization landscape u(r).

Filoche and Mayboroda considered the localization of scalar waves, or
equivalently of spinless electrons, governed by the Schrödinger Hamilto-
nian H = −∇2 +V . They used the maximum principle for elliptic partial
differential equations to derive [18] that the inequality (2.1) holds if V > 0
and u is the solution of

[−∇2 + V (r)]u(r) = 1. (2.2)

Our objective here is to generalize this to spinful electrons, to include the
effects of spin-orbit coupling and study localization of Dirac fermions.
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2 Localization landscape for Dirac fermions

2.2 Construction of the landscape function

Our key innovation is to use Ostrowski’s comparison matrix [29–32] as a
general framework for the construction of a localization landscape on a
lattice. By definition, the comparison matrix H of a complex matrix H
has elements

Hnm =

{
|Hnn| if n = m,

−|Hnm| if n 6= m.
(2.3)

In our context the index n = 1, 2, . . . labels both the discrete space coordi-
nates as well as any internal (spinor) degrees of freedom. The comparison
theorem [29] states that if the comparison matrix is positive-definite, then
1

|H−1| ≤ H −1, (2.4)

where both the absolute value and the inequality is taken elementwise.
We apply Eq. (2.4) to an eigenstate Ψ of H at energy E,

|E−1Ψn| = |(H−1Ψ)n| ≤
∑
m

∣∣(H −1
)
nm

∣∣|Ψm|
≤ |Ψ|max

∑
m

(
H −1

)
nm
, (2.5)

with |Ψ|max = maxn |Ψn|. We now define a landscape function u with
elements un in terms of a set of linear equations with coefficients given by
the comparison matrix:

H u = 1⇔∑
mHnmum = 1, n = 1, 2, . . . N, (2.6)

which implies that ∑
m

(
H −1

)
nm

= un. (2.7)

Substitution into Eq. (2.5) thus gives the desired inequality

|Ψn|/|Ψ|max ≤ |E|un. (2.8)

As a sanity check, we make contact with the original landscape function
[18] for the Schrödinger Hamiltonian HS = p2/2m+ V , with V > 0. The
Laplacian is discretized in terms of nearest-neighbor hoppings on a lattice.
For each dimension

p2 7→ (~/a)2(2− 2 cos ka)⇒
(HS)nm = t0(2δnm − δn−1,m − δn+1,m) + Vnδnm,

(2.9)

1The comparison inequality (2.4) does not require a Hermitian H. More generally,

if H is not Hermitian and H has complex eigenvalues the requirement of positive-
definiteness is that all eigenvalues have positive real part. We give a general proof
of Eq. (2.4) in the Appendix (supplemental material).
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2.3 Rashba Hamiltonian

with lattice constant a and hopping matrix element t0 = ~2/2ma2. The

comparison matrix HS is equal to HS and is positive-definite, so that Eq.
(2.6) is a discretized version of the original landscape equation HSu = 1
[18, 33].

2.3 Rashba Hamiltonian

Our first novel application is to introduce spin-orbit coupling of the Rashba
form,

HR = HS + 1
2{λ, px}σy − 1

2{λ, py}σx. (2.10)

(The anticommutator {· · · } enforces Hermiticity when λ is spatially de-
pendent.) The comparison matrix is now no longer equal to the Hamilto-
nian, in 1D one has

(HR)ij = (HS)ij −
~
4a
|λi + λj |(δi−1,j + δi+1,j)σx. (2.11)

The i, j, indices label the spatial positions, the spinor indices are implicit
in the Pauli matrix.

As a test, to isolate the effect of spin-orbit coupling, we place all the
disorder in the Rashba strength λn, which fluctuates randomly from site to
site, uniformly in the interval (λ̄− δλ, λ̄+ δλ). The electrostatic potential

is a constant offset V0, chosen sufficiently large that HR is positive-definite
2. Examples in 1D and in 2D are shown in Figs. 2.1 and 2.2. The highest
peaks in the landscape function match well with the lowest eigenfunctions.

2.4 Dirac Hamiltonian

We next turn to Dirac fermions, first in 1D. The Dirac Hamiltonian

HD = vFpxσx + V σ0 + µσz (2.12)

contains a scalar potential V proportional to the 2×2 unit matrix σ0 and
a staggered potential µ proportional to σz, acting on the two-component

2A sufficient condition for a positive-definite comparison matrix H is that H is di-
agonally dominant, meaning |Hnn| >

∑
m 6=n |Hnm| for each n. For the Rashba

Hamiltonian (2.10) this implies V0 > d× (λ̄+δλ) on a d-dimensional square lattice.

A necessary and sufficient condition [32] for positive-definiteness of H is that there

exists a vector v with positive elements such that (H v)n > 0 for all n. For the
sufficient condition of diagonal dominance one would take v = (1, 1, . . . 1, 1).
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2 Localization landscape for Dirac fermions

Figure 2.1: Landscape function u(x) (red) and normalized wave function profile
|Ψ(x)|/E|Ψmax| (blue) for the 6 lowest (twofold degenerate) eigenstates of the
disordered 1D Rashba Hamiltonian (2.11) (parameters V0 = 4t0, λ̄ = 0, δλ =
3~/a, hard-wall boundary conditions). The 1D array has n = 1, 2, . . . 200 sites,
in the plot x = n shows the first spinor component and x = n+ 1/2 shows the
second spinor component. The wave functions are labeled by the corresponding
energy levels {E1, . . . E6} = {3.273, 3.3371, 3.414, 3.446, 3.508, 3.516} (in units
of t0).

wave function Ψ = (ψA, ψB). This would apply to a graphene nanorib-
bon on a substrate such as hexagonal boron nitride, which differentiates
between the two carbon atoms in the unit cell without causing intervalley
scattering [34].

The symmetric discretization ∂xΨ 7→ (1/2a)[Ψ(x+a)−Ψ(x−a)] suffers
from fermion doubling [35, 36] — it corresponds to a sin ka dispersion with
a second species of massless Dirac fermions at the edge of the Brillouin
zone (k = π/a). To avoid this, and restrict ourselves to a single valley, we
use a staggered-fermion discretization a la Susskind [37, 38]:

pxσxΨ 7→ (−i~/a)

(
ψB(x)− ψB(x− a)
ψA(x+ a)− ψA(x)

)
. (2.13)
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2.4 Dirac Hamiltonian
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Figure 2.2: Same comparison as in Fig. 2.1, but now for the 2D Rashba
Hamiltonian, discretized on a 100 × 100 square lattice (parameters V0 = 6t0,
λ̄ = 2δλ = 2~/a, periodic boundary conditions).The left panel shows the spinor
norm |Ψn(r)| for the 10 lowest (twofold degenerate) eigenstates of HR. The
right panel shows the localization landscape. The black contours (computed at
10% of the peak height of |Ψ|) identify the location of the 10 eigenstates — to
show the close correspondence with the local maxima of u(r).

The corresponding dispersion 3

E(k) = ±t1
√

2− 2 cos ka, t1 = ~vF/a, (2.14)

has massless fermions only at the center of the Brillouin zone (k = 0).
The comparison matrix takes the form

(HD)ij =

(
|Vi + µi|δij −t1(δij + δi+1,j)

−t1(δij + δi−1,j) |Vi − µi|δij

)
. (2.15)

We take random V (x) ∈ (V̄ − δV, V̄ + δV ) and µ(x) ∈ (µ̄ − δµ, µ̄ + δµ),
chosen independently and uniformly at each lattice site. The condition
|Vi ± µi| > 2t1 ensures a positive-definite HD. As shown in Figs. 2.3 and

3The staggered discretization (2.13) corresponds to the tight-binding Hamiltonian
H = (~vF/a)σx sin ka + (~vF/a)(1 − cos ka)σy + V σ0 + µσz , which gives the dis-
persion relation (2.14) when V = µ = 0.
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2 Localization landscape for Dirac fermions

2.4, the landscape function computed from HDu = 1 again accurately
identifies the locations of the low-lying eigenfunctions (near the band edge
in Fig. 2.3 and near the gap in Fig. 2.4).

For the 2D Dirac equation we consider a chiral p-wave superconductor,
with Bogoliubov-De Gennes Hamiltonian [39]

HBdG = ∆(pxσx + pyσy) + (V + p2/2m)σz. (2.16)

The Pauli matrices act on the electron-hole degree of freedom of a Bogoli-
ubov quasiparticle, and the Hamiltonian is constrained by particle-hole
symmetry: σxHBdGσx = −H∗BdG. (A scalar offset ∝ σ0 is thus forbid-
den.) The pair potential ∆ opens a gap in the spectrum in the entire
Brillouin zone, provided that the electrostatic potential V is nonzero.
The gap-closing transition at V = 0 is a topological phase transition [40].

We take a uniform real ∆ (no vortices) and a disordered V (x, y), fluctu-
ating randomly from site to site in the interval (V̄ +δV, V̄ −δV ). Positive V
ensures we do not cross the gap-closing transition, so we will not be intro-
ducing Majorana zero-modes [41] (the levels are Andreev bound states).
Unlike in the case of graphene we can use the symmetric discretization
p 7→ sin ka — there is no need for a staggered discretization because the
kinetic energy p2 7→ 2 − 2 cos ka prevents fermion doubling at k = π/a.
Results are shown in Fig. 2.5.

Equivalence classes — In the final part of this chapter we move be-
yond applications to address a conceptual implication of the theory. Two
complex matrices A,B are called equimodular if |Anm| = |Bnm|. By the

construction (2.3), they have the same comparison matrix, A = B, and
therefore the same landscape function uA = uB , uniquely determined by
the same equation AuA = 1 = B uB . We thus obtain an equivalence
class for Anderson localization: Equimodular Hamiltonians have localized
states at the same position, identified by peaks in the landscape function.

We have checked this for the 2D Rashba Hamiltonian (2.10): Randomly
varying the sign of the coefficient λ(r) from site to site shifts the energy
levels around, but the states remain localized at the same positions. More
generally, one could try to vary the coefficients over the complex plane,
preserving the norm. This would produce a non-Hermitian eigenvalue
problem, and one might wonder whether the whole approach breaks down.
It does not, as we will now demonstrate.

The non-Hermitian Anderson Hamiltonian [42, 43]

H = −∇2 + V1(r) + iV2(r) (2.17)

has been studied in the context of a random laser [44]: a disordered optical
lattice with randomly varying absorption and amplication rates, described
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2.5 Conclusion and outlook

by a complex dielectric function V1 + iV2. On a d-dimensional square
lattice (lattice constant a), the discretization of −∇2 7→ a−2

∑d
i=1(2 −

2 cos kia) produces a spectral band width of W0 = 4d/a2.
The Hermitian Hamiltonian

Heff = −∇2 + Veff , Veff = | 12W0 + V1 + iV2| − 1
2W0, (2.18)

is positive-definite if Veff(r) > 0 for all r. The transformation from
complex V to real Veff does not change the landscape function, because
H = Heff = Heff . The localization landscapes are therefore the same and
we would expect the eigenstates 4 of H and Heff to appear at the same
positions, provided that Veff > 0. This works out, as shown in Fig. 2.6.

2.5 Conclusion and outlook

We have shown that the comparison matrix H provides a route to the
landscape function for Hamiltonians that are not of the Schrödinger form
H = −∇2 + V . We have explored Hamiltonians for massive or mass-
less Dirac fermions, with or without superconducting pairing. The broad
generality of the approach is highlighted by the application to the non-
Hermitian Anderson Hamiltonian.

The localization landscape can be used as a tool to quickly and effi-
ciently find low-lying localized states in a disordered medium, since the
landscape function u(r) is obtained from a single differential equation

H u = 1. These applications have been demonstrated for the Schrödinger
Hamiltonian [22–25], and we anticipate similar applications for the Dirac
Hamiltonian in the context of graphene or of topological insulators.

The comparison matrix offers a conceptual insight as well: Since equimod-
ular Hamiltonians have the same comparison matrix, they form an equiv-
alence class that localizes at the same spatial positions. This notion is
distinct from the familiar notion of “universality classes” of Anderson lo-
calization [45], which refers to ensemble-averaged properties. The equiv-
alence class, instead, refers to sample-specific properties.

As an outlook to future research, it would be interesting to extend the
approach from wave functions to energy levels. This has been recently
demonstrated for the Schrödinger Hamiltonian [26], where the peak height
of the localization function predicts the energy of the localized state. The

4Because H† = H∗, the left and right eigenvectors are each others complex conjugate
and we do not need to distinguish between these when plotting the absolute value
in Fig. 2.6b.
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2 Localization landscape for Dirac fermions

correlation between peak heights and energy levels evident in Fig. 2.1
suggests that the comparison matrix has this predictive power as well.
Another direction to investigate is to see if the comparison matrix would
make it possible to incorporate spin degrees of freedom in the many-body
localization landscape introduced recently [46].
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2.5 Conclusion and outlook

Figure 2.3: Panel ( a): Random scalar potential V (x) (red) and staggered
potential µ(x) (black) for the 1D Dirac Hamiltonian (2.12) (parameters V̄ = 3t1,
µ̄ = 0, δV = δµ = t1, hard-wall boundary conditions). Panel b): Corresponding
localization landscape (red) and eigenfunctions of the 12 lowest energy levels
(blue), at energies En near the band edge plotted in the inset (panel c). The
peaks in the localization landscape are not correlated in any obvious way with
the random potentials, but they accurately predict the location of the low-lying
modes.
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2 Localization landscape for Dirac fermions

Figure 2.4: Same as Fig. 2.3b, but now for a gapped system (V̄ = δV = 0,
µ̄ = 3.5 t1, δµ = 1.5 t1). The eigenfunctions of the 20 levels closest to the gap are
shown (blue, 2.3 t1 < |En| < 2.5 t1). There are only 10 distinct peaks, because
of an approximate ±E symmetry. The landscape function (red, rescaled by a
factor 1/4) accurately identifies the location of the states near the gap.
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2.5 Conclusion and outlook

Figure 2.5: Comparison of the landscape function (2D color scale plot) with
wave function amplitudes (3D profile) of the chiral p-wave superconductor
with Hamiltonian (2.16) (parameters ∆ = 1, V̄ = 6, δV = 4, in units of
t0 = ~2/2ma2). The wave functions show the five Andreev levels with small-
est En > 0 (E1, E2, . . . E5 = 3.763, 3.799, 3.875, 3.882, 3.893). (The charge-
conjugate states at −En have the same spinor amplitude |Ψ|.) The colors of
the wave function profile correspond to the landscape function, so a red wave
function peak indicates that u(x, y) peaks at the same position.
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2 Localization landscape for Dirac fermions
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Figure 2.6: Energy levels (panel a) and localized eigenstates (panels b,c) of the
non-Hermitian Hamiltonian H from Eq. (2.17) and its Hermitian counterpart
Heff from Eq. (2.18). The calculations are performed on a 2D square lattice
(lattice constant a ≡ 1, band width W0 = 8, periodic boundary conditions) for
potentials V1 and V2 randomly and independently chosen at each site, uniformly
in the interval (−1, 1). A constant offset V0 = 1 was added to V1 in order to
ensure a positive Veff . The mapping fromH to Heff preserves the spatial location
of the localized states, while the ordering of the energy levels |En| in absolute
value is changed. Panels b,c show the eigenstates of the five lowest energy levels
of Heff and the corresponding eigenstates of H. The locations are preserved but
E2 of H is pushed to higher absolute values.
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Appendices

2.A Derivation of the comparison inequality

The comparison inequality (2.4) is derived by Ostrowski [29]. Here we
give an alternative derivation, to make the chapter self-contained.

In the most general case the matrix H is a complex matrix, not nec-
essarily Hermitian. We will initially assume that the diagonal elements
Hnn are real ≥ 0 and relax that assumption at the end.

Decompose H = λ1 − L, with λ > maxnHnn, so that the diagonal
elements of L are all positive. If we denote by |L| the elementwise absolute
value of the matrix L, one has

λ1− |L| = H, (2.19)

under the assumption that Hnn ≥ 0.
Consider the Euclidean propagator e−Ht for t ≥ 0, and start from the

inequality ∣∣∑
m

(
e−Ht

)
nm

Ψm

∣∣ ≤∑m

∣∣(e−Ht)
nm

∣∣|Ψm|. (2.20)

We expand e−Ht in a Taylor series,

∣∣(e−Ht)
nm

∣∣ = e−λt

∣∣∣∣∣
∞∑
p=0

tp

p!
(Lp)nm

∣∣∣∣∣ (2.21)

≤ e−λt
∞∑
p=0

tp

p!
(|L|p)nm = e−λt

(
e|L|t

)
nm

=
(
e−H t

)
nm
.

Substitution into Eq. (2.20) gives∣∣∑
m

(
e−Ht

)
nm

Ψm

∣∣ ≤∑m

(
e−H t

)
nm
|Ψm|. (2.22)

This may also be written more compactly as

|e−Ht| ≤ e−Ht, (2.23)

with the understanding that the absolute value and inequality is taken
elementwise.
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2 Localization landscape for Dirac fermions

If we now assume that all eigenvalues of H have a positive real part,

then we may integrate both e−Ht and e−H t over t from 0 to ∞. On the
one hand we have, ∫ ∞

0

e−Ht dt = H−1, (2.24)

and on the other hand, in view of Eq. (2.23), we have∣∣∣∣∫ ∞
0

e−Ht dt

∣∣∣∣ ≤ ∫ ∞
0

|e−Ht| dt ≤
∫ ∞

0

e−H t dt = H −1. (2.25)

We thus arrive at the desired comparison inequality (2.4),

|H−1| ≤ H −1. (2.26)

The assumption that Hnn is real ≥ 0 can be removed my multiplying
H with the diagonal matrix

Dnm = δnm e
−i argHnn (2.27)

(setting Dnn = 1 if Hnn = 0). This matrix multiplication changes neither

the comparison matrix, DH = H, nor the absolute value of the inverse,
|(DH)−1| = |H−1D−1| = |H−1|, hence Eq. (2.26) still holds. Only the

assumption of positive-definite H remains.
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