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1 Introduction

1.1 Preface

Electrons are massive, charged, elementary particles with a half-integer
spin, that govern the behavior of most atoms and materials. In condensed
matter physics, quantum mechanics is used to predict their behavior, lead-
ing to remarkable and sometimes counter intuitive phenomena. While free
electrons in vacuum are well understood, in condensed matter systems,
electrons acquire unusual properties from their interaction with the atomic
lattice.

Since the discovery of the mono-layered carbon crystal graphene [1, 2]
we know, that they can behave as massless particles called Dirac and
Weyl fermions. These exist as low energy excitations giving electrons
relativistic behaviour on non-relativistic-scales with a constant velocity
analogous to the speed of light. In other systems where superconductiv-
ity [3] is present electrons can exhibit transport without resistance as a
consequence of a Cooper pair condensate. This allows for exotic Bogoli-
ubov excitations that unlike free electrons are not eigenstates of charge.
Under special circumstances such Bogoliubov excitations can mimic spe-
cial Majorana particles. In these systems electron excitations uniquely
act as their own anti-particles [4]. While such states were first predicted
in particle physics it turns out that they can be realized as elementary
excitations in topological superconductors.

These examples highlight that, despite their apparent simplicity, elec-
trons can exhibit a plethora of fascinating quasi-particle excitations in
condensed matter systems. This thesis will examine the interplay of the
above mentioned phenomena that arise in robust systems as a consequence
of different symmetries as well as topological properties [5]. We will exam-
ine how such massless Dirac, Weyl, and Majorana quasi-particles interact
with the magnetic field giving rise to new and unique phenomena. In par-
ticular, this thesis will examine the formation of zeroth Landau levels in
superconducting systems, find transport signatures in Weyl superconduc-
tors [6, 7], as well as study a new type of delocalized solutions in the Fu-
Kane model [8]. It will explore disordered massless systems, finding new
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1 Introduction

predictions of localized states as well as unique spectral properties. Fi-
nally, it will study the recently predicted Kramers-Weyl semimetals [9, 10]
and show a new characteristic signature of the magneto-conductance.

While this thesis covers various different realizations of massless sys-
tems, the rest of this chapter will focus on introducing two of the most
relevant and recently discovered systems. After a brief demonstration
how massless fermions can arise in condensed matter system we will firsly
show how the interplay between Dirac states in a topological insulator and
superconductivity [11, 12] can give rise to the so called Fu-Kane model.
This part will describe how such a model can exhibit a transition between
a gapped and a gapless phase, as well as how this transition can inter-
play with the magnetic field to create Majorana excitations. Second, we
will focus on a recent realization of three-dimensional Weyl fermions [13],
demonstrating their special topological protection and discussing their
surface states, which give rise to new characteristic signatures.

1.2 Massless fermions in electronic systems

In the field of condensed matter physics, our focus lies on the study of
electrons far away from the relativistic limit. To predict their dynamics,
we use the well known Schrödinger equation

i~∂tΨ =

(
− ~2

2m
∇2 + V

)
Ψ. (1.1)

The right-hand side consists of two terms, − ~2

2m∇2 represents the kinetic
part, while V (x) describes the potential felt by the particles. When the
potential term is vanishing, the equation describes free electrons with the
well known quadratic dispersion relation

E =
p2

2m
, (1.2)

connecting the energy and momentum. When electrons interact with
the environment through the potential V (x), we can no longer write down
such a dispersion relation, as momentum is no longer a good quantum
number. In condensed matter physics, we are mostly interested in the be-
haviour of electrons inside crystal structures. These can be described by a
periodic potential that arises from the atomic structure. As a consequence
of this periodicity, we can define a new quasi-momentum quantum number
that forms a translationally invariant eigenspace.This quasi-momentum is
restricted to the finite Brillouin zone due to the periodic structure of the
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1.2 Massless fermions in electronic systems

potential. In such basisc we can diagonalize the Hamiltonians of crys-
talline systems and find new quasi-momentum dispersion relations.

For different forms of periodic potentials, the relation between the en-
ergies and quasi-momentum can take diverse forms. While the dispersion
now has to be periodic, in the simplest example, it still remains effec-
tively quadratic around the center of the Brillouin zone. As the quadratic
curvature can change, it can influence low-energy behaviour, altering the
effective mass of the low energy excitations. This can give rise to very
heavy quasi-particles with a flattened dispersionc as well as light excita-
tions with a vanishing effective mass.
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Figure 1.1: Example of a single band tight-binding Cosine dispersion. The
dispersion around the minima of the band resembles free electron quadratic
dispersion relation with a renormalized effective mass.

When the effective mass of elementary excitations becomes sufficiently
small, the corresponding quasi-particles need to be described by a rela-
tivistic theory. In this limit, we have to include a spinor degree of freedom
to satisfy the relativistic symmetries. These spinors can arise from the
various orbital degrees of freedom as well as the actual electron spin. In
such systems, we can describe the elementary excitations of electrons,
using the full relativistic Dirac equation. In two-dimensional case, this
reduces to

i~∂tΨ = (vfσxkx + vfσyky +Meffσz)Ψ, (1.3)
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1 Introduction

where we have assumed an isotropic Fermi velocity vf and used σ to
denote the two-dimensional Pauli matrices. Such an effective theory de-
scribes two species of quasi-particle excitations with symmetric disper-
sions

E± = ±
√
v2
fk

2
x + v2

fk
2
x +M2

eff. (1.4)

In general, most crystals can exhibit perturbations that keep such an
effective mass term finite. In such systems, the quasi-particle dispersion is
gapped with a quadratic behaviour for small momentum. However, some
crystals exhibit special symmetries that disallow such an effective mass.
In such cases, the two bands of the dispersion cross, resulting in a fully
gapless quasi-particle dispersion

E± = ±vf |~k|. (1.5)

These special types of quasi-particles, called massless fermions, exhibit
a relativistic linear dispersion. They propagate at a constant velocity vf
mimicking the behaviour of photons. Such massless excitations can be
generalized to different dimensions, giving rise to Majorana, Dirac and
Weyl quasi-particles. While these can arise as a consequence of various
crystalline symmetries, their protection can be understood using topolog-
ical arguments. With these, it is possible to prove the robustness of such
emergent relativistic excitations as well as the universality of their unique
properties.
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1.3 Dirac fermions to superconducting Majorana excitations
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Figure 1.2: (a) Dispersion around an avoided band crossing with a quadratic
behaviour around the band minima. (b) An example of a system where the
band crossing is protected, giving rise to a gapless point in momentum space
with a linear dispersion.

1.3 Dirac fermions to superconducting
Majorana excitations

In condensed matter physics, two dimensional massless fermions are called
Dirac fermions. They can be described by the two dimensional Dirac equa-
tion where a special symmetry prevents the additional mass term. Nature
presents us with various mechanisms that can protect these quasi-particle
excitations. One of the most famous examples is the single layer carbon
crystal graphene where its two gapless Dirac points are protected by an
approximate sublattice symmetry arising from the underlying hexagonal
lattice.

This thesis explores a more recent realization of Dirac fermions, specif-
ically surface excitations of a three-dimensional topological insulator. In
such systems, each surface exhibits a strongly protected Dirac cone due
to time-reversal symmetry. We will examine how the interplay between
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1 Introduction

such Dirac states and superconductivity gives rise to the Fu-Kane topo-
logical superconductor. While superconductivity in general gaps out the
Dirac fermions it is well known that in this model strong supercurrent can
be used to restore such gapless points. We have found that such super-
currents can induce another transition in the presence of magnetic field,
where Majorana zero-modes extend into a novel extended superconduct-
ing state resembling a Landau level. To combine all these ingredients we
will first focus on the way the magnetic field affects massless fermions.
We will then examine the proximity effect and the Fu-Kane model and
finally combine all these ingredients to discuss the Majorana zero energy
excitations.

1.3.1 Zeroth Landau level in a 3D topological
insulator

We start by introducing the three-dimensional topological insulator. We
generally define insulators as non-conducting systems characterized by a
large gap around the Fermi energy. Such gapped insulating systems are
classified as trivial if they can be continuously transformed into the atomic
limit and are therefore topologically equivalent to the vacuum. However,
not all insulators can be described in this way. There exists a special type
of insulator that cannot be transformed into the atomic limit without
closing the band-gap. These systems are called topological insulators and
are characterized by special edge states that arise from the gap closing on
the interface between the topologically non-trivial insulating bulk and the
trivial vacuum. In three dimensions, such topological insulators exhibit
two-dimensional surface states, which can be described by the effective
surface model

HTI = τzσxkx + τzσyky + τxσ0M(~k). (1.6)

Each surface of the three-dimensional topological insulator, represented
by Pauli matrices τ , exhibits a single Dirac fermion coupled together by
an effective mass term M(~k). The surfaces become fully decoupled when
they are separated from each other. In this limit, each surface exhibits a
single Dirac fermion that is protected by the time-reversal symmetry.
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1.3 Dirac fermions to superconducting Majorana excitations

Figure 1.3: Schematic representation of a three-dimensional topological insu-
lator. Each of the two surfaces (blue) exhibits a massless Dirac fermion.

When massless Dirac fermions are subjected to a magnetic field, they
exhibit a unique type of energy spectrum. In classical mechanics, charged
particles experience a Lorentz force that causes them to move in circular
trajectories known as cyclotron orbits. While this intuition can hold down
all the way to the quantum level, in quantum mechanics not all such orbits
allowed. We call this discrete set of possible states in a magnetic field
Landau levels[14]. These levels can be calculated by incorporating the
magnetic field into the free particle Schrödinger equation, resulting in a
quantized energy spectrum

En = ~ωc
(
n+

1

2

)
, (1.7)

where ωc = eB
m is the cyclotron frequency and n is a non-negative integer

number. When we study massless fermions, the quantization condition
changes into

ELLmassless = ±
√

2n~eBv2
f , (1.8)

where vf represents the Fermi velocity. The Landau levels are no longer
equally spaced and allow for a new type of cyclotron orbits that are bound
to exactly zero energy. These states are called zeroth Landau levels.

7



1 Introduction

a)

−3 −2 −1 0 1 2 3

k(a.u)

0

1

2

3

4

E
/E

l

b)

−3 −2 −1 0 1 2 3

k(a.u)

−3

−2

−1

0

1

2

3

E
/E

l

Figure 1.4: The dispersion Landau levels (red) compared to their initial disper-
sion (gray) for (a) massive and (b) massless particles compared to their initial
dispersion.

1.3.2 Proximity effect and the Fu-Kane model

We can now explore what happens to the Dirac surface states under the
effect of superconductivity. While there are a number of materials that
can exhibit inherent superconducting properties at low temperatures, they
usually belong to the class of trivial superconductors. Alternatively, it
turns out that creating an interface between a superconducting and non-
superconducting material can allow Cooper pair tunneling. This process
is called the proximity effect and can induce an effective superconducting
pairing. Such proximitized systems can be described by the Bogoliubov-
De Gennes Hamiltonian

HBdG =

(
H(~k) ∆

∆† −T H(~k)T

)
, (1.9)

where ∆ denotes the superconducting pairing and T represents the
time-reversal symmetry. This method allows us to describe the mean-field
superconducting Hamiltonian by doubling the degrees of freedom. In par-
ticular, we artificially add hole-like degrees of freedom to the electronic
Hamiltonian and couple them together with a superconducting pairing
term ∆. Although superconducting states are not eigenstates of the elec-
tron number, this doubling allows us to introduce effective single-particle
excitations called the Bogoliubov quasi-particles.

This thesis focuses on a special model of a topological superconductor
called the Fu-Kane model. Such systems arise when we create an inter-
face between a three-dimensional topological insulator and a conventional
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1.3 Dirac fermions to superconducting Majorana excitations

superconductor. In this case, the Bogoliubov De-Gennes doubling cre-
ates an additional hole-like Dirac fermion on each surface. The pair of
Dirac fermions can now couple through superconducting pairing without
violating the time-reversal symmetry. Such coupling gives us the gapped
dispersion of the Fu-Kane model.

One of the characteristic signatures of superconductors is a dissipation-
less current called the supercurrent. This current can be interpreted as
the momentum of Cooper pairs. Such a current can split the electron-like
and hole-like states in the Brillouin zone. In the particular case of the Fu-
Kane heterostructure, this can separate the Dirac fermions in momentum
space. We can see this in the Bogoliubov de-Gennes Hamiltonian

HBdG =

(~k − ~K
)
· σ ∆

∆† −
(
~k + ~K

)
· σ

, (1.10)

in which the supercurrent momentum ~K acts as a constant vector po-
tential. It turns out that such separation slowly decouples the two Dirac
fermions. It was shown a sufficient super-current can fully counteract the
superconducting pairing creating a transition, restoring the gapless Dirac
cone.

Figure 1.5: Dispersion of a Fu-Kane model with increasing suppercurrent
strength (left to right), showing the transition from gapped massive Dirac fer-
mions in a Fu-Kane model to the gapless Dirac states.

1.3.3 Majorana zero-modes in a topological
superconductor

In our research, we investigated the effect of a magnetic field on the gap
closing transition in the Fu-Kane model. As this is a superconducting sys-
tem, the effects of a magnetic field can be very different. It is important to
note that superconductors exhibit a specific property called the Meissner
effect, whereby they expel the effects of magnetic fields. This phenomenon

9



1 Introduction

implies that the effects of a magnetic field cannot penetrate a supercon-
ductor beyond a certain depth, known as the London penetration length.
If we are interested in the effects of a magnetic field on bulk superconduc-
tors, we must focus on a specific group of superconductors called type-II
superconductors. In this case, the magnetic field penetrates the super-
conductor in the form of localized defects called Abrikosov vortices[15].
These vortices are strong defects that carry exactly one quantum of mag-
netic flux, denoted as Φ0 = h/(2e). The size of the defects is characterized
by the superconducting coherence length, denoted as ξ, which is approxi-
mately equal to 1/∆0, while they carry the flux Φ0 with circulating super-
currents that persist on a larger scale of the London penetration depth.
At the level of wavefunctions, the Abrikosov vortices induce a winding of
the superconducting phase parameter around their core by 2π.

Figure 1.6: Schematic representation of a type-II superconductor in a magnetic
field. The figure shows the magnetic flux-lines penetrating the superconducting
sample through vortices. Each vortex carries a single φ0 flux quanta and exhibits
a circulating supercurrent flow ~vs.

In the gapped regime of the Fu-Kane model, vortex defects trap a spe-
cial type of zero-energy excitation called Majorana zero-modes. These
quasi-particles are unique in that they are their own antiparticles. Al-
though they were originally predicted in particle physics to describe neu-
trinos, they can also appear in condensed matter systems as a consequence
of particle-hole symmetry. This is an anti-unitary symmetry that anti-
commutes with the Hamiltonian, resulting in eigenstates of a Bogoliubov-
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1.3 Dirac fermions to superconducting Majorana excitations

de Gennes Hamiltonian that are symmetric around zero energy. While
eigenstates will generally occur in pairs around zero energy, a single zero-
energy excitation cannot be gapped as long as the symmetry is preserved,
resulting in isolated zero-energy excitations known as Majorana quasi-
particles. These quasi-particles are eigenstates of the particle-hole sym-
metry and appear as equal superpositions of electrons and holes. To form
a complete basis, such states always appear in pairs. Although this may
appear to nullify their protection, they can be strongly spatially separated,
allowing for protection against splitting from E=0 symmetrically in pairs.
Majorana operators can be defined from their fermionic counterparts as

γ1 = c† + c = γ†1 (1.11)

γ2 = i
(
c† − c

)
= γ†2. (1.12)

Because these operators are their own Hermitian conjugates, they ex-
hibit a special commutation relation

{
γi, γj

}
= 2δi,j . (1.13)

When these properties are combined, it turns out that Majorana zero-
energy excitations exhibit non-abelian exchange statistics. This means
that, unlike fermions and bosons, an exchange of Majoranas can fully
change the quantum state. This unique property, combined with their
strong protection, can be used in quantum computation to generate stable
topological qubits that are protected from all local decoherence effects.
Therefore, it is crucial to explore and discover viable new systems where
Majorana zero-energy excitations can appear.

In the case of the Fu-Kane model, these Majorana states are bound to
the vortex cores. Each vortex binds an exponentially localized zero-energy
solution. These states appear in the presence of a magnetic field inside
the superconducting gap, with a degeneracy equal to the number of flux
quanta, N = φ/φ0.
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1 Introduction

Figure 1.7: Probabilty density for zero mode solutions in a Fu-Kane supercon-
ductors. Majorana zero-modes are bound to the vortices of a superconductor
with a characteristic exponential decay.

While these are the characteristic excitations in the gapped regime, it is
known that the Fu-Kane superconductor becomes gapless in the presence
of a strong supercurrent. We have shown that such gapless points exhibit
a special type of zero-energy Landau levels. However, it turns out that
this is not always the case for superconducting systems. Even though
the magnetic field can become almost homogeneous in a sufficiently dense
vortex lattice, the vortices still act as scatterers, which generally broadens
the predicted zeroth Landau level[16].

In this thesis, we will present an example where a special symmetry
prevents this broadening. We will demonstrate that the Fu-Kane model
exhibits a unique type of symmetry called chiral symmetry. This is a local
unitary symmetry that anti-commutes with the Hamiltonian. It allows us
to write the Hamiltonian in a distinctive off-diagonal form described by

Hchiral =

(
0 Ξ

Ξ† 0

)
. (1.14)

This special form of the Hamiltonian enables us to invoke a theorem
known as the Index theorem [17]. This theorem tells us that chiral Hamil-
tonians exhibit a unique integer value known as the index. This index
can be calculated from the matrices Ξ and Ξ† by looking at their cor-
responding kernels. While the dimensionality of the kernels (number of
zero modes) of each of these two matrices can vary strongly, it turns out
that their difference is very robust. This difference then defines the index,
a topological invariant that cannot change under smooth local perturba-
tion. Moreover, this invariant directly corresponds to the total number of
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1.4 Weyl fermions in Kramers-Weyl semimetals

zero-modes in the system. Therefore, as long as the chiral symmetry is
preserved, the number of zero-modes is conserved by a special topological
protection. In this thesis, we will demonstrate that this invariant can not
only predict the Majorana zero-modes, but remains unchanged when the
Fu-Kane model transitions to the gapless regime. We will show how this
leads to a new zero-energy superconducting state, where Majorana states
delocalize into an extended Landau level state.

1.4 Weyl fermions in Kramers-Weyl
semimetals

The concept of massless fermions can be extended to three dimensions,
where they are known as Weyl fermions. These are found in specific
systems called Weyl semimetals [13]. In a two-band theory of a three-
dimensional crystal, there are no possible perturbations that could gap out
a Weyl cone. This is due to the fact that a three-dimensional Dirac equa-
tion requires a four-dimensional representation to describe massive par-
ticles. Thus, the protection of the gapless Weyl points is much stronger,
as they can only couple in pairs with opposite chirality. As we will later
see, they are protected by a topological number directly related to the
chirality of the Weyl fermion. This means that systems exhibiting Weyl
fermions, unlike Dirac systems, do not require an additional symmetry;
they only require pairs of Weyl fermions to be well separated. Such pairs
are then reconnected on the surface of Weyl semimetals with a special
class of two-dimensional surface states called Fermi arcs.

As Weyl cones in nature always appear in pairs of opposite chirality,
Weyl semimetals need to either break time-reversal or inversion symme-
try. This allows pairs of Weyl cones in momentum space to be split so that
gapless points do not overlap. While there are many different realizations
of Weyl fermions in nature, this thesis will focus on newly described sys-
tems that exhibit Kramers-Weyl fermions [9, 10]. These occur in crystals
with preserved time-reversal symmetry but broken inversion symmetry.
We have found new unique signatures of these novel states, specifically a
new type of magneto-oscillations that arise as a consequence of charac-
teristic long Fermi arcs as well as unique spectral statistics. To introduce
this work, we will first discuss the general protection of three-dimensional
gapless Weyl nodes. We will then focus on the specific form of Kramers-
Weyl systems. Finally, we will explain the idea of Fermi arcs as one of
the characteristic signatures of three-dimensional massless fermions and
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1 Introduction

explain their special extended form inside Kramers-Weyl semimetals.

1.4.1 Topological protection

As previously mentioned, the protection of Weyl points, unlike Dirac
cones, does not require additional symmetries. This can be easily under-
stood by examining the Weyl Hamiltonian, which shows that any pertur-
bation that maintains translation symmetry will simply shift the Weyl
cones in momentum space, while keeping a linear dispersion EWeyl ±√

(kx − Vx)2 + (ky − Vy)2 + (ky − Vy)2 without introducing an effective
mass.

-1.0 -0.5 0.0 0.5 1.0
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E
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Figure 1.8: Gapless dispersion of a Weyl fermion. Left panel shows a Weyl
cone in the center of the Brillouoin zone while the right panel shows a cone
shifted in momentum space by a Vzσz perturbation.

This type of protection is indeed very strong and quite peculiar, as we
know that there must exist an atomic limit in which any system becomes
strongly gapped. It is possible to achieve such a limit by coupling together
two Weyl fermions, as is done in a four-dimensional representation of the
Dirac equation. This process is naturally resolved in nature, as Weyl
fermions can only appear in pairs. This allows the Weyl point to gap out,

giving us a fully gapped dispersion Emassive = ±
√
k2
x + k2

y + k2
z +M2 that

arises from the four-band Hamiltonian

HMassive = τz(~σ · k) + τxM. (1.15)

Here the τ Pauli matrices describe the different Weyl cones, with τz
representing two Weyl fermions with opposite chiralities, which plays an
important role in the gap opening mechanism.

We can rewrite this argument independently of the exact form of the
Hamiltonian by defining a topological invariant that characterizes each
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1.4 Weyl fermions in Kramers-Weyl semimetals

Weyl cone and its protection. To do so, we must examine the behavior of
the Berry curvature

Ωn(~k) = ∇k ×An(R), (1.16)

which takes the form of a quasi-magnetic field arising from the Berry
connection An. Such quasi-magnetic field defined by the Berry curvature
acts as a magnetic monopole around the Weyl points, with the charge of
such a monopole depending on the chirality of the Weyl fermion. As this
charge takes discrete values, we know that no perturbation can remove it
in a continuous manner. This charge therefore defines a topological invari-
ant that tells us that such a Weyl point cannot be removed by itself. The
only way to cancel out the monopole of the Berry curvature is to combine
it with an additional monopole of opposite charge. This argument agrees
with our previous prediction but is less reliant on the exact shape of the
Hamiltonian. It tells us that as long as our system exhibits such unmerged
monopoles in the Berry connection, the corresponding Weyl points will
remain protected.

To summarize, the protection of Weyl points does not require additional
symmetries, and it is a strong and peculiar type of protection. Coupling
together two Weyl fermions can lead to a fully gapped dispersion, while
the behavior of the Berry curvature provides a topological invariant that
characterizes the protection of each Weyl cone.

Figure 1.9: A schematic of the reconnection of two opposite monopoles of the
Berry connection around the Weyl points.

1.4.2 Kramers-Weyl semimetal

We will now focus on a specific realization of Weyl fermions that occurs
in Kramers-Weyl semimetals. Such systems are very exciting as they can
not only provide a new approach to discovering materials described by
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Weyl physics but also exhibit new characteristic behavior that is absent
in conventional Weyl semimetals. This new type of massless excitation
arises as a consequence of the preserved time-reversal symmetry. Specif-
ically, we know that time-reversal symmetric systems exhibit a special
degeneracy at time-reversal invariant points known as the Kramers de-
generacy. This means that we can find gapless points at each corner of
the three-dimensional Brillouin zone. As most crystals are invariant under
inversion symmetry, which relates E↑(k) = E↑(−k), the expansion around
the gapless form must be even in momentum. This usually results in fully
doubly degenerate bands around corners of the Brillouin zone with an
effective quadratic dispersion.

However, we can focus on special chiral crystals that break inversion
symmetry while still preserving time-reversal symmetry. These systems
still have Kramers doublets at all the corners of the Brillouin zone but
now exhibit a linear ~σ · ~δk expansion that describes Weyl excitations. This
implies that all effective two-band models with time-reversal symmetry
that break inversion symmetry will exhibit Weyl fermions at all the time-
reversal invariant points in the Brillouin zone.

While this statement seems very robust, it turns out that while these
Weyl cones are guaranteed to exist, they may not be easy to observe. This
is because of two additional properties of such systems. First, the Weyl
nodes can be strongly spread out in energies and can be quite far away
from the Fermi surface. Second, our arguments arise from the expansion
of the Hamiltonian for small momentum around the special degenerate
points. While this expansion is generally linear, nothing forbids the ap-
pearance of higher-order quadratic terms. This means that the Kramers-
Weyl cones are well-defined on the momentum scale where the linear term
remains the governing part of the expansion. In reality, this tells us that
we must consider systems that exhibit strong spin-orbit coupling in ad-
dition to the given prescription to study this novel realization of Weyl
fermions.
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1.4 Weyl fermions in Kramers-Weyl semimetals

Figure 1.10: A schematic example of a generic two band dispersion for a)
preserved, b) broken inversion symmetry. c) Schematic of the Kramers-Weyl
Brillouin zone, identifying the time-reversal invariant momenta and their core-
sponding Weyl cones.

Now that we have understood the mechanisms responsible for the emer-
gence of Kramers-Weyl fermions, it is important to explore the distin-
guishing features of these systems as compared to conventional Weyl semi-
metals. As we have already mentioned, Weyl fermions can only appear
in pairs of opposite chiralities in nature. In contrast to a conventional
three-dimensional semimetal, which typically hosts one or two pairs of
massless fermions, Kramers-Weyl semimetals always exhibit four pairs of
Weyl fermions with alternating chiralities. Since all these cones are pre-
cisely located at time-reversal-invariant momenta, they are guaranteed
to have a strong separation in momentum space. This not only confers
them with unusual robustness but is also quite distinct, as it is generally
difficult to strongly pair Weyl fermions in the Brillouin zone. The large
separation of the cones is responsible for unique signatures, as it forces
the Fermi arc surface states that connect the Weyl cones to span over the
entire Brillouin zone.

1.4.3 Fermi arcs

We have demonstrated that each Weyl point carries a topological invari-
ant representing the monopole charge of the Berry connection. In the

17



1 Introduction

bulk, such a monopole can only annihilate with its opposite partner, pro-
viding a mechanism for continuously transforming the Weyl system into
the atomic limit where the system is fully gapped. Alternatively, we can
consider a sharp interface where we truncate the Weyl semimetal, creat-
ing a contact with the surrounding vacuum. As the Weyl system exhibits
pairs of monopoles and the vacuum does not, these monopoles have to
recombine on the interface during the transition from the Weyl semimetal
to the vacuum. As a consequence, Weyl semimetals have to exhibit spe-
cial types of surface states that connect Weyl cones of opposite chiralities
and annihilate the monopole charges. These states are called Fermi arcs,
as they form special two-dimensional Fermi surfaces. They are massless
states with linear dispersion and are one of the characteristic signatures
of Weyl semimetals.

Figure 1.11: Left panel: Schematic representation of the Fermi arc surface
states reconnecting the Bulk Weyl cones. Right panel: A dispersion of a
Kramers-Weyl semimetal in a slab geometry showing the characteristic long
Fermi arcs spanning the whole Brillouin zone.

The signature of such surface states is directly related to the separation
of Weyl cones, as the Fermi arcs exhibit a higher density of states when
they span over a larger region of the Brillouin zone. For this reason,
Kramers-Weyl semimetals can be a good platform for their study, as they
guarantee a large momentum space separation. Additionally, it turns out
that unlike in conventional Weyl semimetals, Fermi arcs in Kramers-Weyl
materials create a new type of periodic Fermi surface structure, where
open orbits can form, giving us a completely unique magnetic behavior.
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1.5 Outline of this thesis

This thesis covers a diverse range of massless electronic systems, which can
be broadly divided into three parts. The first part focuses on the study of
Dirac fermions and their properties. The second part focuses on the three-
dimensional crystals and the signatures of Weyl physics. Finally, the thesis
concludes with the last two chapters that concentrate on superconducting
Majorana excitations.

1.5.1 Part 1

This part delves into the localization properties of two-dimensional mass-
less fermions. We explore various condensed matter systems that exhibit
Dirac fermions and propose a novel technique for the study of Anderson
localization.

Chapter 2: Localization landscape of Dirac fermions

Non-interacting systems under the presence of random disorder exhibit
universal behavior called Anderson localization. This means that elec-
tronic wave functions become strongly localized, impairing transport prop-
erties in the system. While it is generally impossible to find all the local-
ization centers without diagonalization, it turns out that it is possible to
define a special function that is strongly sensitive to the localized behavior
of low-energy states. This function is called the Localization landscape
and it can be efficiently calculated for a Schrödinger equation of spinless
electrons with a positive definite Hamiltonian. In this chapter, we have
extended this idea to spinful systems described by the Dirac equation. In
particular, we have concentrated on systems with strong spin-orbit cou-
pling to be able to study localization in graphene, topological insulators,
and superconductors. We use the Ostrowski comparison matrix to treat
systems that are not positive definite and extend the localization land-
scape bound to their comparison matrix. This defines a new landscape
that can be efficiently calculated by solving the Hu(r) = 1 differential
equation, where H is the comparison matrix of a chosen Dirac Hamil-
tonian. As the comparison matrix is only sensitive to real Hamiltonian
elements, we were able to define a new equivalence class for Anderson lo-
calization. This allows us to find equivalent Hermitian and non-Hermitian
Hamiltonians that share the same localization properties.
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Figure 1.12: Localization centers of a disordered Dirac system (left) compared
to the comparison matrix Localization landscape predictions (right).

1.5.2 Part 2

The second part of this thesis focuses on the behavior of Weyl fermions
in the presence of a magnetic field. Specifically, we will investigate two
systems and examine new signatures of Kramers-Weyl fermions as pre-
viously described in the introduction. Additionally, we will explore the
transport properties of Landau levels in Weyl superconductors.

Chapter 3: Magnetic breakdown spectrum of a Kramers-Weyl
semimetal

Kramers-Weyl semimetals exhibit four widely separated pairs of Weyl fer-
mions at time reversal invariant points. In a finite sample, they give rise to
unique extended Fermi arcs that span through the whole Brillouin zone.
This chapter will focus on the consequences of the interplay between such
characteristic surface states and a magnetic field. In particular, we show
that the long Fermi arcs can form open orbits in momentum space. In the
presence of a magnetic field, these can interact and couple with the Lan-
dau levels formed from the closed orbits in the bulk, thereby broadening
their dispersion relation. We can use an effective model to describe this
behavior in terms of a one-dimensional superlattice induced by the mag-
netic breakdown. Such a model can predict resonant behaviors when the
dynamics are dominated by either open or closed orbits. This resonant
behavior can be observed in terms of 1/B periodic magneto-oscillations,
which are fully unique to the Kramers-Weyl semimetals compared to the
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usual Shubnikov-de Haas oscillations that arise from Landau level quan-
tization.

Figure 1.13: Figure shows the characteristic Fermi surface of a Kramers-Weyl
semimetal in a slab geometry, focused around a single Weyl cone. Such Fermi-
surface exhibits both open and closed orbits in the momentum space.

Chapter 4: Supercell symmetry modified spectral statistics of
Kramers-Weyl fermions

In this chapter, we continue to investigate the unique signatures of Kramers-
Weyl fermions. Using the predictions of random matrix theory, we ex-
plore the spectral statistics of a Kramers-Weyl toy model given by H =
v
∑
α σα sin kα+tσ0

∑
α cos kα in a chaotic quantum dot. We find a hidden

symmetry in the limit of small t that mimics a spinless time-reversal sym-
metry. This is a consequence of a special supercell symmetry that holds
exactly when t = 0. We examine the consequences of this additional sym-
metry by observing the level spacing distribution P (αsβ), where we find
that the calculated spectral statistic for small t truly obeys the orthogonal
β = 1 ensemble instead of the expected symplectic ensemble β = 4. While
this hidden symmetry is quickly broken for any realistic values of t, we
find that signatures of the transition can still be detected. In particular,
we show that this transition happens much slower when we observe the
transition from weak localization to weak antilocalization, providing us
with a new probe to detect the Kramers-Weyl fermions.
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Figure 1.14: Two limiting examples of the spacing distribution comparing the
orthogonal behaviour at small t and symplectic behaviour for large t.

Chapter 5: Chiral charge transfer along magnetic field lines in
a Weyl superconductor

A heterostructure consisting of alternating layers of a Weyl semimetal and
a conventional superconductor creates a gapless superconducting system
called a Weyl superconductor. It was recently shown that, unlike conven-
tional gapless superconductors, these systems exhibit a protected zeroth
Landau level in the presence of a magnetic field. This chapter follows up
on the recent study of the conductance signatures of these superconduct-
ing Landau levels. We have found a new conductance signature where the
conductance depends on the direction of the magnetic field compared to
the chiralities of the Weyl cones. This gives us a novel signature that can
directly probe the chiralities of superconducting Weyl fermions.
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Figure 1.15: Dispersion relation of the superconducting zeroth landau level in
the direction parallel to the magnetic field.

1.5.3 Part 3

The final section of this thesis will concentrate on the emergence of Majo-
rana fermions. Specifically, we will investigate the Fu-Kane heterostruc-
ture introduced earlier and study how the interaction between the mag-
netic field and supercurrent can displace Majorana fermions away from
the vortex cores.

Chapter 6: Deconfinement of Majorana vortex modes produces
a superconducting Landau level
Shared contribution with Micha l Pacholski; I was responsible for the numerical simulations.

A Fu-Kane superconductor in the presence of a magnetic field binds Ma-
jorana zero-energy excitations to the cores of the magnetic vortices. These
are strongly localized excitations, topologically protected because of their
exponentially small overlaps. This chapter examines how such protected
states behave in the presence of a strong supercurrent, which can be inter-

preted as a spatially oscillating pair potential ∆(~r) = ∆0e
2i ~K·~r describing

Cooper pairs with momentum ~K. We show that such a supercurrent
induces a delocalization transition when K > ∆0/~v, extending the Ma-
jorana modes into a new fully delocalized state with a unique oscillatory
pattern. Using the index theorem, we prove that at µ = 0, these states
surprisingly remain gapless despite their strong overlaps. In fact, they
form a dispersionless superconducting Landau level that is fully protected
from broadening by the inter-vortex scattering. We then find an exact
analytical solution for this new superconducting state and calculate the
characteristic wave vector as

√
K2 − (∆0/~v). We show that this striped

23



1 Introduction

pattern can be used to measure the chirality of Majorana fermions and
propose a local density of states measurement to investigate such states
experimentally.

Figure 1.16: Two plots show the transition in the local density of states, in-
duced by the supercurrent, for a Fu-Kane model with a vortex lattice. The first
image is showing the strongly localized Majorana solutions at small supercur-
rent momentum ∆0 < K/~v while the second image shows the new strongly
oscillating extended states at ∆0 > K/~v.

Chapter 7: Magnus effect on a Majorana zero-mode

In the last chapter, we will continue studying the newly discovered de-
localization transition of Majorana zero-modes in the Fu-Kane model.
Specifically, we will examine how the dynamics of delocalization can man-
ifest as a manifestation of the Magnus effect. In our system, this effect
arises from the coupling between the superflow and the velocity profile
inside the vortex core. This effect induces an acceleration on the Majo-
rana vortex modes perpendicular to the superflow. As the supercurrent
velocity profile around the vortex core depends on the chirality, if the su-
percurrent is strong enough, it can induce a full escape where the localized
Majorana modes propagate away from the vortex core in the form of a
localized wave-packet with a constant velocity. This effect is extremely
surprising as, unlike the magnetic field, it is actually inducing a force
on chargeless Majorana states that do not feel the conventional Lorentz
force. We demonstrate this effect numerically by simulating a quench of
the superflow. Furthermore, we find a semiclassical description for the
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wave packet that allows us to predict and match the final velocity of this
escape regime.

Figure 1.17: The escape behaviour of the chragless Majorana zero-modes under
the influence of a strong superflow. The figure shows the propagation of the wave
packet in a straight trajectory defined by chirality in the plane perpendicular
to the superflow.
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