
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

Chapter 4

Operational specifications of
components

In Chapter 2, we presented a model of components that captures timed-event sequences
(TESs) as instances of their behavior. An observation is a set of events with a unique
time stamp. A component has an interface that defines which events are observable,
and a behavior that denotes all possible sequences of its observations (i.e., a set of
TESs). Our component model is equipped with a family of operators parametrized
with an interaction signature. Thus, cyber-physical systems are defined modularly,
where the product of two components models the interaction occurring between the
two components. The strength, as well as practical limitation, of our semantic model
is its abstraction: there is no fixed machine specification that generates the behavior of
a component. We give, in this chapter, three operational descriptions of components
each at different level of abstraction.

As a first operational specification, we present a state-based description of a com-
ponent’s behavior using labeled transition systems. A TES transition system has
transitions labeled with observations, and enriches components with states. Different
TES transition systems may denote the same component, as a component is oblivious
to internal non-determinism of the machinery that manifests its behavior. As for com-
ponents, we introduce a family of parametrized algebraic products on TES transition
systems. The parameter here is a composability relation on observations, and each
transition in the product is the result of the composition of a pair of transitions with
composable labels. We show that the TES transition system component semantics is

111

Chapter 4

compositional with respect to such products, i.e., the component resulting from the
product of two TES transition systems is equal to the product of the components re-
sulting from each TES transition system. On components, the composability relation
is co-inductively lifted from observations to TESs, and the composition function is set
union on observations and interleaving on streams.

Because the composability relation on observations is a step-wise operation, it
may lead to deadlock states in the product TES transition system, i.e., states with
no outgoing transitions. We call two TES transition systems compatible with respect
to a composability relation on observations if, for every reachable pair of states, there
is at least one pair of transitions whose pair of labels is composable. We give some
sufficient conditions for TES transition systems to be compatible, and show that if
two TES transition systems are compatible, then their product can be done lazily, i.e.,
step by step at runtime. Note that, however, a TES transition system may not be
executable, e.g., have countably infinite states or transitions.

As a second operational specification, we introduce a finitely representable descrip-
tion of components in a rewriting logic specification. Rewriting logic is a powerful
framework to model concurrent systems [69, 68]. Moreover, implementations, such
as Maude [29], make system specifications both executable and analyzable. Rewrit-
ing logic is suitable for specifying cyber-physical systems, as its underlying equational
theory can represent both discrete and continuous changes. We give an operational
specification for components as rewriting systems, and show its compositionality under
some assumptions.

Our rewriting specification has the following benefits. First, performing lazy com-
position keeps the representation of an interacting system small. Second, step-wise
runtime composition renders our runtime framework modular, where run-time replace-
ment of individual components becomes possible (as long as the update complies with
some rules). Finally, the runtime framework more closely matches the architecture
of a distributed framework, where entities are physically separated and no party may
have access to the whole description of the entire system. A Maude implementation
of our framework is provided in Chapter 5, with a series of detailed examples. The
rewriting specification of components, however, does not offer mechanisms to resolve
non-determinism at the component or the system levels: multiple transitions may be
allowed, and one is selected non-deterministically.

As a third operational specification, we introduce an algebra of weighted automata
whose transition values model an internal strategy for an agent. The preference struc-
ture is compositional, which allows for reasoning about local choices of an agent in

112

Chapter 4 Components as transition systems

a state, or global choices of a system of agents given the product of their respective
transition values.

As an example application, we use a subset of the Reo language as a domain specific
language to graphically specify preference aware agents in interaction.

4.1 Components as transition systems

In Section 2.1, we give a declarative specification of components, and considers infinite
behaviors only. We give, in Section 4.1.1, an operational specification of components
using TES transition systems. We relate the parametrized product of TES transition
systems with the parametrized product on their corresponding components, and show
its correctness. The composition of two TES transition systems may lead to transitions
that are not composable, and ultimately to a deadlock, i.e., a state with no outgoing
transitions.

Notation Given σ : N → Σ, let σ[n] ∈ Σn be the finite prefix of size n of σ and
let ∼ n be an equivalence relation on (N → Σ) × (N → Σ) such that σ ∼n τ if and
only if σ[n] = τ [n]. Let FG(L) be the set of left factors of a set L ⊆ Σω , defined as
FG(L) = {σ[n] | n ∈ N, σ ∈ L}. We write σ(n) for the n-th element of σ.

4.1.1 TES transition systems.

The behavior of a component as in Definition 1 is a set of TESs. We give an operational
definition of such set using a labelled transition system.

Definition 32 (TES transition system). A TES transition system is a triple (Q,E,→
) where Q is a set of state identifiers, E is a set of events, and →⊆ (Q × N) ×
(P(E)×R+)× (Q×N) is a labeled transition relation, where labels on transitions are
observations and a state is a pair of a state identifier and a counter value, such that
[q, c]

(O,t)−−−→ [q′, c′] implies that c′ ≥ c.

Remark 12. The counter value labeling a state of a TES transition system is related
to the number of transitions a TES transition system has taken. The counter value is
therefore not related to the time of the observation labeling the transition. However, it
is possible for some transitions in the TES transition system to keep the same counter
value in the post state. As shown later, we use the counter value to model fairness in
the product of two TES transition systems.

113

Components as transition systems Chapter 4

We present two different ways to give a semantics to a TES transition system:
inductive and co-inductive. Both definitions give the same behavior, as shown in
Theorem 6, and we use interchangeably each definition to simplify the proofs of, e.g.,
Theorem 7.

Example 46 (Strictly progressing TES transition system). We call a TES transition

systems strictly progressing if, for all transitions [q, c]
(O,t)−−−→ [q′, c′], we have that

c′ > c. An example of a TES transition system that is strictly progressing is one for
which the counter label increases by 1 for each transition, i.e., [q, c]

(O,t)−−−→ [q′, c+ 1].

We use the notation θ([q, c]) to refer to the counter value c labeling the state [q, c].

Semantics 1 (runs). A run of a TES transition system is an infinite sequence of
consecutive transitions, such that the sequence of observations labeling the transitions
form a TES, and the counter in the state is always eventually strictly increasing.
Formally, the set of runs Linf(T, s0) of a TES transition system T = (Q,E,→) initially
in state s0 is:

Linf(T, s0) = {τ ∈ TES (E) | ∃χ ∈ (Q× N)ω.χ(0) = s0∧∀i.χ(i)
τ(i)−−→ χ(i+ 1)∧

∃j > 0. θ(χ(i+ j)) > θ(χ(i))}

Note that the domain of quantification for Linf(T, s0) ranges over TESs, therefore the
time labeling observations is, by definition, strictly increasing and non-Zeno. The
component semantics of a TES transition system T = (Q,E,→) initially in state q is
the component C = (E,Linf(T, q)).

Semantics 2 (greatest post fixed point) Alternatively, the semantics of a TES
transition system is the greatest post fixed point of a function over sets of TESs paired
with a state. For a TES transition system T = (Q,E,→), let R ⊆ TES (E)× (Q×N).
We introduce ϕT : P(TES (E)× (Q× N)) → P(TES (E)× (Q× N)) as the function:

ϕT (R) = {(τ, s) | ∃n.∃p ∈ (Q× N), s τ [n]−−→ p ∧ θ(p) > θ(s) ∧ (τ (n), p) ∈ R}

where τ [n] is the prefix of size n of the TES τ .
We can show that ϕT is monotonous, and therefore ϕT has a greatest post fixed

point ΩT =
⋃
{R | R ⊆ ϕT (R)}. We write ΩT (q) = {τ | (τ, s) ∈ ΩT } for any

s ∈ Q× N. Note that the two semantics coincide.

114

Chapter 4 Components as transition systems

Theorem 6 (Equivalence). For all s ∈ Q× N, Linf(T, s) = {τ | (τ, s) ∈ ΩT }.

Proof. Let T = (Q,E →) and ΩT (s) = {τ | (τ, s) ∈ ΩT }.

τ ∈ ΩT (s0) ⇐⇒ (τ, s0) ∈ ΩT

⇐⇒ ∃n.∃s.s0
τ [n]−−→ s ∧ θ(s) > θ(s0) ∧ (τ (n), s) ∈ ΩT ∧ τ ∈ TES (E)

⇐⇒ ∃n.∃χ ∈ (Q× N)ω. χ(0) = s0 ∧ χ(0)
τ [n]−−→ χ(n)∧

θ(χ(n)) > θ(χ(0)) ∧ (τ (n), χ(n)) ∈ ΩT ∧ τ ∈ TES (E)

⇐⇒ ∃χ ∈ (Q× N)ω, χ(0) = s0 ∧ ∀n ∈ N.χ(n) τ(n)−−−→ χ(n+ 1)∧
∃k ∈ N. θ(χ(n+ k)) > θ(χ(n)) ∧ τ ∈ TES (E)

⇐⇒ τ ∈ Linf(T, s0)

In the fourth equivalence, we state that the infinite sequence of transitions with χ ∈
(Q×N)ω as sequence of states, is labeled by the sequence of observations τ . We prove
the step by induction. Let n ∈ N, and let χ ∈ (Q × N)ω be such that, for all k ≤ n,

χ(k)
τ(k)−−−→ χ(k + 1) and (τ (k), χ(k)) ∈ ΩT . Then, given that (τ (n), χ(n)) ∈ ΩT , there

exists an i ∈ N, a sequence of transitions χ(j)
τ(j+1)−−−−→ χ(j + 1) for j ≤ i which proves,

by induction, the implication.
The other direction of the equivalence is simpler. If there exists χ ∈ (Q×N)ω such

that for all n ∈ N, there exists k ∈ N with χ(n)
τ(n)[k]−−−−→ χ(n + k), then we have a

witness, for every n ∈ N, that (τ (n), χ(n)) is an element of ΩT .

The semantics of a TES transition system is defined as the component whose be-
havior contains all the runs. Operationally, however, the (infinite) step-wise generation
of such a sequence does not always return a valid prefix of a run. We introduce fi-
nite sequences of a TES transition system, and define a deadlock of a TES transition
system as a reachable state without outgoing transition.

Let T = (Q,E,→) be a TES transition system. We write q u−→ p for the sequence

of transitions q
u(0)−−−→ q1

u(1)−−−→ q2...
u(n−1)−−−−−→ p, where u = ⟨u(0), ..., u(n− 1)⟩ ∈ (P(E)×

R+)
n. We write |u| for the size of the sequence u. We use Lfin(T, q) to denote the set

of finite sequences of observables labeling a finite path in T starting from state q, such
that

Lfin(T, s) = {u | ∃p.s u−→ p ∧ ∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Let FG(L) be the set of left factors of a set L ⊆ Σω , defined as FG(L) = {σ[n] |
n ∈ N, σ ∈ L}. We write σ(n) for the n-th derivative of σ, i.e., the stream such that
σ(n)(i) = σ(n+ i) for all i ∈ N.

115

Components as transition systems Chapter 4

Remark 13 (Deadlock). Observe that FG(Linf(T, q)) ⊆ Lfin(T, q) which, in the case
of strict inclusion, captures the fact that some states may have no outgoing transitions
and therefore deadlock.

Remark 14 (Abstraction). There may be two different TES transition systems T1
and T2 such that Linf(T1) = Linf(T2), i.e., a set of TESs is not uniquely characterized
by a TES transition system. In that sense, the TES representation of behaviors is
more abstract than TES transition systems.

We use the transition rule q
(O,t)−−−→ q′ where the counter is not written to denote

the set of transitions
[q, c]

(O,t)−−−→ [q′, c′]

for c ∈ N and c′ ∈ N with c′ ≥ c.

Example 47. The behavior of a robot introduced earlier is a TES transition system
TR = ({q0}, ER,→) where q0

({e},t)−−−−→ q0 for abitrary t in R+ and e ∈ ER. Similarly,
the behavior of a grid is a TES transition system TG(I, n,m) = (QG, EG(I, n,m),→)

where:

• QG ⊆ (I → ([0;n]× [0;m])),

• f
(O,t)−−−→ f ′ for abitrary t in R+, such that

– dR ∈ O implies f ′(R) is updated according to the direction d if the resulting
position is within the bounds of the grid;

– (x, y)R ∈ O implies f(R) = (x, y)R and f ′(R) = f(R);

– f ′(R) = f(R), otherwise.

The behavior of a swap protocol S(Ri,Rj) with i < j is a TES transition system
TS(R1, R2) = (Q,E,→) where, for t1, t2, t3 ∈ R+ with t1 < t2 < t3:

• Q = {q1, q2, q3, q4, q6};

• E = ERi
∪ ERj

∪ {lock(Ri, Rj), unlock(Ri, Rj), start(Ri, Rj), end(Ri, Rj)}

• q1
({lock(Ri,Rj)},t1)−−−−−−−−−−−−→ q2;

• q2
({unlock(Ri,Rj)},t1)−−−−−−−−−−−−−→ q1;

• q1
({start(Ri,Rj),(x,y)Ri

,(x+1,y)Rj
},t1)

−−−−−−−−−−−−−−−−−−−−−−−−→ q3;

116

Chapter 4 Components as transition systems

• q3
({NRj

},t1)
−−−−−−−→ q4

({WRj
,ERi

},t2)
−−−−−−−−−−→ q5

({SRj
},t3)

−−−−−−−→ q6;

• q6
({end(Ri,Rj)},t1)−−−−−−−−−−−→ q1;

■

The product of two components is parametrized by a composability relation κ on
observations and syntactically constructs the product of two TES transition systems.

Definition 33 (Product). The product of two TES transition systems T1 = (Q1, E1,→1

) and T2 = (Q2, E2,→2) under the constraint κ is the TES transition system T1×κT2 =

(Q1 ×Q2, E1 ∪ E2,→) such that:

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((O1, t1), (∅, t1)) ∈ κ(E1, E2) t1 < t2

[(q1, q2),min(c1, c2)]
(O1,t1)−−−−→ [(q′1, q2),min(c′1, c2)]

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((∅, t2), (O2, t2)) ∈ κ(E1, E2) t2 < t1

[(q1, q2),min(c1, c2)]
(O2,t2)−−−−→ [(q′1, q2),min(c1, c′2)]

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t2 = t1

[(q1, q2),min(c1, c2)]
(O1∪O2,t1)−−−−−−−→ [(q′1, q

′
2),min(c′1, c

′
2)]

Observe that the product is defined on pairs of transitions, which implies that if
T1 or T2 has a state without outgoing transition, then the product has no outgoing
transitions from that state. The reciprocal is, however, not true in general. We write
CT1×κT2((s1, s2)) for the component CT1×κT2([(q1, q2),min(c1, c2)]) where s1 = [q1, c1]

and s2 = [q2, c2].
Theorem 7 states that the product of TES transition systems denotes (given a state)

the set of TESs that corresponds to the product of the corresponding components (in
their respective states). Then, the product that we define on TES transition systems
does not add nor remove behaviors with respect to the product on their respective
components.

Example 48. Consider two strictly progressing (as in Example 46) TES transition
systems T1 = (Q1, E1,→1) and T2 = (Q2, E2,→2). Then, consider a transition in the
product T1 ×κ T2 such that

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c]

117

Components as transition systems Chapter 4

we can deduce that T1 made a step while the counter c labelling the state didn’t change.
Therefore, T2 in state q2 has a counter labelling its state that is higher than the counter
labelling the state in q1. Alternatively, if

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c+ 1]

then the counter at q2 may become lower than the counter at which T1 performs the
next transition, which means that eventually T2 has to take a transition.

The composability relation κ in the product of two TES transition systems (see
Definition 33) accepts an independent step from T1 (resp. T2) if the observation
labeling the step relates to the simultaneous silent observation from T2 (resp. T1).
Given two composable TESs σ and τ respectively in the component behavior of T1
and T2, the composability relation [κ] must relate heads of such TESs co-inductively.
As we do not enforce silent observation to be effective from the product rules (1) and
(2), we consider composability relations such that:

• if ((O1, t1), (∅, t1)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any O2 ⊆
P(E2) and t2 > t1; and

• if ((∅, t2), (O2, t2)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any O1 ⊆
P(E1) and t1 > t2

The two rules above encode that an observation from T1 is independent to T2 (i.e.,
((O1, t1), (∅, t1)) ∈ κ(E1, E2) if and only if T1 and T2 can make observations at dif-
ference times (i.e., ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for arbitrary (O2, t2) from T2 with
t2 > t1.

Theorem 7 (Correctness). For two TES transition systems T1 and T2, and for κ
satisfying the constraint above:

CT1×κT2
(s) = CT1

(s1)×([κ],[∪]) CT2
(s2)

with s1 = [q1, c1] ∈ (Q1 × N), s2 = [q2, c2] ∈ (Q2 × N), and s = [(q1, q2),min(c1, c2)].

Proof. We first show that, for all τ ∈ CT1×κT2
((s1, s2)), there is always, eventually, an

observations of τ that is a label of a transition constructed by rule (1) or (3) (and (2)

or (3)) of the product in Definition 33.
We prove by contradiction. Assume that there is an index n for which for all

k > n, the observation τ(k) is generated by the rule (2) of the product. Then, let

118

Chapter 4 Components as transition systems

χ ∈ (Q×N)ω be the sequence of states such that χ(k)
τ(n+k)−−−−−→ χ(k + 1) for k ∈ N, we

can find a step j ≥ 0 such that, for all m ≥ j, θ(χ(m)) = θ(χ(m+1)). This contradicts
the definition of τ , that the counter in the sequence of states must always eventually
increase. Thus, we can conclude that we always eventually take a composite transition
from rule (1) or (3) (resp. (2) and (3)) to construct a TES τ ∈ CT1×κT2

(s1, s2).
We show by induction that we can construct, from a run τ ∈ Linf(T, s0), a run

τ1 ∈ Linf(T1, s1). Let χ ∈ (Q×N)ω such that χ(n)
τ(n)−−−→ χ(n+1) and let τ1 ∈ TES (E1)

be the sequence of observations occurring in τ generated by the product rules (1) or
(3). We show, by induction, that there exists χ1 ∈ (Q1 × N)ω such that, for all n,

χ1(n)
τ1(n)−−−→1 χ1(n+1). Indeed, there exists k ∈ N such that χ(k)

τ(k)−−−→ χ(k+1) with
τ(k) being generated by rule (1) or (3). We can therefore define states χ1(0) and χ1(1)

from χ(k) and χ(k + 1), with a corresponding counter value, and τ(0) from τ(k).

Assuming that χ1(k)
τ1(k)−−−→ χ1(k + 1) for k ≤ n, we know there exists a j ≥ n

such that the transition χ(j)
τ(j)−−→ χ(j +1) is produced by rules (1) or (3). Therefore,

we can construct the next element of the run, namely χ1(n)
τ1(n)−−−→ χ1(n + 1). By

induction, we conclude that τ1 ∈ Linf(T, χ(0)).
Thus, given a run τ ∈ CT1×κT2((s1, s2)), we have two runs τ1 ∈ CT1(q1) and

τ2 ∈ CT2(q2) applying symmetric arguments to construct τ2 such that τ = τ1[∪]τ2.
We prove, by co-induction, that (τ1, τ2) ∈ [κ](E1, E2).

Let ∆τ1,τ2 = {(τ1, τ2)(n) | n ∈ N} be the set of all derivations of (τ1, τ2), where,
in (τ1, τ2)

(n), the n first observations are dropped from the pair of TESs τ1 and τ2.
Then, to prove that ∆ ⊆ [κ](E1, E2), it is sufficient to show that ∆ is a post fix point
of ϕκ, namely that ∆ ⊆ ϕκ(∆). We remind that:

ϕκ(∆) = {(σ, η) | (σ(0), η(0)) ∈ κ(E1, E2) ∧ (σ, η)′ ∈ ∆}

It is therefore sufficient to prove that (σ, η) ∈ ∆τ1,τ2 implies that (σ(0), η(0)) ∈
κ(E1, E2) in order to conclude that ∆τ1,τ2 ⊆ ϕκ(∆τ1,τ2). This is directly implied
by the three rules of the product of T1 and T2 constructing τ , and the conditions
imposed on κ.

Next, we show the reciprocal: for two κ-composable TESs τ1 and τ2, respectively
in CT1

(s1) and CT2
(s2), τ1[∪]τ2 is a run of the product CT1×κT2

((s1, s2)). We consider
the two runs with sequence of states χ1 ∈ (Q1 × N)ω and χ2 ∈ (Q1 × N)ω, for
τ1 and τ2 respectively. Then, we show that there exists a sequence of states χ ∈
((Q1×Q2)×N)ω, whose transitions are labeled by τ , and resulting from the composition
of the two sequences of states. Moreover, since the counter of χ1 and χ2 are always

119

Components as transition systems Chapter 4

eventually increasing, the counter of χ is also always eventually increasing. Thus,
τ ∈ CT1×κT2(χ(0)).

Remark 15 (Fairness). Fairness, in our case is the property that, in a product of two
TESs T1×κ T2, then always, eventually, T1 and T2 each make progress. The definition
of the product of two TES transition systems defines the counter value of the composite
state as the minimal counter value from the two compound states. The semantic
condition that considers runs with a counter value always eventually increasing is
sufficient for having T1 and T2 to always eventually take a step, as shown in Theorem 7.

We give in Example 49 the TES transition systems resulting from the product of
the TES transition systems of two robots and a grid. Example 49 defines operationally
the components in Section 2.2, i.e., their behavior is generated by a TES transition
system.

Example 49. Let TR1
, TR2

be two TES transition systems for robots R1 and R2,
and let TG({1}, n,m) be a grid with robot R1 alone and TG({1, 2}, n,m) be a grid with
robots R1 and R2. We use κsync as defined in Example 11.

The product of TR1
, TR2

, and TG({1, 2}, n,m) under κsync is the TES transition
system TR1

×κsync TR2
×κsync TG({1, 2}, n,m) such that it synchronizes observations of

the two robots with the grid, but does not synchronize events of the two robots directly,
since the two set of events are disjoint. ■

As a consequence of Theorem 1, letting κsync be the composability relation used
in the product ▷◁ and writing T = TR1

×κsync TR2
×κsync TG, CT (s1, s2, s3) is equal to

the component CTR1
(s1) ▷◁ CTR2

(s2) ▷◁ CTG
(s3)

Definition 34. Let T be a TES transition system, and let CT (q) = (E,Linf(T, s)) be
a component whose behavior is defined by T . Then, C is deadlock free if and only if
FG(Linf(T, s)) = Lfin(T, s) ̸= ∅. As a consequence, we also say that (T, s) is deadlock
free when CT (s) is deadlock free.

A class of deadlock free components is that of components that accept arbitrary
insertion of ∅ observables in between two observations. We say that such component
is prefix-closed, as every sequence of finite observations can be continued by an infinite
sequence of empty observables, i.e., C is such that C = C∗ (as defined after Defini-
tion 33). We say that a TES transition system T is prefix-closed in state s if and only
if and only if CT (s) = C∗

T (s). For instance, if T is such that, for any state s and for

any t ∈ R+ there is a transition s
(∅,t)−−−→ s, then T is prefix-closed.

120

Chapter 4 Components as transition systems

Lemma 19. If T1 and T2 are prefix-closed in s1 and s2 respectively, then T1 ×κsync

T2((s1, s2)) is prefix-closed.

Proof. The proof follows from the fact that ∅ is independent with any non-empty
observable O ⊆ E1 ∪ E2. Then, any pair of silent observation is composable, and
therefore the following TES transition system is prefix-closed.

We search for the condition under which deadlock freedom is preserved under a
product. Section 3.3 gives a condition for the product of two deadlock free components
to be deadlock free.

4.1.2 Compatibility of TES transition systems

Informally, the condition of κ-compatibility of two TES transition systems T1 and T2,
respectively in initial state s01 and s02, describes the existence of a relation R on pairs
of states of T1 and T2 such that (s01, s02) ∈ R and for every state (s1, s2) ∈ R, there
exists an outgoing transition from T1 (reciprocally T2) that composes under κ with
an outgoing transition of T1 (respectively T2). The pair of outgoing states is in the
relation R.

Formally, a TES transition system T1 = (Q1, E1,→1) from state s01 is κ-compatible
with a TES transition system T2 = (Q2, E2,→2) from state s02, and we say (T1, s01)

is κ-compatible with (T2, s02) if there exists a relation R ⊆ (Q1 ×N)× (Q2 ×N) such
that (s01, s02) ∈ R and for any (s1, s2) ∈ R,

• there exist s1
(O1,t1)−−−−→1 s′1 and s2

(O2,t2)−−−−→2 s′2 such that ((O1, t1), (O2, t2)) ∈
κ(E1, E2); and

• for all s1
(O1,t1)−−−−→1 s

′
1 and s2

(O2,t2)−−−−→2 s
′
2 if ((O1, t1), (O2, t2)) ∈ κ(E1, E2) then

(u1, u2) ∈ R, where ui = si if ti = min{t1, t2}, and ui = s′i otherwise for
i ∈ {1, 2}.

In other words, if (T1, s1) is κ-compatible with (T2, s2), then there exists a com-
posable pair of transitions in T1 and T2 from each pair of states in R (first item of the
definition), and all pairs of transitions in T1 composable with a transition in T2 from
a state in R end in a pair of states related by R. If (T2, s2) is κ-compatible to (T1, s1)

as well, then we say that (T1, s1) and (T2, s2) are κ-compatible.

Theorem 8 (Deadlock free). Let (T1, s1) and (T2, s2) be κ-compatible. Let CT1
(s1)

and CT2
(s2) be deadlock free, as defined in Definition 34. Then, CT1

(s1) ×([κ],[∪])

CT2
(s2) is deadlock free.

121

Components as transition systems Chapter 4

Proof. We reason by contradiction. If the product CT1(s1) ×([κ],[∪]) CT2(s2) is not
deadlock free, then Lfin(T1 ×κ T2, (s1, s2)) ̸= FG(Linf(T1 ×κ T2, (s1, s2))). Thus, there
exists a state (s′1, s

′
2), reachable from (s1, s2), such that Lfin(T1 ×κ T2, (s

′
1, s

′
2)) = ∅,

i.e., no pairs of compatible transitions from T1 and T2 in states s′1 and s′2 respectively.
Given the fact that both TES transition systems are deadlock free, and given that s′1
(respectively s′2) is reachable from s1 (respectively s2) for T1 (respectively T2), then
Lfin(T2, s1) ̸= ∅ and Lfin(T1, s2) ̸= ∅.

Since (T1, s1) and (T2, s2) are κ-compatible, then there exists R such that for each
pair (s′1, s

′
2) ∈ R, there exists an outgoing transition in T1 and T2 from s′1 and s′2

respectively that is composable under κ. Such property would imply that there is a
transition in T1 ×κ T2 from state (s′1, s

′
2) and therefore Lfin(T1 ×κ T2, (s

′
1, s

′
2)) ̸= ∅. In

other words, the property of compatibility contradicts the presence of deadlock in the
product CT1

(s1)×([κ],[∪]) CT2
(s2).

In general however, κ-compatibility is not preserved over product, demonstrated
by Example 50. For the case of coordinated cyber-physical systems, components are
usually not prefix-closed as there might be some timing constraints or some mandatory
actions to perform in a bounded time frame.

Example 50. Suppose three TES transition systems Ti = ({qi}, {a, b, c, d},→i), with
i ∈ {1, 2, 3}, defined as follow for all n ∈ N:

• q1
({a,b},n)−−−−−−→1 q1 and q1

({a,c},n)−−−−−−→1 q1;

• q2
({a,c},n)−−−−−−→2 q2 and q2

({a,d},n)−−−−−−→2 q2;

• q3
({a,d},n)−−−−−−→3 q3 and q3

({a,b},n)−−−−−−→3 q3.

It is easy to show that T1(q1), T2(q2), and T3(q3) are pairwise κsync-compatible. How-
ever, T1(q1) is not κsync-compatible with T2(q2)×κsync T3(q3). ■

Lemma 20. Let ×κ be commutative and associative, and for arbitrary E1, E2, and
t ∈ R+, then ((∅, t), (∅, t)) ∈ κ(E1, E2). Let S be a set of TES transition systems, such

that for T ∈ S and every state [q, n] in T , then [q, n]
(∅,t)−−−→ [q, n]. For S = S1 ⊎ S2

a partition of S, ×κ{T}T∈S1
and ×κ{T}T∈S2

are κ-compatible and the component
C×κ{T}T∈S

is deadlock free.

Proof.

The consequence of two TES transition systems T1 and T2 to be κ-compatible
on (s1, s2) and deadlock free, is that they can be run step-by-step from (s1, s2) and

122

Chapter 4 Components as transition systems

ensure that we would not generate a sequence of observations that is not a prefix on
an infinite run. However, there is still an obligation for the step-by-step execution to
produce a run that is in the behavior of the product, i.e., to perform a step-by-step
product at runtime. Indeed, the resulting sequence of states must always increase the
counter value, which means that the selection of a step must be fair (as introduced
in Remark 15). We show in Example 51 an example for which an infinite sequence
of transitions in the product (e.g., produced by a step-by-step implementation of the
product) would not give a run, due to fairness violation.

Example 51. Let T1 = ({q1}, {a},→1) and T2 = ({q2}, {b},→2) be two TES tran-

sition systems such that: [q1, c]
({a},t)−−−−→1 [q1, c + 1] and [q2, c]

({b},t)−−−−→2 [q2, c + 1]for
all t ∈ R+ and all c ∈ N. Let κ be such that (({a}, t), (∅, t)) ∈ κ({a}, {b}) and
((∅, t), ({b}, t)) ∈ κ({a}, {b}). Then, the product T1 ×κ T2 has the composite transi-

tions [(q1, q2), c]
({a},t)−−−−→ [(q1, q2), c] and [(q1, q2), c]

({b},t)−−−−→ [(q1, q
′
2), c] for all c ∈ N and

t ∈ R+.

The product, therefore has runs of the kind [(q1, q2), c]
({a},ti)−−−−−→ [(q′1, q2), c] where for

all i ∈ N, ci + 1 = ci+1 and ti < ti+1 (increasing) and there exists j ∈ N with i < tj

(non-Zeno). Thus, this run does only transitions from T1 and none from T2: there is
a step for which the counter c does not increase anymore. One reason is that rule (1)

of the product is always chosen. Instead, by imposing that we always eventually take
rule (3), we ensure that the step-by-step product is fair.

We consider a class of TES transition systems for which a step-by-step implemen-
tation of their product is fair, i.e., always eventually the counter of the composite state
increases. More particularly, we consider TES transition systems that always eventu-
ally require synchronization. Therefore, the product always eventually performs rule
(3), and the runs are consequently fair. Such property is a composite property, that
can be obtained compositionally by imposing a trace property on a TES transition
system, such as: for every trace, there is always eventually a state for which all out-
going transitions must synchronize with an observation from the other TES transition
system.

Remark 16. In the actor model, fairness is usually defined as an individual property:
always eventually an action that is enabled (such as reading a message in a queue)
will be performed. This notion of fairness differs from the one we introduced for
TES transition systems. Here, fairness models a collective property, namely that each
component always eventually makes an observation.

123

Components as rewrite systems Chapter 4

Definition 35 (k-synchronizing). Two TES transition systems T1 and T2 are k-
synchronizing under κ if all sequences of k transitions in the product T1×κ T2 contain
at least one transition constructed from rule (3) of the product in Definition 33.

Lemma 21. Let T1 and T2 be two k-synchronizing TES transition systems. Then,
a step-by-step execution of the product T1 ×κ T2 is fair, namely, all finite sequences
of transitions are prefix of infinite runs in the product behavior, i.e., FG(Linf(T1 ×κ

T2, q)) = Lfin(T1 ×κ T2, q).

Proof. The inclusion FG(Linf(T1 ×κ T2, q)) ⊆ Lfin(T1 ×κ T2, q) is straightforward, as
a finite prefix of a TES labeling an infinite run is, by definition, a finite sequence of
labels of a finite sequence of transitions in Lfin(T1 ×κ T2, q).
The inclusion Lfin(T1 ×κ T2, q) ⊆ FG(Linf(T1 ×κ T2, q)) comes from the assump-
tion that T1 and T2 are k-synchronizing under κ. Then, for any finite sequence in
Lfin(T1 ×κ T2, q), the post state on which the sequence ends has, due to the assump-
tion, a continuation as a run in Linf(T1 ×κ T2, q), which proves the inclusion.

Remark 17. The step-by-step implementation of the product is sound if TES transi-
tion systems always eventually synchronize on a transition. Definition 35 and Lemma 21
show that if two TES transition systems are k-synchronizing, then their product can
be formed lazily, step-by-step, at runtime.

4.2 Components as rewrite systems

We start by giving an illustration of our approach on an intuitive and simple cyber-
physical system consisting of two robots roaming on a shared field. A robot exhibits
some cyber aspects, as it takes discrete actions based on its readings. Every robot
interacts, as well, with a shared physical resource as it moves around. The field
models the continuous response of each action (e.g., read or move) performed by a
robot. A question that will motivate the section is: given a strategy for both robots
(i.e., sequence of moves based on their readings), will both robots, sharing the same
physical resource, achieve their goals? If not, can the two robots, without changing
their policy, be externally coordinated towards their goals?

In this section, we specify components in a rewriting framework in order to sim-
ulate and analyze their behavior. In this framework, an agent, e.g., a robot or a
field, specifies a component as a rewriting theory. A system is a set of agents that
run concurrently. The equational theory of an agent defines how the agent states are

124

Chapter 4 Components as rewrite systems

updated, and may exhibit both continuous and discrete transformations. The dynam-
ics is captured by rewriting rules and an equational theory at the system level that
describes how agents interact. In our example, for instance, each move of a robot is
synchronous with an effect on the field. Each agent therefore specifies how the action
affects its state, and the system specifies which composite actions (i.e., set of simulta-
neous actions) may occur. We give hereafter an intuitive example that abstracts from
the underlying algebra of each agent.

Agent A robot and a field are two examples of an agent that specifies a component
as a rewriting theory. The dynamics of both agents is captured by a rewrite rule of
the form:

(s, ∅) ⇒ (s′, acts)

where s and s′ are state terms, and acts is a set of actions that the field or the robot
proposes as alternatives. Given an action a ∈ acts from the set of possibilities, a
function ϕ updates the state s and returns a new state ϕ(s′, a). The equational theory
that specifies ϕ may capture both discrete and continuous changes. The robot and the
field run concurrently in a system, where their actions may interact.

Example 52 (Battery). A battery is characterized by a set of internal physical laws
that describe the evolution of its energy profile over time under external stimulations.
We consider three external stimuli for the battery as three events: a charge, a discharge,
and a read event. Each of those events may change the profile of the battery, and we
assume that in between two events, the battery energy follows some fixed internal laws.
Formally, we model the energy profile of a battery as a function f : R+ → [0, 100%]

where f(t) = 50% means that the charge of the battery at time t is of 50%. In general,
the co-domain of f may be arbitrarily complex, and captures the response of event
occurrences (e.g., charge, discharge, read) and passage of time coherently with the
underlying laws (e.g., differential equation). For instance, a charge (or discharge)
event at a time t coincides with a change of slope in the function f after time t and
before the next event occurrence.
For simplicity, we consider a battery for which f is piecewise linear in between any two
events. The slope changes according to some internal laws at points where the battery
is used for charge or discharge.
In our model, a battery interacts with its environment only at discrete time points.
Therefore, we model the observables of a battery as a function l : N → [0, 100%]

that intuitively samples the state of the battery at some monotonically increasing and

125

Components as rewrite systems Chapter 4

non-Zeno sequence of timestamp values. We capture, in Definition 1, the continuous
profile of a battery as a component whose behavior contains all of such increasing and
non-Zeno sampling sequences for all continuous functions f .

Example 53 (Robot). A robot’s state contains the previously read values of its sen-
sors. Based on its state, a robot decides to move in some specific direction or read its
sensors.
Similarly to the battery, we assume that a robot acts periodically at some discrete points
in time, such as the sequence move(E) (i.e., moving East) at time 0, read((x, y), l)

(i.e., reading the position (x, y) and the battery level l) at time T , move(W) (i.e.,
moving West) at time 3T while doing nothing at time 2T , etc. The action may have
as effect to change the robot’s state: typically, the action read((x, y), l) updates the
state of the robot with the coordinate (x, y) and the battery value l.

System A system is a set of agents together with a composability constraint κ that
restricts their updates. For instance, take a system that consists of a robot id and a
field F . The concurrent execution of the two agents is given by the following system
rewrite rule:

{(sid, acts id), (sF , actsF)} ⇒S {(ϕid(sid, aid), ∅), (ϕF (sF , aF), ∅)}

where aid ∈ acts id and aF ∈ actsF are two actions related by κ.

Each agent is unaware of the other agent’s decisions. The system rewrite ⇒S filters
actions that do not comply with the composability relation κ. As a result, each agent
updates its state with the (possibly composite) action chosen at runtime, from the list
of its submitted actions. The framework therefore clearly separates the place where
agent’s and system’s choices are handled, which is a source of runtime analysis.

Already, at this stage, we can ask the following question on the system: will robot
id eventually reach the location (x, y) on the field? Note that the agent alone cannot
answer the query, as the answer depends on the characteristics of the field.

Example 54 (Battery-Robot). Typically, a move of the robot synchronizes with a
change of state in the battery, and a read of the robot occurs at the same time as a
sampling of the battery value.
The system behavior therefore consists of sequences of simultaneous events occurring
between the battery and the robot. By composition, the battery exposes the subset of
its behavior that conforms to the specific frequency of read and move actions of the

126

Chapter 4 Components as rewrite systems

robot. The openness of the battery therefore is reflected by its capacity to adapt to any
observation frequency.

Coordination Consider now a system with three agents: two robots and a field.
Each robot has its own objective (i.e., location to reach) and strategy (i.e., sequence
of moves). Since both robots share the same physical field, some exclusion principals
apply, e.g., no two robots can be at the same location on the field at the same time.
It is therefore possible that the system deadlocks if no actions are composable, or
livelocks if the robots enter an infinite sequence of repeated moves.

We add a protocol agent to the system, which imposes some coordination con-
straints on the actions performed by robots id1 and id2. Typically, a protocol coordi-
nates robots by forcing them to do some specific actions. As a result, given a system
configuration {(sid1

, acts id1
), (sid2

, acts id2
), (sF , actsF), (sP , actsP)} the run of robots

id1 and id2 has to agree with the observations of the protocol, and the sequence of
actions for each robot will therefore be conform to a permissible sequence under the
protocol.

In the case where the two robots enter a livelock and eventually run out of energy,
we show in Section 5.4.1 the possibility of using a protocol to remove such behavior.

Example 55 (Safety property). A safety property is typically a set of traces for which
nothing bad happens. In our framework, we consider only observable behaviors, and
a safety property therefore declares that nothing bad is observable. However, it is
not sufficient for a system to satisfy a safety property to conclude that it is safe: an
observation that would make a sequence violate the safety property may be absent, not
because it did not actually happen, but merely because the system missed to detect it.
For example, consider a product of a battery component and a robot with a sampling
period T , as introduced in Example 54. Consider the safety property: the battery
energy is between the energy thresholds e1 and e2. The resulting system may exhibit
observations with energy readings between the two thresholds only, and therefore satisfy
the property. However, had the robot used a smaller sampling period T ′ = T/2, which
adds a reading observation of its battery between every two observations, we may have
been able to detect that the system is not safe because it produces sequences at this finer
granularity sampling rate that violate the safety property. We show how to algebraically
capture the safety of a system constituted of a battery-robot.

127

Components as rewrite systems Chapter 4

4.2.1 System of agents and compositional semantics

Components in Chapter 2 are declarative. Their behavior consists of a set of TESs.
The abstraction of internal states in components makes the specification of observables
and their interaction easier. The downside of such declarative specification lies in
the difficulty of generating an element from the behavior, and ultimately verifying
properties on a product expression.

An operational specification of a component provides a mechanism to construct
elements in its behavior. An agent is the operational specification that produces finite
sequences of observations that, in the limit, determine the behavior of a component.
An agent is stateful, and has transitions between states, each labeled by an observation,
i.e., a set of events with a time-stamp. We consider a finite specification of an agent
as a rewrite theory, where finite applications of the agent’s rewrite rules generate
a sequence of observables that form a prefix of some elements in the behavior of
its corresponding component. We restrict the current work to integer time labeled
observations. While in the cyber-physical world, time is a real quantity, we consider
in our fragment a countable infinite domain for time, i.e., natural numbers. The time
interval between two tics is therefore the same for all agents, and may be interpreted as,
e.g., seconds, milliseconds, femtoseconds, etc. We show how an agent may synchronize
with a local clock that forbids actions at some time values, thus modeling different
execution speeds.

An operational specification of a composite component provides a mechanism to
construct elements in the behavior of a product expression. The product on compo-
nents is parametrized by an interaction signature that tells which TESs can compose,
and how they compose to a new TES. We consider, in the operational fragment of this
section, interaction signatures each of whose composability relation is co-inductively
defined from a relation on observations κ. Intuitively, such restriction enables a step-
by-step operation to check that the head of each sequence is valid, i.e., extends the
sequence to be a prefix of some elements in the composite component. Moreover,
we require κ to be such that the product on component ×([κ],∪) is commutative and
associative (see [62]). By system we mean a set of agents that compose under some in-
teraction signature Σ = ([κ],∪). A system is stateful, where each state is formed from
the states of its component agents, and has transitions between states, each labeled by
an observation, formed from the component agent observations. We consider a finite
specification of a system as the composition of a set of rewriting theories (one for each
agent), and a system rewrite rule that produces a composite observation complying

128

Chapter 4 Components as rewrite systems

with the relation κ. We prove compositionality: the system component is equal to the
product under the interaction signature Σ = ([κ],∪) of every one of its constituent
agent components.

We give the operational counterparts of an observation, a component, and a prod-
uct of components as, respectively, an action, an agent, and a system of agents.

Action Actions are terms of sort Action. An action has a name of sort AName and
some parameters. We distinguish two typical actions, the idle action ⋆ and the ending
action end. A term of sort Action corresponds to an observable, i.e., a set of events.
The idle action ⋆ and the ending action end both map to the empty set of events. An
example of an action is move(R1,d) or read(R1, position, l) that, respectively, moves
agent R1 in direction d or reads the value l from the position sensor of R1. The seman-
tics of action move(R1, d) consists of all singleton events of the form {move(R1, d)}
with d a constant direction value. We use the associative, commutative, and idempo-
tent operation · : Action Action → Action to construct a composite action a1 · a2 out
of two actions a1 and a2.

Agent An agent operationally specifies a component in rewriting logic. We give the
specification of an agent as a rewrite theory, and provide the semantics of an agent
as a component. An agent is a four tuple (Λ,Ω, E ,⇒), each of whose elements we
introduce as follow.

The set of sorts Λ contains the State sort and the Action sort, respectively for state
and action terms. A pair of a state and a set of actions is called a configuration. The
set of function symbols Ω contains ϕ : State × Action → State, that takes a pair of
a state and an action term to produce a new state. The (Λ,Ω)-equational theory E
specifies the update function ϕ. The set of equations that specify the function ϕ can
make ϕ either a continuous or discrete function.

The rule pattern in (4.1) updates a configuration with an empty set to a new
configuration, i.e.,

(s, ∅) ⇒ (s′, acts) (4.1)

with acts a non-empty set of action terms, and s′ a new state. We call an agent
productive if, for any state s : State, there exists a state s′ with (s, ∅) ⇒ (s′, acts) and
acts non empty set.

We give a semantics of an agent as a component by considering the limit application
of the agent rewrite rules. We construct a TES transition system TA = (Q,E,→) as an
intermediate representation for agent A = (Λ,Ω, E ,⇒). The set of states Q = State×N

129

Components as rewrite systems Chapter 4

is the set of pairs of a state of A and a time-stamp natural number. We use the notation
[s, t] for states in Q where t ∈ N. The set of events E is the union of all observables
labeling the transition relation →⊆ Q × (P(E) × N) × Q, defined as the smallest set
such that, for t ∈ N and n ∈ N:

(s, ∅) ⇒ (s′, acts) a ∈ acts ϕ(s′, a) =E s
′′ d ∈ N

[s, n]
(a,t)−−−→ [s′′, n+ 1]

(4.2)

[s, n]
(∅,t)−−−→ [s, n+ 1]

[owise] (4.3)

An agent that performs a rewrite moves the global time from an arbitrary but
finite amount of time units. Note that we can safely consider d ̸= 0, as the case of two
consecuitive observations with the same time stamp is ruled out in the TES behavior
of an agent (see below). All agents share the same time semantically, and we show
some mechanisms at the system level to artificially run some agents faster than others.

Let A = (Λ,Ω, E ,⇒) be an agent initially in state s0 ∈ S at time t0 ∈ N. The com-
ponent semantics of A is the component JA([s0, t0])K = CTA([s0, t0]), with CTA([s0, t0])

defined in Section 4.1.1.

Remark 18. An agent A initially in state s0 at t0 denotes a component JA([s0, t0])K.
Note that, a strategy for agent A would be any mechanism that, given a state for agent
A, filters a subset of possible actions. For instance, an agent may decide to discard
actions that bring it further from its goal. We give in Section 4.3 a Domain Specific
Language to describe agents equipped with a strategy.

System A system gives an operational specification of a product of a set of com-
ponents under Σ = ([κ],∪). The composability relation κ is fixed to be symmetric,
so that the product ×Σ is commutative. We define [κ] co-inductively, as in [62, 61].
Formally, a system consists of a set of agents with additional sorts, operations, and
rewrite rules. A system is a tuple (A,Λ,Ω, E ,⇒S) where A is a set of agents. We use
(Λi,Ωi, Ei,⇒i) to refer to agent Ai ∈ A.

The set of sorts Λ contains a sort Action ∈ Λ which is a super sort of each sort
Actioni for Ai ∈ A. The set Ω contains the function symbol comp : P(Action) → Bool,
which says which set of actions are composable. We call a set actions of actions for
which comp(actions) holds, a clique. The conditions for a set of actions to form a
clique models the fact that each action in the clique is independent from agent Ai with

130

Chapter 4 Components as rewrite systems

no action in that clique (see Chapter 5 for an instance of comp). The relation comp
can be graphically modelled as an undirected graph relating actions, where a clique is
a connected component.

The rewrite rule pattern in (4.4) selects a set of actions, at most one from each
agent, checks that the set of actions forms a clique with respect to comp, and applies
the update accordingly. For {k1, ..., kj} ⊆ {1, ..., n}:

{(sk1 , actsk1), ..., (skj , actskj)} ⇒S {(ϕk1(sk1 , ak1), ∅), ..., (ϕkj (skj , akj), ∅)} (4.4)

if comp(
⋃

i∈[1,j]{aki
})) and aki

∈ actski
. As we show later, a system does not neces-

sarily update all agents in lock steps, and an agent not doing an action may stay in
the configuration (s, ∅). As multiple cliques may be possible, there is non-determinism
at the system level. Different strategies may therefore choose different cliques as, for
instance, taking the largest clique.

We define the transition system for S = (A,Λ,Ω, E ,⇒S) as the TES transition
system TS = (Q,E,→) with Q = StateSet × N the set of states, E the union of all
observables labeling the transition relation →⊆ Q × (P(E) × N) × Q, which is the
smallest transition relation such that, for {k1, ..., kj} ⊆ {1, ..., n}:

{(ski
, actski

)}i∈[1,j] ⇒S {(ϕki
(ski

, aki
), ∅)}i∈[1,j]

∧
i∈[1,j] ϕki

(ski
, aki

) =Ei
s′′ki

[{si}i∈[1,n], n]
(
⋃

i∈[1,j] aki
,t)

−−−−−−−−−→ [{s1, ..., s′′k1
, ..., s′′kj

, ..., sn}, n+ 1]

(4.5)

[s, n]
(∅,t)−−−→ [s, n+ 1]

[owise] (4.6)

for t ∈ N and where we use the notation {xi}i∈[1,n] for the set {x1, ..., xn}.

Remark 19. The top left part of the rule is a rewrite transition at the system level.
As defined earlier, the condition for such rewrite to apply is the formation of a clique
by all of the actions in the update. The states and labels of the TES transition system
(bottom of the rule) are sets of states and sets of labels from the TES transition system
of every agent in the system.

Let A = {A1, ...,An} be a set of agents, and let S = (A,Λ,Ω, E ,⇒S) be a system
initially in state {(s0i, ∅)}i∈[1,n] at time t0 such that, for all i ∈ [1, n], Ai is initially
in state s0i at time t0. The infinite semantics of initialized system S([s0, t0]) is the
component JS([s0, t0])K = CTS ([s0, t0]), with CTS ([s0, t0]) defined as in Section 4.1.1.

The composability relation comp is an n-ary relation on sets of actions, while the

131

Components as rewrite systems Chapter 4

interaction signature Σ = ([κcomp],∪) contains a binary composability relation κcomp

on pair of actions. We define κcomp from comp to be such that, for O a set of actions
if comp(O), then, for all n ∈ N, we have:

1. ((O ∩E1, n), (O ∩E2, n)) ∈ κcomp(E1, E2) with E1 and E2 interfaces of different
agents, i.e., two composable (sets of) actions occur at the same time;

2. κcomp satisfies the axiom for associativity:

((O1, n), (O2, n)) ∈ κ(I1, I2) ∧ ((O1 ∪O2, n), (O3, n)) ∈ κ(I1 ∪ I2, I3)

⇐⇒ ((O2, n), (O3, n)) ∈ κ(I2, I3) ∧ ((O1, n), (O2 ∪O3, n)) ∈ κ(I1, I2 ∪ I3)

for arbitrary I1, I2, I3

Note that the cases where E1 ∩ O = ∅ (or E2 ∩ O = ∅) model independent progress
from agents with interface in E1 (or E2). Then, if κcomp relates empty observations,
the composability relation allows independent progress when used in the product of
TES transition systems (see rules (1) and (2) in Section 4.1.1).

Lemma 22 (Composability). If Actioni ∩ Actionj = ∅ for all disjoint agents i and
j, then the product ×([κcomp],∪) is commutative and associative.

Proof. By definition of comp and item (1) in definition of κcomp, we have that κcomp

is symmetric, and therefore ×([κcomp],∪) is commutative. By item (2) in definition of
κcomp, the asumptions of Lemma 10 are satisfied and ×([κcomp],∪) is associative.

Theorem 9 (Compositional semantics). Let S = (A,Λ,Ω, E ,⇒S) be a system of
n agents with disjoint actions and [{s01, ..., s0n}, t0] as initial state. We fix Σ =

([κcomp],∪). Then, JS([s0, t0])K = ×Σ{JAi([s0i, t0])K}i∈[1,n].

Proof. The proof uses the result of Lemma 22 that ×([κcomp],∪) is associative and com-
mutative. Then, we give an inductive proof that JS([s0, t0])K = ×Σ{JAi([s0i, t0])K}i∈[1,n].
We fix S = ({A1, ...,An},Λ,Ω, E ,⇒S) and An+1 = (Λn+1,Ωn+1, En+1,⇒n+1), such
that comp in Ω relates actions of agents in {A1, ...,An+1}.
Let S ′ = ({A1, ...,An,An+1},Λ,Ω,⇒S). We show that TS ×κ TAn+1

= (Q,E,→)

and TS′ = (Q′, E′,→′) have the same component semantics, namely that a run is in
TS ×κ TAn+1

if and only if it is in TS′ .
By construction of the system S ′, every run in TS′ is also a run in TS ×κ TAn+1

.
Indeed, for a set of composable actions O with comp(O) that the system performs, we
know that all agents that have an action in O will take a transition labeled with that

132

Chapter 4 DSL for agents with preferences

action, and all agents that have no action in O will do a silent transition. Thus, there
is a run in TS ×κ TAn+1 that has the same sequence of observations as runs in S ′.

Alternatively, every run in TS ×κ TAn+1
also corresponds to a run in TS′ , with the

counter increasing at each step.
As a result, by associativity and commutativity of ×Σ, we conclude that JS([s0, t0])K =

×Σ{JAi([s0i, t0])K}i∈[1,n].

Remark 20. A sufficient criteria for a sound step-by-step implementation of a system
of interacting agents is to prove that the agents always eventually synchronize within
a bounded number of transitions. This way, using the result of Lemma 21, we can find
k as the largest of such steps, and prove that the agents are k-synchronizing. In this
case, we can show that the agents are 1-synchronizing, as every agent either takes a
silent transition in its TES transition system, or performs an action.

4.3 DSL for agents with preferences

Agents introduced in Section 4.2 specifiy sequence of possible actions. Due to the
interaction taking place among agents, an agent’s action may discard some of other
agent’s actions. For instance, an action may need to synchronize with another agent’s
action, and is therefore disabled if the required action is unavailable. As a result, an
agent may add to its set of actions an order that reflects its internal preference. After
composition with other agents, the set of actions is ranked to select an action with
the highest preference. An agent can therefore adapt, at runtime, to an open set of
agents.

In [50], we propose an automata-based paradigm based on soft constraint automata
[9, 49], called soft component automata (SCAs). An SCA is a state-transition system
where transitions are labeled with actions and preferences. Higher-preference transi-
tions typically contribute more towards the goal of the component; if a component is
in a state where it wants the system to move north, a transition with action north
has a higher preference than a transition with action south. At run-time, preferences
provide a natural fallback mechanism for an agent: in ideal circumstances, the agent
would perform only actions with the highest preferences, but if the most-preferred
actions fail, the agent may be permitted to choose a transition of lower preference.
At design-time, preferences can be used to reason about the behavior of the SCA in
suboptimal conditions, by allowing all actions whose preference is bounded from be-
low by a threshold. In particular, this is useful if the designer wants to determine the

133

DSL for agents with preferences Chapter 4

circumstances where a property is no longer verified by the system.
The algebraic structure for preferences is called a constraint semiring and was

proposed in [22]. A c-semiring is a tuple (A,+,×, 0, 1) such that

1. A is a carrier set that contains two element 0, 1 ∈ A;

2. + is a commutative associative idempotent binary operator, with unit element
0 and absorbing element 1;

3. × is a commutative associative binary operator that distributes over +, with
unit element 1, and absorbing element 0.

Well-known instances of c-semirings are the

• boolean c-semiring B = ({0, 1},min,max, 0, 1);

• fuzzy c-semiring F = ([0, 1],min,max, 0, 1) ;

• bottleneck c-semiring K = (R≥ ∪ {∞},max,min, 0,∞);

• probabilistic or Viterbi c-semiring V = ([0, 1],max,×, 0, 1);

• weighted c-semiring W = (R≥ ∪ {∞},min,+,∞, 0).

Every c-semiring admits an order ≤ defined by r ≤ s iff r + s = s. It is shown in
[22] that ≤ satisfies the following properties:

1. ≤ is a partial order, with minimum 0 and maximum 1;

2. x+ y is the least upper bound of x and y;

3. x× y is a lower bound of x and y;

4. (S,≤) is a complete lattice (i.e., the greatest lower bound exists);

5. + and × are monotone on ≤.

6. if × is idempotent, then + distributes over ×, x× y is the greatest lower bound
of x and y, and (S,≤) is a distributive lattice.

The composability of actions and their resulting composition is defined in [50] with
a Component Action System (CAS). A CAS can be lifted to an interaction signature
on TESs by using, for instance, the synchronous composability relation defined in
Chapter 2.

134

Chapter 4 DSL for agents with preferences

Definition 36 (Component action system). A component action system (CAS) is a
tuple ⟨Σ,⊙,�⟩, such that Σ is a finite set of actions, ⊙ ⊆ Σ × Σ is a reflexive and
symmetric relation and � : ⊙ → Σ is an idempotent, commutative and associative ⊙-
operator on Σ. We call ⊙ the composability relation, and � the composition operator.

A Soft Component Automaton (SCA) is a finite characterization of an agent be-
havior, equipped with a strategy. The csemiring value labeling each transition induces
a partial order, for each state, on the set of outgoing transitions. An agent may there-
fore filter its behavior by allowing only the k best actions from the partially ordered
set of outgoing transitions.

Definition 37 (Soft component automaton). A soft component automaton (SCA) is a
tuple ⟨Q,Σ,E,→, q0, t⟩ where Q is a finite set of states, with q0 ∈ Q the initial state, Σ
is a CAS, and E is a c-semiring, with t ∈ E the threshold. Lastly, → ⊆ Q×Σ×E×Q is
a finite relation called the transition relation. We write q a, e−−→ q′ when ⟨q, a, e, q′⟩ ∈ →.

The threshold determines which actions have sufficient preference for inclusion in
the behavior. Intuitively, the threshold is an indication of the amount of flexibility
allowed. In the context of composition, lowering the threshold of a component is a form
of compromise: the component potentially gains behavior available for composition.
Setting a lower threshold makes a component more permissive, but may also make it
harder (or impossible) to achieve its goal.

Definition 38 (Behavior of an SCA). Let A = ⟨Q,Σ,E,→, q0, t⟩ be an SCA. We say
that a stream σ ∈ Σω is a behavior of A if there exist streams µ ∈ Qω and ν ∈ Eω

such that µ(0) = q0, and for all n ∈ N, we have t ≤ ν(n) and µ(n)
σ(n), ν(n)−−−−−−−→ µ(n+1).

The set of behaviors of A, denoted by L(A), is called the language of A.

To discuss an example of SCA, we introduce the SCA As in Figure 4.1, which
models the crop surveillance drone’s objective to take a snapshot of every location
before moving to the next. The CAS of As includes the pairwise incomposable actions
pass, move and snapshot , and its c-semiring is the weighted c-semiring W. We leave
the threshold value ts undefined for now. The purpose of As is reflected in its states:
qY (resp. qN) represents that a snapshot of the current location was (resp. was not)
taken since moving there. If the drone moves to a new location, the component moves
to qN , while qY is reached by taking a snapshot. If the drone has not yet taken a
snapshot, it prefers to do so over moving to the next spot (missing the opportunity).

Another example of an SCA is Ae, drawn in Figure 4.2; its CAS contains the incom-
posable actions charge, discharge1 and discharge2, and its c-semiring is the weighted

135

DSL for agents with preferences Chapter 4

qY qN

move, 0

snapshot , 0

move, 2
pass, 1

pass, 1

Figure 4.1: A component modeling the desire to take a snapshot at every location, As.

q0 q1 q2 q3 q4

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

discharge2, 5 discharge2, 5 discharge2, 5

Figure 4.2: A component modeling energy management, Ae.

c-semiring W. This particular SCA can model the component of the crop surveillance
drone responsible for keeping track of the amount of remaining energy in the system;
in state qn (for n ∈ {0, 1, . . . , 4}), the drone has n units of energy left, meaning that in
states q1 to q4, the component can spend one unit of energy through discharge1, and
in states q2 to q4, the drone can consume two units of energy through discharge2. In
states q0 to q3, the drone can try to recharge through charge. Recall that, in W, higher
values reflect a lower preference (a higher weight or cost); thus, charge is preferred
over discharge1.

Here, Ae is meant to describe the possible behavior of the energy management
component only. Availability of the actions within the total model of the drone (i.e.,
the composition of all components) is subject to how actions compose with those of
other components; for example, the availability of charge may depend on the state of
the component modeling position. Similarly, preferences attached to actions concern
energy management only. In states q0 to q3, the component prefers to top up its
energy level through charge, but the preferences of this component under composition
with some other component may cause the composed preferences of actions composed
with charge to be different. For instance, the total model may prefer executing an
action that captures discharge2 over one that captures charge when the former entails
movement and the latter does not, especially when survival necessitates movement.

Nevertheless, the preferences of Ae affect the total behavior. For instance, the
weight of spending one unit of energy (through discharge1) is lower than the weight
of spending two units (through discharge2). This means that the energy component
prefers to spend a small amount of energy in a single step. This reflects a level of care:

136

Chapter 4 DSL for agents with preferences

by preferring small steps, the component hopes to avoid situations where too little
energy is left to avoid disaster.

Reo as a DSL We define a domain specification language for finite state preference
aware agents as a subset of Reo. One reason for using Reo is its graphical syntax,
which gives an intuitive encoding of soft component automata in terms of graphical
connectors and interaction primitives. Moreover, Reo reflects the modular and compo-
sitional aspects that make SCAs suitable for specifying complex behaviors: connectors
compose into more complex connectors, just like how SCAs compose into more com-
plex SCAs. We take advantage of this feature and, after defining an encoding of SCAs
into Reo connectors, we represent the composition of SCAs as the composition of their
corresponding connectors. Another reason is the existence of a compilation chain that
makes it possible to compile the same Reo model to an execution language (such as
Java or C) or to a language that supports verification (such as the rewriting logic
language Maude [13]). Effective optimizations implemented in the current Reo com-
piler help to keep the size of resulting composed models manageable, yielding similarly
manageable models in Maude, Java, etc.

Some existing research has considered the question of synthesizing Reo circuits
for constraint automata [16]. In our work, similar channels are used for encoding
the structure of the automaton (syncfifo, xrouter, and merger), but a new channel,
the bfilter, is introduced to encode the soft part of the action labeling transitions of
SCAs. Moreover, we provide, along with the description, the representation of the
Reo connector in a textual language, used as input for the compiler developed in [64].

We propose a general approach to represent SCAs and their composition as Reo
circuits. Recall that, by Definition 37, an SCA is formally defined as a tuple ⟨Q,Σ,E,→
, q0, t⟩ where Q is the set of states, Σ a component action system, E a c-semiring, →
a transition relation, q0 ∈ Q the initial state, and t ∈ E is the threshold value of the
SCA. In the sequel, we give a procedure to write an SCA as a Reo circuit. The set of
connectors defined hereafter constitutes a domain specific fragment of Reo for building
SCA. We conclude this section with an example of composition of two SCAs obtained
through composition of their respective Reo representations.

Actions and c-semirings Given Σ a CAS of an SCA, we map each action a ∈ Σ

into a Reo port with the same name. We consider the SCA “doing action a” equivalent
to “firing of port a”. Given the threshold t ∈ E, we associate each c-semiring value
e ∈ E with a predicate Pt(e) whose semantics reflects the truth value of t ≤ e in the

137

DSL for agents with preferences Chapter 4

i1

in

q

o1

om

. ≡ . . .
q

. . .

i1

in

o1

om

•

Figure 4.3: Graphical abbreviation for a state.

c-semiring. In order to mirror the semantics defined previously for composition of
SCA, the c-semiring value and the threshold value of a predicate may change during
composition. We consider the c-semiring to be fixed and shared by all SCAs.

States We define a state of an SCA as a Reo circuit, which we then graphically
abbreviate as a user-defined node. Essentially, a state is mapped into a syncfifo channel,
the empty/full status of whose buffer reflects whether or not the SCA is currently in
that state. As depicted in the circuit below, we identify the source end of the syncfifo
with the name of the state. Thus, to be in state q of the SCA corresponds to the syncfifo
whose source end is q being full. The initial state q0 starts with a full syncfifo buffer;
the syncfifo buffers of all other states start empty. Intuitively, all incoming (i1, . . . , in)
transitions into a state q, merge at the source end of the syncfifo, and all outgoing
transitions (o1, . . . , om) out of q synchronize via mutual exclusion with one another on
the sink end of the syncfifo. The reason for using the syncfifo instead of the standard
fifo primitive is that an outgoing transition can also be an incoming transition into
the same state, i.e., allow get and put operations on its ends to synchronously empty
and fill its buffer. We use an n-ary exclusive router to express that only one outgoing
transition is taken from a state with n outgoing transitions. The n-ary xrouter can be
constructed out of a ternary xrouter.

We call our constructed circuit a state, and use to represent a state of an
SCA as a graphical abbreviation and present it as a user-defined node in Reo with n

inputs and m outputs. We use as graphical abbreviation for the Reo circuit that
corresponds to the initial (and current) state of an SCA.

Besides the graphical construct for a state, we introduce a State connector in the
textual language of Reo shown in Listing 4.1. We adopt a convention, and prefix the
input and output ports of a state with the name of the state. For instance, the compo-
nent State(q0i[1..n], q0o[1..m]) represents the state q0 with n incoming transitions and

138

Chapter 4 DSL for agents with preferences

State(qi[1..n],qo[1..m]) {
{ sync(qi[k],x) | k:<1..n> }
syncfifo1 <"0">(x,y)
xrouter(y,qo[1..m])

}
Listing 4.1: Component defining a state q in textual Reo.

q0 q1

a1

Pt(e)

Figure 4.4: Reo circuit for a transition of a soft component automaton.

m outgoing transitions. We refer to the k-th incoming, resp. k-th outgoing, transition
to state q0 with the port q0i[k], respectively q0o[k].

Listing 4.1 shows an example of a component defined using conditional set notation.
The number of input ports in the interface of the State component influences how its
body is instantiated. The variable k ranges over the list [1, .., n], and thus creates a
set of sync channels.

Transitions A transition in an SCA involves an action, a c-semiring value, a pre-
state and a post-state. When the transition is enabled (i.e., its c-semiring value is
above the threshold), the transition synchronously fires the action port, and moves
the SCA from its pre-state to its post-state. We model this behavior in Reo as the
circuit in Figure 4.4, which represents the conditional activation of a transition using
a blocking-filter channel that compares the c-semiring value of the transition with the
threshold of the SCA. Given a c-semiring value e, the predicate Pt(e) of the blocking-
filter channel is true if and only if the c-semiring value e is greater than or equal to
the threshold value t.

The circuit in Figure 4.4 moves the token from node q0 to node q1 and fires port
a1, only if Pt(e) is true. If Pt(e) is not satisfied, the circuit in Figure 4.4 blocks the
transfer of the token from q0 to q1, mirroring the fact that its corresponding SCA
transition cannot be taken.

The transition primitive in textual Reo is written in Listing 4.2. The transition
component takes three ports in its interface, q0 and q1, being respectively the pre-state
and post-state, and a1 being the action. Two values are provided as parameters to a

139

DSL for agents with preferences Chapter 4

Transition <e,t>(q0,q1,a1) {
sync(q0,x)
bfilter <e,t>(x,a)
sync(x,q1)

}
Listing 4.2: Component defining a transition in textual Reo.

qY

qN

amove

asnapshot

apass

amove

apass

Pt(e1)

Pt(e2)

Pt(e3)

Pt(e4)

Pt(e5)

As
amove

apass

asnapshot

Figure 4.5: Reo circuit for the Snapshot SCA.

transition component: the c-semiring value e, and the threshold value t. Internally, the
transition component connects the pre-state to the post-state through synchronization
with the bfilter. The bfilter takes a c-semiring value of a given type as parameter, and
performs internal comparison with the threshold value.

Soft component automata Given the constructs for states and transitions, we
can build a Reo circuit for every SCA. For instance, the circuit for the automaton in
Figure 4.1 is shown in Figure 4.5. The two states qY and qN are represented as two
state-nodes, with qN initially full (designating it as the initial state).

To avoid visual clutter, we repeat the names of ports in the circuit (e.g., amove

appears twice in Figure 6), but all occurrences of the same port name correspond to a
single, unique port. Each of the five transitions of As is an instance of the transition
component in Reo. For example, the move transition from qY to qN is represented by
the transition connector with input from the state qY , output from the state qN , block-
ing filter with predicate Pt(e1), and action port amove. The corresponding component
view of the automaton is represented by a box that abstracts away the details of its
Reo circuit, exposing as its interface the boundary ports on which other components
can synchronize.

140

Chapter 4 DSL for agents with preferences

As <t>(move ,pass ,snap) {
Transition <1,t>(qYo[1],qYi[1],pass)
Transition <0,t>(qYo[2],qNi[1],move)
Transition <0,t>(qNo[1],qYi[2],snap)
Transition <2,t>(qNo[2],qNi[2],move)
Transition <1,t>(qNo[3],qNi[3],pass)

State(qYi [1..2] , qYo [1..2]) //State qY
State(qNi [1..3] , qNo [1..3]) // State qN

}
Listing 4.3: Component defining the snapshot SCA in textual Reo.

The snapshot SCA Ae is built out of the State and Transition connectors in Reo
defined in Listings 4.1 and 4.2. We show the instance of the Snapshot SCA As in
Listing 4.3, and adopt the convention defined previously to denote ports of incoming
and outgoing transitions.

Component action system The composition of two SCAs can also be written as
a Reo circuit, by encoding the composed SCA. However, such an approach uses the
SCA composition and disregards the compositional nature of Reo. Instead, we propose
to encode each individual SCA as a Reo circuit, and then compose those encodings
on the level of Reo, to obtain a Reo circuit equivalent to their composed automaton.
This approach allows for a transparent and incremental translation.

Since composition on the level of SCAs is mediated by their (common) CAS, com-
position at the level of Reo should also take the CAS into account. To do this, we
encode the CAS as a Reo circuit of its own; composition of two automata at the level
of Reo is then given by the (Reo) composition of their individual encodings, together
with the circuit obtained from their CAS. Furthermore, we hide all ports that are not
output ports of the CAS after the composition, so that the only actions observable
in the resulting Reo circuit are the actions that are brokered between the operand
circuits by the CAS.

There are three “sides” (collections of ports) to a CAS component: one for each
of the two operands in the composition, respectively called the left and the right
(operand) side, and a composite side for the result of the composition. For each action
α, we add three ports to the circuit, one in each side, labeled αℓ, αr and αc for the
left, right and composite sides respectively. The ports on the operand sides are input
ports, and the ports on the composite side are output ports.

141

DSL for agents with preferences Chapter 4

moveℓ

passℓ

snapshotℓ

discharge2r

charger

discharge1r

move2c snapshot1c chargec

Figure 4.6: Partial encoding of a CAS.

The intention of the circuit structure is as follows. If the operand circuits are
ready to perform actions α and β respectively, then ports αℓ and βr will be enabled
for writing. If α⊙β, then the CAS circuit brokers their composition, by allowing
αℓ and βr to fire simultaneously, synchronously firing the port that represents their
composition in the composite side, i.e., (α�β)c, as well. Moreover, the circuit ensures
that firing two ports in the left and right sides (when permitted) gives rise to exactly
one port firing in the composite side.

More formally, the circuit is built as follows. On the operand sides, each port
αo (where o ∈ {ℓ, r}) is connected to an exclusive router labeled αR

o . For each pair
of actions in the left and right operand sides that are compatible, i.e., all α, β ∈ Σ

such that α⊙β, we draw a synchronous drain from αR
ℓ and βR

r to an internal node
labeled αβ. Each of these nodes is then connected through a syncspout channel to the
composite side node labeled (α�β)c.

The CAS defined for the SCAs Ae and As is depicted in Figure 4.6. In this example,
the exclusive router has a single output, and is not strictly necessary. In general, the
CAS could define multiple composite actions out of the same side action. For instance,
suppose that the drone in our example is equipped with solar panels, and that the net
result of charging using the solar panels while moving is that the energy level does
not change. As a result, the energy component’s action pass is compatible with the
action move, and their composition is the action solar, which means “move with energy
from the solar panels”. Note how in this scenario, the firing of moveℓ can occur only
in conjunction with firing discharge2r or passr, but not both; in the first case, the
composite interface port move2c fires, while in the second case the port solarc fires.

142

Chapter 4 DSL for agents with preferences

cas(move ,pass ,snap ,dchge1 ,dchge2 ,
chge ,move2 ,charge ,snapshot1){

syncdrain(move ,x) syncspout(x,move2)
syncdrain(dchge2 ,x)
syncdrain(pass ,y) syncspout(y,charge)
syncdrain(chge ,y)
syncdrain(snap ,z) syncspout(z,snapshot1)
syncdrain(dchge1 ,z)

}
Listing 4.4: Component defining the CAS for the composition of Ae and As in textual Reo

moves

passs

snapshots

moveℓ

passℓ

snapshotℓ

discharge1r

charger

discharge2r

move2c snapshot1c chargec

discharge1e

chargee

discharge2e

As CAS Ae

Figure 4.7: Composition of two component automata with their component action system.

We give in Listing 4.4 the corresponding Reo component for the CAS described in
Figure 4.6 for the composition of the snapshot SCA and the energy SCA. We omitted
the exclusive routers, since, in this case, they are not necessary.

Composition The Reo circuit corresponding to a composition of two soft compo-
nent automata can now be defined as the composition of the Reo circuits for the
individual soft component automata, together with the Reo circuit for the relevant
component action system. Following the method above, we translate each of As and
Ae, respectively representing the snapshot component and the energy management
component, into its respective Reo connector.

Based on the steps described above, it is now possible to define a Reo circuit for
both Ae and As, that we name respectively Ae and As in textual Reo. The resulting
composition, shown in Listing 4.5, consists of a set containing the connector for each
SCA together with the connector for the component action system. The two thresholds
values are provided as parameter.

143

Related work and future work Chapter 4

composite(move2 ,charge ,snapshot1) {
Ae <t1 >(move ,pass ,snap)
cas(move ,pass ,snap ,dchge1 ,dchge2 ,

chge ,move2 ,charge ,snapshot1)
As <t2 >(dchge1 ,dchge2 ,chge)

|
t1 = 5,
t2 = 3

}
Listing 4.5: Component in textual Reo defining the composition between Ae and As.

4.4 Related work and future work

Real-time Maude Real-Time Maude is implemented in Maude as an extension of
Full Maude [74], and is used in applications such as in [58]. There are two ways to
interpret a real-time rewrite theory, called the pointwise semantics and the continuous
semantics. Our approach to model time is similar to the pointwise semantics for real-
time Maude, as we fix a global time stamp interval before execution. The addition of
a composability relation, that may discard actions to occur within the same rewrite
step, differs from the real-time Maude framework.

Models based on rewriting logic In [91], the modeling of cyber-physical systems
from an actor perspective is discussed. The notion of event comes as a central concept
to model interaction between agents. Softagents [84] is a framework for specifying
and analyzing adaptive cyber-physical systems implemented in Maude. It has been
used to analyze systems such as vehicle platooning [30] and drone surveillance [66]. In
Softagents agents interact by sharing knowledge and resources implemented as part of
the system timestep rule.

Softagents only considers compatibility in the sense of reachability of desired or
undesired states. Our approach provides more structure enabling static analysis. Our
framework allows, for instance, to consider compatibility of a robot with a battery
(i.e., changing the battery specification without altering other agents in the system),
and coordination of two robots with an exogenous protocol, itself specified as an agent.

Hybrid programs Other models for cyber-physical systems exist, such as hybrid
systems (e.g., Hybrid Programs [75], Hybrid automata [40, 65, 79]), and our semantic
model differs and complements existing work in, at least two main points. First,

144

Chapter 4 Related work and future work

we model interaction externally, as constraints that apply on the behavior of each
component. Interaction is not limited to input/outputs as in most hybrid descriptions,
and the difference between cyber and physical aspects is abstracted in the general
concept of a component. The generality of the semantic model enables to give a
specification of a component as a hybrid program, or as an I/O hybrid automata,
and define suitable composition operators in the algebra to compositionally define
cyber-physical systems. Second, we choose to model the interaction occurring between
components in a discrete way, as sequences of observations: we choose to model the
continuity of physical systems within their description as a set of discrete sequences
of observations. This description closely represents runtime observable behaviors of
cyber-physical systems, and highlights new challenges such as proving that a cyber-
physical system is safe when considering safety of runtime observables only.

Timed Automaton Several operations on Timed Automata have been defined to
model different aspects of concurrency. The UPPAAL modeling language allows such
concurrent operations, and the UPPAAL tool computes the product automaton on
the fly during verification.

It is shown that reachability is decidable, and it is proven that the infinite state-
space of timed automata can be finitely partitioned into symbolic states using clock
constraints known as zones.

UPPAAL is a tool in which network of timed automata are considered. Similarly
to the case of a single timed automata, two types of transitions are considered: delay
transitions, and action transitions. The difference is that action transitions decline
into two kinds: single action transitions, and synchronous action transitions.

UPPAAL makes use of CTL formulas, that are dynamically verified on the tree
unfolding of the transition system, making use of the zone optimization. UPPAAL
is well-suited for timed automata but has some limitations in the support of hybrid
automata, e.g. restricting their continuous parts to simple dynamics or applying the
Euler integration method.

145

Related work and future work Chapter 4

146

