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PART III

CHALLENGES IN STUDYING ACUTE 
NEUROSURGICAL INTERVENTIONS 

IN TRAUMATIC BRAIN INJURY





 Chapter 6

Adjusting for confounding by indication in observational studies: a 
case study in traumatic brain injury 
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ABSTRACT 

Introduction: Observational studies of interventions are at risk for confounding by 
indication. The objective of the current study was to define the circumstances for the 
validity of methods to adjust for confounding by indication in observational studies.
Patients and methods: We performed post-hoc analyses of data prospectively collected 
from three European and North-American traumatic brain injury (TBI) studies 
including 1,725 patients. The effects of three interventions (intracranial pressure 
(ICP) monitoring, intracranial operation and primary referral) were estimated in 
a proportional odds regression model with the Glasgow Outcome Scale as ordinal 
outcome variable. Three analytical methods were compared: classical covariate 
adjustment; propensity score matching; and instrumental variable (IV) analysis in 
which the percentage exposed to an intervention in each hospital was added as an 
independent variable, together with a random intercept for each hospital. In addition, 
a simulation study was performed in which the effect of a hypothetical beneficial 
intervention (OR = 1.65) was simulated for scenarios with and without unmeasured 
confounders.
Results: For all three interventions, covariate adjustment and propensity score 
matching resulted in negative estimates of the treatment effect (OR ranging from 
0.80-0.92), whereas the IV approach indicated that both ICP monitoring and 
intracranial operation might be beneficial (OR per 10% change: 1.17; 95% CI 1.01-
1.42 and 1.42; 95% CI 0.95-1.97). In our simulation study, we found that covariate 
adjustment and propensity score matching resulted in an invalid estimate of the 
treatment effect in case of unmeasured confounders (OR ranging from 0.90-1.03). 
The IV approach provided an estimate in the similar direction as the simulated effect 
(OR per 10% change 1.04-1.05), but was statistically inefficient.
Conclusions: The effect estimation of interventions in observational studies strongly 
depends on the analytical method used. When unobserved confounding and practice 
variation are expected in observational multi-center studies, instrumental variable 
analysis should be considered.
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INTRODUCTION

Randomized controlled trials (RCTs) have long been considered the cornerstone 
of evidence-based medicine.1 They are however not always feasible due financial, 
ethical and practical constraints,2 and are criticized for the lack of external 
validity.1 Observational studies constitute the main alternative. A key challenge in 
observational studies of interventions is confounding by indication, a phrase that 
refers to a situation where patient characteristics, rather than the intervention, are 
independent predictors of outcome. 3 As a consequence, patients exposed and not 
exposed to a particular intervention might not be comparable, hampering causal 
inference. World leading experts in this field have stressed the need for further 
development and testing statistical methods to handle confounding by indication.4-6

The epidemiological and statistical literature describes several analytical methods 
to account for confounding, among which covariate adjustment and propensity 
scores are probably the most commonly applied. In covariate adjustment, measured 
confounders are added as independent variables to the analytical model. This results 
in a risk-adjusted effect estimate.7,8 In propensity scores, the chance (‘propensity’) 
of being exposed to the intervention, based on measured patient characteristics, is 
added as a covariate to the model or used to match patients exposed and not exposed.8 
Propensity scores  aim to balance factors influencing management decisions7,9,10 
and are especially to be considered when there are few outcome events.8 These 
commonly applied methods however, cannot adequately correct for unmeasured 
confounders. For example, a surgeon may decide to perform an operation because of 
his clinical intuition. Clinical intuition might be related to the patient’s prognosis but 
may not be adequately captured in the clinical data and thereby may leave residual 
confounding.3,11,12 A relatively new method to adjust for confounding is instrumental 
variable (IV) analysis. In IV, a substitute variable, ‘the instrument’ (e.g. hospital), is 
used as level of analysis. IV is becoming more popular in comparative effectiveness 
research (CER) and can theoretically adjust for unmeasured confounders.7,8,13 
However, its validity depends on the degree to which the following three assumptions 
are met: The instrument should be strongly associated with the intervention under 
study (assumption 1), not related to the confounders (assumption 2) and not 
independently associated with the outcome under study (assumption 3).7,8,13

Clinical practice in patients with traumatic brain injury (TBI) is generally 
hypothesized to be prone to confounding by indication because treatment choice and 
outcome are highly dependent on injury severity and clinical status. In addition, the 
combination of a low evidence-base and strong (cultural or eminence based) beliefs of 
best practice leads to large practice variation between hospitals;14 e.g. some hospitals 
have the general policy to treat TBI patients (regardless of patient characteristics) 
with a specific intervention, whereas this intervention may only be rarely used in 
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other centers.15,16 This combination makes IV analysis of observational studies in 
TBI a promising approach. For the purpose of the current study, we selected three 
interventions that have shown to be effective according to best available evidence 
and expert consensus meetings,17-21 with guidelines advocating these strategies,22-27 
but also have shown extensive practice variation: ICP placement for ICP directed 
therapies versus serial clinical and radiological assessment,28 to operate or not in 
mass lesions,16 and primary versus secondary referral to specialized care.27

The objective of the current study was to define the circumstances for the validity of 
methods to adjust for confounding by indication using three selected interventions 
in TBI patients and a simulation study.

PATIENTS AND METHODS

Study populations and interventions
Three TBI datasets were used. The Prospective Observational Cohort Neurotrauma 
(POCON) dataset 
consists of 557 consecutive patients with moderate and severe TBI (Glasgow Coma 
Scale (GCS) score 3-13) from five level I trauma centres in the Netherlands between 
2008-2009. Detailed information on data collection, procedures and patients has 
been described previously.29 From the POCON dataset, we extracted 266 patients 
with an indication for intracranial pressure (ICP) monitoring according to the 2007 
Brain Trauma Foundation (BTF) guidelines;30 that is, patients with a GCS ≤ 8 and 
a Computed Tomography (CT) Marshall score ≥ 2, or patients with a GCS score ≤ 
8, CT Marshall score < 2 and at least one of the following risk factors: 1) age > 40 
years; 2) hypotensive episode (SBP < 90 mmHg); and 3) motor score ≤ 3 (unilateral 
of bilateral motor posturing).
We further used the International Mission for Prognosis and Analysis of Clinical 
Trials (IMPACT) dataset, which consists of data from prospective studies and 
phase III trials in patients with moderate and severe TBI.31 The International and 
North American Tirilazad trial (86 hospitals between 1992 and 1994) was selected 
from the IMPACT dataset, because it comprises the requisite data to estimate the 
effectiveness of intracranial operations (craniotomy or craniectomy). From the 2,159 
patients included in this trial, data of 677 patients with severe TBI, a mass lesion and 
a six-month outcome assessment were extracted. 
We additionally selected the European Brain Injury Consortium (EBIC) study (67 
hospitals, in 1995) from the IMPACT dataset, which contains information on referral 
status of 822 patients. Referral and outcome were assessed in 782 patients, who 
were subsequently extracted. Detailed information on the IMPACT dataset has been 
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comprehensively described in previous publications.31-33 The POCON, Tirilazad and 
EBIC studies were approved by the institutional review boards of the participating 
centers and all patients provided informed consent. Data was made available for the 
current study after an agreement with the principal investigators of these studies.

Data collection
Collected patient variables in all datasets included age, sex, GCS (motor) score, 
pupillary reactivity (both pupils reactive, one pupil reactive, no pupil reactivity), 
hypoxic episode (at injury scene or emergency department), hypotensive episode 
(at injury scene or emergency department), admission glucose level (mmol/L) 
and admission hemoglobin level (hb, g/L). In all datasets, the initial CT scan was 
assessed using the Marshall score,34 and the presence of traumatic subarachnoid 
hemorrhages (tSAH) and epidural hemorrhages (EDH) were scored. 
To summarize patient characteristics, we calculated the probability of survival and 
favourable outcome (Glasgow Outcome Scale (GOS) score ≥4) for each patient based 
on the IMPACT laboratory model35 with all above-mentioned demographic and 
clinical factors as predictors. These prognostic scores reflect chances on respectively 
survival and favourable outcome based on baseline characteristics. 
Six-month outcome was assessed using the Glasgow Outcome Scale Extended 
(GOS-E) in the POCON dataset and the GOS in the EBIC and Tirilazad trial datasets. 
Both scales were collapsed into a four-point ordinal scale: 1= death or persistent 
vegetative state; 2 = severe disability; 3 = moderate disability; 4 = good recovery. 

Statistical analyses 
Missing values in patient characteristics were imputed using single imputation. To 
assess differences in patient characteristics between patients exposed and not exposed 
to the interventions in the imputed datasets, we compared these characteristics in 
terms of clinical relevancy.  
To examine the effectiveness of interventions, we used proportional odds logistic 
regression models with the 4-point ordinal GOS as outcome variable. A proportional 
odds model increases statistical power in comparison to a conventional logistic 
regression model with a binary outcome.36 The odds ratios (OR) derived from a 
proportional odds regression model could be interpreted as the average shift over 
the GOS caused by the intervention under study.36 
As a reference, we estimated unadjusted effects of the interventions with patient 
(exposed to the intervention yes/no) as the unit of analysis. To adjust for confounders, 
we performed covariate adjustment, propensity score matching and IV analysis. In 
the covariate-adjusted model, the variables from the IMPACT prognostic model35 
(age, GCS motor score, pupillary reaction, hypoxia, hypotension, CT classification, 
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tSAH, EDH, glucose and Hb) were added as independent variables. In a propensity 
score model, the propensity of being exposed to the intervention was computed using 
multivariable logistic regression with the intervention under study as dependent 
variable and all IMPACT variables as predictors. Propensity score matching was 
used to match patients who were exposed to the intervention to patients who 
were not exposed to the intervention with a maximum difference of 0.10 between 
propensity scores. An advantage of propensity score matching is that patients with 
non-overlapping propensity scores are omitted from the analyses, increasing the 
comparability of those exposed and not exposed.7,9 In addition, propensity score 
matching is relatively robust and relies on fewer assumptions than other propensity 
score-based methods (e.g. propensity score adjustment).37  
We used fixed effect models for all patient-level analyses. The ORs and 95% 
confidence intervals (CIs) were obtained from the models and the ORs indicated the 
odds of a more favourable outcome for patients who were exposed to the intervention 
compared to patients not exposed.  
For the IV analyses, we entered the percentage exposed to the intervention in each 
hospital (the instrument) as an independent variable to the analyses, together with a 
random intercept for hospital to correct for other between-hospital differences than 
the intervention under study or between-hospital differences that existed by chance. 
All IMPACT prognostic variables were added as covariates to increase statistical 
power.38 To minimize the influence of chance, we only included hospitals with data 
on at least 20 patients in the IV analyses. The ORs were obtained from the models and 
the corresponding 95% CIs were calculated using bootstrapping with 500 samples. 
The ORs indicated the odds on a more favourable outcome for a 10% increase in 
exposure to the intervention in a particular hospital. Assumptions of the IV approach 
were checked by calculating the partial F statistic, in line with recommendations.39  
In addition, we checked associations with measured confounders by calculating 
Spearman’s correlation coefficients between the instrumental variables and the 
prognostic scores of survival and favourable outcome. The third assumption (the 
instrumental variable is not independently associated with outcome) cannot be 
empirically verified, but is captured in the random effect model that we used. 
The proportional odds analyses were performed in R (version 3.1.2) using the ordinal 
package.40 Other analyses were performed using the Statistical Package for the Social 
Sciences version 21. 

Sensitivity analyses
As sensitivity analyses we explored alternative methods for propensity score 
matching and IV analysis. Since propensity score matching may result in a non-
representative sample7 and a loss of statistical power,41 we also used propensity 
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score adjustment and inverse probability weighting (IPW) to estimate the treatment 
effect. For propensity score adjustment, the linear predictor of the propensity score 
was added as a covariate to the proportional odds regression models. In IPW, the 
outcome of patients exposed to the intervention is extrapolated to the non-exposed 
patients with similar propensity scores; for every patient exposed with a probability 
of 0.20, there are four patients with the same probability who were not exposed. 
The outcome of the exposed patient is subsequently extrapolated to all other four 
patients with the same propensity score.42 We used standardized weights in which 
we divided the unadjusted chance of receiving the intervention in the total study 
population by the propensity score.43 Since this still resulted in large standard errors, 
we winsorized our cohort by 95%; i.e. patients below the 2.5th and above the 97.5th 
percentile received the scores belonging to the 2.5th and 97.5th quartile, respectively. 
As an alternative to the IV approach used in this study, we divided hospitals into two 
groups based on their preference for the intervention. The mean percentage exposed 
to each intervention was calculated and hospitals scoring above these means were 
classified as having a high preference, whereas hospitals scoring below the means 
were classified as having a low preference. 
Since the percentage patients exposed to the intervention in each hospital can still 
be based on case-mix (e.g. in a hospital with more severely injured patients, the 
percentage patients receiving aggressive interventions might be higher) and could 
also exist by chance, we estimated a random intercept for hospital from a model 
predicting exposure to the intervention yes/no adjusted for the IMPACT variables. 
This random intercept for exposure represents the chance of receiving the intervention 
in a specific hospital corrected for case-mix and chance, and was subsequently used 
instead of the percentage exposed in the IV analyses. A disadvantage of this method 
is that the estimate obtained is hard to interpret and very uncertain due to the 
shrinkage of the between-hospital variation by the random effects model. 

Simulation study 
In empirical data, ‘true’ effects are never known and as a consequence, estimating the 
validity of analytical methods remains difficult. Therefore, we performed a simulation 
study in which a true treatment effect was simulated in the data. The simulation study 
was built around the POCON dataset, which was inflated to 133,000 patients from 
20 hospitals. We simulated a hypothetical intervention with a beneficial effect of OR 
= 1.65. For the association between the hypothetical intervention and confounders, 
we used the observed associations between ICP monitoring and confounders in the 
POCON dataset. We used six-month survival (yes/no) as outcome variable, which 
was generated based on a combination of the prognostic effect of the confounders 
and the effect of the hypothetical intervention. 
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We simulated four different scenarios and estimated the treatment effect using 
covariate adjustment, propensity score matching and IV analysis. In the first scenario, 
there were only measured confounders. We used motor score and pupillary reactivity 
as representing the measured confounders. In the second scenario, both measured 
and unmeasured characteristics comprised confounders. Marshall CT scores and 
the presence of a tSAH were used as unmeasured confounders. For both the first 
and second scenario, no between-hospital variation existed, which is comparable to 
a single-center study. The third and fourth scenarios were similar to the first and 
the second, but included between-hospital variation in how often the hypothetical 
intervention was performed. Since the observed variation of ICP monitoring among 
hospitals ranged from 17 to 58%, every hospital received a random percentage within 
this range. The simulations were performed in R statistical software using the rms44 
and lme445 packages.

RESULTS

Patient characteristics 
In the POCON dataset (n = 266), used for exploring the effects of ICP monitoring, 
patients who received an ICP monitor (n = 110) were generally younger, more often 
male, had a lower GCS motor score, less pupillary reactivity, less often hypoxia and 
hypotension and more often a mass lesion. In addition, patients receiving an ICP 
monitor more often had tSAH, EDH, and had on average a higher glucose level. 
These baseline differences resulted in a worse a priori prognosis for patients who 
received an ICP monitor compared to patients who did not receive an ICP monitor 
(n = 156; chance on survival 39% and 58% respectively). Observed outcome was also 
less favourable in patients who received an ICP monitor. 
In the Tirilazad dataset (n = 677), used for exploring the effects of intracranial surgery, 
patients who did (n = 579) and did not (n = 98) receive an intracranial operation did 
not differ on baseline characteristics except for hypotension (14% vs 21%,) and the 
presence of an EDH (31% vs 10%,), nor did the observed outcome differ. 
In the EBIC dataset (n = 782), used for exploring the effects of referral policy, patients 
who were primary referred (n = 334) had higher blood glucose levels (8.1 vs. 7.9 
mmol/L) and more often a tSAH (47% vs. 38%) compared to patients who were 
secondary referred (n = 448). There were no other clinical meaningful differences 
between groups (Table 1).
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Covariate adjustment and propensity score matching
Unadjusted analyses showed that patients receiving an ICP monitor in the POCON 
dataset had a worse outcome than patients not receiving an ICP monitor (OR 0.51; 
95%CI 0.32-0.81; Table 2). For intracranial operation and primary referral, as analysed 
in the Tirilazad and EBIC datasets respectively, only minor differences were found 
between treated and non-treated patients.  Covariate adjustment and propensity 
score matching resulted in imprecise estimates below one, indicating that exposure 
to the interventions might have either a negative or no effect on outcome. 

Instrumental variable analysis
In the POCON dataset, the percentage of patients that received an ICP monitor 
ranged from 17-58% between participating hospitals. All five hospitals included 
at least 20 patients (range 37-51 patients).  For intracranial operation, only seven 

Table 2.  Comparing analytical methods to adjust for confounding by indication in proportional 
odds logistic regression models with the Glasgow Outcome Scale as outcome

Approach POCON dataset
ICP monitoring
OR (95% CI)

Tirilazad dataset
Intracranial operation
OR (95% CI)

EBIC dataset
Primary referral
OR (95% CI) 

Unadjusted model 0.51 (0.32-0.81) 1.04 (0.70-1.54) 0.85 (0.66 – 1.10)

Covariate adjustment* 0.91 (0.48-1.74) 0.92 (0.59-1.42) 0.85 (0.64 – 1.15)

Propensity score matching** 0.80 (0.42-1.54) 0.89 (0.53-1.50) 0.89 (0.76 -1.18)

Hospital-level approach† 1.17 (1.01-1.42) 1.42 (0.95-1.97)ⱡ 0.91 (0.81 – 1.03)Ⱡ

Notes: *Model was adjusted for the following confounders: Age, GCS motor score, pupillary reaction, hy-
poxia, hypotension, CT classification, tSAH, EDH, glucose and hemoglobin
**A propensity score was calculated based on the following variables: Age, GCS motor score, pupillary re-
action, hypoxia, hypotension, CT classification, tSAH, EDH, glucose and hemoglobin. For ICP monitoring, 
matching resulted in 67 patients receiving the intervention (propensity score 0.47, probability on survival 
0.46, probability on favorable outcome 0.28) and 67 patients not receiving the intervention (propensity 
score 0.46, probability on survival 0.43, probability on favorable outcome 0.32). For craniotomy, matching 
resulted in 96 patients receiving the intervention (propensity score 0.83, probability survival 0.63, probabil-
ity favorable outcome 0.42) and 96 patients not receiving the intervention (propensity score 0.83, probabil-
ity survival 0.63, probability favorable outcome 0.42).  For primary referral, matching resulted 312 patients 
primary referred (propensity score 0.46; probability survival 0.65; probability favorable outcome 0.49) and 
312 patients secondary referred (propensity score 0.47, probability survival 0.65, probability favorable out-
come 0.48).
†Per 10% change; Model was adjusted for the following confounders: Age, GCS motor score, pupillary reac-
tion, hypoxia, hypotension, CT classification, tSAH, EDH, glucose and hemoglobin
ⱡAnalyses in 7 centers with a total of 172 patients
ⱠAnalyses in 12 centers with a total of 350 patients
Abbreviations: CT, computed tomography; EBIC, European Brain Injury Consortium; EDHs, epidural haem-
orrhages; GCS, Glasgow Coma Scale; ICP, intracranial pressure; POCON, Prospective Observational Cohort 
Neurotrauma; tSAHs, traumatic subarachnoid hemorrhages.
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hospitals from the Tirilazad dataset included more than 20 patients, encompassing 
172 patients. The percentage of patients receiving an intracranial operation ranged 
from 67 to 100% between hospitals. For primary referral, 12 hospitals from the EBIC 
dataset included more than 20 patients, reducing the sample size to 350 patients. 
The percentage primary referrals ranged from 17 to 83% between hospitals. 
The instruments (percentage of patients exposed to the intervention in each hospital) 
were associated with the interventions under study (Partial F statistic 6.96 to 65.9). 
In addition, correlations between the instruments and confounders were generally 
small (Online supplement 1), indicating that the assumptions for IV analyses are met 
Using IV analysis, we found that patients treated in hospitals that performed 10% 
more ICP monitors had an 1.17 (95% CI 1.01-1.42) higher odds on favorable outcome, 
compared to patients treated in hospitals where ICP monitoring was less often 
employed (Table 2). For intracranial operation, a 10% increase resulted in a higher 
odds of favorable outcome, but this estimate was rather imprecise (OR 1.42, 95% CI 
0.95-1.96).  For primary referral, centers admitting more primary referred patients 
and less secondary referred patients had a slightly worse outcome (OR: 0.91, 95% 
CI 0.81-1.03). More primary referrals and consequently less secondary referrals are 
indicative for less specialized neurocritical care, and therefore, an odds ratio below 
one was in line with expectations.

Sensitivity analyses	
Propensity score adjustment and IPW resulted in similar effect estimates compared 
to covariate adjustment and propensity score matching (Online Supplement 2). 
The alternative hospital-level approaches resulted in effect estimates in the same 
direction as the IV analyses. Confidence intervals were however large, indicating a 
decrease of statistically efficiency. 

Table 3. Comparing analytical methods to adjust for confounding by indication in a simulation 
study with 6 month survival as binary outcome 

Approach Scenario 1* 
OR (95% CI)

Scenario 2*
OR (95% CI)

Scenario 3*
OR (95% CI)

Scenario 4*
OR (95% CI)

Unadjusted model 1.02 (1.00-1.04) 0.69 (0.68-0.71) 0.96 (0.93-0.98) 0.72 (0.70-0.74)

Covariate adjustment 1.67 (1.63-1.71) 0.99 (0.97-1.02) 1.52 (1.47-1.56) 1.03 (1.00-1.06)

propensity score matching 1.46 (1.43-1.50) 0.90 (0.88-0.92) 1.46 (1.41-1.50) 0.94 (0.91-0.97)

Hospital-level approach† NA NA 1.05 (1.04-1.07) 1.04 (1.02-1.05)

Notes: *Scenario 1 = observed confounders, no hospital variation; Scenario 2 = observed and unobserved 
confounders, no hospital variation; scenario 3 = observed confounders, hospital variation (17-58%), sce-
nario 4 = observed and unobserved confounders, hospital variation (17-58%)
†Per 10% change
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Simulation study
The unadjusted analyses resulted in ORs ranging from 0.69 to 1.02 for the four 
different scenarios (Table 3). In the scenarios where the associations between 
intervention and outcome were influenced by measured confounders only (scenario 
1 and 3), covariate adjustment and propensity score matching resulted in ORs in the 
range of 1.46-1.67, broadly in line with the simulated effect (OR = 1.65). However, 
in the scenarios where unmeasured confounders also influenced the association 
between intervention and outcome (scenario 2 and 4), the adjusted ORs in 
multivariable analyses were all close to the point of no effect (OR 0.99 and 1.03), 
whereas the ORs in the propensity-score matching models were negatively directed 
(OR 0.90 and 0.94). IV analysis resulted in a positive and statistically significant 
effect (OR 1.04-1.05 per 10% change), indicating that patients admitted to hospitals 
that more often performed the hypothetical intervention had better odds on survival 
than patients admitted to hospitals where the intervention was less often performed. 
When transforming these ORs to a 100% change (meaning that all patients in a 
center would receive the hypothetical treatment), the effect estimate (OR = 1.05^10 = 
1.63) is highly comparable to the simulated treatment effect. The standard errors of 
the hospital-level analyses (SE 0.07) were however far larger than the standard errors 
in the patient-level analyses (SE 0.01), indicating a substantial reduction in statistical 
efficiency (Table 4). 

Table 4. Characteristics of analytical methods to adjust for confounding by indication based on our simula-
tion- and validation study

Approach Adjustment 
for 
measured 
confounders 

Adjustment 
for 
unmeasured 
confounders

Statistical 
efficiency

Relying 
on strong 
assumptions

Interpretation

Unadjusted model - - + - +

Covariate adjustment + - +/- ⱡ - +

Propensity score matching + - - - +

Instrumental variable analysis + +* - + -

Notes: ⱡ Statistical efficiency depends on the number of covariates and the number of patients with the 
outcome of interest (‘events’). 
*In theory, instrumental variable analysis can correct for unmeasured confounders.
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DISCUSSION

We compared analytical methods to adjust for confounding by indication in 
observational studies using three empirical case studies and a simulation study. 
The estimated effects strongly depended on the analytical method applied. As 
expected, the presence of unmeasured confounders, makes covariate adjustment 
and propensity score matching invalid. Instrumental variable (IV) analysis, although 
statistically inefficient and relying on strong assumptions, may then provide more 
valid estimates of the effectiveness of interventions.

Covariate adjustment and propensity score matching
Covariate adjustment and propensity score matching are commonly used in 
observational studies of interventions. We found that these methods could provide an 
unbiased estimate of the effect of the intervention, on the condition that all relevant 
confounders are measured and adjusted for. Covariate adjustment and propensity 
score matching cannot adjust for unmeasured confounders.3,7,11,12,41 In our simulation 
study, for example, the beneficial interventions appeared harmful or non-effective 
when analyzed with covariate adjustment or propensity score matching, due to 
residual confounding by indication. 

Instrumental variable analysis
IV analysis resulted in better estimates of the effect of interventions in our simulation 
study; the direction of the effect was congruent with the simulated effect. In our 
empirical case studies, the directions of effects were in line with how patients should 
be treated according to guidelines for TBI22-26 and best available evidence.17,26,27,46

IV analysis is becoming more popular in TBI research. Several recently published 
TBI studies analysed effectiveness at the hospital level47-50 and a large European CER 
study is planning to use hospital-level analysis to assess effectiveness of many TBI 
interventions.51 Previous studies typically divided hospitals into groups (e.g. tertiles47 
or quartiles48) based on the percentage of patients treated. The percentage treated in 
each hospital can also be used as a continuous variable, which increases statistical 
power. 
Nevertheless, IV analysis also has limitations that warrant comment. First, IV 
analysis is statistically inefficient compared to conventional analytical methods. 
Since the analyses are performed at the level of the hospital, the effective sample size 
decreases. As a consequence, a large number of centers and patients and substantial 
variability in exposure to interventions across centers are needed to reach a precise 
estimate in case of a true beneficial effect. The conduct of IV analysis might therefore 
be relatively expensive and resource-intensive. However, when compared to clinical 
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trials, IV analysis of observational data is probably more economical since many 
research questions could be addressed using the same data.
Second, the interpretation of the OR differs from the conventional analyses. Rather 
than an estimate of the effect of interventions in individual patients, IV provides 
information on whether patients’ outcome will improve when hospitals change 
their policy with respect to a specific intervention.7,9 The issue of interpretation 
is prominent for primary referral. Although primary referral on the patient-level 
might be associated with more specialized neurocritical care, at the hospital-level a 
larger number of primary referrals and thus a lower number of secondary referrals 
are indicative for less specialized care. Therefore, for primary referral, a negative 
association between the instrument ‘percentage primary referrals’ and outcome 
was expected, which was indeed found in the EBIC data. Third, the success of IV 
analysis depends on whether the underlying assumptions are met.9,52,53 Thus, IV 
analysis might not always be defendable. Between-hospital variation, caused by other 
variables than those in the model, could theoretically be captured by the random 
effect model. Nevertheless, when correlations are strong (e.g. centers that often 
perform a particular intervention are all from the same geographic region that differs 
from other regions in many aspects), the statistical model will be unable to separate 
the effect of the intervention from the effect of the confounder. In these situations, 
one should consider other analytical methods or conclude that it is not possible to 
analyze the effectiveness of the particular intervention in the dataset.

Strengths and Limitations
A major strength of our study is that we included both empirical case studies and a 
simulation. The TBI examples show how the various analytical methods worked with 
actual patient data and demonstrated the influence of analytical method on effect 
estimate. The simulation study subsequently provided insight into the underlying 
mechanisms and thereby indicated which methods provided valid estimates of the 
treatment effect in different situations. A limitation of our simulation study is that 
we only examined four scenarios while there are many more possible interactions 
between treatment and confounders that might be of interest. A second limitation 
is that we used the observed range from one dataset (POCON), whereas the actual 
range might differ. Future simulation studies could address alternative scenarios 
and should further investigate how statistical power can be optimized when using IV 
analysis. Another limitation of the simulation study is that we included two variables 
as presenting the measured confounders and two variables as presenting the 
unmeasured confounders. As a consequence, the predictive value of our predictors 
is relatively modest which may have resulted in unstable estimates. 
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Our case studies also have several limitations. The data is relatively outdated (data 
was collected between 1992 and 2009) and analyzed post-hoc. Therefore, the current 
study cannot be used to draw conclusions about the effectiveness of interventions. In 
addition, each intervention was measured in only one dataset while it would be more 
interesting to demonstrate the different analytical methods for each intervention 
over different datasets. This was not possible in our study since not all interventions 
were measured in all three datasets. Furthermore, specific concerns exist in the data 
with regard to the three interventions. An ICP monitor is a diagnostic procedure 
and cannot influence outcome on itself, while it can cause complications. The 
actual comparison is between ICP driven therapies versus clinical/radiological 
driven therapies. With regard to the variable intracranial operation, the clinical 
applicability is unclear since the exposure and intervention in these data are not 
defined specifically (What kind of mass lesions? What intracranial operation?). 
More granular information on these interventions was unavailable inherent to the 
post-hoc setup. For primary referral, we assumed that more primary referrals are 
associated with less specialized care. However, an alternative explanation would be 
that many primary referrals in a center are indicative that this center has a central 
location.. Another limitation is that all three datasets were relatively modest in terms 
of number of hospitals and number of patients. The POCON dataset had only five 
hospitals, while the Tirilazad and EBIC datasets had only seven and 12 hospitals that 
included at least 20 patients, respectively. Therefore, differences among hospitals 
might also exist by chance; for instance, if a hospital included only 20 patients, these 
patients might not be representative for the general policy in the particular hospital. 
Therefore, we recommend future studies using IV analyses in TBI to include a larger 
number of hospitals and a large number of patients in each hospital. In addition, since 
the ‘percentage treated’ in each hospital is based on data of the included patients, it 
might still be subject to confounding by indication. Alternatively, policies with regard 
to an intervention might be identified by (former) registry data or by an independent 
survey study completed by all the participating hospitals. Such an approach will 
be used in an ongoing TBI study.51 A further limitation may have been the use of 
an ordinal outcome measurement. Although ordinal outcome measurements are 
highly recommended in TBI research due to an increase of statistical power and 
precision,36 it is uncertain whether the results of this study are also generalizable to 
binary and continuous outcomes. Finally, it should be recognized that all covariates 
included in this study are measured only at admission, while the clinical situation 
of a patient may change over time (e.g. the GCS score may deteriorate), resulting 
in a different risk profile and also influencing treatment decisions. Allowing time-
varying aspects may probably improve the predictive value of covariates and thereby 
may also improve the validity of patient-level analyses, This should be studied in 
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future investigations. although it should be noted that only covariates that are known 
before the treatment decision is made are relevant, to avoid over-adjustment. 

Implications
IV is emerging as an analytical method in many research fields, including oncology,54 
cardiovascular disease55 and pharmaco-epidemiology.56 We demonstrated that IV 
might provide a more valid estimate of the treatment effect compared to conventional 
analytical methods. In addition, IV is not only suitable for analyzing the effectiveness 
of individual interventions, but can also be applied to estimate the effectiveness of 
systems of care; for instance, Pezzin and colleagues57 studied the influence of volume 
on breast cancer mortality using IV. We showed that the percentage treated in each 
hospital might be a valid instrument. Notwithstanding, for interventions that show 
mainly between-region or between-country variation rather than between-hospital 
variation, e.g. prehospital trauma care, one might choose to analyze the results on the 
level of the region or country rather than the level of the hospital.  Since all methods for 
causal inference have their strengths and limitations, it is nevertheless not desirable 
to regard one method as ‘correct’.58 Instead, alternative methods should be used 
simultaneously.58 In case alternative method provide similar results, the credibility 
of the findings may strengthen. However, if findings are non-concordant one has 
to determine which method is the most credible. Laborde-Casterot and colleagues59 
developed a flow-chart to determine which method (IV vs. patient-level methods) 
may provide the most valid results. Factors that could be taken into account when 
analyzing non-concordance of result include the risk of confounding by indication, 
the strength of the instrument, the validity of the instrument, the statistical power 
and concordance with RCTs on the same intervention (if available).59 

CONCLUSION

The effect estimation of interventions in observational studies strongly depends on 
the analytical method used. When unobserved confounding and practice variation 
are expected in observational multi-center studies, instrumental variable analysis 
should be considered.
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GOS		  Glasgow outcome scale
GOSE		  Glasgow outcome scale extended
EBIC		  European brain injury consortium
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IMPACT	 International mission for prognosis and analysis of clinical trials
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