
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

Chapter 3

Reo as an algebra of order
sensitive components

In this Chapter, we instantiate the algebra of components introduced in Chapter 2
to compositionally design, compile, and analyse order sensitive components. Order
sensitive components are components for which only the fact that an observation
happens before another observation matters, but not the absolute time at which the
observation occurs nor the interval of time between two observations. Many real world
applications fall in the class of interacting order sensitive components, and dedicated
design languages, such as the Reo coordination language [6, 3, 48], focus on formally
specifying the interaction occurring among such components.

Reo protocols coordinate components by means of elementary and composite con-
nectors. The behavior of a whole system based on these components is mainly defined
by its Reo protocol, which makes the reliability of the coordination protocol a central
part of the verification. We list in Table 3.1 few properties of interest to study the
temporal behavior of connectors. We note a port p in italic, together with some key
words such as silent and always. Reo semantics is at the level of transactional com-
ponents: ports fire within transactions. An executable of a Reo specification (e.g., an
implementation) would however use sequential (yet concurrent) primitives, and falls
into the category of linear components. This Chapter discusses a possible implementa-
tion of the linearization introduced in Section 2.3. The property of synchrony captures
that two ports a and b fire together. In a sequential setting, we allow, as shown in
Section 2.3, silent steps between firing of a and firing of b: we call this relation a then

79

Chapter 3

b.

Table 3.1: Properties on firing of ports and their meaning

Properties Relations
a fires exchange of data at a
silent no firings

a before b a fires then eventually b fires
a then b a fires then silent until b fires

synchrony (sync) always a fires iff b fires
asynchrony (async) always a before b or b before a

We show that the property of synchrony on transactional components is then re-
flected by the property a then b on a sequential setting. To experiment and verify
temporal properties, we give a translation from Reo to Promela. Promela, the spec-
ification language used for the LTL model checker SPIN, is sequential and relies on
message passing through channels. Some tools currently exist to translate a Reo cir-
cuit into a language used by a model checker [55]. However, no general mechanism
is described to deal with the translation of synchronous properties on Reo circuits to
asynchronous properties on the target language. This section extends a prior work[63].

We express, in Section 3.1, the formal semantics of Reo as an algebra of order
sensitive components. We show that this algebra can express Reo connectors using
the primitive notion of a port component, and a set of interaction signatures. We
use the results of Chapter 2 to show algebraic properties of the Reo composition
operator, and discuss some connector equivalences. Section 3.2 introduces a logical
specification of Reo connector as guarded commands. The semantics of such connector
is linked to the Reo semantics by considering sequences of observations that satisfy
the connector’s constraint. Section 3.3 is motivated by the extension [60] of our Reo
compiler to generate verifiable specification using the SPIN model checker [41]. We
implement a translation from a logical specification of Reo connectors to Promela,
an executable language, and show that properties of synchrony are preserved during
translation. We use the SPIN model checker to investigate some temporal properties
of basic Reo connectors, and give a general framework and domain specific language
for verifying temporal properties of Reo protocols.

80

Chapter 3 Reo

3.1 Reo

In Chapter 2, we introduced an algebra of components and their parametrized prod-
ucts. We also presented properties of components, such as being order sensitive. The
order sensitivity property manifests the fact that a component behavior is indepen-
dent to the concrete time value of its observations, and only the order of observations
matters. For instance, the time at which a packet is sent on a network is usually
irrelevant, but the order at which each packet arrives at its destination is important.

We show in this section how to define Reo connectors (and Reo primitives) using
our algebra of components. More precisely, we give a description of Reo primitives (like
a merger, a replicator, a fifo1, etc.) as product of port components under some inter-
action signatures. This way, we open new reasoning about circuit equivalences based
on the underlying algebraic laws of such operators (e.g., associativity, commutativity,
and distributivity).

A component in Reo has an interface consisting of a set of ports, and a behavior
specifying the sequence of data flowing at each port. Components interact with other
components via shared ports by agreeing on the data flowing at that port.

Current work on Reo focuses particularly on a specific class called connector. A
connector specifies the exchange or transformation of data only, but not its creation
nor its deletion. Therefore, a connector has open ended input and outputs ports, to
which consumer and producers are eventually placed. Typically, for a connector to
have observable behaviors, components plugged at the input ports must feed data into
that port, while components at the output ports must consume data through that port.
As an example, the sync connector in Reo has an input and output open ended points,
and synchronously forwards input data to its output. If connected to two components,
one at each endpoint, a sync connector essentially models a simultaneous send and
receive operation between those two components. Connectors may be connected to
each others, forming of more complex input/output relations [6].

Formally, each port denotes a set of Timed-Data Streams (TDS), which are infinite
sequences of a datum paired with a time stamp. Intuitively, a Timed-Data Stream tells
what data flows at what time through a port, and faithfully transcribes the observable
behavior of that port. A component denotes a set of tuples of TDSs, where each
port from the component’s interface is uniquely represented by a TDS in each tuple.
A component therefore specifies which of the TDS tuples are accepted or rejected.
We study properties of Reo connectors expressed as a fragment of the component
framework of Chapter 2.

81

Reo Chapter 3

The first model for Reo was introduced in [3], and made use of timed-data streams
where each port labels its firing with a time stamp. The representation of time as a
real value is motivated by the necessity to allow arbitrarily many finite interleavings
between two observations. Most of Reo connectors, however, are order sensitive, which
implies that the precise value of the time stamp of an observation does not matter,
only the order of observations matters.

Port as a component In Reo, the most primitive form of computations take place
at a port. A port denotes events that occur over time at a unique location. Often, a
port does not restrict which sequence of events may occur, and captures all possible
such sequences.

We therefore model a port as a unary component from the model introduced in
Chapter 2. We use Pa(D) = (Ea(D), La) to denote the port a with domain D where
Ea(D) = {(a, d) | d ∈ D} that contains all events for port a, and its behavior La ⊆
TES (Ea(D)) contains all TESs with singleton or empty observations, i.e., such that
σ ∈ La implies that for all i ∈ N, |σ(i)| ≤ 1. When the context is clear, we drop
the domain of a port and simply write Pa = (Ea, La). Note that a port is an order
sensitive component, as only the order between occurrences of events matter, but not
the exact time nor the time interval between two observations.

Example 38 (Alternating port). We define Pm = (Em, Lm) where Em = {(m, 0), (m, 1)}
and σ ∈ Lm ⊆ TES (Em) if and only if, for all i ∈ N, σ(2i) = ({(m, 0)}, ti) and
σ(2i+ 1) = ({(m, 1)}, ti+1), which consists of a stream of alternating bits at port m.

Interaction signature Following Example 11, we define three main interaction
signatures that are used to form binary and n-ary Reo components.

The synchronous signature Σsync
(a,b) = ([κsync(a,b)], [∪]) enforces events at port a to occur

at the same time as the same event at port b, i.e., ((O1, t1), (O2, t2)) ∈ κsync(a,b)(Ea, Eb)

if and only if

t1 < t2 =⇒ O1 ∩ Eb = ∅∧

t2 < t1 =⇒ O2 ∩ Ea = ∅∧

t2 = t1 =⇒ ∀d.((a, d) ∈ O1 ⇐⇒ (b, d) ∈ O2)

Note that κsync from Example 11, when restricted to observations occurring at ports,
is the symmetric and reflexive relation that synchronizes the occurrences of events at
every shared port, i.e., κsync is the union of all κsync(x,x) with x a port name.

82

Chapter 3 Reo

The asynchronous signature Σasync
(a,b) = ([κasync(a,b)], [∪]) prevents events from port a

and b to occur at the same time, i.e., ((O1, t1), (O2, t2)) ∈ κasync(a,b) (Ea, Eb) if and only if

∀d1, d2.((a, d1) ∈ O1 ∧ (b, d2) ∈ O2) =⇒ t1 ̸= t2

The relational signature Σrel
(a,b,⊓) = ([κrel(a,b,⊓)], [∪]), for ⊓ ⊆ Ea × Eb a relation,

relates an event (a, d1) from port a to a simultaneous event (b, d2) at port b such that
((a, d1), (b, d2)) ∈ ⊓, i.e., ((O1, t1), (O2, t2)) ∈ κrel(a,b,f)(Ea, Eb) if and only if

t1 < t2 =⇒ O1 ∩ dom(⊓) = ∅∧

t2 < t1 =⇒ O2 ∩ codom(⊓) = ∅∧

t2 = t1 =⇒ (∀d1.(a, d1) ∈ O1 ∩ dom(⊓)

=⇒ (∀d2.(b, d2) ∈ O2 ∩ codom(⊓)

=⇒ ((a, d1), (b, d2)) ∈ ⊓)

where dom(⊓) ⊆ Ea and codom(⊓) ⊆ Eb are the sets of events in the domain and
co-domain of the relation ⊓. Every event that is not in the related by ⊓ can therefore
freely occur at anytime. Note that if ⊓ is the identity relation on the data element,
i.e., (a, d1), (b, d2) ∈ ⊓ implies d1 = d2, then Σrel

(a,b,⊓) is equal to the signature Σsync
(a,b).

Example 39 (Binary component). Let a be a port, and m an alternating port. Let
f0 be the functional relation such that f0(a, v) = (m, 0) for all (a, v) ∈ Ea, the prod-
uct Pa ×Σrel

(a,m,f0)
Pm represents the component that synchronizes all values at port a

with the value 0 at port m. Reciprocally, fixing the functional relation f1 to be such
that f1(b, v) = (m, 1) for all (b, v) ∈ Eb, the product Pb ×Σrel

(b,m,f1)
Pm represents the

component that synchronizes all values at port b with the value 1 at port m.

The delay signature Σdelay
(a,b,⊓) = ([κdelay(a,b,⊓)], [∪]), for port a, b, and a relation ⊓ ⊆

Ea×Eb, restricts every occurrence of data at port a to be related to a later observable
at port b, i.e., ((O1, t1), (O2, t2)) ∈ κdelay(a,b,⊓) if and only if

t1 < t2 =⇒ (∀d1.(a, d1) ∈ O1 =⇒ (∀d2.(b, d2) ∈ O2 =⇒ ((a, d1), (b, d2)) ∈ ⊓))

When ⊓ is the identity relation on the data element, i.e., ((a, d1), (b, d2)) ∈ ⊓ implies
d1 = d2, we simplify the notation to write Σdelay

(a,b) .

83

Reo Chapter 3

Reo syntax Reo has a graphical syntax that visualizes composition of components.
Figure 3.1 shows three kinds of components: synchronous channels, asynchronous
channels and nodes. In this section, we describe the semantics of these kinds only
intuitively. Typically, we call a binary component a channel and certain kinds of other
components nodes.

First, we consider two synchronous channels. The sync channel in Figure 3.1
represents a synchronous transfer of data from port a to port b. The syncdrain in
Figure 3.1 models a synchronous firing of port a and b without necessarily equating
data at those ports. There are also asynchronous channels. A fifo1 channel (depicted
in Figure 3.1) has an internal buffer with the capacity to hold one data item. This
buffer is initially empty. When its buffer is empty, a fifo1 channel accepts a data
item through its input port a, places it in its buffer, which then becomes full. When
its buffer is full, a fifo1 channel no longer accepts any intput. When the buffer of a
fifo1 channel is full, the channel delivers the content of its buffer to a get operation
performed by the environment on its output port b, and its buffer becomes empty. A
get on the output port of a fifo1 channel with an empty buffer blocks until after its
buffer becomes full. Thus, the get and put operations on the ports of a fifo1 channel
succeed only asynchronously: never together. The asyncdrain channel in Figure 3.1
never allows a pair of put operations on its boundary ports to succeed synchronously.
Finally, Figure 3.1 has two ternary components: a merger and a replicator. A merger
synchronizes data transfer through at most one of its input boundary ports with data
transfer through its output port. If data is available at both input ports, a merger
non-deterministically chooses one to synchronize with its output port. A replicator
forwards the data from its input port to both of its output ports. All ports must be
ready for the replicator to proceed. A filter forwards the data from its input to its
output if the predicate ϕ labeling the filter holds on the input data. In the case where
the predicate ϕ does not hold on the data at its input, the data is lost. Oppositely, the
blocking filter, written bfilter, blocks when the data at its input violates the constraint
ϕ. See Section 4.3 for the use of Reo primitives to construct connectors.

Reo semantics Typically, the composition operator is fixed in Reo to be ×sync that
joins behaviors of components on shared port names. We use the notation ▷◁ to denote
such operation. Reo fixes the semantics of a node [6], whereas all channels are user
defined. There is, however, a commonly useful set of channels (see Figure 3.1) that
we use in this section. We define algebraically some common channels out of the port
component introduced earlier and few interaction signatures that we listed.

84

Chapter 3 Reo

a b

sync(a, b)

a b

syncdrain(a, b)

a b
•

fifo1(a, b)

a b

asyncdrain(a, b)

a

b

c

replicator(a, b, c)

a

b

c

merger(a, b, c)

a b

ϕ

bfilterϕ(a, b)

a b

ϕ

filterϕ(a, b)

Figure 3.1: Graphical syntax for some primitives.

More generally, we define Reo components as a fragment of our component algebra:

C := C ×Σ C | Px

where Σ ∈ {Σsync ,Σsync
(a,b),Σ

async
(a,b) ,Σ

delay
(a,b,⊓),Σ

rel
(a,b,⊓)} for some port names a, b, x, for

some relation on events ⊓.

We define the following Reo channels and nodes:

sync(a, b) = Pa ×Σsync
(a,b)

Pb

syncdrain(a, b) = Pa ×Σrel
(a,b,⊓)

Pb with ⊓ = (Ea × Eb)

filter(a, b, f) = Pa ×Σrel
(a,b,⊓f)

Pb with ⊓f = {((a, d), (b, f(d)) | d ∈ dom(f)}

fifo1 (a, b,M) = (Pa ×Σrel
(a,m,f0)

Pm)×Σdelay
(a,b)

∪Σsync
(m,m)

(Pb ×Σrel
(b,m,f1)

Pm)

merger(a, b, c) = (Pa ×Σexcl
(a,b)

Pb)×Σsync
(a,c)

∪Σsync
(b,c)

Pc

with Σdelay
(a,b) ∪Σ

sync
(m,m) = ([κdelay(a,b)]∪[κ

sync
(m,m)], [∪]) and Σsync

(a,c)∪Σ
sync
(b,c) = ([κsync(a,b)]∪[κ

sync
(b,c)], [∪])

and ⊓f = {({(a, d1)}, {(b, d2)}) | d2 = f(d1) or }. The sync(a, b) component is such
that the data observed at port a and b are equal and synchronous, i.e., occurs at
the same time. The syncdrain(a, b) component ensures that both the data of a and
b are observed at the same time, but does not restric their data to be equal. The
component fifo1 (a, b,M) synchronizes the observation of a data at a with the change
of the memory state M , and then outputs the same data at b. As defined here, the
fifo1 (a, b,M) component is infinitely productive, i.e., always eventually has an input
at a and an output at b. The component filter(a, b, f) synchronizes events from a with

85

Logical specification of connector components Chapter 3

event from b related by the function f . Any unrelated event at a or b can freely happen.
Note that, in the case that f is the identity, we recover the Reo filter behavior where
the condition d ∈ dom(f) denotes some predicate ϕ. The blocking filter behavior can
be encoded by composition of a non-blocking filter and other Reo primitives. The
merger(a, b, c) component either synchronizes a with c or b with c but never all ports
together.

A strength of Reo is its compositional nature: protocols are built out of primitives.
We use the join operation defined in Example 7 (see Theorem 1) for the proof of
associativity and commutativity of ▷◁) to define two Reo connectors:

alternator(a, b, c) = sync(a, c1) ▷◁ fifo1 (x, c2) ▷◁ syncdrain(a, b) ▷◁

sync(b, x) ▷◁ merger(c1, c2, c)

fifo2 (a, b) = fifo1 (a, x,M1) ▷◁ fifo1 (x, b,M2)

3.2 Logical specification of connector components

Components defined in Section 3.1 are order sensitive components: the order of the
sets of events in their behavior matters, but not the exact time of occurrence of that
set. Yet, no finite specification of component behavior is given.

In this section, we give a logical specification of components as a predicate in
guarded command form. Intuitively, the guards of the perdicates are conditions for
the commands to be executed. Consecutive satisfactions of the guarded command
predicate form the behavior of the corresponding component. The resulting logical
specification can be translated to an output language for execution or verification.

This work relates to existing work on verification of temporal on Reo compo-
nents. In addition, this section presents a powerful intermediate representation in
Section 3.2.1, that minimizes the size of the conjunction of guarded command predi-
cates. Moreover, we introduce a structure for a port at runtime that facilitates that
specification of properties in Table 3.1 as temporal properties.

Language of constraints We formally characterize the behavior of a component
as a predicate relating the data flow through its ports. Note that we first study the
behavior of a component in its ideal environment, i.e. all input and output sequences
are possible. The resulting behavior that a component describes is a set of tuples of
data streams representing the synchronous flowing of data through the ports of its
interface.

86

Chapter 3 Logical specification of connector components

Data elements that flow through ports and get stored in memory belong to a
domain that we call D. In this work, we use a unique domain for all port and memory,
since we do not use any algebraic operations on data. Note that Reo allows more
structured data elements exchanged through ports and memories. As we will later see
in the characterization of components’ behavior, the need of talking about the case
where no data is observed at a port or memory is of importance. The item ∗ is added
to the data domain D, and D∗ denotes the resulting data domain.

Ports and memories appear as variables in the logical characterization. Port and
memory variables take values in the domain D∗. The set of port variables is denoted as
P , and M denotes the set of memory variables. While ports do not have any memory
(as mentioned in the previous paragraph), memories always store the previous data
item. For each memory variable m ∈ M , there is a memory variable m′ ∈ M ′. Their
interpretation becomes clear in the next paragraph.

User defined components are characterized by a user supplied predicate or function
among the ports of its interface. The sets Q and F respectively denote the set of n-ary
predicate symbols and n-ary function symbols.

A term is either a variable p ∈ P , m ∈ M , or m′ ∈ M ′, an n-ary function
application f(t1, ..., tn) where f ∈ F is an n-ary function symbol, or a constant d ∈ C.

A formula is built inductively by:

ϕ ::= t1 = t2 | B(t1, ..., tn) | ϕ1 ∧ ϕ2 | ¬ϕ

Where B ∈ Q is a predicate symbol. The set of formula expressions is denoted by
F . We use the shorthand notation t1 ̸= t2 for ¬(t1 = t2), ⊥ for t1 ̸= t1, and we get
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) as well as ϕ =⇒ ψ = ¬ϕ ∨ ψ.

We allow existential quantifier at the outermost left position of a formula. Quan-
tifiers range over port variables only. A port occurring in ϕ but not existentially
quantified is called a free port variable. We call atomic a formula that is either an
equality, an inequality, or a predicate. We call Vϕ the set of free variables occurring in
ϕ, and similarly Pϕ ⊆ Vϕ and Mϕ ⊆ Vϕ for the set of free port and memory variables.
When ϕ is clear from the context, we drop the subscript notation.

Example 40. A Reo component, as introduced earlier, constrains the flow of data
through its boundary ports. We call constraint of the component the logical formula
used to relate the data flowing through the ports. We usually write comp(a, b) for the
formula of the component comp having as free port variables a and b. We give below
two examples for components sync and fifo1.

87

Logical specification of connector components Chapter 3

Given a port p ∈ P , the proposition of whether or not p fires is encoded as an
equality between p and elements of D∗. We say that p fires if p ̸= ∗. On the other
hand, p does not fire if p = ∗. Taking a, b ∈ P , we can now express that a and b fire
synchronously with the same datum, as the formula a = b.

sync(a, b) = a = b (3.1)

fifo1(a, b) = (m′ = a ∧ a ̸= ∗ ∧ b = ∗ ∧m = b) ∨

(m′ = a ∧ a = ∗ ∧ b ̸= ∗ ∧m = b) ∨

(m′ = m ∧ a = ∗ ∧ b = ∗) (3.2)

The constraint for a fifo1 channel has three clauses. The first one corresponds to
filling the buffer with the data item observed at port a; the second one empties the
buffer through port b; and the last one corresponds to the case where no port fires, in
which case the value in the buffer must remain unchanged.

As hinted previously, protocols can be built by composing primitives. In the case
of a composite component, the resulting constraint is defined as the conjunction of the
constraints of the underlying components.

The logic is agnostic regarding the direction of data flow and merely represents the
constraint on the data observed at each port.

Solution of constraints Every constant element of D∗ get mapped to an element
of the homonym domain D∗. Let γ be the map for every n-ary function symbol f ∈ F

to an element of Dn
∗ → D. Let I be the map for every n-ary predicate symbol B ∈ Q

to an element of Dn
∗ → 2. Let Γ : V → D∗ be the interpretation function for variable

symbols where V = P ∪M ∪M ′. The interpretation of a term t, noted JtK(Γ,γ), is the
standard inductive interpretation providing the signature (Γ, γ)

A solution to a formula ϕ is an assignment Γ such that Γ satisfies ϕ, written as
Γ |= ϕ, defined inductively on ϕ as:

Γ |= ⊤ always

Γ |= t1 = t2 iff Jt1K(Γ,γ) = Jt2K(Γ,γ)

Γ |= ϕ1 ∧ ϕ2 iff Γ |= ϕ1 and Γ |= ϕ2

Γ |= ¬ϕ iff Γ ̸|= ϕ

Γ |= ∃pϕ iff there exists d ∈ D∗ such that Γ |= ϕ[d/p]

Γ |= B(t1, ..., tn) iff (Jt1K(Γ,γ), ..., JtnK(Γ,γ)) ∈ I(B)

88

Chapter 3 Logical specification of connector components

We extend the domain definition of an n-ary function from Dn to Dn
∗ by defining

f(t1, ..., tn) = ∗ ⇐⇒ t1 = ∗ ∨ ... ∨ tn = ∗.

Example 41. Following the Example 40, the set of solutions for a sync and a fifo1
channel corresponds to the assignments for all free variables in the formula sync(a, b)

and fifo1(a, b) that satisfy the formula. We use the data domain D = {0, 1, ∗}, and
for clarity, we write (0, 1) as the assignment that maps a 7→ 0 and b 7→ 1. In this
context, the assignments (0, 0), (1, 1), and (∗, ∗) are the only assignments that satisfy
the constraint sync(a, b). We write (0, 1, 0, 1) the assignment that maps a to the first
element, b to the second element, m to the third, and m′ to the last element. Thus,
considering the constraint fifo1(a, b), the assignment (0, ∗, ∗, 0) and (1, ∗, ∗, 1) both sat-
isfy the constraint. In the case of the latter, the next value of the memory should now
be equal to 1, and only assignment mapping the memory to 1 would be allowed. We
explain in the next paragraph the behavior of a component as all the infinite sequences
of assignments that satisfy its internal constraint.

3.2.1 Connector as guarded commands: an intermediate form

A component, if it has some open ports, is not in isolation but must co-evolve with
its environment. The solution of its internal constraints must conform with the data
provided or requested by the environment.

Guarded commands We propose a method based on guards and command to
implement and simulate transactional behavior. The guard is a predicate on the state
of the ports and the memory. If the guard is true, the update describes a constraint
that both the component and its environment must satisfy. In an implementation
language, updates are themselves sequential, which can introduce some interleaving in
a concurrent setting. We later show, by making use of temporal properties, that the
translation to an sequential (yet concurrent) implementation preserves the atomicity
property.

We first refine the language of constraint and impose some requirement on ϕ to be
a guarded command. We show some properties if ϕ satisfied those requirements.

We denote by vin an input variable and vout an output variable. An input term
tin refers to either a data element d ∈ D∗, an n-ary function f(tin1 , ..., t

in
n) whose

arguments are input terms tin1 , ..., tinn .

89

Logical specification of connector components Chapter 3

A guards g is a conjunction of literals l defined as follows:

l ::= B(tin1 , ..., t
in
n) | tin1 ∼ tin2 | vout ∼ d

where ∼∈ {=, ̸=}.
A commands c is a conjunction of equalities of the kind vout = tin. We say that a

formula ϕ is in guarded command form if

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
j

gj)

where gi are formulas in the language of guards and ci are formulas in the language
of commands.

Given ϕ in guarded command form, we call an implication of the type g =⇒ c

in ϕ, a guarded command of ϕ. We call the number of guarded commands in such a
formula, the size of that formula. We denote the set of guards by G, and the set of
commands by C. Note that guarded commands are quantifier free formulas.

We say that a quantifier free formula ϕ = ϕ1 ∨ ... ∨ ϕn in disjunctive normal form
and expressed in the language of constraints is deterministic if ϕ can be written with
the grammar of guarded commands such that ϕ = g1 ∧ c1 ∨ ... ∨ gn ∧ cn, where ∧ has
precedence over ∨, gi are guards, ci are commands, and gi ∧ gj ≡ ⊥ for all i, j where
i ̸= j.

We assume that if a vout is involved in an equality, then the other term is either
∗, or an input term tin. In other words, if an equality vout1 = vout2 appears in the
constraint ϕ, there must exist an input term tin such that vout1 = tin and vout2 = tin

in order for ϕ to be written in the guarded command form. Moreover,

Proposition 1. A deterministic formula ϕ =
∨

i(gi ∧ ci) can be written as a guarded
command where:

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

where i ranges over the number of disjuncts of ϕ.

Proof. By induction on the structure of ϕ. We assume ϕ is in disjunctive normal form,
and negation is pushed to the literals. We can write ϕ = ϕ1 ∨ ... ∨ ϕn where ϕi are
conjunctions of equalities, inequalities, or predicates.
Step 1 (identification): We syntactically partition each ϕi with its corresponding guard
gi and command ci such that ϕi = gi ∧ ci. We get the resulting formula ϕ = g1 ∧ c1 ∨
... ∨ gn ∧ cn. We syntactically substitute gi ∧ ci by (gi =⇒ ci) ∧ gi. We then get

90

Chapter 3 Logical specification of connector components

ϕ = (g1 =⇒ c1) ∧ g1 ∨ ... ∨ (gn =⇒ cn) ∧ gn.
Step 2 (factorization): Because the formula ϕ is deterministic, for all i ̸= j we have
gi∧gj ≡ ⊥, which equivalently gives gi∧¬gj ≡ gi. We can then rewrite (g1 =⇒ c1)∧g1
as (g1 =⇒ c1) ∧ (g2 =⇒ c2) ∧ g1, since

(g1 =⇒ c1) ∧ (g2 =⇒ c2) ∧ g1 = g1 ∧ c1 ∧ (¬g2 ∨ c2)

= g1 ∧ c1 ∧ ¬g2 ∨ g1 ∧ c1 ∧ c2
≡ g1 ∧ c1 ∨ g1 ∧ c1 ∧ c2
≡ g1 ∧ c1
≡ (g1 =⇒ c1) ∧ g1

By induction on the number of implications, we conclude that (gj =⇒ cj) ∧ gj is
equivalent to

∧
i(gi =⇒ ci) ∧ gj for all j, and thus:

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

Given two guarded commands ϕ =
∧

i(gi =⇒ ci) ∧ (
∨

j gj) and ψ =
∧

i(g
′
i =⇒

c′i) ∧ (
∨

j g
′
j), we write the composition ϕ ∧ ψ as the formula:

ϕ ∧ ψ =
∧
i

(gi =⇒ ci)
∧
i

(g′i =⇒ c′i) ∧ (
∨
i,j

g′i ∧ gj)

Proposition 2. Given two deterministic formulas ϕ and ψ, their product ϕ ∧ ψ is
also deterministic.

Proof. Since ϕ and ψ are deterministic, we can write ϕ =
∧

i(gi =⇒ ci) ∧ (
∨

j gj)

and ψ =
∧

i(g
′
i =⇒ c′i) ∧ (

∨
j g

′
j) where for i ̸= j, gi ∧ gj ≡ ⊥ and g′i ∧ g′j ≡ ⊥. The

product ϕ ∧ ψ can be seen as:

ϕ ∧ ψ = (g1 ∧ c1 ∨ ... ∨ gn ∧ cn) ∧ (g′1 ∧ c′1 ∨ ... ∨ g′n ∧ c′n)

= (g1 ∧ g′1 ∧ c1 ∧ c′1 ∨ ... ∨ gn ∧ g′n ∧ cn ∧ c′n)

The new formula ϕ ∧ ψ inherits from ϕ ∧ ψ that for any i, j, k and l such that
i ̸= j ∨ k ̸= l, we have gi ∧ g′k ∧ gj ∧ g′l ≡ ⊥. Therefore, ϕ∧ψ is also deterministic and

91

Logical specification of connector components Chapter 3

can be written as a guarded command:

ϕ ∧ ψ =
∧
i,j

((gi ∧ g′j) =⇒ (ci ∧ c′j)) ∧
∨
i,j

(gi ∧ g′j)

As the construction in the proof of Proposition 2 shows, writing the composition
of two deterministic formulas as a deterministic formula may increase the size of the
resulting formula.

We present some optimizations that can be applied to formulas before forming
their product. We use the formula ϕ =

∧
i(gi =⇒ ci) ∧ (

∨
i gi) and ψ =

∧
j(g

′
j =⇒

c′j) ∧ (
∨

j g
′
j) to illustrate these transformations, where i and j range over a finite set

of natural numbers.

In general, the disjunction of guards
∨

i gi constituting the last part of the guarded
command can imply a relation on the literals of the guards, and simplify the guards
themselves. We consider the example of the sync channel:

ϕsync =(a = ∗ ∧ b = ∗ ∧ a = b) ∨ (a ̸= ∗ ∧ b ̸= ∗ ∧ a = b)

=((a ̸= ∗ ∧ b ̸= ∗) =⇒ a = b)∧

((a = ∗ ∧ b ̸= ∗) =⇒ a = b)∧

((a = ∗ ∧ b = ∗) ∨ (a ̸= ∗ ∧ b ̸= ∗))

=(a ̸= ∗ =⇒ a = b) ∧ (a ̸= ∗ ⇐⇒ b ̸= ∗)

In this example, the guarded command form of the formula for sync induces a relation
on a fires and b fires that simplifies the formula. It also means that in subsequent
compositions, we can consider literals a ̸= ∗ and b ̸= ∗ as interchangeable. We consider
as future work the exploitation of such relations that emerge from the disjunction of
guards.

Given the product ϕ ∧ ψ, if we find gk and g′l such that gk ⇐⇒ g′l, we can
equivalently consider ϕ ∧ ψ as the following formula:

ϕ ∧ ψ =((gk ∧ g′l) =⇒ (ck ∧ c′l))∧∧
i ̸=k

(gi =⇒ ci)
∧
i ̸=l

(g′i =⇒ c′i) ∧ (
∨
i,j

gi ∧ g′j)

92

Chapter 3 Logical specification of connector components

In other words, if ϕ is of size N and ψ of size M , we decrease the size of ϕ ∧ ψ
by 1 by identifying two guards, i.e., the size of ϕ ∧ ψ is M + N − 1. If we compare
the resulting size of the disjunctive normal form, since gk ∧ g′l is exclusive of all other
guards gi and g′j for all i ̸= k and j ̸= l, identifying two guards remove M +N clauses
from M ×N .

Example 42. We now consider an example of guarded commands for the fifo1 prim-
itive. The fifo1 primitive has a permanent constraint written in Fig. 3.2, with the io
designation of io(a) = 1 and io(b) = 0, i.e., a is an input port and b is an output port.
The formula of a fifo1 is deterministic, and with the result of Proposition 1, we can
write its permanent constraint as a guarded command:

ϕfifo1 = (g1 =⇒ c1) ∧ (g2 =⇒ c1)∧(g3 =⇒ c2)∧

(g1 ∨ g2 ∨ g3)

where we have the following guards g1 := (a ̸= ∗ ∧ b = ∗ ∧ m = ∗), g2 := (a =

∗ ∧ b ̸= ∗ ∧ m ̸= ∗), and g3 := (a = ∗ ∧ b = ∗); and the following commands
c1 := (m′ = a ∧m = b), and c2 := m′ = m.

The formula for a fifo1 channel has three different guards. The first guard g1 checks
whether its source port a is active, in which case the command c1 fills the buffer with
the data observed at port a; the second guard g2 checks whether the channel’s sink port
b is active, in which case its command c1 empties the buffer through port b. The last
guard g3 checks if the two ports a and b are inactive, and if true, triggers the command
c2 where memories are copied over.

Proposition 3. Given ϕ a deterministic formula written in guarded command form,
Γ is a solution of ϕ if and only if there exists a unique guarded command g =⇒ c of
ϕ such that:

Γ |= g ∧ c

Proof. We assume ϕ =
∧

i(gi =⇒ ci) of size n ∈ N where gi are guards and ci are
commands for all 1 ≤ i ≤ n.

Γ |= ϕ iff Γ |=
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

iff ∀ 1 ≤ i ≤ n, Γ |= gi =⇒ ci and Γ |=
∨
j≤n

gj

Because guards are exclusive to each others (ϕ is a deterministic formula), if there

93

Logical specification of connector components Chapter 3

exists 1 ≤ i ≤ n such that Γ |= gi, then Γ ̸|= gj for all j ̸= i. Therefore, there exists a
unique 1 ≤ j ≤ n such that Γ |= gj .

Γ |= ϕ iff for all 1 ≤ i ≤ n, Γ |= gi =⇒ ci and

there exists a unique 1 ≤ j ≤ n, Γ |= gj

Since there exists a unique guard that Γ can satisfy, for all 1 ≤ i ≤ n such that i ̸= j,
Γ |= gi =⇒ ci since Γ |= ¬gi. Thus:

Γ |= ϕ iff there exists a unique 1 ≤ j ≤ n, Γ |= gj

and Γ |= gj =⇒ cj

Which is equivalent to:

Γ |= ϕ iff there exists a unique 1 ≤ j ≤ n, Γ |= gj

and Γ |= cj

3.2.2 Behavior of connectors

Operational semantics. We present in this section the operational semantics of
constraint ϕ specifying a protocol as a labeled transition system, where we consider
memory assignment as labels for states, and port assignments as labels for transitions
between states. We call ΓVϕ

the set of assignment functions Γ : P ∪M ∪M ′ → D∗

that satisfy the constraint ϕ. Given an assignment Γ ∈ ΓVϕ
, we denote by ΓP , ΓM ,

and ΓM ′ the restrictions of Γ to respectively the port variables, un-primed memory
variables, and primed memory variables assignment.

The operational semantics of a connector characterized by an internal constraint
ϕ, where Vϕ = P ∪ M ∪ M ′, is defined in terms of a labeled transition system
(S,L, s0,ΓVϕ

,→), where:

• S the set of states

• s0 is the initial state

• L : S → (M → D∗) is a labeling function

• ΓVϕ
= {Γ | Γ |= ϕ} is the set of solutions of ϕ

94

Chapter 3 Logical specification of connector components

(∗) (1)(∗, ∗)

(1, ∗)

(∗, 1)

(∗, ∗)

Figure 3.2: LTS of a fifo1 channel with domain D = {∗, 1}

• →⊆ S × (P → D∗) × S the transition relation s.t.: (s0,ΓP , s1) ∈→ iff there
exists ∆ ∈ ΓVϕ

such that ∆P = ΓP , ∆M = L(s0), and ∆M ′ = L(s1).

According to this definition, each state in si ∈ S represents a data assignment for
memories of a component (free variables in ϕ) at an instant i.

In the case where M = ∅, which means no memories are defined in the protocol,
then the set of states S is composed only of one state s0, such that L(s0) = ∅.

By Proposition 3, the label transition system of a deterministic constraint is de-
terministic with respect to its label: for any state s ∈ S and pair of distinct states
s′, s′′ ∈ S, if (s,Γ, s′) ∈→ and (s,Γ′, s′′) ∈→, then Γ ̸= Γ′. Indeed, the two solutions
Γ and Γ′ must satisfy two different guarded commands, and since ϕ is deterministic,
the two guards cannot be satisfied at the same time. Then, Γ and Γ′ must differ in
at least one port assignment. It makes sense therefore to use such a label transition
system to define the operational semantics of a connector specified by a deterministic
constraint, as the resulting LTS is deterministic.

Example 43. This example prolongs the Example 41, and use the data domain D =

{1, ∗}. States are labeled by memory assignment. A fifo1 has only one memory,
therefore a state labeled by the element (d) represents the assignment of value d to
the memory. Transitions are labeled by port assignment. A fifo1 has two ports in its
interface, therefore we express the assignment a maps to da and b maps to db as the
tuple (da, db). Initially, the fifo1 start with an empty memory.

The set ΓVϕ
for the fifo1 channel corresponds to all solution of the constraint

fifo1(a, b), that could be listed in the same manner as explained in Example 41. The
resulting LTS for a fifo1 channel is shown in Figure 3.2.

Execution path We define an infinite execution path σ of a transition system LTS

as a sequence of transitions, i.e. σ = s0,ΓP0, s1,ΓP1, s2, ..., si,ΓPi, si+1, ..., where
(si,ΓPi, si+1) ∈→.

We denote by wσ the word induced by the path σ consisting of the sequence of
the assignments Γ, i.e. wσ = (Γi)i∈N where Γi(p) = ΓPi(p) and Γi(m) = L(si)(m) for

95

Logical specification of connector components Chapter 3

all p ∈ P , and m ∈ M where L is the labeling function of the LTS. We write T for
the set of infinite words, and w ∈ T is accepted if there exists an infinite execution
path σ of LTS such that w = wσ. Given w ∈ T , the element w(i) designates the i-th
port and memory assignment in w, and w(i)(v) gives the specific assignment for the
port variable if v ∈ P or memory variable if v ∈ M . The n-th derivation of a word
w is noted as w(n) and defined such that w(n)(i) = w(n + i) for all i ∈ N. Based on
this definition, we have w(0)(i) = w(i). For example, in the first table (from the left)
in Table 3.2, we have: w(0)(0) = (∗, ∗, ∗), w(0)(1) = (1, ∗, ∗), and w(1)(0) = (1, ∗, ∗),
w(1)(1) = (∗, 1, ∗), where the values of the first, the second, and the third elements in
the tuples are associated respectively to the ports and memory, a, m, and b.

Behavior of components We define the behavior of a component whose specifica-
tion is given by a formula ϕ as the set of infinite words accepted by the LTS, i.e.:

Lϕ =
⋃
w∈T

{w | w is an accepted word }

We refer to the behavior of a port as the restriction of the behavior of a component
to a single variable. We note w|a the restriction of the word w to the port variable
a ∈ P . The restriction w|a thus denotes the stream of values observed at port a, and
is such that w|a(i) = w(i)(a) for all i ∈ N.

Example 44. The example of an execution of the protocol corresponding to the con-
nector fifo1 is represented by Table 3.2.

a m b
∗ ∗ ∗
1 ∗ ∗
∗ 1 ∗
∗ 1 1
...

a m b
1 ∗ ∗
∗ 1 ∗
∗ 1 ∗
∗ 1 1
...

a m b
1 ∗ ∗
∗ 1 1
1 ∗ ∗
∗ 1 1
...

Table 3.2: Three words in the behavior set of a fifo1 channel with domain D = {1, ∗}

We use the same convention as in Section 2.3, namely that a behavior of a order
sensitive component is described without time labels. Moreover, using the set notation
for an assignment Γ of ports to values, a word labeling an LTS is a sequence of sets of
assignments, which denotes the representative of a set of equivalent behaviors under
stretching. Thus, the semantics of a constraint ϕ is given as a component (Eϕ, Lϕ)

96

Chapter 3 Verification of temporal properties on connectors

where Eϕ contains all possible assignments for all free ports and memories occurring
in ϕ.

3.3 Verification of temporal properties on connectors

To specify the properties of the executions of Reo protocols, we define in t this section
the LTL formulas semantics on Reo connector behaviors.

Let C be a Reo protocol specified with the formula ϕ, such that its operational
semantics is specified with LTS. Let σ be an execution path of LTS. We refer by wσ a
word accepted by LTS over σ, and denote T the set of accepted words.

An LTL formula is expressed using the following syntax:

φ ::= v = d | φ1 ∧ φ2 | ¬φ | Xφ | □φ | ♢φ | φ1Uφ2

where v is a port or memory variable in P ∪M and d is an element of the data domain
D∗.

We interpret the LTL formulas over the accepted word wσ and define the satisfac-
tion relation |= such as,

• wσ |= v = d iff w
(0)
σ (0)(v) = d

• wσ |= φ1 ∧ φ2 if and only if wσ |= φ1 and wσ |= φ2

• wσ |= ¬φ if and only if wσ ̸|= φ

• wσ |= Xϕ if and only if w(1)
σ |= ϕ

• wσ |= □φ if and only if w(i)
σ |= φ for all i ∈ N

• wσ |= ♢φ if and only if w(i)
σ |= φ for some i ∈ N

• wσ |= φ1Uφ2 if and only if there exists j ∈ N such that w(j)
σ |= φ2, and w(i)

σ |= φ1

for all 0 ≤ i < j.

We introduce several properties of interest on Reo circuit. Given p, m, and m′

respectively port, memory, and next memory variables, we denote by p and m the
atomic propositions p ̸= ∗ and m′ ̸= m which represent that p is firing and m is
changing value. In both cases, we say that p or m fires.

Example 45. As an example of LTL formula for a sync channel, we have □(a ⇐⇒
b) where a and b are port variables. For a fifo1 channel, we have □(a =⇒ X(¬aUb))
and also □(b =⇒ X(¬bUa)).

97

Verification of temporal properties on connectors Chapter 3

Properties Temporal formulas
a fires a
a silent ¬a
a before b a =⇒ ♢b
a then b a =⇒ X(silent U b)
a sync b □(a ⇐⇒ b)
a async b □((a =⇒ ♢b) ∨ (b =⇒ ♢a))

We now look into the implementation and verification of a protocol described by a
formula in guarded command form. As Proposition 3 shows each solution is described
by a unique guarded command. Therefore a program implementing a protocol checks
the set of guards that are satisfied by the state of the environment and the internal
state, and nondeterministically satisfies one and only one corresponding command.
We develop in the next section the steps leading from a protocol specification to a
program written in Promela.

3.3.1 From synchronous protocol to asynchronous implemen-
tation

In the previous section, we detailed the requirement and the procedure to write a
protocol as a formula in the guarded command form. The implication of having such
a form for a protocol makes it possible and easier to translate it into a program. In
this section, we define a translation from a formula written as a guarded command
to a Promela program. We show the correctness of the translation, by comparing the
semantic of a Reo specification, and that of its target program in Promela.

Translation of Reo to Promela Throughout this section, we assume a generic
data type denoted as Data for data flowing in the protocol, since data type is specific
in the application that employs the protocol. We go through the main constructs in
Reo, being ports, components, and connectors.

Ports In Reo, as defined in the previous section, a port is a location where two
components synchronize and exchange data. In Promela, we implement a Reo port
as a pair of two Promela channels, each with a buffer size of one. We show that
our Promela implementation of a port simulates Reo’s synchronized message passing
between components.

typedef port {
chan data = [1] of {Data};

98

Chapter 3 Verification of temporal properties on connectors

chan trig = [1] of {int}; }

Listing 3.1: definition of a Reo port in Promela

As expressed in Listing 3.1, a port has a data channel and a synchronization chan-
nel. The data channel is responsible of the data flow between input and output ends
of a port. The Promela synch channel ensures synchronous exchange between these
two ends.

As described in Listing 3.2, two actions can be performed on such a constructed
port: put and take.

inline put(q,a) {
int x;
q.data!a;
q.trig?x }

inline take(q,a) {
q.trig!-1; q.data?a }

Listing 3.2: put and take functions

The action put has two arguments: a port q and a datum a. The function call
put(q, a) atomically fills the data channel of q with the datum a, and blocks on the
trig channel, waiting to synchronize with the component on the output side of q. The
integer x is used to empty the trig channel, but its value does not matter.

The action take has a port q and a variable a as arguments. The function call
take(q, a) atomically notifies, by filling the trig channel, that there is a component
willing to take data, and blocks on the data channel, until a datum can be taken into
the variable a. The integer value of −1 written into the synchronization channel is
arbitrary, as trig is used only for signaling.

We describe two temporal properties that reflect the synchronous behavior of a
port in an asynchronous implementation. We say that a port fires whenever a data is
exchanged between the input party and the output party. If a port does not fire, it is
silent. In the case of an implementation of a port with two buffers, the firing property
occurs whenever a port has both an input and an output request: both buffers are
full. We say the a buffer (or a memory) is full whenever it contains a data, and is
empty otherwise. We define some macros in Listing 3.3 for firing and silent property
of port p, and for full and empty buffer.

Listing 3.3: Macros for firing of ports

#define p_fires (
!(len(p.data) == 0) && !(len(p.trig) == 0) &&

99

Verification of temporal properties on connectors Chapter 3

X((len(p.data) == 0) || (len(p.trig) == 0)))

#define p_silent (! p_fires)

#define m_full (!(len(m)==0))
#define m_empty ((len(m)==0))

Components We call an external component that interacts with the main protocol,
an agent. For each port q in the protocol’s interface, we assume an agent connected
to that port. More precisely, if q is used as an input port by the protocol, the agent
connected to q must use q as an output port, and vice versa. We give in Listing 3.4
an example of a definition of an agent with two ports as its arguments, one input and
one output.

proctype agent(port p1; port p2){
/* p1: input , p2: output */
do

:: /* action */
od }

Listing 3.4: A generic structure for an agent

Each agent is defined as a proctype in Promela, and runs concurrently with the
main protocol. We represent the generic behavior of an agent as an infinite sequence
of non deterministic actions (with the do− od loop), but the definition of the precise
behavior of an agent is left for the user. Since agents and protocol share ports, it is
possible that an agent blocks until a datum is delivered at its port.

We assume a set of agents given by the user. Our compiler generates only the
skeleton of an agent including the set of ports in its interface, with the direction of each
port (either input or output). As an extension, we intend to make the input/output
restriction of ports direction more strict, using the Promela assertion xr and xs to
prevent misuse of port directionality. We later specify some properties of the desired
observable behavior.

Connectors As introduced previously, the main difference between a component and
a connector is the ability for the component to block on some put or get operations on
its port. We showed in the previous section a guarded command transformation for a
connector, where the guard plays the role of a safety check on the state of the input

100

Chapter 3 Verification of temporal properties on connectors

and output ports, and the command gives the values exchanged at the output ports
in terms of the value taken at the input ports.

A connector is a process running concurrently to the components. We define a
connector as a proctype, taking as argument all ports in the interface of the connectors.
The internal operation in the connector proctype are defined based on the definition of
its internal constraint. We call P the set of free port variables used in the connector’s
constraint, and M the set of memory variables.

We first instantiate every variable occurring free in the connector’s internal con-
straint as a channel structure in Promela. For every port variable p ∈ P , we define
a global instance of the port structure defined in previous paragraph, with the same
name as the variable. Since variable have unique names, the structure is also unique for
every ports. The structure for a port is global, and will later be used for checking some
temporal properties. For every memory variable m ∈M , we define a local channel of
size 1. Constant symbols are mapped to their corresponding domain. Promela only
supports few data types, we assume that the constants get an interpretation in one of
those data type (integer, boolean, float, characters). Function symbols are mapped to
inline procedures in Promela. For each function used in Reo, we assume that an inline
procedure with the same name will be provided in Promela. We use, for every port
or memory variables, an additional variable in Promela that will temporary store the
data occurring at a port or memory. This additional variable is typically used when
multiple output variables take the value of a single input variable: in this case, the
value of the input variable is temporary stored, and replicated to every outputs.

Based on the result of Proposition 1 we take the connector in its guarded command
form. We use GC for the set of guarded commands. A guarded command g → c ∈ GC
has a natural interpretation in Promela as a conditional update. The guard g is
translated as a condition on the status of the port and memory channels, while the
command c is an update of the port and memory status. The most common statements
in the guards are full(p.data), full(p.trig) and full(m), which respectively checks
whether a port p has an incoming data request, an outgoing data request, or if the
memory m is full. The negation of those statement are also commonly used in the
guards. In the command, we proceed for the update of ports and memories, which
corresponds to statements of the kind take(p,d), put(p,d), m?d, or m!d, where d is a local
variable.

The generic structure of a Promela program obtained from a deterministic formula
with n guarded commands is shown in Listing 3.5.

101

Verification of temporal properties on connectors Chapter 3

proctype Protocol(port p1 ;...){
/* p1: input , ... */
/* Memory declaration */
chan m = [1] of {int}; ...
/* Initial state */
m!0; ...
/* Local variables */
int _m; int _p1 ; ...
/* Guarded commands */
do
:: (guard_1) -> command_1
:: ...
:: (guard_n) -> command_n
od }

Listing 3.5: a generic structure of a protocol

Note that the statements in the command are executed sequentially. We show in
the next section that we can express some synchronous patterns as an LTL property
on the state of the ports and memories.

LTL properties We give a translation to an LTL property on the Promela transla-
tion, such that the properties of synchrony are preserved. Therefore, we show that if
the LTL property should hold on the Reo circuit, then the corresponding asynchronous
LTL property should hold on the Promela program generated from the Reo circuit.

The property p_silent is defined as the negation of the firing property, and repre-
sents all the non firing states of the port p. The property silent denotes the conjunc-
tion of all silent properties for all ports. Note that internal memory updates are still
allowed.

The two properties p1_before_p2 and p1_then_p2 express some asynchronous firing
for ports p1 and p2. The latter property is stricter, since the silent property requires
that between the firing of ports p1 and p2, no other ports fire: it is true that p1_then_p2

implies p1_before_p2.

We define the synchronous property in Promela as a binary relation between two
ports p1 and p2. We say that the two ports are synchronous if it is always the case
that p1 fires and then p2 fires (or the opposite), and all steps in between the firings
satisfy the silent property. Synchronous property is a stricter form of asynchronous
property: it is true that sync_p1_p2 implies async_p1_p2.

102

Chapter 3 Verification of temporal properties on connectors

Properties Temporal formulas

p_fires
len(p.data) != 0 && len(p.trig)!=0 &&
X(len(p.data)==0 || len(p.trig)==0)

p_silent !(p_fires)

m_full len(m.data)!=0

m_empty len(m.data)==0

m_fires
m_full && X(m_empty)) ||

m_empty && X(m_full)

m_silent !(m_fires)

p1_before_p2 (p1_fires -> <> (p2_fires))

p1_then_p2 (p1_fires -> X(silent U p2_fires))

sync_p1_p2 [] (p1_then_p2 \/ p2_then_p1)

async_p1_p2 [] (p1_before_p2 \/ p2_before_p1)

Arguments for correctness In this section, we show that the sequence of messages
exchanged between the generated Promela processes can be related to the sequence of
data exchanges at a port of a Reo circuit. We first establish, based on the structure
of the generated code resembling the guarded command form of the connector, that
every data exchanged between Promela processes can be related to an assignment that
satisfies the connector. As a consequence, every sequences of data exchanges between
Promela processes can be related to a sequence of assignments in the behavior of a
connector. We then show that there exists, for any sequences in the behavior of a Reo
connector in its ideal environment, a set of processes in Promela such that the message
exchanges between Promela processes correspond to the sequence in the behavior of
the Reo connector. For simplicity and clarity, we consider a binary data domain for
ports. The arguments for a larger domain are similar.

We use the semantic of Promela defined in [88] to show the correctness of our
translation. The operational semantics of a Promela program P composed of processes
Pi is defined as a graph T = (Q,→, q0) where Q is a set of states and → is a binary
relation on states. A state q ∈ Q is a tuple q = (l0, ..., lm, lv1, ..., lvm, gv) where each
li is a location in process Pi, lvi is the vector of local variable values in process Pi, and
gv is the vector of global variables in P . The state q0 ∈ Q denotes the initial state.
We write li

st−→ l′i if and only if there is a statement st from li to l′i. The variables
after executing st are st(lv) and st(gv). In our case, st is an assignment, skip, or

103

Verification of temporal properties on connectors Chapter 3

conditional statement; or it is an asynchronous send (resp. receive) from a non-full
(resp. non-empty) channel. The initial state of a Promela program T = (Q,→, q0)

is q0 = (l0, lvinit, gvinit) and a path of T is a sequence of state q0q1... such that
(qi, qi+1) ∈→.

A Promela program produced by a Reo compiler consists of a set of N processes
running concurrently, whereN−1 processes are agents interacting through the protocol
process. Agents share ports with the protocol, such that they can put values on the
input port of the protocol, and take values from the output ports of the protocol.

By construction, the connector in Promela can only change its internal variables
(memories) and the global vector of variables (boundary ports) if one of its guard is
true and the command is performed. Guards are boolean statements checking whether
the trig and data channels of a port are full (or empty), or if the memories channels
are full (or empty). Given a connector with n ports at its interface, and k internal
memories, there are 22n+k possible states in the graph of the Promela process.

We show soundness of our implementation with the following arguments:

1. In the initial state, the vector gv is set to its initial value, together with all
memory channels.

2. Given a vector gv of global variable, and a vector lv of local variables, the process
for the connector, if scheduled, evaluate its guards. From the set of guards
satisfied, one is selected non-deterministically, and the corresponding command
is performed. The guard ensure that the take and put statements in the command
will not block. The value exchanged at the ports, the current and next values for
the memory constitute an assignment that satisfies a unique guarded command
in the deterministic formula of the connector (Proposition 3).

3. If no guards are satisfied, processes for agents are scheduled, modifying the global
vector of variables gv.

All sequences of assignments allowed by the connector process are included in the
sequences of assignments satisfying the formula of the connector.

Completeness can be derived by showing that every solution of the guarded com-
mand corresponds to an implementation where the set of agents simulate the envi-
ronment of the solution. By taking an implementation that unifies the agents, and
using the non-deterministic properties of Promela, we can simulate any solution of the
formula as a statement and a gv vector in Promela. Elaboration of this part remains
as future work.

104

Chapter 3 Verification of temporal properties on connectors

3.3.2 Case Study

In this section, we present an application of our approach. We show the Promela
specification of a fifo channel, and study its LTL properties in two contexts: ideal and
constrained environment. A second example is available in [63], in which we analyse a
composite connector representing the protocol involved in a railway system. We show
the Promela program compiled from the corresponding Reo circuit, and verify some
properties of interest using SPIN.

We refer to an on-line repository [60] for reproduction of the results presented
in this section. The compiler that generates the Promal code is accessible at [64].
The compiler takes as input a Treo file (Textual Reo [31]) and give an intermediate
representation of the circuit as a guarded command formula described in this section.

Study on the fifo channel We consider the Reo specification of fifo described in
Example 40, where ports a and b are renamed to ports p1 and p2. We connect the
channel with two components: one that produces data at the input port p1 and one
that consumes that at the output port p2.

We study the properties of a fifo channel in two different environments:

• The ideal environment: the two components connected by the fifo channel, pro-
ducer and consumer, behave in the ideal way. The producer is willing to produce
messages infinitely often, and the consumer is willing to consume messages in-
finitely often.

• The constrained environment: the producer is willing to produce messages in-
finitely often, but the consumer consumes a finite number of messages only. We
show in this case that some properties of the fifo channel that were satisfied in
the ideal environment may now be violated due to some non ideal behavior of
boundary components.

Before detailing the verification of LTL properties in these two cases, we present the
Promela implementation of fifo channel, described in Listing 3.6. The Reo protocol is
implemented by the process Protocol, and the producer and consumer are implemented
respectively by the processes Prod and Cons.

proctype Protocol(port p1;port p2){
bit _m = 0 ;
do
:: (empty(m) && full(p1.data)) -> take(p1,_m); m!_m
:: (full(m) && full(p2.trig)) -> m?_m; put(p2,_m)

105

Verification of temporal properties on connectors Chapter 3

od
}

init{
run Prod(p1); run Cons(p2); run Protocol(p1 ,p2); }

Listing 3.6: Promela implementation of a fifo channel

The Promela implementations of the components producer and consumer are de-
scribed in Listing 3.7.

proctype Prod(port a){
do
:: atomic{put(a,1)}
od

}
proctype Cons(port a){
bit y;

do
:: atomic{take(a,y)}
od

}

Listing 3.7: Promela implementation of a consumer and producer

Verification in the ideal environment. We present three properties to verify on
fifo1 connector:

• prop1 ≡ □(p1 =⇒ ♢(p2)), which states that always if the port p1 fires then
eventually the port p2 fires. This property is verified. It is implemented in
Promela as follows:

ltl prop1 {[] (p1_fires -> <> p2_fires) }

• prop2 ≡ □(m ̸= ∗ =⇒ ♢(p2)), which states that always if the buffer m is full
then eventually the port p2 fires. This property is verified. It is implemented in
Promela as follows:

ltl prop2 {[] (m_full -> <> p2_fires) }

• prop3 ≡ □(m ̸= ∗ =⇒ X(p2)), which states that always if m is full then in the
next state p2 fires. This property is not verified because the port p2 becomes
silent in the next state. It is implemented in Promela as follows:

ltl prop3 {[] (m_full -> X p2_fires) }

106

Chapter 3 Related work and future work

• prop4 ≡ □(p1 =⇒ X(¬p1 U p2)), which states that always if p1 fires then in
the next state p1 becomes silent until p2 fires. This property is verified. It is
implemented in Promela as follows:

ltl prop4 {[](p1_fires -> X(p1_silent U p2_fires))}

Remark 11. The result of the property verification, described above, shows that the
implementation of the fifo1 connector is correct. Indeed, based on the behavior of fifo1,
this result is the one we expected.

Verification in the constrained environment: In this case, the producer inter-
acts with a finite consumer, so the number of messages that could be consumed by
the is limited to 5. In Listing 3.8, is presented the Promela implementation of a finite
consumer, specified by the process consF inite().

We verified the properties described above, prop1, prop2, prop3, and prop4, and as
expected, all these properties are not satisfied. Indeed, the properties prop1, prop2,
and prop4 are not satisfied because of the behavior of the component consumer that
prevents firing the port p2 after consuming the first 5 messages. Therefore their
violation is due to the protocol environment. However the property prop3, remains
not satisfied as in the case of the ideal environment.

proctype consFinite(port a){
bit y;
int i = 5;
do
:: i>0; atomic{take(a,y)}; i = i-1
:: break
od
}

Listing 3.8: a generic structure of a protocol

3.4 Related work and future work

We should mention the existing works on Reo semantics [47] and pioneer work on
Reo compiler [46]. Our work expands existing work on the Reo coordination language
by giving a new algebraic semantics for Reo, whose primitive components are not
channels, but ports. Basic Reo channels (such as a sync or fifo channel) can be
described as an algebraic product of their ports, parametrized by the proper interaction

107

Related work and future work Chapter 3

signature. Moreover, the algebraic properties of the interaction signature provides new
ways to reason about equivalent Reo expressions.

Model checker Vereofy [14, 15, 13] is a model checking tool developed at the Univer-
sity of Dresden to analyze and verify Reo connectors. Vereofy has two input languages:
the Reo Scripting Language (RSL), used to specify the coordination protocol, and a
guarded command language called Constraint Automata Reactive Module Language
(CARML), a textual version of constraint automata used to specify the behavior of
components. Vereofy allows the verification of temporal properties expressed in LTL
and CTL-like logics.

Our work differs from Vereofy, since we use the Treo [31] (Textual Reo language)
to describe both the protocol and the boundary components. In Treo, the description
of the behavior of primitive channels and components is parametric: the user has to
define a semantic domain, and the Reo composition operation in that semantics. We
make use of the rule based semantics [32] for channels and give the description of
boundary components directly as Promela processes. Our work extended the set of
backend for the compiler so that the Textual Reo description (i.e., Treo input file)
compiles to a Promela program that can be used by the Spin model checker.

Denotational semantics for Reo In [3], the authors give a co-inductive seman-
tic model for Reo connectors, based on timed-data streams (TDS). We shall briefly
highlight the main differences between such model and ours. First, the TES model for
component behavior explicitly captures atomic set of events in an observation, while
the TDS model implicitly represent atomicity as all firing of ports that occur at the
same time. The time stamp of a TES can therefore be dropped while preserving the
information of atomicity: this construction simplifies reasoning about atomicity.

Another difference between TES and TDS is that TESs are not restricted to com-
munication ports, but can model arbitrary events. Moreover, the implicit semantics in
TDS that a port fires infinitely often (which is used as an argument for fairness in [3])
is no longer assumed in the TES model, but can still be recovered if needed.

Operational semantics for Reo The constraint automata semantics for Reo was
also considered in [17] for defining and verifying bisimulation and language equiva-
lence between Reo connectors. In [6, 7], the authors considered time constraints, and
proposed a timed version of constraint automaton to verify by model checking timed
CTL properties. In [52, 51], the authors use timed constraint automata and present
a SAT-based approach for bounded model checking of real-time component connec-

108

Chapter 3 Related work and future work

tors. The authors proposed a framework for the verification of Reo circuits using the
mCRL2 toolset (developed at the TU of Eindhoven). Their tool automatically gener-
ates mCRL2 specifications from Reo graphical models. The translation from Reo to
mCRL2 uses the constraint automata semantics of Reo.

In [42], the authors provide a semantics for Reo circuits using Büchi automata,
and verify temporal properties of Reo circuit. Our work differs in that our logic
is first order (and not monadic second order as for Büchi automata) and we give an
internal representation (as guarded commands) that minimizes the size of the resulting
composition. The internal representation of a Reo circuit is then translated either to
a model checker for temporal verification, or to an imperative language for execution.
The tool on which this section is based has shown state of the art results [32].

109

Related work and future work Chapter 3

110

