
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

Chapter 5

Experimental framework

The component framework introduced in Chapter 2 and its operational fragments
defined in Chapter 4 lay the foundation for the verification of properties of cyber-
physical systems.

In this chapter, we detail and evaluate an implementation in Maude of the cyber-
physical agent framework introduced in Section 4.2 of Chapter 4. This implementation
extends the operational formal model with three additional features. First, an agent is
equipped with an internal strategy, similar to the one introduced in Section 4.3. Thus,
the Maude implementation enables two levels to make a preference aware system
more specific: by selecting a subset of best actions either at the agent level, or at
the system level. Second, an agent may perform a composite action atomically, i.e.,
a sequence of actions within the same clique. As a result, the value assigned to
action parameters may depend on the effects of actions earlier in the sequence. The
Maude implementation enables agents to reevaluate the parameters of their actions at
runtime. Third and last, we give some constraints on how a set of atomic actions, called
macrostep, is serialized into a sequence of microsteps, i.e., a sequence of agent actions.
More precisely, we impose that such serialization is a function given as parameter for
simulation or analysis. The runtime may still be non-deterministic, as several different
cliques may be enabled at the same time. The above three features are detailed in
Section 5.1.

We use our implementation to simulate and analyze a series of applications. More
precisely, we use the Maude runtime to verify trace properties of concurrent systems.
Recall that, as defined in Chapter 2, a trace property is a set of TESs, and a component
C satisfies a property P , denotes as C |= P , if and only if the behavior of C is a subset

147

Chapter 5

of the property P . In Section 2.2.2, we introduced the notion of conformance, which
states that a component C is conformable to a component C ′ if there exists a non
empty protocol P such that C ×Σ P ⊑ C ′.

In the agent framework, a system is a set of interacting agents for which we gave
in Section 4.2 a compositional semantics as components. Therefore, given a set of
n agents A1(s01, t0), ...,An(s0n, t0) interacting under the interaction signature Σ, we
say that the system S = A1(s01, t0) ×Σ ... ×Σ An(s0n, t0) satisfies property P if the
component semantics does so, i.e., if JSK |= P (see Theorem 9 for soundness). In the
case where JSK ̸|= P , we then identify two mechanisms to make JSK satisfy P .

The most obvious way is to substitute each of a subset of the agents Ai with a
more specific agent A′

i such that the resulting system satisfies P . Such agent A′
i is

more specific than agent Ai due to its smaller state space and behavior (where all
TESs that violate property P have been removed). Finding the largest of such A′

i is
therefore of primary importance to keep as much as possible the non-violating TESs
from the behavior of agent Ai.

An alternative way is to synthesize a coordinator agent D such that JS×ΣDK |= P .
While similar to the first method, as it generates a system C′ = S×ΣD, the coordinator
D is a separate entity that can therefore be modified. In the case of a system A1×ΣA2,
composite of agents A1 and A2, that does not satisfy a property P , a coordinator may
filter actions from A1 and A2 contextually, i.e., imposing a relation between actions
occurring in A1 and A2.

We instantiate the framework to model diverse applications:

• cyber agents interacting via Reo coordination protocols. We give an implemen-
tation of a Reo nodes, primitive channels, and show how to compose protocols.

• N reservoirs, a valve, and a controller. We explore how the controller can control
the valve to maintain a safety property, such as that the N reservoirs always have
a water level within some thresholds.

• two robot agents, each interacting with a (shared) field and a (private) battery
agent. We explore how safety, liveness, and coordination properties are enforced
by a system of agents. For instance, such system is energy safe if the battery
levels always stay above some thresholds. The system is alive if the agents keep
patrolling between two locations on the field. Finally, coordination properties are
such that agents eventually sort themselves on the grid by correctly exchanging
their locations.

148

Chapter 5 Maude framework for cyber-physical agents

We run some analysis on the system using the Maude reachability search engine.

5.1 Maude framework for cyber-physical agents

The Maude framework is an instance of the general agent framework introduced in
Chapter 4. We therefore introduce the Maude implementation for actions, agents,
system of agents, and composability relation. The implementation is accessible at [59].

Actions An action is a pair that contains the name of the action, and the set of
agent identifiers on which the action applies. An agent action is identified by the
source agent identifier, and is a triple (id, (a; ids)) where id is the agent doing
the action with name a onto the set of agents ids, that we call resources of agent id
for action named a.

fmod ACTION is
inc STRING . inc BOOL . inc SET{Id}
sort AName Action AgentAction .
op (_;_) : AName Set{Id} -> Action [ctor] .
op (_,_) : Id Action -> AgentAction [ctor] .
op mta : -> AgentAction .

endfm

Agent The AGENT module in Listing 5.1 defines the theories on which an agent relies,
the Agent sort, and operations that an agent instance must implement. The module
is parametrized with a CSEMIRING theory, that is used to rank actions of an agent.
Additionally, the AGENT includes modules that define state and action terms. A term
of sort IdStates is a pair of an identifier and a map of sort MapKD.

A term of sort Agent is a tuple [id: C| state; ready?; softaction]. The
identifier id is unique for each agent of the same class C. The state state of an agent
is a map from keys to values. For instance, the state of a robot has three keys,
position, energy, and lastAction, with values in Location, Status, and Bool.
The flag ready? is of sort Bool and is True when the agent has submitted a possibly
empty list of actions, and False otherwise. The pending actions softaction is a set
of actions valued in the parametrized CSEMIRING. The use of a constraint semiring as
a structure for action valuations enables various kinds of reasoning about preferences
at the agent and system levels. We use the two operations of the csemiring, sum
+ and product ×, as respectively modeling the choice and the compromise of two
alternatives. See [91, 84, 50] for more details.

149

Maude framework for cyber-physical agents Chapter 5

As shown in Listing 5.1, an agent instance implements four operations: computeActions,
resolve, getOutput, getPostState, and internalUpdate. Note that the four op-
erations are an implementation of the abstract ϕ of Section 4.2.1. The operation
computeActions, given a state:MapKD of agent id of class C, returns a set of val-
ued actions in the parametrized CSEMIRING. The operation internalUpdate, given a
state:MapKD of agent id of class C, returns a new state state’:MapKD. For instance, an
agent may record in its state, as an internal update, the outcome of computeActions
that returns the set of possible actions for the agent. The getOutput operation, given
an action name a:Name from agent identified by id2 applied to an agent id of class C in
a state state, returns a collection of outputs. The outputs generated by getOutput

are of sort MapKD and therefore structured as a mapping from keys to values. For
instance, the output of the action named read applied on a FIELD agent has a key
pos that maps to the position value of the agent doing the read action. The opera-
tion getPostState, given an action name a:AName with inputs input:IdStates from
agent identified by id2 applied on an agent id1 of class C in a state state, returns a
new state. The input input:IdStates is a collection of key to value mappings that
results from collecting the outputs, i.e., with getOutput, of an action (id, an, ids)

on all its resources in ids. The new state returned by getPostState describes how
the agent reacts to the input action, which could also capture, with an error state,
that the action is not allowed by the agent. The operation resolve, given an action
name a:Name performed by an agent with identifier id with class C in state state,
returns a new action name a’:Name. The resolve operation is called before the input
action name is performed, and may instantiate some parameters of the action given
the state of the agent.

Listing 5.1: Extract from the AGENT Maude module.

fmod AGENT{X :: CSEMIRING} is
inc IDSTATE . inc ACTION .
sort Agent .
op [_:_|_;_;_] : Id Class MapKD Bool X$Elt -> Agent [ctor].
op computeActions : Id Class MapKD -> X$Elt .
op internalUpdate : Id Class MapKD -> MapKD .
op getPostState : Id Class Id AName IdStates MapKD -> MapKD
op getOutput : Id Class Id AName MapKD -> MapKD .
op resolve : AName Identifier Class MapKD -> AName .

endfm

The agent’s dynamics are given by the rewrite rule in Listing 5.2, that updates the
pending action to select one atomic action from the set of valued actions:

150

Chapter 5 Maude framework for cyber-physical agents

Listing 5.2: Conditional rewrite rule applying on agent terms.

crl[agent] : [sys [id : ac | state ; false ; null]] =>
[sys [id : ac | state ’ ; true ; softaction]]

if softaction + sactions := computeActions(id, ac, state)
/\ state ’ := internalUpdate(id, ac, state) .

The rewrite rule in Listing 5.2 implements the abstract rule of Equation 4.2. After
application of the rewrite rule, the ready? flag of the agent is set to True. The agent
may, as well, perform an internal update independent of the success of the selected
action.

Moreover, an agent module comes with the definition of an interface. The interface
for an agent contains the constructors for action names, i.e., move: direction ->

Action and read: sensorName -> Action for a TROLL robot agent. An agent
that interacts with another agent must therefore include the interface module of that
agent, i.e., the set of actions that the agent performs.

System The SYSTEM module in Listing 5.3 defines the sorts and operations that
apply on a set of agents. The sort Sys contains set of Agent terms, and the term
Global designates top level terms on which the system rewrite rule applies (as shown
in Listing 5.4). The SYSTEM module includes the Agent theory parametrized with
a fixed semiring ASemiring. The theory ASemiring defines valued actions as pairs
of an action and a semiring value. While we assume that all agents share the same
valuation structure, we can also define systems in which such a preference structure
differs for each agent. The SYSTEM module defines four operations: linearization,
outputFromAction, updateSystemFromAction, and updateSystem. The operation
linearization returns a list of AgentAction given a set of AgentAction. As there
are multiple ways to generate sequences of actions from a set of actions, we as-
sume a total order among actions and a sorted output sequence. As several total
orders may exist, we leave the equational specification of the linearization operation
in each scenario. The operation outputFromAction returns, given an agent action
(id, (an, ids)) applied on a system sys, a collection of identified outputs given by
the union of the results of getOutput produced by all agents in ids. The operation
updatedSystemFromAction returns, given an agent action (id, (an, ids)) applied
on a system sys, an updated system sys’. The updated system may raise an error
if the action is not allowed by some of the resource agents in ids (see the battery-
field-robot example in 5.4). The updated system, otherwise, updates synchronously
all agents with identifiers in ids by using the getPostState operation. The operation

151

Maude framework for cyber-physical agents Chapter 5

updateSystem returns, given a list of agent actions agentActions and a system term
sys, a new system updateSystem(sys, agentActions) that performs a sequential
update of sys with every action in agentActions using updatedSystemFromAction.
The list agentActions ends with a delimiter action end performed on every agent,
which may trigger an error if some expected action does not occur (see PROTOCOL in
Section 5.4).

Listing 5.3: Extract from the SYSTEM Maude module.

fmod SYS is
inc AGENT{ASemiring} . sort Sys Global .
subsort Agent < Sys . op [_] : Sys -> Global [ctor] .
op __ : Sys Sys -> Sys [ctor assoc comm id: mt]
op linearization : Set{AgentAction} -> List{AgentAction} .
op outputFromAction : AgentAction Sys -> IdStates .
op updatedSystemFromAction : AgentAction Sys -> Sys .
op updateSystem : Sys List{AgentAction} -> Sys .

endfm

The rewrite rule in Listing 5.4 applies on terms of sort Global and updates each agent
of the system synchronously, given that their actions are composable. The rewrite
rule in Listing 5.4 implements the abstract rule of Equation 4.5. The rewrite rule
is conditional on essentially two predicates: agentsReady? and kbestActions. The
predicate agentsReady? is True if every agent has its ready? flag set to True, i.e.,
the agent rewrite rule has already been applied. The operation kbestActions returns
a ranked set of cliques (i.e., composable lists of actions), each paired with the updated
system. The element of the ranked set are lists of actions containing at most one
action for each agent, and paired with the system resulting from the application of
updateSystem. If the updated system has reached a notAllowed state, then the list
of actions is not composable and is discarded. The operations getSysSoftActions

and buildComposite form the set of lists of composite actions, from the agent’s set
of ranked actions, by composing actions and joining their preferences.

Listing 5.4: Conditional rewrite rule applying on system terms.

crl[transition] : [sys] => [sys ’]
if agentsReady ?(sys) /\ saAtom := getSysSoftActions(sys) /\
saComp := buildComposite(saAtom , sizeOfSum(saAtom)) /\
p(actseq , sys ’) ; actseqs := kbestActions(saComp , k, sys) .

Composability relation The term saComp defines a set of valued lists of actions.
Each element of saComp possibly defines a clique. The operation kbestActions spec-

152

Chapter 5 Concurrent Reo

ifies which, from the set saComp, are cliques. We describe below the implementation
of kbestActions, given the structure of action terms.
An action is a triple (id, (an, ids)), where id is the identifier of the agent per-
forming the action an on resource agents ids. Each resource agent in ids reacts to
the action (id, (an, ids)) by producing an output (id’, an, O) (i.e., the result of
getOutput). Therefore, comp((id, (an, ids)), ai) holds, with ai : Actioni and i ∈ ids,
only if ai is a list that contains an output (i, an, O), i.e., an output to the action.
If one of the resources outputs the value (i,notAllowed(an)), the set is discarded
as the actions are not pairwise composable. Conceptually, there are as many action
names an as possible outputs from the resources, and the system rule (4.2) selects the
clique for which the action name and the outputs have the same value. In practice,
the list of outputs from the resources get passed to the agent performing the action.

5.2 Concurrent Reo

In Chapter 3, we use our component algebra as a semantic model for Reo. More
particularly, we introduce nodes as primitive components, and channels or connectors
as the composition of ports under some fixed composition operators. In this section,
we use our Maude implementation to provide a concurrent implementation of Reo
connectors, as a set of interacting agents.

5.2.1 Reo primitives as agents

We refer to Section 3.1 for an introduction to Reo. The available implementation [64] of
Reo focuses on compilation of input circuits to an executable. A remaining challenge
was to construct a compositional runtime where each part of a Reo circuit can be
compiled independently and run concurrently. As a consequence of such framework,
one can keep the structure of a Reo circuit at runtime, mix different semantics for
Reo channels (e.g., guarded commands, constraint automata, ...), while allowing for
simulation and verification through reachability queries.

Our framework for concurrent Reo consists therefore of few primitive agents: PORT,
CHANNEL, CONNECTOR.

Port as resource A port is a point of synchronization in Reo, and its typical be-
havior is to forward atomically data from its input connector to its output connector.
We fix a port identifier to be of the form P(i) where i:Float is a rational number.

153

Concurrent Reo Chapter 5

We later use the identifier of a port to define the operation of linearization and
order actions.

A port contains a structure with two buffers that implement the atomic passing
of data from the input to the output connector. One buffer collects the data that the
input connector may put, and the other contains the request from the output connector
to take some data. Only when the two buffers are full, as shown with the error raised
by the end action, should the port allow both put(d) and take actions.

fmod PORT is
inc AGENT{ASemiring} .
inc PROTOCOL -INTERFACE .
inc PORT -INTERFACE .

...
eq computeActions(id, Port , M) = null .

ceq getPostState(r, Port , id , take , mtOutput , M) = M’
if M[k("data")] =/= nodata /\

M’ := insert(k("sync"), bd(true), M) .

ceq getPostState(r, Port , id , put(data), mtOutput , M) = M’
if M[k("data")] == nodata /\

M’ := insert(k("data"), data , M) .

ceq getPostState(id, Port , id, end , inputs , M) = M’
if M[k("data")] =/= nodata /\ M[k("sync")] == bd(true) /\

M’ := insert(k("data"), nodata ,
insert(k("sync"), bd(false), M)) .

ceq getPostState(id, Port , id, end , inputs , M) =
notAllowed(end)

if M[k("data")] =/= nodata or M[k("sync")] == bd(true) .

eq getPostState(r, Port , id, a, inputs , M) = M [owise] .

ceq getOutput(r, Port , id, take , M) =
k("data") |-> M[k("data")] if M[k("data")] =/= nodata .

eq getOutput(r, Port , id ’, a, M) = empty [owise] .

eq internalUpdate(id, Port , M) = M [owise] .

endfm

154

Chapter 5 Concurrent Reo

Connectors as agents We give three instances of primitive Reo connectors: a SYNC,
a FIFO, and a MERGER. Other primitive connectors, such as a replicator, syncdrain, etc,
could be defined similarly. While we do not expand on this point here, some parametric
connectors such as alternator(n) could be defined recursively as well, making use of
the port naming structure.

A SYNC agent has two ports on which it acts synchronously. The action of a SYNC

agent consists of an atomic sequence of two actions: a take on the input port, and a
put on the output port. The composite action succeeds if and only if the two parts
of the action succeeds, and the value put on the output port corresponds to the value
taken on the input port. Note that the value of the datum that a sync puts on its
output port is initially unknown. We use the symbol ? for such unknown value, and
use the operation resolve to instantiate the value at runtime.

fmod SYNC is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .
...
eq getOutput(Sync(p1, p2), Channel , id’, a, M) = empty .

eq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), take , (id, k("data
") |-> d), M) = insert(k("data"), d, M) .

eq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), take , inputs , M) =
notAllowed(take) [owise] .

ceq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), put(d), outputs ,
M) = insert(k("data"), nodata , M)
if M =/= notAllowed(take) .

eq getPostState(Sync(p1, p2), Channel , id, a, outputs , M) = M [owise] .

eq computeActions(Sync(p1 , p2) , Channel , M) = (((Sync(p1 , p2) , (take
; p1)), (Sync(p1, p2) , (put(?) ; p2))), 1) .

eq internalUpdate(Sync(p1 , p2), Channel , M) = M .

ceq resolve(put (?), Sync(p1, p2), Channel , M) = put(d)
if d := M[k("data")] .

endfm

A FIFO agent has two ports on which it acts in sequence. A FIFO agent has two
actions, a take action that stores the data from its input port to a memory, or a put

155

Concurrent Reo Chapter 5

action that outputs the data on the output port. The take action succeeds only if the
current memory cell is empty, and the put action succeeds only if the current memory
cell is full. As a result, the FIFO agent alternates between taking a value from its input
port, and putting that value to its output port.

fmod FIFO is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .
...
eq getOutput(id, Channel , id ’, a, M) = empty .

eq getPostState(Fifo(p1, p2), Channel , Fifo(p1, p2), take , (id, k("data
") |-> d), M) = insert(k("data"), d, insert(k("state"), nd(1), M))
.

eq getPostState(Fifo(p1, p2), Channel , Fifo(p1, p2), put(d), outputs , M
) = insert(k("data"), nodata , insert(k("state"), nd(0), M)) .

eq getPostState(Fifo(p1, p2), Channel , id, a, outputs , M) = M [owise] .
ceq computeActions(Fifo(p1, p2), Channel , M) = (Fifo(p1 , p2) , (take ;

p1), 1) if M[k("state")] == nd(0) .
ceq computeActions(Fifo(p, p’), Channel , M) = (Fifo(p, p’), (put(M[k("

data")]); p’), 1) if M[k("state")] == nd(1) .

eq internalUpdate(Fifo(p1 , p2), Channel , M) = M .
endfm

A MERGER is a ternary connector, that acts, for each of its port input, as a syn-
chronous channel with its output port. Moreover, the MERGER relates its two input
ports with a relation of exclusion, i.e., the two input ports cannot fire at the same
time. A MERGER with the list of ports P(1), P(2), P(3) has two actions: a for-
warding action from port P(1) to port P(3), or a forwarding action from port P(2)

to port P(3). The two actions are exclusive, as they cannot occur at the same time.
Moreover, the merger always enables both actions, which raises some non-determinism
at the system level (i.e., to chose which of the two actions is selected). Similarly to
the SYNC channel, a MERGER agent instantiates the value for the put action at runtime,
once the result of the take action is known. We use the ? symbol to denote a symbolic
value.

fmod MERGER is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .

156

Chapter 5 Concurrent Reo

eq getOutput(Merger(p1, p2, p3), Channel , id ’, a, M) = empty .

ceq getPostState(Merger(p1, p2, p3), Channel , Merger(p1 , p2 , p3), take ,
(id , k("data") |-> d), M) =

insert(k("data"), d, M) if M[k("data")] == nodata .
eq getPostState(Merger(p1 , p2 , p3), Channel , Merger(p1, p2, p3), take ,

inputs , M) = notAllowed(take) [owise] .
ceq getPostState(Merger(p1, p2, p3), Channel , Merger(p1 , p2 , p3), put(d

), outputs , M) =
insert(k("data"), nodata , M) if M =/= notAllowed(take) .

eq getPostState(Merger(p1 , p2 , p3), Channel , id, a, outputs , M) = M [
owise] .

eq computeActions(Merger(p1, p2, p3) , Channel , M) =
(((Merger(p1, p2 , p3), (take; p2)), (Merger(p1, p2, p3), (put(?); p3

))), 1) + (((Merger(p1 , p2 , p3), (take; p1)), (Merger(p1 , p2 , p3)
, (put(?); p3))), 1) .

eq internalUpdate(Merger(p1, p2, p3), Channel , M) = M .

ceq resolve(put (?), Merger(p1 , p2, p3), Channel , M) = put(d)
if d := M[k("data")] .

endfm

A PROD and CONS agent respectively implement a producer and consumer. Both
agents have a single port, on which they always perform, respectively, a put and a take

action. The PROD agent puts natural numbers as values on its port, and increments
the value if the put action succeeds. We use such canonical sequences of increasing
natural numbers to verify some firing properties of a Reo circuit. When a put action
succeeds for a PROD agent, its state is updated to contain the message that has been
sent in the k("sent") field. Similarly, when a take action succeeds for a CONS agent,
its state is updated to contain the message that has been received in the k("recv")

field.

fmod PROD is
inc AGENT{ASemiring} .
inc PROD -INTERFACE .
inc PORT -INTERFACE .

ceq getPostState(id , Producer , id ’, put(d) , actionoutput , M) =
insert(k("data"), nd(s(i)), insert(k("sent"), d, M)) if nd(i) := M[
k("data")] .

eq getPostState(id , Producer , id’, a , actionoutput , M) = M [owise] .

157

Concurrent Reo Chapter 5

eq getOutput(id , Producer , id’, a, M) = empty .

eq computeActions(Prod(id) , Producer , M) =
(Prod(id), (put(M[k("data")]); id), 1) .

eq internalUpdate(id, Producer , M) = insert(k("sent"), nodata , M) .
endfm

fmod CONS is
inc AGENT{ASemiring} .
inc CONS -INTERFACE .
inc PORT -INTERFACE .

eq getPostState(Cons(id) , Consumer , Cons(id), take , (id, k("data")
|-> d), M) = insert(k("recv"), d, M) .

eq getPostState(id , Consumer , id’, a , actionoutput , M) = M [owise] .

eq getOutput(id , Consumer , id’, a, M) = empty .

eq computeActions(Cons(id) , Consumer , M) =
(Cons(id), (take ; id), 1) .

eq internalUpdate(id, Consumer , M) = M .

endfm

5.2.2 Execution and analysis

We present in SCENARIO two system terms for which we run some analysis. For the first
scenario, the PROD and CONS are communicating through a sync channel. Therefore,
the only possible composite action is a clique in which the PROD agents puts a value on
port P(1.0), that is forwarded to port P(2.0) by the SYNC agent, and then consumed
by the CONS agent. The second scenario is similar, and models the PROD and CONS

agents communicating through a fifo channel.
Note that the SCENARIO module instantiates the linearization operation as fol-

lows: a take action on a port P(i) happens after a put action a port P(j) if i ≥ j;
and a take action on a port P(i) happens after a take action on a port P(j) if i > j.

Listing 5.5: Scenarios for Producer/Consumer protocols.

mod SCENARIO is
inc PORT .
inc PROD . inc CONS .

158

Chapter 5 Concurrent Reo

inc SYNC . inc FIFO . inc MERGER .
inc RUN . inc CONVERSION .

op init : Nat -> Global .

eq init (1) = [
[P(1.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[P(2.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[Prod(P(1.0)) : Producer |

k("data") |-> nd(1) ; false ; null]
[Cons(P(2.0)) : Consumer |

k("data") |-> nodata ; false ; null]
[Sync(P(1.0) , P(2.0)) : Channel |

k("data") |-> nodata ; false ; null]] .

eq init (2) = [
[P(1.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[P(2.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[Prod(P(1.0)) : Producer |

k("data") |-> nd(1) ; false ; null]
[Cons(P(2.0)) : Consumer |

k("recv") |-> nodata ; false ; null]
[Fifo(P(1.0) , P(2.0)) : Channel | k("state") |-> nd(0),

k("data") |-> nodata ; false ; null]] .

ceq linearization(aSet) = a linearization(aSet ’)
if a , aSet ’ := aSet .

ceq (id, (take ; P(i))) (id ’, (put(d) ; P(j))) aSeq ’ =
(id ’, (put(d); P(j))) (id, (take; P(i))) aSeq ’ if i >= j .

ceq (id1 , (take ; P(i))) (id2 , (take ; P(j))) aSeq ’ =
(id2 , (take ; P(j))) (id1 , (take ; P(i))) aSeq ’ if i > j .

endm

We run the two following queries on the two initial terms of SCENARIO. The first query
returns the first solution for which the same datum has passed from the producer to
the consumer. The solution shows the synchronicity of the SYNC channel.

The second query returns the first solution for which the data received by the
consumer has an offset of 1 with the data sent by the producer. The solution shows
the asynchronicity of the FIFO channel.

search [1] init (1) =>* [sys::Sys

159

Valve-controller Chapter 5

[Prod(P(1.0)) : Producer | M1::MapKD ,
k("sent") |-> nd(i::Nat); false; null]

[Cons(P(2.0)) : Consumer | M2::MapKD ,
k("recv") |-> nd(j::Nat); false; null]

] such that j::Nat == i::Nat .

Solution 1 (state 8) states: 9 rewrites: 1472 in 3ms cpu (0ms real)
(443774 rewrites/second)

...
i::Nat --> 1
j::Nat --> 1
==
search [1] init (2) =>* [sys::Sys
[Prod(P(1.0)) : Producer | M1::MapKD ,

k("sent") |-> nd(i::Nat); false; null]
[Cons(P(2.0)) : Consumer | M2::MapKD ,

k("recv") |-> nd(j::Nat); false; null]
] such that j::Nat =/= i::Nat .

Solution 1 (state 24) states: 25 rewrites: 6390 in 0ms cpu (2ms real) (~
rewrites/second)

...
i::Nat --> 2
j::Nat --> 1

5.3 Valve-controller

5.3.1 N-reservoir problem

Consider n reservoirs, filled with water. Each reservoir connects at the top to a valve
that, if switched on, inputs some water. Each reservoir has a hole at the bottom from
where water goes out. Each reservoir has a sensor measuring its water level. The
measures are accessible by a digital controller. A valve is placed at the top of the n
reservoirs, and fills, continuously, one of the reservoir at a time. The valve moves from
one reservoir to another after reception of a switch command from the controller.

The problem is to design a controller such that none of the reservoirs is observed
with its water level outside of given bounds, noted lk1 for the lower and lk2 for the higher
bounds, for the k-th reservoir. We first introduce some intuitive physical explanations
about the dynamics of the reservoirs, then specify the digital controller that interfaces
the physical components, and finally analyse one instance of the composite cyber-
physical system.

160

Chapter 5 Valve-controller

Physical part In the n-reservoirs problem, the physical part is described by the col-
lection of n reservoirs, and a valve. The water level of a reservoir follows a continuous
evolution: at each time t ∈ R+, there exists a value x(t) that corresponds to the water
level of the reservoir at t.

Along this part, we use t ∈ R+ for continuous time, n ∈ N for the number of
reservoirs, and k ∈ {1, ..., n} to denote the k-th reservoir.

Reservoir The reservoir of radius r captures, as a component, the evolution of the
water level over time. The height of the water at time t in the k-th reservoir, written
xk(t), follows the law xk(t) = xt0k + (

∫ t

t0
ik(u)− ok(u) du)/(πr

2), where xt0k ∈ R is the
initial level of water at t0 ∈ R+, ik(t) is the rate of incoming water and ok(t) is the
rate of outgoing water for t ≥ t0. Note that we use the relation V = πr2L where V
is the volume of a cylindrical reservoir of radius r and height L. The functions xk, ok
and ik are functions from R+ to R+.

The definition of xk(t) involves elements internal to the physical description of the
reservoir (e.g. ok(t), the rate of water going out), and external elements (e.g. ik(t),
the rate of water coming in). In particular, the function ik(t) depends on the valve
component’s specification.

The component for the reservoir of radius r is the pair Res(r, i) = (E,L) where

E = {read(l), inFlow(k) | l, k ∈ [0, 20]}

and L ⊆ TES (E) with σ ∈ L implies there exists a function f : R+ → R+ with

• f(0) = 15 and f ′ = −outFlow , where outFlow is a constant that models how
fast water goes out of the reservoir;

• σ(ti) = {read(l)} implies l = max(f(ti), 0);

• σ(ti) = {inFlow(k)} implies f(t) = f(ti) + (t− ti)× (k− outFlow)/(r2π) for all
t ∈]ti, ti+1], where k is the rate of water going in the reservoir in the interval
]ti, ti+1].

Valve The valve fixes the rate at which the water flows into the reservoir, and moves
its arm from one reservoir to another. The state of the valve is described by a value
s ∈ {0, ..., n} where s = i encodes the fact that the valve is placed above reservoir i
only. Under an input signal switch(k), the valve changes state from s = i to s = k.

161

Valve-controller Chapter 5

The component for the valve is the pair Valve(n) = (E(n), L) where

E(n) = {switch(k), outFlow(k, j) | k ∈ {1, ..., n}, j ∈ [0, 20]}

and L ⊆ TES (E(n)) with σ ∈ L such that every switch event is simultaneous with 0

outFlow in the reservoir that are not recipient of the valve, i.e., for all t, if switch(k) ∈
σ(t) then outFlow(i, 0) ∈ σ(t) for i ∈ {1, ..., n} \ {k} and outFlow(i, j) ∈ σ(t) with
j ̸= 0.

Continuous formulation of the problem The problem can be formulated in the
continuous setting as finding a sequence of states for the valve (or timed input signals
δ(t), equivalently) such that

∀k ∈ {1, .., n}. lk1 ≤ xk(t) ≤ lk2

where lk1 and lk2 are respectively lower and upper bounds for the water level xk of
reservoir k.

The function δ is not built as a physical component, but results from the measures
and the actions of a digital component on the physical system. We show in the next
subsection an instance of a controller, and later provide an instance of the physical
components (reservoir and valve) in order to analyse the resulting interaction with a
controller.

Cyber part The cyber component consists of a controller, reading from the reser-
voirs’ sensors, and acting on the valve. In sequence, this subsection details the mea-
surement device that interface the reservoir and the controller, the action that the
controller performs on the valve, and the controller’s state transition system.

The problem of decision inherent in the n-reservoirs system is dependent on the
water level measured by the controller. If the agent can read precisely the level of
water in each of the reservoir, at a high frequency, the reactivity of the system will be
higher than the case where the agent measures the reservoir’s state at low frequency,
with less accuracy. From a formal point of view, increasing the sensor precision also
increases the possible states in which the system can be observed, and therefore the
complexity of the representation. The trade off is to find a reading frequency that
discriminates the minimal amount of states, while ensuring the agent to be reactive
to achieve its goal.

162

Chapter 5 Valve-controller

As a result of an action, the dynamic of the physical system may change, and lead
to different sequences of measures from the controller.

Controller The controller has two types of events: read and switch. The read(i,l)
event is parametrized by the reservoir i that the controller reads, and displays the
value l that is read at the sensor. The switch(i) event synchronizes with the same
event of the valve and takes as parameter the value of the reservoir to which the valve
should switch.

A controller is a component defined as the pair C(T) = (E,L(T)) with

E = {read(i, l), switch(i) | i ∈ {1, ..., n}, l ∈ [0, 20]}

and L(T) ⊆ TES (E) is such that σ ∈ L(T) implies there exists a function f : R+ →
{1, ..., n} → [0, 20] with

• observations occur at multiple of T , i.e, σ(t) ̸= ∅ implies t = 0 mod T ;

• read(i, l) ∈ σ(t) implies f(t)(i) = l

The controller may change state after performing some measurements or moving
the valve, such as recording the sensor values or the reservoir to which the valve has
switched. In the next subsection, we give an executable specification for the controller,
the valve, and the reservoir. We analyse the strategy of the controller to keep the water
level of the reservoirs within a margin.

5.3.2 Execution and analysis

We present the three main Maude modules, namely the CONTROLLER, the VALVE, and
the RESERVOIR, to model and analyse properties of the N -reservoirs problem.

Controller The CONTROLLER agent has two main actions: read and switch. The
read action returns the value of the water level in all reservoirs. The CONTROLLER agent
stores the value in its state, and implements the function lowestLevel to return the
reservoir with the lowest water level (ordered with the reservoir identifier, in case of
two reservoirs having the smallest water level). The switch action takes a reservoir’s
identifier as argument and acts on the VALVE agent by switching the valve to that
reservoir.

Listing 5.6: A module for the CONTROLLER agent.

163

Valve-controller Chapter 5

fmod CONTROLLER is
inc SET{Nat} .
inc TRACE -INTERFACE .
inc RESERVOIR -INTERFACE .
inc CONTROLLER -INTERFACE .
inc AGENT{ASemiring} .
...
eq getPostState(id, Controller , id, read , output , M) =

getSensorValues(getResources(id, read), output , M) .
eq getPostState(id, Controller , id’, switch(r), actionoutput , M) =

insert(k("state"), d(r), M) .
eq getPostState(id, Controller , id’, a, actionoutput , M) = M [owise]

.

eq computeActions(id , Controller , M) = null [owise] .

*** Upper and lower bound for the reservoir level
ceq computeActions(id , Controller , M) = (id , (switch(r) ;

getResources(id , switch(r))) , 1) if
M =/= empty /\ r := lowestLevel(M) /\
d(r) =/= M[k("state")] /\ fd(j) := M[k("lev", r)] /\
j <= lowbound(r) .

eq computeActions(id, Controller , M) = (id, (read ; getResources(id ,
read)), 1) [owise] .

eq internalUpdate(id, Controller , M) = M .
endfm

Valve The VALVE agent has a fill action for each reservoir. The fill action takes
a flow value as argument, and changes the inflow rate in the RESERVOIR agent. As a
consequence, the state of the RESERVOIR will change its dynamic and the read action
from the CONTROLLER on the RESERVOIR will get updates accordingly. The fill action
of the VALVE is composite of two other actions that turn off the inflow of the other
RESERVOIR agents. In Listing 5.7, we show one of such composite action that fills
reservoir 1 and turns off the two other reservoirs.

Listing 5.7: A module for the VALVE agent.

fmod VALVE is
inc AGENT{ASemiring} .
inc VALVE -INTERFACE .
inc RESERVOIR -INTERFACE .
inc TIME -INTERFACE .
inc CONTROLLER -INTERFACE .

164

Chapter 5 Valve-controller

...
*** Passive agent:
ceq computeActions(id , Valve , M) = (((valve , (fill(k) ; res (1))), (

valve , (off ; res(2))), (valve , (off ; res(3)))), 1) if nd(1) := M[
k("state")] /\ fd(k) := M[k("inFlow")] .

...
ceq getPostState(r, Valve , id, switch(res(i)), output , M) = M’ if M’

:= insert(k("state") , nd(i) , M) .
eq getPostState(r, Valve , id , switch(r), output , M) = notAllowed(switch

(r)) [owise] .
eq getPostState(r, Valve , id , an , output , M) = M [owise] .

eq internalUpdate(id, Valve , M) = M .
endfm

Reservoir For simplicity, we set the radius of the RESERVOIR to be equal to
√
π,

and the inflow and outflow corresponds to the change of level in the reservoir. The
RESERVOIR agent has no actions, but reacts to the fill and off actions of the VALVE

agent, and the read action of the CONTROLLER agent. The read action generates an
output that contains the current level of the reservoir. The fill action changes the
vin state variable to take the value given by the VALVE agent. The off action sets
the vin state variable to 0.0. A RESERVOIR agent defines a function f that computes
the water level given the current level, the inflow and outflow models by vin and vout

respectively. At the end of every round, the RESERVOIR updates its state with the
value computed by f.

Listing 5.8: A module for the RESERVOIR agent.

fmod RESERVOIR is
inc AGENT{ASemiring} .
inc RESERVOIR -INTERFACE .
inc TIME -INTERFACE .
inc CONTROLLER -INTERFACE .
inc VALVE -INTERFACE .
...
*** Passive agent:
eq computeActions(id , Reservoir , M) = null .
*** Compute the level of the reservoir
op f : Float Float Float -> Float .
eq f(cl, vin , vout) = max(min(cl + (vin - vout) , 20.0) , 0.0) .

eq getOutput(id, Reservoir , id’, read , M) = k("lev") |-> M[k("lev")] .

165

Valve-controller Chapter 5

eq getPostState(id , Reservoir , id ’, read , output , M) = M .
ceq getPostState(id, Reservoir , id’, end , output , M) = insert(k("lev"),

fd(f(cl, vin , vout)), M)
if k("inFlow") |-> fd(vin) , k("outFlow") |-> fd(vout), k("lev")

|-> fd(cl), M’ := M .
eq getPostState(res(j), Reservoir , id ’, fill(vin), output , M) = insert(

k("inFlow"), fd(vin), M) .
eq getPostState(id , Reservoir , id ’, off , output , M) = insert(k("inFlow

"), fd(0.0) , M) .
eq getPostState(r, Reservoir , id , an , output , M) = M [owise] .

eq internalUpdate(id, Reservoir , M) = M .
endfm

Scenarios We present in Listing 5.9 a scenario for which a controller periodically
reads the value of the water level in the reservoirs, and switches the valve accordingly.
We set the maximum capacity for each reservoir to be 20.0, the outflow rate to be 2.0

and the inflow rate from the valve to be 5.0. Initially, the valve is above res(2).
We also define the linearization operation to order actions as follows. The read

action occurs first in the sequence, followed by the switch action, and the other actions
occur freely. The value taken by read action therefore takes the value of the water
level at the end of the previous round, i.e., after update of each RESERVOIR agent.

Listing 5.9: A module for the SCENARIO agent.

mod SCENARIO is
inc RESERVOIR . inc VALVE .
inc CONTROLLER . inc RUN .
...
*** Resources for controller agent.
eq getResources(id , read) = res(1), res(2), res(3) .
eq getResources(id , switch(id ’)) = valve .
eq getResources(id , off) = res(1), res(2), res(3) .

eq lowbound(res(i)) = 15.0 . eq upbound(res(i)) = 18.0 .

eq init = [[res(1) : Reservoir | k("lev") |-> fd (20.0) , k("state") |->
nd(0), k("inFlow") |-> fd(0.0) , k("outFlow") |-> fd(2.0) ; false

; null]
[res (2) : Reservoir | k("lev") |-> fd (20.0) , k("state") |-> nd(1), k(

"inFlow") |-> fd (5.0) , k("outFlow") |-> fd (2.0) ; false ; null]
[res (3) : Reservoir | k("lev") |-> fd (20.0) , k("state") |-> nd(0), k(

"inFlow") |-> fd (0.0) , k("outFlow") |-> fd (2.0) ; false ; null]

166

Chapter 5 Valve-controller

[valve : Valve | k("state") |-> nd(2), k("inFlow") |-> fd(5.0) ;
false ; null]

[controller : Controller | k("state") |-> d(nil) ; false ; null]] .
...
ceq linearization(aSet) = a linearization(aSet ’)
if a , aSet ’ := aSet .

eq a (id , (read ; res)) = (id , (read ; res)) a .
ceq a (id , (switch(id ’); res)) = (id, (switch(id ’); res)) a
if (id’, (an ; res ’)) := a /\ an =/= read .

endm

Search queries We run two queries on the scenario of Listing 5.9. The first query
searches for a state for which all the controller has read a value for the water level
which is below 8.0. We can see that one of such solution exists as the result of the
query.

The second query searches for a state for which the controller read one of the
reservoir’s water level to be 0.0. As shown in the output, a solution exists, and res(2)

may reach a water level of 0.0.

Listing 5.10: Two search queries for some safety properties.

search [1] in SCENARIO : init =>* [sys:Sys
[controller : Controller | M::MapKD , k("lev",res(1)) |-> fd(j:: Float), k(

"lev",res (2)) |-> fd(i:: Float), k("lev",res (3)) |-> fd(k::Float) ;
false ; null]

] such that (j:: Float < 8.0 and k::Float < 8.0) and i::Float < 8.0 = true
.

Solution 1 (state 180)
states: 181 rewrites: 27201 in 13ms cpu (12ms real) (2041963 rewrites/

second)
...
j::Float --> 3.0 i:: Float --> 7.0 k::Float --> 7.0

search [1] init =>*
[sys:Sys

[controller : Controller | k("lev", res(1)) |-> fd(j::Float), k("lev
", res(2)) |-> fd(i::Float), k("lev", res(3)) |-> fd(k::Float), M
::MapKD ; false ; null]

] such that i:: Float == 0.0 or j::Float == 0.0 or k::Float == 0.0 .

Solution 1 (state 96)

167

Robot-Battery-Field system Chapter 5

states: 97 rewrites: 14927 in 6ms cpu (6ms real) (2240618 rewrites/
second)

...
j::Float --> 1.4e+1 i::Float --> 0.0 k::Float --> 9.0

However, after changing the rate of the valve from 5.0 to 7.0, the same queries
as in Listing 5.10 return no solutions. As a consequence, the strategy implemented
in the CONTROLLER agent therefore successfully keeps the water level above 8.0 for all
reservoirs, and prevent any reservoir to reach 0.0.

5.4 Robot-Battery-Field system

We propose to study three properties:

1. Safety property: In the first scenario, we model two TROLL agents, moving on
a shared FIELD, with private BATTERY agents; we study the cases for which the
two robots can exchange their position without running out of energy.

2. Liveness property: In the second scenario, the field is equipped with a station,
where the TROLL agent can recharge its battery. We want to prevent the agent
from running out of energy while oscillating between the two locations, i.e., if
the station can always supply energy, we want a sequence of actions such that
the agent never runs out of energy.

3. Self-sorting property: In the third scenario, we place three TROLL agents on a
grid, each with a unique natural number identifier. We study some self-sorting
property of the system by global coordination (e.g., use of an external protocol)
or local strategies (e.g., ranking of each agent’s actions).

We consider the battery, robot, and grid components introduced in Section 1.3 and
formalized in Section 2.1.6 and Section 2.2.3 as the expression

Sys(n, T1, ..., Tn) = ▷◁i∈{1,...,n} (R(i, Ti)×ΣRiBi
Bi)×ΣRF

Gµ({1, ..., n}, n, 2)

made of n robots R(i, Ti), each interacting with a private battery Bi under the inter-
action signatures ΣRiBi

, and in product with a grid G under the interaction signature
ΣRG. We use ▷◁ for the product with the free interaction signature (i.e., every pair
of TESs is composable), and the notation ▷◁i∈{1,...,n} {Ci} for C1 ▷◁ ... ▷◁ Cn as ▷◁ is
commutative and associative.

168

Chapter 5 Robot-Battery-Field system

R5 R4 R3 R2 R1
⇒∗ R1 R2 R3 R4 R5

Figure 5.1: Initial state of the unsorted robots (left), and final state of the sorted robots
(right).

R1 R2 R3 R4 R5

t1 N - - - -
t2 W - - - -
t3 (3; 1) - - - -
...

R1 R2 R3 R4 R5

t1 N - - - -
t2 W E N - -
t3 S (4; 0) E - -
...

R1 R2 R3 R4 R5

t1 N - - - N
t2 W E - W E
t3 S - - - S
...

Table 5.1: Each table displays the three first observables at times t1, t2, and t3 for three
TESs in the behavior of the product of components R1, R2, R3, R4, and R5 on the grid of
Figure 5.1. We omit the subscript and use the column to identify the events. The symbol -
represents the absence of observation in the TES.

We fix n = 5 and the same period T for each robots. We write E for the set of
events of the composite system Sys(2, T). We also reuse the grid component introduced
in Section 2.2.3 where µ is the initial position of the robots on the grid, and the
parameters n and 2 a refers to the x and y length of the grid. For simplicity, use Ri

to denote the composite component (R(i, T)×ΣRiBi
Bi) with fixed period T .

Self-sorting robots Figure 5.1 shows five robot instances, each of which has a
unique and distinct natural number assigned, positioned at an initial location on a
grid. The goal of the robots in this example is to move around on the grid such that
they end up in a final state where they line-up in the sorted order according to their
assigned numbers.

Three first observations for three behaviors are displayed in Table 5.1. Each be-
havior exposes different degrees of concurrency, where in the left behavior, only robot
R1 moves, while in the middle behavior, robots R1 and R2 swap their positions, and in
the right behavior both R1 and R4 swap their positions with R2 and R5, respectively.

We consider the following property: eventually, the position of each robot Ri is
(i, 0)Ri

, i.e., every robot successfully reaches its place. This property is a trace prop-
erty, which we call Psorted and consists of every behavior σ ∈ TES (E) such that there

169

Robot-Battery-Field system Chapter 5

R5 R4 R3 R2 R1
⇒

R1

R5 R4 R3 R2
⇒

R3

R2

R4R5

R1

Figure 5.2: Initial state of the unsorted robot (left) leading to a possible deadlock (right)
if each robot follows its strategy.

exists an n ∈ N with σ(n) = (On, tn) and (i, 0)Ri
∈ On for all robots Ri. As shown

in Table 5.1, the set of behaviors for the product of robots is large, and the property
Psorted does not (necessarily) hold a priori : there exists a composite behavior τ for
the component R1 ▷◁ R2 ▷◁ R3 ▷◁ R4 ▷◁ R5 ▷◁ F ({1, 2, 3, 4, 5}) such that τ ̸∈ Psorted .

Robots may beforehand decide on some strategies to swap and move on the grid
such that their composition satisfies the property Psorted . For instance, consider the
following strategy for each robot Rn:

• swapping : if the last read (x, y) of its location is such that x < n, then move
North, then West, then South.

• pursuing : otherwise, move East.

Remember that the grid prevents two robots from moving to the same cell, which
is therefore removed from the observable behavior. We emphasize that some sequences
of moves for each robot may deadlock, and therefore are not part of the component
behavior of the system of robots, but may occur operationally by taking a composable
action step by step (see Section 4.1.2). Consider Figure 5.2, for which each robot
follows its internal strategy. Because of non-determinism introduced by the timing of
each observations, one may consider the following sequence of observations: first, R1

move North, then West; in the meantime, R2 moves West, followed by R3, R4, and
R5. By a similar sequence of moves, the set of robots ends in the configuration on the
right of Figure 5.2. In this position and for each robot, the next move dictated by its
internal strategy is disallowed, which corresponds to a deadlock. While behaviors do
not contain finite sequences of observations, which makes the scenario of Figure 5.2
not expressible as a TES, such scenario may occur in practice. We give in next Section
some analysis to prevent such behavior to happen.

Alternatively, the collection of robots may be coordinated by an external protocol
that guides their moves. Besides considering the robot and the grid components,
we add a third kind of component that acts as a coordinator. In other words, we
make the protocol used by robots to interact explicit and external to them and the
grid; i.e., we assume exogenous coordination. Exogenous coordination allows robots

170

Chapter 5 Robot-Battery-Field system

to decide a priori on some strategies to swap and move on the grid, in which case their
external coordinator component merely unconditionally facilitates their interactions.
Alternatively, the external coordinator component may implement a protocol that
guides the moves of a set of clueless robots into their destined final locations. The
most intuitive of such coordinator is the property itself as a component. Indeed,
let Csorted = (E,L) be such that E =

⋃
i∈I ERi

with I = {1, 2, 3, 4, 5} and L =

Psorted . Then, and as shown in [62], the coordinated component R1 ▷◁ R2 ▷◁ R3 ▷◁

R4 ▷◁ R5 ▷◁ G({1, 2, 3, 4, 5}, 5, 2) ▷◁ Csorted trivially satisfies the property Psorted .
While easily specified, such coordination component is non-deterministic and not easily
implementable. We provide an example of a deterministic coordinators.

As discussed, we want to implement the property Psorted as a collection of small co-
ordinators that swap the position of unsorted robots. Intuitively, this protocol mimics
the behavior of bubble sort, but for physical devices. Given two robot identifiers R1

and R2, we introduce the swap component S(R1, R2) that coordinates the two robots
R1 and R2 to swap their positions. Its interface ES(R1, R2) contains the following
events:

• start(S(R1,R2)) and end(S(R1, R2)) that respectively notify the beginning and
the end of an interaction with R1 and R2. Those events are observed when the
swap protocol is starting or ending an interaction with either R1 or with R2.

• (x, y)R1
and (x, y)R2

that occur when the protocol reads, respectively, the posi-
tion of robot R1 and robot R2,

• dR1 and dR2 for all d ∈ {N,W,E, S} that occur when the robots R1 and R2

move;

• locked(S(R1,R2)) and unlocked(S(R1,R2)) that occur, respectively, when another
protocol begin and end an interaction with either R1 and R2.

The behavior of a swapping protocol S(R1, R2) is such that, it starts its protocol
sequence by an observable start(S(R1, R2)), then it moves R1 North, then R2 East,
then R1 West and South. The protocol starts the sequence only if it reads a position
for R1 and R2 such that R1 is on the cell next to R2 on the x-axis. Once the sequence
of moves is complete, the protocol outputs the observable end(S(R1, R2)). If the
protocol is not swapping two robots, or is not locked, then robots can freely read their
positions.

Swapping protocols interact with each others by locking other protocols that share
the same robot identifiers. Therefore, if S(R1,R2) starts its protocol sequence, then

171

Robot-Battery-Field system Chapter 5

S(R2, Ri) synchronizes with a locked event locked(S(R2,Ri)), for 2 < i. Then, R2

cannot swap with other robots unless S(R1,R2) completes its sequence, in which case
end(S(R1, R2)) synchronizes with unlocked(S(R2,Ri)) for 2 < i. We extend the un-
derlying composability relation κ on observations such that, for i < j, simultaneous
observations (O1, t) and (O2, t) are composable, i.e., ((O1, t), (O2, t)) ∈ κ, if:

start(S(Ri,Rj)) ∈ O1 =⇒ ∃k.k < i.locked(S(Rk, Ri)) ∈ O2∨

∃k.j < k.locked(S(Rj , Rk)) ∈ O2

and

end(S(Ri,Rj)) ∈ O1 =⇒ ∃k < i.unlocked(S(Rk, Ri)) ∈ O2∨

∃j < k.unlocked(S(Rj , Rk)) ∈ O2

For each pair of robots Ri, Rj such that i < j, we introduce a swapping protocol
S(Ri, Rj). As a result, the coordinated system is given by the following composition:

R1 ▷◁ R2 ▷◁ R3 ▷◁ R4 ▷◁ R5 ▷◁ G({1, 2, 3, 4, 5}, 5, 2) ▷◁i<j S(Ri, Rj)

Note that the definition of ▷◁ imposes that, if one protocol starts its sequence, then
all protocols that share some robot identifiers synchronize with a lock event. Similar
behavior occurs at the end of the sequence.

5.4.1 Execution and analysis

Main agents To illustrate the use of our framework to simulate and verify cyber-
physical systems, we present an agent specification for three components: a FIELD, a
TROLL, and a BATTERY. A FIELD component interacts with the TROLL component by
reacting to its move action, and its sensor reading. As shown in Listing 5.11 the FIELD
agent has no actions, but reacts to the move action of the TROLL agent by updating its
state and changing the agent’s location. Currently, the update is discrete, but more
sophisticated updates can be defined (e.g., changing the mode of a function recording
the trajectory of the TROLL agent). In the case where the state of the FIELD agent
forbids the TROLL agent’s move, the FIELD agent enters in a disallowed state marked
as notAllowed(an), with an as the action name. The FIELD responds to the read
sensor action by returning the current location of the TROLL agent as an output.

Listing 5.11: Extract from the FIELD Maude module.

172

Chapter 5 Robot-Battery-Field system

fmod FIELD is
inc TROLL -INTERFACE .
inc FIELD -INTERFACE .
inc PROTOCOL -INTERFACE .
inc AGENT{ASemiring} .
...
*** Passive agent:
eq computeActions(id , Field , M) = null .

eq internalUpdate(id , Field , M) = M .

ceq getPostState(r, Field , id, a, mtOutput , M) = M’
if isMove ?(a) /\

k(loc) |-> d(id) , M1 ’ := M /\
loc ’ := next(loc , a) /\
loc ’ =/= loc /\
M[k(loc ’)] == undefined /\
M’ := k(loc ’) |-> d(id), M1’ .

ceq getPostState(r, Field , id, a, mtOutput , M) = notAllowed(a)
if isMove ?(a) /\ k(loc) |-> d(id) , M1’ := M /\

loc ’ := next(loc , a) /\ ((loc ’ =/= loc and M[k(loc ’)] =/=
undefined) or loc ’ == loc) .

ceq getOutput(r, Field , id, readSensors(position sn), M)
= (k("pos") |-> loc , M’)

if k(loc) |-> d(id) , M1’ := M /\
M’ := (k("obstacles") |-> obstacle(1, id , loc , M)) .

endfm

A TROLL agent reacts to no other agent actions, and therefore does not include
any agent interface. A TROLL agent uses the function getSoftActions to return a
ranked set of actions given its state, and implements the computeActions operation
by returning the ranked set of actions. The operation getSoftAction implements a
strategy for the agent which, for instance, ranks higher the move action that moves
the robot closer to its target location. The expression may contain more than one
action, with different weights. The weights of the action may depend on the internal
goal that the agent set to itself, as for instance reaching a location on the field. The
TROLL agent specifies how it reacts to, e.g., the sensor value input from the field, by
updating the corresponding key in its state with getSensorValues.

Listing 5.12: Extract from the TROLL Maude module.

fmod TROLL is

173

Robot-Battery-Field system Chapter 5

inc AGENT{ASemiring} .
inc LOCATION .
inc TROLL -INTERFACE .

eq computeActions(id , Troll , M) = getSoftActions(id , M ,
trollActions(id , M)) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(1), M) if M[k("
read")] == nd(0) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(0), M) if M[k("
read")] == nd(1) .

ceq getPostState(id, Troll , id, readSensors(sn), sensorvalues , M) = M’
if M’ := getSensorValues(getResources(id , readSensors(sn)) ,

sensorvalues), k("goal") |-> M[k("goal")], k("read") |-> nd(1)
.

endfm

A BATTERY agent does not act on any other agent, as the FIELD, but reacts to
the TROLL agent actions. Each move action triggers in the BATTERY agent a change of
state that decreases its energy level. As well, each charge action changes the BATTERY
agent state to increase its energy level. Similarly to the field, in the case where the
state of the battery agent has 0 energy, the battery enters a disallowed state marked
as notAllowed(an), with an as the action name. A sensor reading by the TROLL agent
triggers an output from the BATTERY agent with the current energy level.

Listing 5.13: Extract from the BATTERY Maude module.

fmod BATTERY is
inc AGENT{ASemiring} .
inc BATTERY -INTERFACE .
inc TROLL -INTERFACE .

*** Passive agent:
eq computeActions(id, Battery , M) = null .
eq internalUpdate(id, Battery , M) = M .

ceq getOutput(r, Battery , id , readSensors(energy sn), M)
= k("bat") |-> M[k("bat")]

if r := getBattery(id) .

*** Next state.
ceq getPostState(r, Battery , id, an , mtOutput , M) = M’

174

Chapter 5 Robot-Battery-Field system

if isMove ?(an) /\
k("bat") |-> nd(s i) , M1 ’ := M /\
M’ := insert(k("bat") , nd(i) , M) .

ceq getPostState(r, Battery , id, charge(j), mtOutput , M) = M1
if nd(i) := M[k("bat")] /\

i < capacity /\
M1 := insert(k("bat") , nd(min (i + j, capacity)) , M) .

ceq getPostState(r, Battery , id, an , mtOutput , M) = notAllowed(an)
if isMove ?(an) /\ M[k("bat")] == nd(0) .

endfm

A PROTOCOL agent swap(id1,id2) acts on the TROLL agents id1 and id2, and is
used as a resource by the two TROLL agent move actions. A PROTOCOL internally has a
finite state machine T(id):Fsa that accepts or rejects a sequence of actions. Each move

action of a TROLL is accepted only if there is a transition in the PROTOCOL agent state
transition system. A PROTOCOL agent swap(id1, id2) always tries to swap agents
with ids id1 and id2. Thus, if id2 is on the direct East position of id1 on the field,
then action start succeeds, and the protocol enters in the sequence move(N) for id2,
move(W) for id2, move(E) for id1, and then move(S) for id2. Eventually the sequence
ends with finish action. The PROTOCOL agent may also have some transitions labeled
with a set of actions, one for each of the agent id1 and id2. In which case, the
transition succeeds if the clique contains, for each agent involved in the protocol, an
action that is composable with the action labeling the protocol transition. We use the
end action to mark the end of the sequence of actions forming a clique. The PROTOCOL
may reject such end action if the clique does not cover the set of actions labeling the
transition, which therefore discard the set of actions as not composable.

Listing 5.14: Extract from the SWAP protocol Maude module.

fmod SWAP is
inc AGENT{ASemiring} .
inc TROLL -INTERFACE .
inc PROCESS -INTERFACE .
inc FIELD -INTERFACE .
inc PROTOCOL -INTERFACE .

op T : Identifier -> Fsa .
*** Update of state from external move or its own swapping actions
ceq getPostState(id, Protocol , id’, move(d), sysState , M) = M’

if {q(i)} := getState(M) /\

175

Robot-Battery-Field system Chapter 5

M’ := insert(k("recv") , recv(union(getLabel(M), {l(id’,
move(d))})) , M) .

*** Ending transition correctly
ceq getPostState(id , Protocol , id , end , sysState , M) = M’

if state := getState(M) /\
label := getLabel(M) /\
tr := getTransitions(T(id)) /\
(state , label , state ’), tr ’ := tr /\
M’ := insert(k("recv") , recv ({}), insert(k("state") , ds(

state ’) , M)) .

*** Not allowed states
eq getPostState(id, Protocol , id ’, end , sysState , M) = notAllowed(

end) [owise] .
eq getPostState(id, Protocol , id ’, a, sysState , M) = M [owise] .

eq getOutput(id, Protocol , id’, a, M) = empty .
ceq computeActions(swap(id, id ’) , Protocol , M) = ((swap(id, id ’) ,

(start ; getResources(swap(id , id ’), start))), 5)
if {q(0)} := getState(M) .

eq computeActions(swap(id , id ’), Protocol , M) = null [owise] .
eq internalUpdate(swap(id , id ’), Protocol , M) = M .

endfm

Composability relation The TROLL, FIELD, and BATTERY modules specify the state
space and transition functions for, respectively, a TROLL, FIELD, and BATTERY agent.
A system consisting of a set of instances of such agents would need a composability
relation to relate actions from each agent.
More precisely, we give some possible cliques of a system consisting of two TROLL agents
with identifiers id(0), id(1):TROLL, one field:FIELD agent, and two BATTERY agents
bat(0), bat(1):BATTERY.
The actions of agent id(0) compose with outputs of its corresponding battery bat(0)

and of the shared field agent.
For instance, a move action of the id(0) agent is of the form (id(0), (move(d),

{bat(0), field})), where d is a direction for the move, and composes with outputs
of the battery and field, both notifying that the move is possible.
Alternatively, a read action of the id(0) agent is of the form (id(0), (read, {bat(0),

field})) and composes with outputs of the battery and field, each giving the battery
level and the location of agent id(0).

176

Chapter 5 Robot-Battery-Field system

Safety property: not running of energy We consider a system containing two
TROLL agents, with identifiers id(0) and id(1), paired with two BATTERY agents with
identifier bat(0) and bat(1), and sharing the same FIELD resource. The goal for
each agent is to reach the initial location of the other agent. If both agents follow
the shortest path to their goal location, there is an instant for which the two agents
need to swap their positions. The crossing can lead to a livelock, where agents move
symmetrically until the energy of the batteries runs out.

The initial system term, without the protocol, is given by:

eq init = [[id(0): Troll | k("goal") |-> (5 ; 5) ; false ; null]
[bat (0) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[id(1): Troll | k("goal") |-> (0 ; 5) ; false ; null]
[bat (1) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[field : Field | (k((0 ; 5)) |-> d(id(0)) , k((5 ; 5)) |-> d(id(1)))

; false ; null]] .

The initial system term with the protocol is given by:

eq init = [[id(0): Troll | k("goal") |-> (5 ; 5) ; false ; null]
[bat (0) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[id(1): Troll | k("goal") |-> (0 ; 5) ; false ; null]
[bat (1) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[swap(id(0),id(1)) : Protocol | k("state") |-> ds({q(0)}), k("recv") |->

recv ({}) ; false ; null]
[field : Field | (k((0 ; 5)) |-> d(id(0)) , k((5 ; 5)) |-> d(id(1)))

; false ; null]] .

We analyze in Maude two scenarios. In one, each robot has as strategy to take the
shortest path to reach its goal. As a consequence, a robot reads its position, computes
the shortest path, and submits a set of optimal actions. A robot can sense an obstacle
on its direct next location, which then allows for sub-optimal lateral moves (e.g., if the
obstacle is in the direct next position in the West direction, the robot may go either
North or South). In the other scenario, we add a protocol that swaps the two robots if
robot id(0) is on the direct next location on the west of robot id(1). The swapping
is a sequence of moves that ends in an exchange of positions of the two robots.

In the two scenarios, we analyze the behavior of the resulting system with two
queries. The first query asks if the system can reach a state in which the energy level
of the two batteries is 0, which means that its robot can no longer move:

search [1] init =>* [sys::Sys
[bat(1) : Battery | k(level) |-> 0 ; true ; null],
[bat(2) : Battery | k(level) |-> 0 ; true ; null]] .

177

Robot-Battery-Field system Chapter 5

The second query asks if the system can reach a state in which the two robots suc-
cessfully reached their goals, and end in the expected locations:
search [1] init =>* [sys::Sys [field : Field | k((5 ; 5))

|-> d(id(0)), k((0 ; 5)) |-> d(id(1)) ; true ; null]] .

As a result, when the protocol is absent, the two robots can enter in a livelock
behavior and eventually fail with an empty battery:

Solution 1 (state 80)
states: 81 rw: 223566 in 73ms cpu (74ms real) (3053554 rw/s)

Alternatively, when the protocol is used, the livelock is removed using exogenous
coordination. The two robots therefore successfully reach their end locations, and stop
before running out of battery:

No solution. states: 102
rewrites: 720235 in 146ms cpu (145ms real) (4920041 rw/s)

In both cases, the second query succeeds, as there exists a path for both scenarios
where the two robots reach their end goal locations. The results can be reproduced
by downloading the archive at [1].

Liveness property: patrolling trolls A strategy ranks the action of an agent
with respect to some internal measure. For instance, a TROLL agent prefers an action
that moves it closer to its goal.

fmod STRATEGY is
inc TROLL -INTERFACE .
inc AGENT{ASemiring} .
...
*** Valuation of an action based on the state of the agent M, and some

additional measures (current goal ,
*** distance to its goal , obstacles on the next cells).
ceq getValue(id, M, a) = (id, (a; getResources(id, a)), 2)

if isMove ?(a) /\
M[k("read")] == nd(1) /\
M[k("pos")] =/= undefined /\
closest(a, M) /\
enabled ?(a , M) /\
M[k("pos")] =/= M[k("goal")] /\
M[k("charging")] =/= nd(1) .

ceq getValue(id, M, a) = (id, (a; getResources(id, a)), 1)
if isMove ?(a) /\

M[k("read")] == nd(1) /\
M[k("pos")] =/= undefined /\

178

Chapter 5 Robot-Battery-Field system

not closest(a, M) /\
a a’ := neighbors(a, M) /\
enabled ?(a, M) /\
M[k("pos")] =/= M[k("goal")] /\
M[k("charging")] =/= nd(1) .

...
endfm

We verify the property of liveness for the system, i.e., that the two robots can
always eventually swap their positions. Using the Maude search engine, we look for
a state for which the two robots have an empty battery level. We find at least one
solution for such state:

search [1] in SCENARIO : init =>* [sys::Sys
[bat (0) : Battery | k("bat") |-> nd(0) ; true ; null]
[bat (1) : Battery | k("bat") |-> nd(0) ; true ; null]] .

Solution 1 (state 389)
states: 390 rewrites: 1739739 in 299ms cpu (301ms real) (5803637

rewrites/second)
sys::Sys -->
[field : Field | k(2 ; 3) |-> d(id(0)), k(3 ; 3) |-> d(id(1)) ; true ;

null]
[id(0) : Troll | k("bat") |-> nd(1), k("goal") |-> 5 ; 5, k("next") |-> 0

; 5, k("pos") |-> 2 ; 2, k("read") |-> nd(0)
; false ; null]

[id(1) : Troll | k("bat") |-> nd(1), k("goal") |-> 0 ; 5, k("next") |-> 5
; 5, k("pos") |-> 3 ; 2, k("read") |-> nd(0)

; false ; null]

For the liveness property, the TROLL changes its goal while it reaches its first ob-
jective. Additionally, the TROLL agent has an additional charge action that, when
located on the station, charges its corresponding battery.

fmod TROLL -ALT is
inc TROLL .
inc STRATEGY .

var id : Identifier .
var M M’ upds : MapKD .
var a : AName .
var names : ANames .
var actionoutput : IdStates .
var sn : SensorNames .
var sensorvalues : IdStates .
vars d1 d2 : Data .

179

Robot-Battery-Field system Chapter 5

op swapGoal? : MapKD -> MapKD .
ceq swapGoal ?(M) = insert(k("next"), d1, insert(k("goal"), d2 , M))

if d1 := M[k("goal")] /\
d2 := M[k("next")] /\
M[k("pos")] == M[k("goal")] .

eq swapGoal ?(M) = M [owise] .

*** Alternates between read an write actions
ceq getPostState(id, Troll , id, a, actionoutput , M) = insert(k("read"),

nd(0), M) if isMove ?(a) .

ceq getPostState(id, Troll , id, readSensors(sn), sensorvalues , M) = M’
if upds := getSensorValues(getResources(id, readSensors(sn)) ,

sensorvalues) /\
M’ := insert(k("read"), nd(1),

insert(k("bat"), upds[k("bat")],
insert(k("station"), upds[k("station")],
insert(k("pos"), upds[k("pos")], M)))) .

ceq getPostState(id, Troll , id, lock , actionoutput , M) = M’
if M’ := insert(k("charging"), nd(1), M) .

ceq getPostState(id, Troll , id, unlock , actionoutput , M) = M’
if M’ := insert(k("charging"), nd(0), M) .

eq getPostState(id , Troll , id , end , actionoutput , M) = swapGoal ?(M) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(1), M) if M[k("
read")] == nd(0) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(0), M) if M[k("
read")] == nd(1) .

eq computeActions(id , Troll , M) = getSoftActions(id , M ,
trollActions(id , M)) .

ceq getSoftActions(id , M , a names) = getValue(id, M, a) +
getSoftActions(id , M ,names) if a =/= void .

eq getSoftActions(id , M , void) = null .

endfm

We change SCENARIO to now use the new TROLL-ALT module. We search if both
trolls can run out of energy:

search [1] in SCENARIO -STATION : init =>* [sys::Sys
[bat (0) : Battery | k("bat") |-> nd(0) ; true ; null]

180

Chapter 5 Robot-Battery-Field system

[bat (1) : Battery | k("bat") |-> nd(0) ; true ; null]] .

No solution.
states: 280 rewrites: 1155509 in 189ms cpu (189ms real) (6091179

rewrites/second)

The new strategy for the robot changes the overall behavior of the composition, and
makes the liveness property true.

Self-sorting property The property Psorted is a reachability property on the state
of the grid, that states that eventually, all robots are in the sorted position. In Maude,
given a system of 3 robots, we express such reachability property with the following
search command:

search [1] init =>*
[sys::Sys [field : Field |

k((0;0)) |-> d(id(0)),
k((1;0)) |-> d(id(1)),
k((2;0)) |-> d(id(2)) ; true ; null]] .

The initial configuration of the grid is such that robot 0 is on location (2; 0), robot 1 on
(1; 0), and robot 2 on (0; 0). Since the grid is of size 3 by 2, robots need to coordinate
to reach the desired sorted configuration.

Table 5.2 features three variations on the sorting problem. The first system is
composed of robots whose move are free on the grid. The second adds one battery for
each component, whose energy level decreases for each robot move. The third system
adds a swap protocol for every pair of two robots. The last system adds protocol and
batteries to compose with the robots.

We record, for each of those systems, whether the sorted configuration is reachable
(Psorted), and if all three robots can run out of energy (Pbat). Observe that the reach-
ability query returns a solution for both system: the one with and without protocols.
However, the time to reach the first solution increases as the number of states and
transition increases (adding the protocol components). We leave as future work some
optimizations to improve on our results.

181

Robot-Battery-Field system Chapter 5

Table 5.2: Evaluation of different systems for the Psorted and Pbat behavioral properties,
where st. stands for states, rw for rewrites. Note that the Pbat property is not evaluated
when the system does not contain battery components.

System Psorted Pbat

▷◁
0≤i≤2

Ri ▷◁ G 12.103 st., 25s, 31.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G 12.103 st., 25s, 31.106 rw true

▷◁
0≤i≤2

Ri ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 44s, 80.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 71s, 83.106 rw false

182

