
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936


Chapter 6

Conclusion

Modeling and analysis of cyber-physical systems are still challenging [57]. One reason
is that cyber-physical systems involve many different parts (cyber or physical), of
different nature (discrete or continuous), and in constant interaction via sensing and
actuating. This thesis proposes a semantic framework in which both the behavior of
cyber-physical systems and their interaction can be expressed. Below, we give a short
summary of the contribution for each chapter, and provide a list of points for future
work.

The component based model introduced in Chapter 2 proposes to explicitly model
interactions in cyber-physical systems with parametrized algebraic operators, partic-
ularly for composition and decomposition. In this model, components are terms and
interactions are captured by user defined operations on components. Properties of
operators, such as associativity, commutativity, and idempotency, are expressed in
terms of the properties of their interaction signatures. For instance, an interaction
constraint that is symmetric leads to a commutative product on component. To ease
the specification of interaction constraints, a co-inductive construction of compos-
ability relations is proposed to specify constraints on Timed-Event Streams given a
constraint on observations. Similar algebraic properties for a co-inductively defined
operator on components are deduced given properties of the underlying constraints
on observations. The model not only provides ways to compose components, but also
allows, under certain conditions, for decomposition of components. An operator of
division is introduced that selects, out of a set of candidates, a component that in
product with the divisor give back the dividend. Several such division operators are
possible as each involves a way of choosing a component within a set of candidates.

183



Chapter 6

In the case where a metric is used to order components, the division operator can be
defined as taking the best (defined by the metric) of the candidate components. The
cost of coordination is discussed as such a possible metric.

We instantiate our component model in Chapter 3 on a set of cyber components
whose behaviors are independent of time. We give an algebraic semantics of the Reo
coordination language, where ports are components and circuits are product of ports
under some interaction signatures. The result adds some strength to existing work
on Reo, by providing a suitable algebraic framework to show equivalence of connector
behaviors in Reo. Within the class of order sensitive components, we consider two
meaningful classes: transactional components that have observations with more than
one event, and linear components that have observations with at most one event. The
former class of components is adequate to represent behavior at a design/specifica-
tion level where events within the same set are declared to be atomic; the latter class
of components represents sequential machines that can generate only one event at a
time. We study translation of (product of) transactional components into a (product
of) linear components, which leads to the definition of correctness criteria for imple-
mentation of high-level transactional specifications of concurrent systems into their
behaviorally equivalent implementations on (sets of interacting) sequential machines.
Two instances of correct and compositional translations are defined.

Finally, we study temporal properties of some order sensitive components. Particu-
larly, we consider temporal properties of Reo connectors, specifically to verify data flow
properties of composite connectors. For that purpose, we give a translation to generate
an executable in Promela from a logical specification of Reo connectors, using which
the model checker Spin verifies properties written in Linear Temporal Logic (LTL).
To ease the specification of LTL properties, we introduce a domain specific language
for data flow properties, e.g., the temporal property that specifies the simultaneous or
exclusive firing of a port.

In order to make our component model executable, in Chapter 4 we present several
steps that lead to an operational yet compositional specification of components. First,
we operationally define the specification of a component behavior, i.e., a set of Timed-
Event Stream, as the semantics of a labeled transition system called a TES transition
system. We introduce several operators on TES transition systems, and show them
to semantically correspond to their component products: the behavior of a syntactic
product of TES transition systems is the behavior of the semantic product of their
corresponding two components.

While a TES transition system is not necessarily finitely representable (its sets

184



Chapter 6

of states and transitions may be infinite), it serves as a first step towards a finite
executable model, and gives some results as to when the product of two TES transition
systems can be done lazily at runtime without deadlock.

In order to have a finite executable specification of components, we introduce agents
as rewriting theories for component behaviors. An agent specifies finitely, with a set
of equations and a rewrite rule, a TES transition system, which ultimately denotes a
component. A system of agents runs each agent concurrently, while ensuring that each
agent performs composable actions. As a result, the behavior of a system of agents is
shown to coincide with the product (under the composability relation imposed by the
system) of the behaviors of each agent.

Finally, to reduce the large state space involved in cyber-physical systems, we
introduce a framework to extend agents with preferences. The use of preferences
allows for ordering actions that an agent can perform. Thus, actions that are possible
but less preferred can be discarded and therefore reduce the state space. Notions of
compromise emerge out of the composition of agents with different preferences for
their actions.

To demonstrate the utility of our component model, in Chapter 5 we give an im-
plementation of the rewriting framework in Maude. We define agent as a module that
implements a set of operations for interacting with other agents. A system module
runs all agents concurrently, and ensures composability of their actions. To demon-
strate the usefulness of this framework, we present three main applications. First, we
specify ports and connectors in Reo as agents that run concurrently. As a result, a Reo
circuit can be composed at runtime, and several search queries can be performed to
extract properties of protocols. Next, we consider a system consisting of a controller,
a valve, and N water reservoirs. The controller needs to move the valve in order to
keep the water level in the reservoirs within some thresholds. We contrast the safety
property of the controller not seeing any invalid states with the possibility for the
controller to miss some states. In the latter case, the safety property may still be valid
from the controller’s perspective, while it effectively violates the property as the water
level of the reservoirs may unobservably go out of bound. Finally, we analyse a system
consisting of a set of robots, each equipped with a battery, running on a shared field.
More specifically, we consider liveness and safety properties, such as the possibility
for a robot to patrol through a set of points without running out of battery, or to
coordinate with another robot to swap position and get in a sorted position.

A set of challenges emerge from the work presented in the chapters of this thesis
that we consider as relevant future work. Hereafter is a list of few points, organized

185



Chapter 6

per chapters, that are considered relevant for future investigation.

1.1 Metrics for division.
Our algebra of components introduces a family of operators to compose components

into larger systems. Dually, the operation of decomposition is equally important to
extract some structure from a composite component, and eventually update some
of its parts. For that matter, the operation of division is defined to return one of
the possible quotients. As the division operator assumes a choice function over a
set of components, several metrics can be used to partially order components, and
therefore act as the choice function for the operator of division. One of such metric,
discussed in Section 2.2, is the cost of coordination that orders components with respect
to the amount of interaction required during composition. As future work, other
measures may be considered, as well as their corresponding implication on system’s
decomposition.

1.2 Laws of distribution.
The algebraic properties of operators in the algebra of components in Section 2.1

are mostly studied independently (i.e., commutativity, associativity, idempotency).
However, the law of distribution of one product over another product would allow for
additional reasoning on component expression by showing equivalence between dif-
ferent types of interaction. More precisely, being able to factorize or distribute an
operation may practically reflect the distinction between the cases where a group of
components needs global as opposed to local interaction. Considering for instance
the operation of division, the distribution of division over multiplication may, in some
cases, allow for modular decomposition. Moreover, on the level of components, distri-
bution of a component over a product could capture the fact that such component is
independent of the interaction constraints imposed by that product. As a result, such
distributive law can reveal mechanisms to split a protocol component into subparts,
that get distributed onto the smallest set of components that needs their coordination.

2.1 Extension of Reo with cyber-physical connectors.
In Reo, the main primitive of interaction is a port, which serves as the junction

through which data flow between a component and its environment. By definition, a
port in Reo observes the transport of a finite amount of data within a time interval,
which precludes the possibility of continuous physical data transfer. Instead, a physical
phenomenon must be encapsulated into a component that samples the physics at a fix
rate. Only then can a port transport the value, at such rate, to other Reo components.
Note that the choice of the sampling rate for the component encapsulating a physical

186



Chapter 6

process will influence the overall protocol, as other components may not be able to
see some relevant data, or take action accordingly. Alternatively, introducing a cyber-
physical variant of a port, with sampling as a parameter, leads to the possibility of
having cyber and physical components in Reo. Instead of the standard semantics
where the firing of a port occurs if and only if a data of a port is present, a cyber-
physical port is equipped with a sampler that can only observe a datum within a time
period. Similarly, the composition operator can be extended such that ports tune their
sampling rates for transmission. As a result, such cyber-physical extension of Reo may
enable compositional construction to find the highest frequency (i.e., smallest amount
of observations) for samplers while not missing any important event.

2.2 Temporal properties as Reo connectors.
The definition of components allows both executable specifications and properties

to be denoted as such. As a result, the structure of our algebra can be exploited
to specify temporal properties compositionally. More precisely, as already hinted in
Section 3.3, the use of graphical and compositional primitives of Reo can serve as a
starting point for languages to construct temporal properties. As a result of such mod-
ular specification, ways of distributing the property over components, or decomposing
the property into a set of simpler properties may facilitate modular verification.

3.1 Real time extension of agents.
The current specification of agents uses rewriting logic without real time. Agents

run in steps, and may interact with other agents within each step. The time that
lapses between two steps is a constant that is fixed at the beginning of the execution.
Alternatively, our framework can be extended with real time variables, that account
for the variable time that lapses between two steps. As well, making the time of a step
explicit while having a modular specification of each agent may facilitate certain meta
level reasoning, such as finding the largest sampling rate such that resulting system
satisfies, for instance, a safety property.

3.2 Fusion of agents.
Each composition operator of our algebra captures a constraint of interaction be-

tween two components. Practically, such an interaction constraint may represent
actual physical constraints (e.g., spatial, time, hardware) that enforce the practical
observations to be related. For instance, two components tied with each other by a
synchronous product may be realised by two processes running on the same machine.
Following the result of Section 4.2, agents denote components, and the product of
agents denotes the product of their corresponding components. In some cases, it can

187



Chapter 6

be useful to define a new agent out of the product of two agents, such that the newly
formed agent denotes the same behavior as the product component. For instance,
forming such new agent may reduce the search space, or improve some runtime mea-
sures, while preserving the system behavior. Practically, such transformation acts
on agent theories, and needs to generate a new agent specification out of two agent
specifications.

3.3 Symbolic execution under a class of environments.
The rewriting framework developed in Section 4.2 currently assumes that the col-

lection of agents forming a system is closed. A closed system is such that every agent’s
action is matched with that of its corresponding recipient agent in the set. While this
condition holds for many practical examples, allowing for open system analysis is still
desirable. In an open system, one can analyse the behavior of an agent under a class
of environments, and conclude which of a set of potential interacting agents complies
or conflicts with some system properties.

3.4 Implementability of division.
Our algebra of components introduces several operations on behaviors that are

shown to be useful for design and modular analysis. One such operation is the opera-
tion of division, which enables reasoning about alternative compositions that preserve
the same behavior. The operation of division does not yet enjoy the same operational
specification as the operation of composition. Studying how to implement the opera-
tion of division within our agent framework may enable various important reasoning
schemes for updates and fault diagnosis. Practically, the operator of division may re-
veal some independences within an agent, and factor such agents into two independent
parts. The two specifications may be run in parallel, speeding up the overall execution
time.

188


