
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

Chapter 2

A semantic model for
interacting cyber-physical
systems

Cyber-physical systems often describe systems in which a program (cyber) has to
regulate and control a physical quantity. For instance, consider a heating system
equipped with sensors and a controller. The controller has as objective to maintain
the temperature of a room within some bounds. The controller (cyber) frequently
reads the temperature sensors located in the room, and takes decision as to turn
the heater on or off. The decision made by the controller changes the dynamic of
the temperature profile, and eventually the next readings of the sensors. A similar
structure is observed if one wants to direct autonomously a car on a field. The car
has some position and energy sensors, and actuates its wheels depending on the value
that its controller reads. The decision made by the car changes the location of the car
on the field and modifies the remaining energy in its battery.

The two examples above are commonly considered to belong to the field of control
theory, i.e., the design of control algorithms that monitor observable measures to
maintain some invariants. The design of a control algorithm is directly subject to
the physical system with which it interacts. As the physical system becomes more
complex, finding a suitable model becomes challenging as well. For instance, if the
room has several heaters and sensors distributed over the space, the decision taken at
one heater may interfere with the decision taken at the other heater. Coordination is

13

Algebra of Components Chapter 2

then necessary between controllers. Similarly, in the case where two robots move on
the same shared field, the decision of one robot may directly depend on the decision
of the other robot to move.

Our model, introduced in Section 2.1, builds on top of existing control theory to
define cyber-physical systems as a composition of its parts. Similar approaches are
taken in software design [3, 56, 34], where a complex monolithic software is broken into
subparts that interact. Doing so requires a model to specify explicitly the interaction
that occurs in between each parts. We use components to refer to the parts of a
cyber-physical system, and defines several product operations over such components
to express their interactions. Intuitively, a component encapsulates both a cyber or a
physical process.

Composition is an important feature of a specification language, as it enables the
design of a complex system in terms of a product of its parts. Decomposition is
equally important in order to reason about structural properties. Usually, however, a
system can be decomposed in more than one way, each optimizing for different criteria.
In Section 2.2, we extend our model to reason about decomposition. Components
compose using a family of algebraic products, and decompose, under some conditions,
given a corresponding family of division operators. We use division to specify invariants
of a system of components, and to model desirable updates. We apply our framework
to design a cyber-physical system consisting of robots moving on a shared field, and
identify desirable updates using our division operator

As a theoretical application of our model, we study in Section 2.3 the operation
of linearization, that transforms a transactional component, i.e., observing multiple
events at the same time, to a linear component, i.e., observing a single event at a time.
We consider the class of components for which occurrences of events are independent
of the precise value of the time at which they happen, but depend on the past or
future occurrences of other events. We give conditions for a linearization to be valid,
which intuitively preserves the integrity of the behaviors after linearization, and give
two instances of valid linearizations.

2.1 Algebra of Components

The definition of components in this section is similar to the one defined in [3, 56].
Intuitively, a component denotes a set of (infinite) sequences of observations. Whether
it is a cyber process or a physical process, our notion of component captures all of its
possible sequences of observations.

14

Chapter 2 Algebra of Components

A model of interaction emerges naturally from our component model by relat-
ing observation of events from one component to observation of events from another
component. Moreover, we give a construction to lift constraints on observations to
constraints on infinite sequences of observations, and ultimately define, from those
interaction constraints, algebraic operations on components.

2.1.1 Notations

An event is a simplex (the most primitive form of an) observable element. An event
may or may not have internal structure. For instance, the successive ticks of a clock
are occurrences of a tick event that has no internal structure; successive readings of
a thermometer, on the other hand, constitute occurrences of a temperature-reading
event, each of which has the internal structure of a name-value pair. Similarly, we can
consider successive transmissions by a mobile sensor as occurrences of a structured
event, each instance of which includes geolocation coordinates, barometric pressure,
temperature, humidity, etc. Regardless of whether or not events have internal struc-
tures, in the sequel, we regard events as uninterpreted simplex observable elements.

Notation 1 (Events). We use E to denote the universal set of events.

An observable is a set of event occurrences that happen together and an observa-
tion is a pair (O, t) of an observable O and a time-stamp t ∈ R+.1 An observation
(O, t) represents an act of atomically observing occurrences of events in O at time t.
Atomicity, in its general form, consists of two properties: all events in the set must
occur together, and no interfering event can occur in between any two events from
the set. The second clause is in general formalized by a dependence relation (see Sec-
tion 2.3). In the case of an observation, atomically observing occurrences of events
in O at time t means there exists a small ϵ ∈ R+ such that during the time interval
[t− ϵ, t+ ϵ]:

1. every event e ∈ O is observed exactly once2, and

2. no event e ̸∈ O is observed.

In the absence of a specified dependence relation, we make the safe, conservative
assumption that all events depend on each other. Therefore, the atomicity of an

1Any totally ordered dense set would be suitable as the domain for time (e.g., positive rationals
Q+). For simplicity, we use R+, the set of real numbers r ≥ 0 for this purpose.

2A finer time granularity, i.e., a smaller ϵ, may reveal some ordering relation on the set of events
that occur in the same set of observation.

15

Algebra of Components Chapter 2

observation, defined above, assumes the dependence relation to be total, i.e., all events
are dependent, and no event can interleave within an observation.

We write ⟨s0, s1, ..., sn−1⟩ to denote a finite sequence of size n of elements over an
arbitrary set S, where si ∈ S for 0 ≤ i ≤ n − 1. The set of all finite sequences of
elements in S is denoted as S∗. A stream over a domain S is a function σ : N → S.3

We use σ(i) to represent the i + 1st element of σ, and given a finite sequence s =

⟨s0, ..., sn−1⟩, we write s · σ to denote the stream τ ∈ N → S such that τ(i) = si for
0 ≤ i ≤ n− 1 and τ(i) = σ(i− n) for n ≤ i. We use σ(n) to denote the n-th derivative
of σ, such that σ(n)(i) = σ(i + n) for all i ∈ N. We use σ′ as an abbreviation for the
first derivative of the stream σ, i.e., σ′ = σ(1). We use P(X) to denote the power set
of X.

A Timed-Event Stream (TES) over a set of events E and a set of time-stamps R+

is a stream σ ∈ N → (P(E)× R+) where, for every i ∈ N, let σ(i) = (Oi, ti) and:

1. ti < ti+1, [i.e., time monotonically increases] and

2. for every n ∈ N, there exists k ∈ N such that tk > n [i.e., time is non-Zeno
progressive].

Notation 2 (Time stream). We use OS(R+) to refer to the set of all monotonically
increasing and non-Zeno infinite sequences of elements in R+.

Notation 3 (Timed-Event Stream). We use TES (E) to denote the set of all TESs
whose observables are subsets of the event set E with elements in R+ as their time-
stamps.

Given a sequence σ ∈ TES (E) with σ(i) = (Oi, ti) for i ∈ N, we use the projections
pr1(σ) ∈ N → P(E) and pr2(σ) ∈ OS(R+) to denote respectively the sequence of
observables where pr1(σ)(i) = Oi and the sequence of time stamps where pr2(σ)(i) = ti.

Notation 4 (Observable time). For σ ∈ TES (E) and t ∈ R+, we use σ(t) to denote
the observable O in σ if there exists i ∈ N with σ(i) = (O, t), and ∅ otherwise. We
write Θ(σ) for the set of all t ∈ R+ such that there exists i ∈ N with σ(i) = (Oi, t)

with Oi ⊆ E.

Note that, for t ∈ R+ where σ(t) = ∅, the meaning of σ(t) is ambiguous as it may
mean either t ̸∈ Θ(σ), or there exists an i ∈ N such that σ(i) = (∅, t). The ambiguity
is resolved by checking if t ∈ Θ(σ).

3The set N denotes the set of natural numbers n ≥ 0.

16

Chapter 2 Algebra of Components

Notation 5 (Pair derivative). For a pair (σ, τ) of TESs, we use (σ, τ)′ to denote the
new pair of TESs for which the observation(s) with the smallest time stamp has been
dropped, i.e., (σ, τ)′ = (σ(x), τ (y)) with x (resp. y) is 1 if pr2(σ)(0) ≤ pr2(τ)(0) (resp.
pr2(τ)(0) ≤ pr2(σ)(0)) and 0 otherwise.

2.1.2 Components

The design of complex systems becomes simpler if such systems can be decomposed
into smaller sub-systems that interact with each other. In order to simplify the design
of cyber-physical systems, we abstract from the internal details of both cyber and
physical processes, to expose a uniform semantic model. As a first class entity, a
component encapsulates a behavior (set of TESs) and an interface (set of events).

Like existing semantic models, such as time-data streams [3], time signal [87], or
discrete clock [34], we use a dense model of time. However, we allow for arbitrary
but finite interleavings of observations. In addition, our structure of an observation
imposes atomicity of event occurrences within an observation. These distinctions mean
that for every σ(i) = (O, t), i ≥ 0 of a σ ∈ TES (E): (1) O is finite; and (2) there exists
a real number ϵ > 0 such that in the open interval (t− ϵ, t+ ϵ) no event e ̸∈ O occurs,
and every event e ∈ O occurs exactly once. Such a constraint abstracts from the
precise timing of the occurrence of each event in the set O, and turns an observation
into an all-or-nothing transaction.

Definition 1 (Component). A component is a tuple C = (E,L) where E ⊆ E is a
set of events, and L ⊆ TES (E) is a set of TESs. We call E the interface and L the
externally observable behavior of C.

As a shorthand notation, given component C = (E,L), we use σ : C for σ ∈ L.

In contrast with other component models where observables range over the same
universal set of events, therefore making component overly specified, our model encap-
sulates the set of observable events of a component in its interface. Thus, a component
cannot observe an event that is not in its interface. Moreover, Definition 1 makes no
distinction between cyber and physical components. We use the following examples
to describe some cyber and physical aspects of components.

Example 1. Consider a set of two events E = {0, 1}, and restrict our observations to
{1} and {0}. A component whose behavior contains TESs with alternating observations

17

Algebra of Components Chapter 2

of {1} and {0} is defined by the tuple (E,L) where

L = {σ ∈ TES (E) | ∀i ∈ N. (pr1(σ)(i) = {0} ∧ pr1(σ)(i+ 1) = {1})∨
(pr1(σ)(i) = {1} ∧ pr1(σ)(i+ 1) = {0})}

Note that this component is oblivious to time, and any stream of monotonically in-
creasing non-Zeno real numbers would serve as a valid stream of time stamps for any
such sequence of observations. ■

Example 2. Consider a component encapsulating a continuous function f : (D0 ×
R+) → D, where D0 is a set of initial values, and D is the codomain of values for
f . Such a function can describe the evolution of a physical system over time, where
f(d0, t) = d means that at time t the state of the system is described by the value d ∈ D

if initialized with d0. We define the set of all events for this component as the range
of function f given an initial parameter d0 ∈ D0. The component is then defined as
the pair (D,Lf) such that:

Lf = {σ ∈ TES (D) | ∃d0 ∈ D0. ∀i ∈ N. pr1(σ)(i) = {f(d0, pr2(σ)(i))}}

Observe that the behavior of this component contains all possible discrete samplings
of the function f at monotonically increasing and non-Zeno sequences of time stamp.
Different instances of f would account for various cyber and physical aspects of com-
ponents. The function f could be specified using, for instance, hybrid automtata or
differential equations. ■

Components are declarative entities that may denote either the behavior of a spec-
ification, or the behavior of an implementation. The usual relation between the behav-
ior of a program and the property of such program constitutes a refinement relation.

Definition 2 (Refinement). A component B is a refinement of component A, written
as B ⊑ A, if and only if EB ⊆ EA and LB ⊆ LA.

Lemma 1. The relation ⊑ is a partial order on components.

Proof. Follows from reflexivity, antisymmetry, and transitivity of set inclusion.

An alternative to refinement is containment. The containment relation makes use
of a point-wise inclusion relation on observations of two TESs. The containment
relation on components requires that every TES in the behavior of one is point-wise
contained in a TES from the behavior of the other.

18

Chapter 2 Algebra of Components

Definition 3 (Containment). A TES σ is contained in a TES τ , written as σ ≤ τ , if
and only if, for all i ∈ N, pr1(σ)(i) ⊆ pr1(τ)(i) and pr2(σ) = pr2(τ).

Remark 1. The restriction in Lemma 2 to consider components with no internal
self containments between distinct TESs is necessary for having ≤ as a partial order.
Consider for instance the component A with only two TESs in its behavior, σ : A

and τ : A where pr1(σ) = ({a, b})ω and pr1(τ) = ({a})ω and pr2(σ) = pr2(τ). Let
B be a component with a singleton behavior δ : B such that pr1(δ) = ({a, b})ω and
pr2(δ) = pr2(σ). Then, A ≤ B, and B ≤ A, but A ̸= B.

We extend the containment relation to components: a component A = (EA, LA)

is contained in a component B = (EB , LB), written A ≤ B, if and only if EA ⊆ EB ,
and for every σ ∈ LA, there exists a τ ∈ LB such that σ ≤ τ .

Lemma 2. The relation ≤ is a pre-order over arbitrary set of components. Moreover,
≤ is a partial-order over the set of components C if, for all components A ∈ C and for
any two TESs σ : A and τ : A, (σ ≤ τ ∧ τ ≤ σ) =⇒ σ = τ .

Proof. Let A = (EA, LA), B = (EB , LB), and C = (EC , LC) be three components.
We show that ≤ is reflexive, transitive, and antisymmetric for any set C that satisfies
the above condition:

1. reflexivity: A ≤ A holds.

2. transitivity. Let A ≤ B and B ≤ C. Then, for all σ : A, there exists τ : B

such that σ ≤ τ , and for all τ : B, there exists δ : C such that τ ≤ δ. Then, we
conclude that for all σ : A, there exists δ : C such that σ ≤ δ and A ≤ C.

3. antisymmetric. We suppose that A and B are elements of the set C. If A ≤ B

and B ≤ A, then for all σ : B, there exists τ : A such that σ ≤ τ . As well, for
any τ : A, there exists σ : B such that τ ≤ σ. Thus, for any σ : B, there exists
τ : A and δ : B with σ ≤ τ ≤ δ. Given the assumption of A and B, we can
conclude that σ = τ = δ. Similarly, we show that LA ⊆ LB , and that A = B.

2.1.3 Composition

A complex system typically consists of multiple components that interact with each
other. The running example in Section 1.3 shows three components, a robot , a bat ,
and a field , where, for instance, a move observable of a robot must coincide with an

19

Algebra of Components Chapter 2

accommodating move observable of the field and a discharge observable of its battery.
The design challenge is to faithfully represent the interactions among involved com-
ponents, while keeping the description modular, i.e., specify the robot, the battery,
and the field as separate, independent, but interacting components. For that purpose,
we capture in an interaction signature the type of the interaction between a pair of
components, and we define a family of binary products acting on components, each
parametrized with an interaction signature. As a result, the product of two compo-
nents, under a given interaction signature, returns a new component whose behavior
reflects that the two operand components joint behavior is constrained according to
the interaction signature. Such construction opens possibilities for modular reasoning
both about the interaction among components and about their resulting composite
behavior.

An interaction signature consists of two elements: a composability relation and a
composition function. The composability relation specifies which pairs4 of TESs are
allowed to compose, and the composition function constructs a new TES out of a pair
TESs. The condition for two TESs to be composable may depend on an external
context. For instance, the observation of event a at time t in a TES may conflict with
the observation of event b at that same time t in another TES in a context where
the latter could have observed a as well. To capture this notion, we generalized the
notion of a composability relation to take as parameter a pair of carrier sets of events
that acts as a context of alternative events for the pair of TESs. Then, when we write
(σ, τ) ∈ R(E1, E2), we mean that σ and τ are composable under the composability
relation R given their respective context E1 and E2.

Definition 4 (Composability relation on TESs). A composability relation is a para-
metrized relation R such that for all E1, E2 ⊆ E, we have R(E1, E2) ⊆ TES (E1) ×
TES (E2).

Definition 5 (Symmetry). A parametrized relation Q is symmetric if, for all (x1, x2)
and for all (X1, X2): (x1, x2) ∈ Q(X1, X2) ⇐⇒ (x2, x1) ∈ Q(X2, X1).

A composability relation on TESs serves as a necessary constraint for two TESs to
compose. We define composition of TESs as the act of forming a new TES out of two
TESs.

Definition 6. A composition function ⊕ on TES is a function ⊕ : TES (E)×TES (E) →
TES (E).

4Non-binary relations may also be considered, i.e., constraints imposed on more than two compo-
nents.

20

Chapter 2 Algebra of Components

In order to simplify the development of the theory of components, we group a pair
of a composability relation and a composition function into an interaction signature.

Definition 7. An interaction signature Σ = (R,⊕) is a pair of a composability relation
R and a composition function ⊕.

Example 3 (Union of TESs). The operation ∪ forms the interleaved union of ob-
servables occurring in a pair of TESs, i.e., for two TESs σ and τ , we define σ ∪ τ

to be the TES such that Θ(σ ∪ τ) = Θ(σ) ∪ Θ(τ) and (σ ∪ τ)(t) = σ(t) ∪ τ(t) for all
t ∈ Θ(σ) ∪Θ(τ). ■

The following examples present some useful interaction signatures for composition
of TESs that, e.g., enforce synchronization or mutual exclusion of observables.

Example 4 (Synchronous interaction). In this example, we define the synchronous
interaction signature Σsync = (Rsync ,∪). In a cyber-physical system, the action (of a
cyber system) and the reaction (of a physical system) co-exist simultaneously in the
same observation, and are therefore synchronous.

Then, Rsync(E1, E2) relates pairs of TESs such that all shared events occur at the
same time in both TESs, i.e., (σ, τ) ∈ Rsync(E1, E2) if and only if, for all time stamps
t ∈ R+, σ(t)∩E2 = τ(t)∩E1. A synchronous interaction signature Σsync filters pairs
of TESs that satisfy the Rsync relation and merges composable pairs of observations.
■

Example 5 (Asynchronous interaction). In this example, we define the asynchronous
interaction signature Σasync = (Rasync ,∪). Typically, the asynchronous interaction
signature prevents the same event to occur at the same time in a pair of TESs.

Then, Rasync(E1, E2) relates pair of TESs such that all shared event between E1

and E2 occur at different time, i.e., (σ, τ) ∈ Rasync(E1, E2) if and only if σ(t)∩τ(t) = ∅
for all t ∈ Θ(σ)∪Θ(τ). An asynchronous interaction signature Σ = (Rasync ,∪) filters
pairs of TESs that satisfy the Rasync relation and merges composable pairs. ■

Example 6 (Free interaction). A free interaction signature, Σfree = (Rfree ,∪), uses
Rfree for the most permissive composability relation on TESs such that, for any E1, E2 ⊆
E and any σ ∈ TES (E1) and τ ∈ TES (E2), we have (σ, τ) ∈ Rfree(E1, E2). ■

We define a binary product operation on components, parametrized by an interac-
tion signature. Intuitively, the newly formed component describes, by its behavior, the
evolution of the joint system under the constraint that the interactions in the system
satisfy the composability relation. Formally, the product operation returns another

21

Algebra of Components Chapter 2

component, whose set of events is the union of sets of events of its operands, and its
behavior is obtained by composing all pairs of TESs in the behavior of its operands
deemed composable by the composability relation.

Definition 8 (Product). Let Σ = (R,⊕) be an interaction signature, and Ci =

(Ei, Li), i ∈ {1, 2}, two components. The product of C1 and C2, under Σ, denoted as
C1 ×Σ C2, is the component (E,L) where E = E1 ∪ E2 and L is defined by

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}

The following examples define several products on components given the interaction
signatures introduced in Example 4, 5, and 6.

Example 7 (Synchronous product). The behavior of component C1×(Rsync ,⊕)C2 con-
tains TESs obtained from the composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2

of TESs that are related by the synchronous composability relation Rsync (see Exam-
ple 4) which excludes all event occurrences that do not synchronize. In the case where
⊕ = ∪, we write ▷◁ = ×(Rsync ,∪), and we call the operator ▷◁ the join operator. ■

Example 8 (Asynchronous product). The behavior of component C1 ×(Rasync ,⊕) C2

contains TESs resulting from the composition under ⊕ of every pair σ1 ∈ L1 and
σ2 ∈ L2 of TESs that are related by the mutual exclusion composability relation Rasync

(see Example 5) which may exclude some simultaneous event occurrences. In the case
where ⊕ = ∪, we write ∦ = ×(Rasync ,∪). ■

Example 9 (Free product). The behavior of component C1 ×(Rfree ,⊕) C2 contains
every TES obtained from the composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2

of TESs. This product does not impose any constraint on event occurrences of its
operands (see Example 6). ■

Example 10. Consider a suitable interaction signature Σ that captures the interac-
tions between a robot R and its field F , such that the expression R ×Σ F represents
the resulting system. For instance, Σ may force every observable move of the robot to
synchronize with a displacement of the robot on the field F , and every read observable
of the robot with a location displayed by the field. In the case of two interacting robots
roaming on the same field, one would like to build the resulting system compositionally
as an expression of the form (R1×Σ1

F1)×Σ3
(R2×Σ2

F2), where each of the Σi locally
captures the interaction between its respective component. Note that, for instance, Σ3

may enforce that the two fields F1 and F2 exclude the joint observations of R1 and R2

to be at the same location. ■

22

Chapter 2 Algebra of Components

The product of two components indirectly depends on the interface of its operands,
since its composability relation does so. Therefore, it is a priori not certain that al-
gebraic properties such as commutativity or associativity hold for such user defined
products. Algebraic properties are important when designing a complex system in
order to find equivalent and sometimes simpler expressions. Lemma 3 relates proper-
ties of a parametrized product with properties of its parameter, i.e., properties of the
interaction signature. Intuitively, the first item of Lemma 3 considers interaction sig-
natures that yield symmetric operations. As a result, the order of which components
appear in the product parametrized by such signatures is irrelevant. The second item
shows conditions on interaction signatures that allow flattening of nested products:
the product of A with B ×Σ C becomes equivalent to the product of A×Σ B with C.
When an interaction signature satisfies both algebraic properties, the resulting prod-
uct acts as an n-ary top level operator on a multiset of components. For instance, the
synchronous interaction signature of Example 4 is one such top level n-ary operator.5

Lemma 3. Let Σ = (R,⊕) be an interaction signature. Then:

• if R is symmetric, then ×Σ is commutative if and only if σ1 ⊕ σ2 = σ2 ⊕ σ1 for
all (σ1, σ2) ∈ R;

• if R is such that, for all E1, E2, E3 ⊆ E,

(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3) ∧ (σ2, σ3) ∈ R(E2, E3) ⇐⇒

(σ1, σ2) ∈ R(E1, E2) ∧ (σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3)

then ×Σ is associative if and only if σ1 ⊕ (σ2 ⊕ σ3) = (σ1 ⊕ σ2) ⊕ σ3 for all
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3) with (σ2, σ3) ∈ R(E2, E3);

• if for all E ⊆ E and σ, τ ∈ TES (E), we have (σ, τ) ∈ R(E,E) =⇒ σ = τ , then
×Σ is idempotent if and only if σ ⊕ σ = σ for all (σ, σ) ∈ R.

Proof. Commutativity. Let C1 = (E1, L1) and C2 = (E2, L2) be two components, and
Σ = (R,⊕) be an interaction signature with R symmetric as in Definition 5. We
write C = (E,L) = C1 ×Σ C2 and C ′ = (E′, L′) = C2 ×Σ C1. We first observe
that E = E1 ∪ E2 = E′. The condition for the product of two components to be

5Distributivity holds for some products. We leave the study of the conditions under which dis-
tributivity holds as future work.

23

Algebra of Components Chapter 2

commutative reduces to showing that L = L′, also equivalently written as:

L = L′ ⇐⇒ {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}
= {σ2 ⊕ σ1 | σ1 ∈ L1, σ2 ∈ L2, (σ2, σ1) ∈ R(E2, E1)}

If σ1 ⊕ σ2 = σ2 ⊕ σ1 for (σ1, σ2) ∈ R(E1, E2), then L = L′ and ×Σ is commutative.
Oppositely, if L = L′, we show that ⊕ is commutative. Let Cσ be the component

(Eσ, {σ}) where Eσ =
⋃
{σ(i) | i ∈ N}. Thus, for any (σ1, σ2) ∈ R(E1, E2), Cσ1

×Σ

Cσ2
= (Eσ1

∪Eσ2
, {σ1 ⊕σ2}. A necessary condition for ×Σ to be commutative is that

{σ1 ⊕ σ2} = {σ2 ⊕ σ1}, which imposes that σ1 ⊕ σ2 = σ2 ⊕ σ1.

Associativity. Let (R,⊕) be a pair of a composability relation and a composition
function on TESs with R such that, for every (σ1, σ2, σ3) ∈ L1 × L2 × L3:

(σ1, σ2) ∈ R(E1, E2) ∧ (σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3) ⇐⇒
(σ2, σ3) ∈ R(E2, E3) ∧ (σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)

We consider three components Ci = (Ei, Li), with i ∈ {1, 2, 3}.
The set of events for component ((C1×ΣC2)×ΣC3) is the set E1 ∪E2 ∪E3, which

is equal to the set of events for component (C1 ×Σ (C2 ×Σ C3)).
Let L′ and L′′ respectively be the behaviors of components (C1 ×Σ C2)×Σ C3 and

C1×Σ(C2×ΣC3). If σ1⊕(σ2⊕σ3) = (σ1⊕σ2)⊕σ3 for all (σ1, σ2⊕σ3) ∈ R(E1, E2∪E3)

with (σ2, σ3) ∈ R(E2, E3), then L′ = L′′. We show some sufficient conditions for
L′ = L′′, also written as

L′ = {(σ1 ⊕ σ2)⊕ σ3 | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ1, σ2) ∈ R(E1, E2)∧
(σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3)}

= {(σ1 ⊕ σ2)⊕ σ3 | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ2, σ3) ∈ R(E2, E3)∧
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)}

= {σ1 ⊕ (σ2 ⊕ σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ2, σ3) ∈ R(E2, E3)∧
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)}

= L′′

using the assumption on R for the first equality, and the assumption on ⊕ for the
second equality.

Let (σ1, σ2⊕σ3) ∈ R(E1, E2∪E3) with (σ2, σ3) ∈ R(E2, E3), then Cσ1
×Σ (Cσ2

×Σ

Cσ3
) = (Cσ1

×ΣCσ2
)×ΣCσ3

which then implies that σ1⊕ (σ2⊕σ3) = (σ1⊕σ2)⊕σ3.

Idempotency. We show that if for all E ⊆ E, and σ, τ ∈ TES (E), we have that

24

Chapter 2 Algebra of Components

(σ, τ) ∈ R(E,E) implies σ = τ , then ×Σ is idempotent if and only if σ ⊕ σ = σ

for (σ, σ) ∈ R(E,E). We first observe that, given a component C = (E,L), the
component C ×Σ C = (E,L′) has the same set of events, E.

We show that (σ1, σ2) ∈ R(E,E) =⇒ σ1 = σ2 and ⊕ idempotent is a sufficient
condition for having L′ = L. Indeed,

L′ = {σ1 ⊕ σ2 | σ1, σ2 ∈ L, (σ1, σ2) ∈ R(E,E)}

= {σ1 ⊕ σ1 | σ1 ∈ L}

= L

Similar to the previous cases, if for all E ⊆ E, and σ, τ ∈ TES (E), we have that
(σ, τ) ∈ R(E,E) implies σ = τ , then ×Σ is idempotent if and only if ⊕ is idempotent.
Conversely, if Cσ ×Σ Cσ = Cσ and (σ, σ) ∈ R(E,E), then σ ⊕ σ = σ.

Monotonicity shows that the inclusion of component’s behavior is preserved by
product. Let A and B be two components such that B ⊑ A. Suppose that P is
a component that models a property satisfied by component A and preserved under
product with a component C, then P is satisfied by component B and component
B × C, by monotonicity. Note that the definition of monotonicity assumes × to be
commutative. That assumption can be relaxed by defining left and right monotonicity.

Definition 9 (Monotonicity). Let × be a commutative product. Then, × is monotonic
if and only if, for B ⊑ A and for any C, we have B × C ⊑ A× C.

Lemma 4 (Monotonicity of ▷◁). The product ▷◁ in Example 4 is monotonic.

Proof. Let A, B, and C be three components, such that B ⊑ A. Then, the interface
of B ▷◁ C is EB ∪ EC , which is included in EA ∪ EC the interface of A ▷◁ C.

For any TES σ : B ▷◁ C, there exist two TESs β : B and δ : C such that (β, δ) are
synchronous, and σ = β ∪ δ. Since for any β : B we also have β : A, then σ is also an
element of the behavior of A ▷◁ C, and B ▷◁ C ⊑ A ▷◁ C.

The algebraic nature of our formalism allows the possibility to introduce other kinds
of operations on components, such as division, as presented in Section 2.2. Intuitively,
the operation of division is parametrized by an interaction signature Σ and follows
two steps. First, the set of quotients of component A divided by component B is
constructed as the set of all components C such that A = B ×Σ C. Practically, every
element in the set of quotients leads to the same composite behavior captured in A,

25

Algebra of Components Chapter 2

when composed with B under Σ. Then, one component is chosen from the set of
quotients as the result of division.

2.1.4 A co-inductive construction

In this section, we show how local constraints on observations can be co-inductively
lifted to global constraints on TESs. We get, as a result, a finite specification of some
interaction signatures using simpler relations on observations. Moreover, we get a
co-inductive proof mechanism to relate an interaction signature defined on TESs with
an interaction signature lifted from constraints on observables, as shown in Lemma 7.
Such construction gives, as well, an operational perspective on deriving an interaction
signature as a step-wise constraint imposed on observables. Practically, the operational
approach of the co-inductive definition is relevant when considering robots and their
step-wise decision on their next observation.

The intuition for such construction is that, in some cases, the condition for two
TESs to be composable depends only on a composability relation on observations. An
example of composability constraint for a robot with its battery and a field enforces
that each move event discharges the battery and changes the state of the field. As a
result, every move event observed by the robot must coincide with a discharge event
observed by the battery and a change of state observed by the field. The lifting of
such composability relation on observations to a constraint on TESs is defined co-
inductively. Finally, Lemma 10 gives weaker conditions for Lemma 3 to hold.

Definition 10 (Composability relation on observations). A composability relation on
observations is a parametrized relation κ such that for all pairs (E1, E2) ∈ P(E)×P(E),
we have κ(E1, E2) ⊆ (P(E1)× R+)× (P(E2)× R+).

The following examples define locally on observations some relations analogous to
those defined globally on TESs in Example 4 and Example 5.

Example 11. We give two examples of composability relations on observations:

• ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) if and only if every shared event always occurs
at the same time, i.e., t1 < t2 implies O1∩E2 = ∅, and t2 < t1 implies O2∩E1 =

∅, and t2 = t1 implies O1 ∩ E2 = O2 ∩ E1;

• ((O1, t1), (O2, t2)) ∈ κasync(E1, E2) if and only if no shared event occurs at the
same time, i.e., t1 = t2 implies O1 ∩ E2 = ∅ = O2 ∩ E1. ■

26

Chapter 2 Algebra of Components

For two composability relations κ1, κ2, their intersection or union, written κ1 ∩ κ2
and κ1 ∪ κ2 respectively, is defined, for any E1, E2, E3 ⊆ E, as (κ1 ∩ κ2)(E1, E2) =

κ1(E1, E2) ∩ κ2(E1, E2) and (κ1 ∪ κ2)(E1, E2) = κ1(E1, E2) ∪ κ2(E1, E2).

Definition 11 (Lifting). Let κ be a composability relation on observations, and, for
any R ⊆ TES (E1) × TES (E2), let Φκ(E1, E2)(R) ⊆ TES (E1) × TES (E2) be such
that:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

The lifting of κ on TESs, written [κ], is the parametrized relation obtained by taking
the greatest post fixed point of the function Φκ(E1, E2) for arbitrary pair E1, E2 ⊆ E,
i.e., the relation [κ](E1, E2) =

⋃
R⊆TES(E1)×TES(E2)

{R | R ⊆ Φκ(E1, E2)(R)}.

Lemma 5 (Correctness). For any E1, E2 ⊆ E, the function Φκ(E1, E2) is monotone,
and therefore has a greatest post fixed point.

Proof. Let κ be a composability relation on observations, and let E1, E2 ⊆ E. We
recall that the function Φκ(E1, E2) is such that, for any R ⊆ TES (E1)× TES (E2):

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

Let R1,R2 ⊆ TES (E1) × TES (E2) be such that R1 ⊆ R2. We show that
Φκ(E1, E2)(R1) ⊆ Φκ(E1, E2)(R2). For any (τ1, τ2) ∈ TES (E1)× TES (E2),

(τ1, τ2) ∈ Φκ(E1, E2)(R1) ⇐⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R1)

=⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R2)

=⇒ (τ1, τ2) ∈ Φκ(E1, E2)(R2)

Therefore, R1 ⊆ R2 implies that Φκ(E1, E2)(R1) ⊆ Φκ(E1, E2)(R2), and we con-
clude that Φκ(E1, E2) is monotonic. We use the Knaster-Tarski theorem, where the
underlying lattice is the powerset of TESs with inclusion relation, for the existence of
a greatest fixed point of the monotonic function Φκ(E1, E2) applying to that lattice 6.
Thus, Φκ(E1, E2) has a greatest fixed point defined as:

[κ](E1, E2) =
⋃

{R | R ⊆ Φκ(E1, E2)(R)}

6The Knaster-Tarski theorem shows that the greatest fixed point of Φκ(E1, E2) is also the greatest
post-fixed point of Φκ(E1, E2)

27

Algebra of Components Chapter 2

Lemma 6. If κ is a composability relation on observations, then the lifting [κ] is a
composability relation on TESs. Moreover, if κ is symmetric (as in Definition 5), then
[κ] is symmetric.

Proof. We first note that, given a composability relation κ on observables, the lifting
[κ] is a composability relation on TESs. Indeed, for any pair of interfaces E1, E2 ⊆ E,
any (σ, τ) ∈ [κ](E1, E2) is a pair in TES (E1)× TES (E2).

If κ is symmetric (as in Definition 5), we show that [κ] is also symmetric. Given a
set R ⊆ TES (E1)× TES (E2), we use the notation R to denote the smallest set such
that (σ, τ) ∈ R ⇐⇒ (τ, σ) ∈ R. Let E1, E2 ⊆ E.

If κ is symmetric, then for R ⊆ TES (E1)× TES (E2),

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1) ∧ (τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1) ∧ (τ2, τ1)
′ ∈ R)}

= {(τ1, τ2) | (τ2, τ1) ∈ Φκ(E2, E1)(R)} (1)

which shows that [κ] is symmetric since, for any E1, E2 ⊆ E,

[κ](E1, E2) =
⋃

R⊆TES(E1)×TES(E2)

{R | R ⊆ Φκ(E1, E2)(R)}

and
(σ, τ) ∈ [κ](E1, E2) ⇐⇒ ∃R. (σ, τ) ∈ R ∧R ⊆ Φκ(E1, E2)(R)

⇐⇒ ∃R. (τ, σ) ∈ R ∧R ⊆ Φκ(E2, E1)(R)

⇐⇒ (τ, σ) ∈ [κ](E2, E1)

where the first equivalence is given by the fact that [κ](E1, E2) is the greatest post
fixed point of Φκ(E1, E2), the second equivalence is obtained from equality (1), and
the third equivalence is given by the fact that [κ](E2, E1) is the greatest post fixed
point.

As a consequence of Lemma 6, any composability relation on observations gives rise
to a composability relation on TESs. Lemma 7 relates (a)synchornous composability
relations on TESs with (a)synchronous composability relations on observations.

Lemma 7. Let Rsync and Rasync be composability relations defined in Example 4 and
Example 5, respectively. Let κsync be the relation on observations defined in Exam-
ple 11. For all E1 and E2, Rsync(E1, E2) = [κsync](E1, E2) and Rasync(E1, E2) =

28

Chapter 2 Algebra of Components

[κasync](E1, E2). When E1 ∩ E2 = ∅, then Rsync(E1, E2) = Rasync(E1, E2).

Proof. We proof the result for Rsync(E1, E2) = [κsync](E1, E2) and similar reasoning
can be applied for Rasync(E1, E2) = [κasync](E1, E2). We first show Rsync(E1, E2) ⊆
[κsync](E1, E2), which is equivalent to Rsync(E1, E2) ⊆ Φκsync (E1, E2)(Rsync(E1, E2)).
First, we observe that if (σ, τ) ∈ Rsync(E1, E2), then (σ, τ)′ ∈ Rsync(E1, E2), as drop-
ping the first observation(s) of σ and τ preserves the property imposed by Rsync . For
all (σ, τ) ∈ Rsync(E1, E2), by definition of Rsync and κsync , we have that (σ(0), τ(0)) ∈
κsync(E1, E2). Since Φκsync (E1, E2)(Rsync(E1, E2)) is equal to the set

{(σ, τ) | (τ(0), σ(0)) ∈ κsync(E1, E2) ∧ (σ, τ)′ ∈ Rsync(E1, E2)}

we conclude that Rsync(E1, E2) ⊆ Φκsync (E1, E2)(Rsync(E1, E2)).

For the other inclusion, let first introduce time((σ, τ)) as the smallest time stamp of
the head of both streams σ and τ , i.e., time((σ, τ)) = min(t1, t2) where t1 = pr2(σ)(0)

and t2 = pr2(τ)(0). For a pair (σ, τ) ∈ [κsync](E1, E2), we have:

(σ(0), τ(0)) ∈ κsync(E1, E2) ∧ (σ, τ)′ ∈ [κsync](E1, E2)

=⇒ ∀t < time((σ, τ)′). σ(t) ∩ E2 = τ(t) ∩ E1 ∧ (σ, τ)′ ∈ [κsync](E1, E2)

=⇒ ∀n ∈ N.∀t < time((σ, τ)(n)). σ(t) ∩ E2 = τ(t) ∩ E1∧

(σ, τ)(n) ∈ [κsync](E1, E2)

=⇒ ∀t. σ(t) ∩ E2 = τ(t) ∩ E1

=⇒ (σ, τ) ∈ Rsync

We conclude that Rsync = [κsync].

The composability relation κ relates observations, i.e., elements of P(E)×R+. We
show in Definition 13 and Definition 14 how to define κ from a relation ⊓ on sets of
events, i.e., elements in P(E).

Definition 12 (Intersection). For any two components C1 = (E1, L1) and C2 =

(E2, L2), we define the intersection C1 ∩ C2 to be the component C1 ×([κsync],[∩]) C2 =

(E1 ∪ E2, L) with κsync defined in Example 11. ■

For the following definitions, let C1 = (E1, L1) and C2 = (E2, L2) be two compo-
nents, and ⊕ be a composition function on TESs. We use ⊓ ⊆ P(E)× P(E) to range
over relations on observables.

29

Algebra of Components Chapter 2

Definition 13 (Synchronous observations). The composability relations introduced
in Example 11 can also be extended to synchronize pairs of distinct events. Two
observations are synchronous under ⊓ if, intuitively, the two following conditions hold:

1. every observable that can compose (under ⊓) with another observable must occur
simultaneously with one of its related observables; and

2. only an observable that does not compose (under ⊓) with any other observable
can happen before another observable, i.e., at a strictly lower time.

To formalize the conditions above, we introduce the independence relation ind⊓(X,Y) =

∀x ⊆ X.∀y ⊆ Y.(x, y) ̸∈ ⊓.
The synchronous composability relation on observations κsync⊓ (E1, E2) is the small-

est set such that, for all O1 ⊆ E1 and O2 ⊆ E2:

• if (O1, O2) ∈ ⊓ ∪ (∅, ∅), then for all (O′
1, O

′
2) ∈ P(E1) × P(E2) such that

ind⊓(O
′
1, E2) and ind⊓(E1, O

′
2) and for all time stamps t, we have that ((O1 ∪

O′
1, t), (O2 ∪O′

2, t)) ∈ κsync⊓ (E1, E2).

• if ind⊓(O1, E2), then for all O′
2 ⊆ E2 and for all t1 < t2, we have that the

pair ((O1, t1), (O2, t2)) ∈ κsync⊓ (E1, E2). Reciprocally, if ind⊓(E1, O2) then for
all O′

1 ⊆ E1 and t2 < t1, we have ((O1, t1), (O2, t2)) ∈ κsync⊓ (E1, E2);

Example 12. Although the relation in Definition 13 is a binary relation on observa-
tions, we show in this example how to synchronize multiple events transitively. For in-
stance, consider three components, A = ({a}, LA), B = ({b}, LB), and C = ({c}, LC).
Let ⊓ be the smallest symmetric relation with {({a}, {b}), ({b}, {c})} ⊆ ⊓. Then,
κsync⊓ enforces every observable in A and C to occur at the same time as an observable
in B. Let Σ = ([κsync⊓],∪) with ∪ defined in Example 3. Observe that, in general,
(A ×Σ B) ×Σ C ̸= (A ×Σ C) ×Σ B. On the left hand side, the product of A and B

synchronizes every occurrence of event a with an occurrence of event b, which results
in observables of the form {a, b} only (no interleaving is allowed by κsync⊓). Since b
and c are also related events, the composition with C leads to the component with ob-
servables {a, b, c}. On the right hand side, A and C have independent observables and
their composition allows for every interleaving. The product with B, however, syn-
chronizes every occurrence of event a or c with an occurrence of event b, which results
in interleaving of observables {a, b} and {c, b}. Finally, observe that the component
(A ×Σ B) ×Σ C transitively synchronizes occurrences of event a with occurrences of
event c through occurrences of event b. ■

30

Chapter 2 Algebra of Components

The behavior of component C1 ×([κsync
⊓],⊕) C2 contains TESs obtained from the

composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related
by the synchronous composability relation [κsync⊓] which, depending on ⊓, excludes all
event occurrences that do not synchronize.7 Note that in the case where ⊓ = {(O,O) |
O ⊆ E1 ∪ E2 \ ∅}, then κsync⊓ = κsync .

Definition 14 (Mutual exclusion). Let ⊓ ⊆ P(E)2 be a relation on observables. We
define two observations to be mutually exclusive under the relation ⊓ if no pair of ob-
servables in ⊓ can be observed at the same time. The mutually exclusive composability
relation κexcl⊓ on observations allows the composition of two observations (O1, t1) and
(O2, t2), i.e., ((O1, t1), (O2, t2)) ∈ κexcl⊓ (E1, E2), if and only if t1 = t2 =⇒ ¬(O1⊓O2).

Example 13. Following Example 10, we introduce an interaction signature that com-
poses two robot-field subsystems while excluding the possibility for the robots to both ob-
serve the same location on their fields. We define ⊓ = {({(loc(R1); l)}, {(loc(R2); l)}) |
l ∈ [0; 20]× [0; 20]} as the set of pairs of observables containing, for both robots R1 and
R2, an event that displays the same location as the other robot. Let Σ = ([κexcl⊓],∪)
with ∪ defined in Example 3. Then, the product of the two subsystems, using the in-
teraction signature Σ, excludes the possibility for the two robots to observe the same
location at the same time. Strictly speaking, the exclusion imposed by the interaction
signature Σ does not imply that the two robots can not effectively be on the same
physical location. We show in Section 2.1.6 how, combined with hyper-properties, such
interaction signature may imply a safety property. ■

The behavior of component C1 ×([κexcl
⊓],⊕) C2 contains TESs resulting from the

composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related
by the mutual exclusion composability relation [κexcl⊓] which, depending on ⊓, may
exclude some simultaneous event occurrences.

We prove in Lemma 8 that the lifting of composability relations distributes across
the intersection.8

Lemma 8. For all composability relations κ1, κ2 and interfaces E1, E2:

[κ1 ∩ κ2](E1, E2) = [κ1](E1, E2) ∩ [κ2](E1, E2)

7If we let ⊕ be the element wise set union, define an event as a set of port assignments, and in
the pair ([κsync

⊓],⊕) let ⊓ be true if and only if all common ports get the same value assigned, then
this composition operator produces results similar to the composition operation in Reo [3].

8The lifting does not distribute across the union, however.

31

Algebra of Components Chapter 2

Proof.

[κ1](E1, E2) ∩ [κ2](E1, E2) =
⋃

{R | R ⊆ Φκ1
(E1, E2)(R)}∩⋃

{R | R ⊆ Φκ2
(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1(E1, E2)(R) and

R ⊆ Φκ2
(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1
(E1, E2)(R) ∩ Φκ2

(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1∩κ2(E1, E2)(R)}

=[κ1 ∩ κ2](E1, E2)}

since

Φκ1
(E1, E2)(R) ∩ Φκ2

(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ1(E1, E2)∧

(τ1(0), τ2(0)) ∈ κ2(E1, E2)∧

(τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ1(E1, E2) ∩ κ2(E1, E2)∧

(τ1, τ2)
′ ∈ R)}

= Φκ1∩κ2
(E1, E2)(R)

Similarly, we give a mechanism to lift a composition function on observables to a
composition function on TESs. Such lifting operation interleaves observations with
different time stamps, and composes observations that occur at the same time.

Definition 15 (Lifting - composition function). Let + : P(E) × P(E) → P(E) be
a composition function on observables. The lifting of + to TESs is [+] : TES (E) ×
TES (E) → TES (E) such that, for σi ∈ TES (E) where σi(0) = (Oi, ti) with i ∈ {1, 2}:

σ1[+]σ2 =


⟨σ1(0)⟩ · (σ′

1[+]σ2) if t1 < t2

⟨σ2(0)⟩ · (σ1[+]σ′
2) if t2 < t1

⟨(O1 +O2, t1)⟩ · (σ′
1[+]σ′

2) otherwise

Definition 15 composes observations only if their time stamp is the same. Alter-
native definitions might consider time intervals instead of exact times.

32

Chapter 2 Algebra of Components

Remark 2. The last clause of Definition 15 considers the case where two observations
occur at the same time. Recall that the time of an observation, as introduced earlier,
is an abstraction that requires every event of the observation to occur after the events
of the previous observation, and before the events of the next observation. Moreover,
the time of two related observations, during composition, may be constrained by the
interaction signature of the composition. For instance, the synchronous composability
relation in Example 4 requires related observations to occur at the same time. Given
those two facts, the likelihood that two observations have the same time is non zero.

Lemma 9. Let κ1 and κ2 be two composability relations and ×([κ1∩κ2],⊕) be a product
on components. Then,

C1 ×([κ1∩κ2],⊕) C2 = C1 ×([κ1]∩[κ2],⊕) C2 = (C1 ×([κ1],⊕) C2) ∩ (C1 ×([κ2],⊕) C2)

Proof. Let C1×[κ1∩κ2],⊕C2 = (E,L) and (C1×([κ1],⊕)C2)∩(C1×([κ2],⊕)C2) = (E′, L′).
We have E = E1 ∪ E2 = E′. We show L = L′.

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ [κ1 ∩ κ2](E1, E2)}

= {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ [κ1](E1, E2) ∩ [κ2](E1, E2)}

= L′

Example 14. Composability relations as defined in Definition 13 and Definition 14
can be combined to form new relations, and therefore new products. The behavior
of component C1 ×([κsync

⊓ ∩κexcl
⊓]),⊕) C2 contains all TESs that are in the behavior of

both C1×([κsync
⊓],⊕)C2 and C1×([κexcl

⊓],⊕)C2, which excludes observations containing an
occurrence of at least one event related by ⊓. ■

Co-inductive constructions of interaction signatures make proving algebraic results
of Lemma 3 easier. Lemma 10 gives sufficient conditions to lift, by co-induction,
properties of the underlying relation and composition function to meet the conditions
of Lemma 3.

Lemma 10. Let Σ = ([κ], [+]) be an interaction signature with + be a composition
function on observables and let κ be a composability relation on observations. Then,

• ×Σ is commutative if κ is symmetric and + is commutative;

33

Algebra of Components Chapter 2

• ×Σ is associative if + is associative and, for all E1, E2, E3 and for all triple
Oi ∈ P(Ei) with i ∈ {1, 2, 3} and for all t ∈ R+:

((O1, t), (O2, t)) ∈ κ(E1, E2) ∧ ((O1 +O2, t), (O3, t)) ∈ κ(E1 ∪ E2, E3)

if and only if

((O2, t), (O3, t)) ∈ κ(E2, E3) ∧ ((O1, t), (O2 +O3, t)) ∈ κ(E1, E2 ∪ E3)

with κ such that ((O1, t1), (O2, t2)) ∈ κ(E1, E2) implies

1. ((O1, t1), (∅, t2)) ∈ κ(E1, E2) if t1 < t2; and

2. ((∅, t1), (O2, t2)) ∈ κ(E1, E2) if t2 < t1;

and with O + ∅ = ∅+O = O for all O ⊆ P(E).

• ×Σ is idempotent if + is idempotent and, for all E ⊆ E we have ((O1, t1), (O2, t2)) ∈
κ(E,E) =⇒ (O1, t1) = (O2, t2).

Proof. Commutativity. From Lemma 6, if κ is symmetric, then its lifting [κ] is also
symmetric. Therefore, it is sufficient for κ to be symmetric and for + to be com-
mutative in order for [κ] to be symmetric and [+] to be commutative, and therefore
×([κ],[+]) to be commutative.

Associativity. We recall that, for a TES σ, the domain of σ is the collection of
all time stamps of observations, i.e., dom(σ) = {t | ∃i ∈ N.σ(i) = (O, t)}. We
define a domain equalizer function ≡ that, given a tuple (σ1, ..., σn) returns a new
tuple (σ1, ..., σn)≡ = (τ1, ..., τn) such that the domains of TESs τi are the same, i.e.,
∃c.dom(τi) = c; and τi differs with σi only by empty observations, i.e., for all t ∈ R+,
σi(t) = τi(t). Thus, the operation ≡ adds silent observations to all TESs of the tuple
such that the resulting domain for all τi is equal.

Let us first introduce a property induced by the assumptions on the composability
relation κ. The fact that, forallO1 ⊆ E1 andO2 ⊆ E2, ((O1, t1), (O2, t2)) ∈ κ(E1, E2)∧
t1 < t2 ⇐⇒ ((O1, t1), (∅, t1)) ∈ κ(E1, E2) implies that a pair of TESs (σ1, σ2) is
related by [κ] if and only if their extension with silent observations on equal domains,
i.e., (σ1, σ2)≡, is also related by [κ]. We show by co-induction such property.

34

Chapter 2 Algebra of Components

For R ⊆ TES (E1)× TES (E2), let

Φ≡
k (R) = {(σ1, σ2) | σ1(0) = (O1, t1) ∧ σ2(0) = (O2, t2)∧

t1 < t2 =⇒ (σ1(0), (∅, t1)) ∈ κ(E1, E2)∧

t2 < t1 =⇒ ((∅, t2), σ2(0)) ∈ κ(E1, E2)∧

t1 = t2 =⇒ (σ1(0), σ2(0)) ∈ κ(E1, E2)∧

(σ1, σ2)
′ ∈ R}

The function Φ≡
κ is a monotonous function applied on a complete lattice. By Knaster

Tarksi theorem, Φ≡
κ has a greatest fixed point that we call [κ≡]. Given the assumption

on κ, we can show that [κ] ⊆ Φ≡
κ ([κ]) and [κ≡] ⊆ Φκ([κ≡]), which implies that [κ] =

[κ≡]. It follows that (σ1, σ2) ∈ [κ] ⇐⇒ (σ1, σ2)≡ ∈ [κ].

A sufficient condition for the product ×([κ],[+]) to be associative is that + is asso-
ciative and for every σi ∈ TES (Ei) for i ∈ {1, 2, 3}:

P1 :=(σ1, σ2) ∈ [κ](E1, E2) ∧ (σ1[+]σ2, σ3) ∈ [κ](E1 ∪ E2, E3) ⇐⇒

(σ2, σ3) ∈ [κ](E2, E3) ∧ (σ1, σ2[+]σ3) ∈ [κ](E1, E2 ∪ E3)

which is equivalent to

(σ1, σ2) ∈ [κ≡](E1, E2) ∧ (σ1[+]σ2, σ3) ∈ [κ≡](E1 ∪ E2, E3) ⇐⇒

(σ2, σ3) ∈ [κ≡](E2, E3) ∧ (σ1, σ2[+]σ3) ∈ [κ≡](E1, E2 ∪ E3)

and with similar arguments as before, is equivalent to

(τ1, τ2) ∈ [κ≡](E1, E2) ∧ (τ1[+]τ2, τ3) ∈ [κ≡](E1 ∪ E2, E3) ⇐⇒

(τ2, τ3) ∈ [κ≡](E2, E3) ∧ (τ1, τ2[+]τ3) ∈ [κ≡](E1, E2 ∪ E3)

with (τ1, τ2, τ3) = (σ1, σ2, σ3)≡.

As we can assume that all TESs in a triple satisfying P1 have the same domain, it
is sufficient to show that, for all Oi ⊆ Ei with i ∈ {1, 2, 3} and all t ∈ R+:

((O1, t), (O2, t)) ∈ κ(E1, E2) ∧ ((O1 +O2, t), (O3, t)) ∈ κ(E1 ∪ E2, E3)

35

Algebra of Components Chapter 2

if and only if

((O2, t), (O3, t)) ∈ κ(E2, E3) ∧ ((O1, t), (O2 +O3, t)) ∈ κ(E1, E2 ∪ E3)

which is assumed by κ. Thus, given the properties of κ, P1 holds.

Finally, we prove that if + is associative, then [+] is associative. Let σi ∈ Li and
we write σi(0) = (Oi, ti) for i ∈ {1, 2, 3}, then:

σ1[+](σ2[+]σ3) =



⟨(O1, t1)⟩ · (σ′
1[+](σ2[+]σ3) if t1 < t2, t3

⟨(O2, t2)⟩ · (σ1[+](σ′
2[+]σ3) if t2 < t1, t3

⟨(O3, t3)⟩ · (σ1[+](σ2[+]σ′
3) if t3 < t2, t1

⟨(O1 +O2, t1)⟩ · (σ′
1[+](σ′

2[+]σ3) if t1 = t2 < t3

⟨(O2 +O3, t2)⟩ · (σ1[+](σ′
2[+]σ′

3) if t2 = t3 < t1

⟨(O1 +O3, t1)⟩ · (σ′
1[+](σ2[+]σ′

3) if t1 = t3 < t2

⟨(O1 + (O2 +O3), t1)⟩ · (σ′
1[+](σ′

2[+]σ′
3) if t1 = t3 = t2

The only case that differs from (σ1[+]σ2)[+]σ3 is when t1 = t3 = t2, which gives
((O1 + O2) + O3, t1). Thus, if ((O1 + O2) + O3, t1) = (O1 + (O2 + O3), t1) for every
Oi ∈ P(Ei) with i ∈ {1, 2, 3}, then σ1[+](σ2[+]σ3) = σ1[+](σ2[+]σ3) for every σi ∈ Li

with i ∈ {1, 2, 3}.
Idempotency. If + is idempotent, then the lifting [+] is also idempotent. We

consider + to be idempotent. We show that, for all E ⊆ E and o1, o2 ∈ P(E) × R+

we have (o1, o2) ∈ κ(E,E) =⇒ o1 = o2, then for all σ, τ ∈ TES (E), (σ, τ) ∈
[κ](E,E) =⇒ σ = τ , which is a sufficient condition for ×([κ],[+]) to be idempotent.

By definition [κ](E,E) is the greatest fixed point of the function:

Φκ(E,E)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E,E) ∧ (τ1, τ2)
′ ∈ R)}

⊆ {(τ1, τ2) | τ1(0) = τ2(0) ∧ (τ ′1, τ
′
2) ∈ R}

Therefore, we conclude that [κ](E,E) ⊆ {(σ, σ) | σ ∈ TES (E)}.

The conditions exposed in Lemma 10 are applicable for the case of the join product,
as shown in Theorem 1.

Theorem 1. The product ▷◁ of Example 7 is commutative, associative, and idempo-
tent.

36

Chapter 2 Algebra of Components

Proof. Commutativity and idempotency of ▷◁ are following from κsync being symmetric
and satisfying the condition for idempotency.

Assume that ((O1, t), (O2, t)) ∈ κsync(E1, E2)∧ ((O1 ∪O2, t), (O3, t)) ∈ κsync(E1 ∪
E2, E3) holds, then O1 ∩ E2 = O2 ∩ E1 ∧ (O1 ∪O2) ∩ E3 = O3 ∩ (E1 ∪ E2) is true by
definition of κsync .

We first observe that (O1 ∪ O2) ∩ E3 ∩ E2 = O3 ∩ (E1 ∪ E2) ∩ E2 implies that
O2 ∩ E3 = O3 ∩ E2. Then, (O1 ∪ O2) ∩ E3 ∩ E1 = O3 ∩ (E1 ∪ E2) ∩ E1 implies that
O1 ∩ E3 = O3 ∩ E1, using O1 ∩ E2 = O2 ∩ E1 we conclude that O1 ∩ (E1 ∪ E3) =

(O2 ∪O3) ∩ E1.
Thus, we showed that

((O1, t), (O2, t)) ∈ κsync(E1, E2) ∧ ((O1 ∪O2, t), (O3, t)) ∈ κsync(E1 ∪ E2, E3)

if and only if

((O2, t), (O3, t)) ∈ κsync(E2, E3) ∧ ((O1, t), (O2 ∪O3, t)) ∈ κsync(E1, E2 ∪ E3)

for all Oi ⊆ Ei and t ∈ R+. Finally, by definition, κsync is such that, for all O1 ⊆ E1

and O2 ⊆ E2:

1. ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) and t1 < t2 if and only if ((O1, t1), (∅, t1)) ∈
κsync(E1, E2); and

2. ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) and t2 < t1 if and only if ((∅, t2), (O2, t2)) ∈
κsync(E1, E2).

Given that ∪ is associative and O ∪ ∅ = O for all O, we conclude that ▷◁ is
associative.

We give in Lemma 11 some conditions for two products to distribute, and in
Lemma 12 some conditions to extend the underlying relation on observables for a
synchronous composability relation.

Lemma 11. Let C1, C2, and C3 be three components, and let κ1 and κ2 be two
composability relations on observables such that for all σ1, σ2, σ3 ∈ L1 × L2 × L3:

• (σ1, σ2[∪]σ3) ∈ [κ1] if and only if (σ1, σ2) ∈ [κ1] and (σ1, σ3) ∈ [κ1], and

• for all τ1 ∈ L1, (τ1[∪]σ2, σ1[∪]σ3) ∈ [κ2] if and only if (σ2, σ3) ∈ [κ2] and σ1 = τ1.

37

Algebra of Components Chapter 2

Then,
C1 ×[κ1] (C2 ×[κ2] C3) = (C1 ×[κ1] C2)×[κ2] (C1 ×[κ1] C3)

Proof. Let L be the behavior of component (C1×[κ1]C2)×[κ2] (C1×[κ1]C3), L′ be the
behavior of C1×[κ1] (C2×[κ2]C3), L12 be the behavior of (C1×[κ1]C2) and L13 be the
behavior of (C1 ×[κ1] C3). Then,

L ={σ1[∪](σ2[∪]σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3,

(σ1, σ2[∪]σ3) ∈ [κ1], (σ2, σ3) ∈ [κ2]}

={σ1[∪](σ2[∪]σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3,

(σ1, σ2) ∈ [κ1], (σ1, σ3) ∈ [κ1], (σ2, σ3) ∈ [κ2]}

={σ[∪]τ | σ ∈ L12, τ ∈ L13, (σ, τ) ∈ [κ2]}

=L′

Lemma 12. Let C1 = (E1, L1) and C2 = (E2, L2) be two components. Let κsync⊓ be a
composability relation on observables with ⊓ ⊆ P(E1)×P(E2). Then, for any ⊓′ with
⊓′ ∩ (P(E1)× P(E2)) = ∅, then:

C1 ×[κsync
⊓] C2 = C1 ×[κsync

⊓∪⊓′]
C2

Proof. For any pair of composable observations ((O1, t1), (O2, t2)) ∈ κsync⊓ , we have
that ((O1, t1), (O2, t2)) ∈ κsync⊓∪⊓′ since (O1, O2) ∈ ⊓ implies that (O1, O2) ∈ ⊓ ∪ ⊓′.
Conversely, if (O1, O2) ∈ ⊓∪⊓′ and ⊓′∩P(E1)×P(E2) = ∅, then (O1, O2) ∈ ⊓. Thus,
for any (σ1, σ2), (σ1, σ2) ∈ [κsync⊓] if and only if (σ1, σ2) ∈ [κsync⊓∪⊓′].

2.1.5 Properties of TESs

We distinguish two kinds of properties of TESs: properties that we call trace properties,
and properties on sets of TESs that we call behavior properties, which correspond
to hyper-properties in [28]. The generality of our model permits to interchangeably
construct a component from a property and extract a property from a component.
As illustrated in Example 16, when composed with a set of interacting components, a
component property constrains the components to only expose desired behavior (i.e.,
behavior in the property). In Section 2.1.6, we provide more intuition for the practical
relevance of these properties.

38

Chapter 2 Algebra of Components

Definition 16. A trace property P is a subset P ⊆ TES (E) for some set of events E.
A component C = (E,L) satisfies a property P , if L ⊆ P , which we denote as C |= P .

Example 15. We distinguish the usual safety and liveness properties [2, 28], and
recall that every trace property can be written as the intersection of a safety and a
liveness property. Let X be an arbitrary set, and P be a subset of N → X. Intuitively,
P is safe if every bad stream not in P has a finite prefix every completion of which is
bad, hence not in P . A property P is a liveness property if every finite sequence in X∗

can be completed to yield an infinite sequence in P , where X∗ is the set of all finite
sequences of elements in X. For instance, the property of terminating behavior for a
component with interface E is a liveness property, defined as:

Pfinite(E) = {σ ∈ TES (E) | ∃n ∈ N.∀i > n. pr1(σ)(i) = ∅}

Pfinite(E) says that, for every finite prefix of any stream in TES (E), there exists a
completion of that prefix with an infinite sequence of silent observations ∅ in Pfinite(E).
■

Definition 17. A trace property is similar to a component, since it describes a set of
TESs, except that it is a priori not restricted to any interface 9. A trace property P
can then be turned into a component, by constructing the smallest interface EP such
that, for all σ ∈ P , and i ∈ N, pr1(σ)(i) ⊆ EP . The component CP = (EP , P) is then
the componentized-version of property P . ■

Lemma 13. Given a property P over E, its componentized-version CP (see Defini-
tion 17) and a component C = (E,L), then C |= P if and only if C ∩ CP = C.

Proof. We recall the definition of the intersection in Definition 12. For any two com-
ponents C1 = (E1, L1) and C2 = (E2, L2), the intersection C1 ∩ C2 is the component
C1 ×([κsync],[∩]) C2 = (E1 ∪ E2, L). Given that ∩ satisfies the condition for using
Lemma 10, the product ∩ is idempotent. Let C ∩ CP = (E,L′). If (σ, τ) ∈ L′ then
σ = τ . Thus, L′ ⊆ L ∩ LP .

Alternatively, let σ ∈ L ∩ LP . We observe that at any point n ∈ N, we have
(σ(n), σ(n)) ∈ κsync(E,E). Therefore, (σ, σ) ∈ [κsync⊓].

We conclude that L ∩ LP = L′.

9In our formalism, a property is a set of TESs L ⊆ TES(E) for some E ⊆ E. Two properties P
and L are equal if they contain identical TESs, and equality is not subject to the interface over which
properties are defined.

39

Algebra of Components Chapter 2

Example 16. We use the term coordination property to refer to a property used in
order to coordinate behaviors. Given a set of n components Ci = (Ei, Li), i ∈ {1, ..., n},
a coordination property Coord for the composed components is a property over events
E = E1 ∪ ... ∪ En, i.e., Coord ⊆ TES (E).

Consider the synchronous interaction, as introduced in Example 4, of the n com-
ponents and let C = C1 ▷◁ C2 ▷◁ ... ▷◁ Cn be their synchronous product. Typically, a
coordination property will not necessarily be satisfied by the composite component C,
but some of the behavior of C is contained in the coordination property. The coordina-
tion problem is to find (e.g., synthesize) an orchestrator component Orch = (EO, LO)

such that C ▷◁ Orch |= Coord . The orchestrator restricts the component C to ex-
hibit only the subset of its behavior that satisfies the coordination property. In other
words, in their composition, Orch coordinates C to satisfy Coord . As introduced in
Definition 17, since Coord ranges over the same set E that is the interface of compo-
nent C1 ▷◁ C2 ▷◁ ... ▷◁ Cn, a coordination property can be turned into an orchestrator
by building its corresponding component. The coordination problem can be made even
more general by changing the composability relations or the composition functions used
in the construction of C. ■

Trace properties are not sufficient to fully capture the scope of interesting properties
of components of cyber-physical systems. Some of their limitations are highlighted in
Section 2.1.6. To address this issue, we introduce behavior properties, which are strictly
more expressive than trace properties, and give two illustrative examples.

Definition 18. A behavior property ϕ over a set of events E is a hyper-property
ϕ ⊆ P(TES (E)). A component C = (E,L) satisfies a hyper-property ϕ if L ∈ ϕ,
which we denote as C ||= ϕ.

Example 17. A component C = (E,L) can be oblivious to time. Any sequence of
time-stamps for an acceptable sequence of observables is acceptable in the behavior of
such a component. This “obliviousness to time" property is not a trace property, but a
hyper-property, defined as:

ϕshift(E) := {Q ⊆ TES (E) | ∀σ ∈ Q.∀t ∈ OS(R+).∃τ ∈ Q.

pr1(σ) = pr1(τ) ∧ pr2(τ) = t}

Intuitively, if C ||= ϕshift(E), then C is independent of time. ■

Example 18. We use ϕinsert(X,E) to denote the hyper-property that allows for ar-
bitrary insertion of observations in X ⊆ P(E) into every TES at any point in time,

40

Chapter 2 Algebra of Components

i.e., the set defined as:

{Q ⊆ TES (E) | ∀σ ∈ Q.∀i ∈ N.∃τ ∈ Q.∃x ∈ X.

(∀j < i.σ(j) = τ(j))∧

(∃t ∈ R+.τ(i) = (x, t))∧

(∀j ≥ i.τ(j + 1) = σ(j))}

Intuitively, elements of ϕinsert(X,E) are closed under insertion of an observation x ∈
X at an arbitrary time. ■

2.1.6 Components of the running example

This section is inspired by the work on soft-agents [84, 50], and elaborates on the
more intuitive version that we presented in Section 1.3. Interactive cyber-physical
systems are represented as components, and behavioral properties of those systems
are formulated as components, as well. Through these examples, we show how we use
component-based descriptions to model a simple scenario of a robot roaming around
in a field while taking energy from its battery. We structurally separate the battery,
the robot, and the field as independent components, and we explicitly model their
interaction in a specific composed system.

Example 19 (Roaming robots). We capture, as a component, sequences of observa-
tions emerging from discrete actions of a robot at a fixed time rate. For simplicity, we
consider that the robot can perform actions of two types only: a move in a cardinal
direction, and a read of its position sensor. A move action of robot i creates an event
of the form d(i , p) where d is the direction, and p is the power displayed by the robot.
The read action of robot i generates an event of the form read(i , (x ; y)) where (x; y)

is a coordinate location.
Formally, we write R(i, T, P) = (ER(i, P), LR(T)) for the robot component with

identifier i with ER(i, P) the set

{S(i, p),W (i, p), N(i, p), E(i, p), read(i, (x; y)) | x, y ∈ J−20, 20K, p ≤ P}

and LR(T) ⊆ TES (ER(i, P)) be such that all observations are time stamped with a
multiple of the period T ∈ R+, i.e., for all σ ∈ LR(T), if (O, t) ∈ σ then there
exists k ∈ N such that t = k · T . The component R(i, T) therefore captures all robots
whose directions are restricted to S(outh), W(est), N(orth), and E(ast), whose power

41

Algebra of Components Chapter 2

Table 2.1: Three prefixes of timed-event streams for R(1, T, P), R(2, T, P), and R(3, T, P),
where T and P are fixed, and each move action consumes the same power p.

t/T σ : R(1, T, P) τ : R(2, T, P) δ : R(3, T, P)
1 {N(1, p)} − −
2 {W (1, p)} − −
3 {W (1, p)} {N(2, p)} {E(3, p)}
4 {S(1, p)} {W (2, p)} {E(3, p)}
... −

is limited to P , and whose location values are integers in the interval J−20, 20K. The
robot stops whenever p = 0.

In Table 2.1, we display the prefix of one TES from the behavior of three robot
components. Note that each line corresponds to a time instant, for which each robot
may or may not have observed events. The symbol ‘−’ represents no observable, while
otherwise we show the set of events observed. The time column is factorized by the
period T , shared by all robots. Thus, at time 3 · T , robot R(1, T, P) moves west, while
robot R(2, T, P) moves north, and robot R(3, T, P) moves east, all with power p. We
use R(i) to denote the robot R(i, T, P) with a fixed by arbitrary period T and upper
power P . ■

In the robot component of Example 19, observations occur at a fixed frequency.
For some physical components, however, observations may occur at any point in time.
For instance, consider the field on which the robot moves. Each time a robot moves
may induce a change in the field’s state, and the field’s state may be observable at
any time and frequency. Internally, the field may record its state changes by a contin-
uous function, while restricting the possibilities of the robots to move due to physical
limitations. We describe the field on which the robot moves as a component, and we
specify, in Example 22, how robot components interact with the field component.

Example 20 (Field). The field component captures, in its behavior, the dynamics of
its state as a sequence of observations. The collection of objects on a field is given
by the set I. The state of a field is a triple (((x; y)i)i∈I , (

−→vi)i∈I , t) that describes, at
time t ∈ R+, the position (x; y)i and the velocity −→vi of each object in I. We model
each object in I by a square of dimension 1 by 1, and the coordinate (x; y)i represents
the central position of the square. We use µ = (((x0, y0)i)i∈I , (

−→v0i)i∈I , t0) as an initial
state for the field, which gives for each robot in i ∈ I a position and an initial velocity.
Note that static obstacles on the field can be modeled as objects i ∈ I with position
(x; y)i and zero velocity.

42

Chapter 2 Algebra of Components

Formally, the field component is the pair Fµ(I) = (EF (I), LF (I, µ)) with

EF (I) = {(x; y)i,move(i ,−→v) | i ∈ I , x , y ∈ R, −→v ∈ R× R}

where each event move(i ,−→v) continuously moves object i with velocity −→v , and event
(x; y)i displays the location of object i on the field.

The set LF (I, µ) ⊆ TES (EF (I)) captures all sequences of observations that con-
sistently sample trajectories of each objects in I, according to the change of state of
the field and the internal constraint. As a physical constraint, we impose that no
two objects can overlap, i.e., for any disjoint i, j ∈ I and for all time t ∈ R+, with
(x; y)i and (u; v)j their respective positions, then [x− 0.5, x+0.5]∩ [u− 0.5, u+0.5] =

[y−0.5, y+0.5]∩[v−0.5, v+0.5] = ∅. Even though the mechanism for such a constraint
is hidden in the field component, typically, the move of a robot is eventually limited by
the physics of the field. We write F (I) when µ is fixed but arbitrary. ■

There is a fundamental difference between the robot component in Example 19 and
the field component in Example 20. The robot component has an adequate underlying
sampling frequency which prevents missing any event if observations are made by
that frequency. However, the field has no such frequency for its observations, which
means that there may be another intermediate observation occurring between any
two observations. In [62], we capture, as a behavioral property, the property for a
component to interleave observations between any two observation.

Example 21 (Protocol). As shown in Example 20, physics may impose some con-
straints that force robots to coordinate. A protocol is a component that, for instance,
coordinates the synchronous movement of a pair of robots. For example, when two
robots face each other on the field, the swap(i, j) protocol moves robot R(i, P, T) north,
west, and then south, as it moves robot R(j, P, T) east. Note that the protocol requires
the completion of a sequence of moves to succeed. Another robot could be in the way,
and therefore delay the last observables of the sequence. The swap component is defined
by swap(i, j) = (EP (i, j), LP (i, j)) where EP (i, j) = ER(i, P) ∪ ER(j, P) and LP (i, j)

captures all sequences of observations where the two robots i and j swap positions. ■

A useful interaction signature Σ is the one that synchronizes shared events between
two components. We write Σsync = (Rsync ,∪) for such interaction signature, and
give its specification in Example 4. The synchronous interaction signature Σsync =

(Rsync ,∪) leads to the product ×Σsync that forces two components to observe shared
events at the same time. We write ▷◁ for such product. As a result, R(1, P, T) ▷◁

43

Algebra of Components Chapter 2

Table 2.2: Three prefixes of timed-event streams for R(1, T, P), R(2, T, P), and R(3, T, P),
together with the prefix resulting from forming their synchronous product with the swap
protocol. Initially, µ(1) = (0; 2), µ(2) = (0; 1), µ(3) = (0; 0).

t/T η : R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T) ▷◁ swap(2, 3)
1 {N(1, p)}
2 {W (1, p)}
3 {W (1, p), N(2, p)}
4 {S(1, p),W (2, p), E(3, p)}
5 {S(2, p)}
... ...

R(2, P, T) ▷◁ R(3, P, T) ▷◁ swap(2, 3) captures all sequences of moves for the robots
constrained by the swap protocol, as shown by the elements of table 2.2.

Example 22 (Field-Robot signature). The interactions occurring between the field
and the robot components impose simultaneity on some disjoint events. For instance,
every observation of the robot containing the event d(i, p) ∈ ER(i, P) must occur at the
same time as an observation of the field containing the event move(i ,

−−−−→
v(d, p)) ∈ EF (I)

with
−−−−→
v(d, p) returning the velocity as a function of direction d and power p. Also, every

observation containing the event read(i , (⌊x⌋, ⌊y⌋)) ∈ ER(i ,P) must occur at the same
time as an event (x; y)i ∈ EF (I) where ⌊z⌋ gives the integer part of z.

Formally, we capture such interaction in the interaction signature ΣRF = (RRF ,∪),
where RRF is the smallest symmetric relation defined as for all (τ, σ) ∈ RRF , for all
t ∈ R+, for all i ∈ N,

read(i , (n,m)) ∈ τ(t) ⇐⇒ (∃(x ; y)i ∈ σ(t) ∧ n = ⌊x⌋ ∧m = ⌊y⌋)

and d(i , p) ∈ τ(t) ⇐⇒ move(i ,
−−−−→
v(d, p)) ∈ σ(t) with d ∈ {N,W,E, S}.

As a result, the product (R(1, T, P) ▷◁ R(2, T, P) ▷◁ R(3, T, P))×ΣRF
Fµ(I) captures

all sequences of observations for the three robots constrained by the field component.
■

Remark 3. The floor part ⌊·⌋ acts as an approximation of the robot sensor on the
field’s position value. A different interaction signature may, for instance, introduce
some errors in the reading.

The interaction signature may also impose that d(i, p) relates to the speed (0, 1/T),
(0,−1/T), (−1/T, 0), and (1/T, 0) when d = N , d = S, d = W , and d = E, respec-
tively. Then, for a time interval T , the power p moves the robot by one unit on the
field.

44

Chapter 2 Algebra of Components

Remark 4. In practice, it is unlikely that two observations happen at exactly at the
same time. However, in our framework, the time of an observation is an abstraction
that requires every event of the observation to occur after the events of the previous
observation, and before the events of the next observation.

Example 23 (Battery). A battery component with capacity C in mAH is a pair
B = (EB(C), LB(C)) with events read(l) ∈ EB(C) for 0% ≤ l ≤ 100%, charge(µ) ∈
EB(C), and discharge(µ) ∈ EB(C) with µ a (dis)charging coefficient in % per seconds.
The battery displays its capacity with the event capacity(C). The behavior LB is a set
of sequences σ ∈ LB such that there exists a piecewise linear function f : R+ → P(EB)

with, for σ(i) = (Oi, ti),

• for σ(0) = (O0, t0), f([0; t0]) = 100%, i.e., the battery is initially fully charged;

• if Oi = {read(l)}, then f(ti) = l and the derivation f ′[ti−1,ti+1]
of f is constant

in [ti−1, ti+1], i.e., the observation does not change the slope of f at time ti;

• if Oi = {discharge(µ)}, then f[ti,ti+1](t) = max(f(ti)− (t− ti)µ, 0);

• if Oi = {charge(µ)}, then f[ti,ti+1](t) = min(f(ti) + (t− ti)µ, 100);

where f[t1;t2] is the restriction of function f on the interval [t1; t2]. There is a priori no
restrictions on the time interval between two observations, as long as the sequence of
timestamps is increasing and non-Zeno. Finally, we use Bi for a battery whose events
are identified by the natural number i. Then, for B = (EB(C), LB(C)), we have
Bi = (EBi

(C), LBi
(C)) with e ∈ EB(C) if and only if the corresponding identified

event ei ∈ EBi
(C), e.g. read i(l) ∈ EBi

(C) for all read(l) ∈ EB(C). The set of TESs
LBi

(C) is obtained by replacing in every TESs in LB(C) the corresponding identified
event in EBi

(C). □

Example 24. We define ΣRB = ([κRB],∪) where ∪ unions two TESs as defined in
the preliminaries, and [κRB] specifies co-inductively (see [62] for details of the con-
struction), from a relation on observations κRB, how event occurrences relate in the
robot and the battery components of capacity C. More specifically, κRB is the smallest
symmetric relation over observations such that ((O1, t1), (O2, t2)) ∈ κRB implies that
t1 = t2 and

• the discharge event in the battery coincides with a move of the robot, i.e., d(i, p) ∈
O1 if and only if discharge(µ) ∈ O2. Moreover, the interaction signature imposes
a relation between the discharge coefficient µ and the required power p, i.e.,
µ = p/C;

45

Algebra of Components Chapter 2

• the read value of the robot sensor coincides with a value from the battery compo-
nent, i.e., read(i, l) ∈ O1 if and only if read(l) ∈ O2;

• the robot reads the capacity value that corresponds to the battery capacity, i.e.,
getCapacity(i,c) ∈ O1 if and only if capacity(c) ∈ O2.

The product B×ΣRB
R(i, P, T) of a robot and a battery component, under the interac-

tion signature ΣRB, restricts the behavior of the battery to match the periodic behavior
of the robot, and restricts the behavior of the robot to match the sensor values delivered
by the battery.
As a result, the behavior of the product component B ×ΣRB

R(i, P, T) contains all
observations that the robot performs in interaction with its battery. Note that trace
properties, such as all energy sensor values observed by the robot are within a safety
interval, does not necessarily entail safety of the system: some unobserved energy val-
ues may fall outside of the safety interval. Moreover, the frequency by which the robot
samples may reveal some new observations, and such robot can safely sample at pe-
riod T if, for any period T ′ ≤ T , the product B ×ΣRB

R(i, P, T ′) satisfies the safety
property.
In case of a battery Bj with identifier j and a robot R(i) with identifier i, we use
ΣRiBj for the interactio signature that synchronizes, as described above, occurrences
of events of the battery Bj with occurrences of events of the robot R(i). □

Behavioral properties of components

Consider the system

S(n, T1, ..., Tn) = ▷◁i∈{1,...,n} (R(i, Ti)×ΣRiBi
Bi)×ΣRF

F ({1, ..., n}) (2.1)

made of n robots R(i, Ti), each interacting with a private battery Bi under the inter-
action signatures ΣRiBi

, and in product with a field F under the interaction signature
ΣRF . We use ▷◁ for the product with the free interaction signature (i.e., every pair
of TESs is composable), and the notation ▷◁i∈{1,...,n} {Ci} for C1 ▷◁ ... ▷◁ Cn as ▷◁ is
commutative and associative.

We fix n = 2 in Equation (2.1) and the same period T for the two robots. We write
E for the set of events of the composite system S(2, T). We formulate the scenarios
described in Section 1.3 in terms of a satisfaction problem involving a safety property
on TESs and a behavioral property on the composite system. We first consider two

46

Chapter 2 Algebra of Components

safety properties:

Penergy = {σ ∈ TES (E) | ∀i ∈ N.{read1(0), read2(0)} ⊈ pr1(σ)(i)}

which models that the two batteries don’t display simultaneously that their level is
empty; and Pno−overlap which is the set

{σ ∈ TES (E) | ∀i ∈ N.∀(x, y) ∈ [0, 20]2, {(x, y)1, (x, y)2} ⊈ pr1(σ)(i)}

that captures all behaviors where the two robots are never observed together at the
same location.

Observe that, while both Penergy and Pno−overlap specify some safety properties,
they are not sufficient to ensure the safety of the system. We illustrate some scenarios
with the property Penergy . If a component never reads its battery level, then the
property Penergy is trivially satisfied, although effectively the battery may run out of
energy. Also, if a component reads its battery level periodically, each of its readings
may return an observation agreeing with the property. However, in between two read
events, the battery may run out of energy (and somehow recharge). To circumvent
those unsafe scenarios, we add an additional behavioral property.

Let Xread = {read(l1)1, read(l2) | 0 ≤ l1 ≤ C1, 0 ≤ l2 ≤ C2} be the set of reading
events for battery components B1 and B2, with capacities C1 and C2 respectively. The
property ϕinsert(Xread , E), as detailed in Example 18, defines a class of component
behaviors that are closed under insertion of read events for the battery component.
Therefore, the system S(2, T) is energy safe if S(2, T) |= Penergy and its behavior is
closed under insertion of battery read events, i.e., S(2, T) ||= ϕinsert(Xread , E). In
that case, every TES of the component’s behavior is part of a set that is closed under
insertion, which means all read events that the robot may do in between two events
observe a battery level greater than 0Wh. The behavior property enforces the following
safety principle: had there been a violating behavior (i.e., a run where the battery has
no energy), then an underlying TES would have observed it, and hence the behavioral
property would have been violated.

Another scenario for the two robots is to consider their coordination in order to
have them exchange their positions. Let F be initialized to have robot R1 at position
(0, 0) and robot R2 at position (5, 0). The property of exchanging position is a liveness

47

Division and conformance Chapter 2

property defined as:

Pexch = {σ ∈ TES (E) |{(0, 0)1, (5, 0)2} ⊆ pr1(σ)(0) and

∃i ∈ N.{(5, 0)1, (0, 0)2} ⊆ pr1(σ)(i)}

where (x, y)i is the position of robot i on the field. It is sufficient for a liveness property
to be satisfied for the system to be live, i.e., in the case of Pexch being satisfied, the
two robots eventually exchanged position. However, it may be that the two robots
exchange their positions before the actual observation happens. In that case, using a
similar behavioral property as for safety property will make sure that if there exists
a behavior where robots exchange their positions, then such behavior is observed as
soon as it happens.

2.2 Division and conformance

Composition is the act of assembling components to form complex systems. This prop-
erty is particularly desirable if the underlying parts have different type of specifications
(e.g., continuous or discrete), but still need to communicate and interact. Our work in
Section 2.1 presents a component model that captures both discrete and continuous
changes, for which timed-event streams (TESs) are instances of a component behav-
ior. An observation is a set of events with a unique time stamp. A component has
an interface that defines which events are observable, and a behavior that denotes all
possible sequences of its observations (i.e., a set of TESs). The precise machinery that
generates such component is abstracted away. Instead, we present interaction between
components as an algebra on components, and we give a wide variety of user defined
operations.

Decomposition is dual to composition, as it simplifies a component behavior by
removing some of its parts. Decomposition is interesting in two ways: it gives insight
on whether a system is composite of a specific component, and it returns a subsystem
that, in composition with that component, would give back the initial system. De-
composition is not unique, and may induce a cost or a measure, i.e., a component A
may be seen as a product B×C or B×D with C ̸= D. While the qualitative behavior
may not change, i.e., the set of sequences of observations stays the same, the substitu-
tion of a component with another may somehow improve the overall system, e.g., by
enhancing its efficiency. For instance, running time is often omitted when specifying
systems whose behavior is oblivious to time itself. However, in practice, the time that

48

Chapter 2 Division and conformance

a program takes to process its inputs matters. Thus, a component may be substituted
with a component exposing the same behavior but running faster. Other criteria such
as the size of the implementation, the cost of the production, procurement, mainte-
nance, etc., may be considered in changing one component for another. In this paper,
we also consider an orthogonal concern: the cost of coordination. Intuitively, the cost
of coordination captures the fact that events of two components are tightly related.
For example, if two events are related, the occurrence of an event in one component
implies the occurrence of some events in another component. While such constraints
are declarative in our model, their implementation may be costly. Thus, the relation
between observable events of two components may increase the underlying cost to con-
currently execute those two components. Finally, having operation to study system
decomposition brings alternative perspective on fault detections and diagnosis [50].

Formally, we extend our algebra of components [62] with a new type of operator: a
division operation. Division intuitively models decomposition, and acts as an inverse
composition operation. Practically, the division of component A by component B
returns one component C from all the components D such that A = B×D. Different
cost models give rise to different operations of division. We abstractly reason about
cost using a partially ordered set of components and show that, for some orders, the
set of candidates naturally gives rise to a maximal (minimal) element.

As a running example, we consider a set of robots moving continuously on a shared
field. We use the operation of division to specify desirable updates that would prevent
robots from interfering with other robots. We also apply division to find simpler
components that, if used, would still preserve the entire system behavior. We finally
specify the necessary coordination for the robots to self sort on the field.

2.2.1 Divisibility and quotients

Consider two components B and C, and a product × over components, modelling
the interaction constraints on B and C. Then, the composite expression A = C × B

captures, as a component, the concurrent observation of components C and B under
the interaction modelled by ×. Consider a component D such that C × B = D × B.
If D is different from C, then the equality states that the result of D interacting with
B is the same as C interacting with B. Consequently, in this context, component C
can be replaced by component D while preserving the global behavior of A.

In general, a component D that can substitute for C is not unique. The set
of alternatives for D depends, moreover, on the product ×, on the component B,

49

Division and conformance Chapter 2

and on the behavior of A. A ‘goodness’ measure may induce an order on this set
of components, and eventually give rise to a best substitution. More generally, the
problem is to characterize, given two components A and B and an interaction product
×, the set of all C such that A = C ×B.

The divisibility of a component A by a component B under product × captures
the possibility to write A as a product of B with another component.

Definition 19 (Right (left) divisibility). A component A is right (respectively, left)
divisible by B under the product × if there exists a component C such that B×C = A

(respectively, C ×B = A).

A is divisible by B under × when A is both left and right divisible by B under
×. Intuitively, the set of witnesses for divisibility, contains all the components that, if
taken in a product (under the same interaction signature) with the divisor, yield the
dividend. Such witnesses are called quotients.

Definition 20 (Right (left) quotients). The right (respectively, left) quotients of A
by B under the product ×Σ, written A/∗ΣB (respectively, A \∗Σ B), is the set {C |
B ×Σ C = A} (respectively, {C | C ×Σ B = A}).

If ×Σ is commutative, then A/∗ΣB = A\∗ΣB, in which case we write Σ

A

B
∗. We define

left (right) division operators that pick, given a choice function10, the best element
from their respective sets of quotients as their quotients.

Example 25. Consider a robot that performs 5 moves, and then stops. Each move
consumes some energy, and the robot therefore requires sufficient amount of energy to
achieve its moves. The product of a robot C with its battery B under the interaction
signature Σ is given by the expression A = C ×Σ B, where Σ synchronizes a move
of robot C with battery B. Note that different batteries behave differently. The set of
batteries that would lead to the same behavior is given by the quotients of A by B.

Definition 21 (Right (left) division). Let A be divisible by B under ×Σ. The right
(respectively, left) quotient of A divided by B, under the product ×Σ and the choice
function χ over the right (respectively, left) quotients, is the element χ(A/∗ΣB) (respec-
tively, χ(A \∗Σ B)). We write A/χΣB (respectively, A \χΣ B) to represent the quotient.

Example 26. It is usual (e.g., [92]) to consider the greatest common divisor when
forming the product of cyber-physical components, so that no observation is missed.

10We assume the axiom of choice [86] and the existence of a function χ that picks an element from
a set.

50

Chapter 2 Division and conformance

Our operation of division, however, gives an alternative perspective. Let C(H) be a
component whose observations have time stamps that are natural multiples of H ∈ R+.
Then, let A = C(H1) ×Σ C(H2). The set of components {C(H) | A = C(H1) ×Σ

C(H), H ∈ R+} contains all the quotients of A divisible by C(H1). The selection of
the component with the lowest period H would be one choice function for the division
of A by C(H) under Σ. When Σ enforces events from C(H1) and C(H) to occur
simultaneously, the product ×Σ projects observation on a common multiple period, and
the division returns one component with H as period and whose natural multiplers
correspond to the greatest common divisor between integer multiplier in C(H1) and
C(H2).

If ×Σ is commutative, then A/χΣB = A \χΣ B, in which case we denote the division

as Σ

A

B
χ.

Example 27 (Lowest element). One measure to order the set of quotients is to find
a component that is contained in all the other component behaviors. Indeed, every
quotient has the property that, in composition with the divisor, the resulting component
equals the dividend. Then, finding a quotient that is contained in all other quotients
may be optimal in terms of behavior complexity.

Let C, the set of right (left) quotients for A divisible by B for product ×, is equipped
with an ordering such that the lowest element is an element of C, then a function that
picks the lowest element can act as a choice function to define the result of the division
of A by B. ■

One may consider ≤ as a natural ordering on quotients. However, the set of quo-
tients equipped with the containment relation may not have a lowest element. One
such example is shown in Table 2.3. Consider A, B, C, and D with {0, 1, 2}, {0, 1},
{0, 2}, and {1, 2} as interface, respectively. Using the synchronous composition oper-
ation, the TESs τ and η compose with the TES δ to give the TES σ. However, C
and D require synchronization on their shared event to compose with B. A smaller
component than C and D would be a component F , whose interface is the singleton
set containing event 2. However, such component has no shared event with B, and
may therefore freely interleave its observations, which does not correspond with ob-
servations in A. Thus, F is not an element of the quotients, and C and D have no
lower bound in the set of quotients.

We show in the next theorem that a subset of quotients with a shared interface
has a lower bound. We discuss how the choice of an interface for a quotient may be
guided by some qualitative design choices.

51

Division and conformance Chapter 2

Table 2.3: Counter example for a lowest element in the division of A by B, with C and D
two quotients.

σ : A τ : B δ : C η : D
t1 {0, 1, 2} {0, 1} {0, 2} {1, 2}
t2 {0, 1, 2} {0, 1} {0, 2} {1, 2}
t3 {0, 1, 2} {0, 1} {0, 2} {1, 2}
...

Theorem 2. Let ≤ be the containment relation introduced in Definition 3. Let ×Σ

be a commutative, associative, and idempotent product on components, and such that
for any two components C and D with the same interface, C ×Σ D ≤ C. Given A

divisible by B under ×Σ, any finite subset of quotients sharing the same interface E
has a lower bound that is itself a quotient in A/∗ΣB.

Proof. Let C(E) be a finite subset of the set {C | C has interface E and C ∈ A/∗ΣB}.
We also write ×ΣC(E) for the product of all components in C(E).

For any C ∈ C(E), we have
×ΣC(E) ≤ C

which makes ×ΣC(E) a lower bound for C(E).
Given associativity, commutativity, and idempotency of ×Σ, for any C1, C2 ∈ C(E):

A = B ×Σ C1

A = B ×Σ C2

A×Σ A = A = (B ×Σ C1)×Σ (B ×Σ C2)

A = B ×Σ (C1 ×Σ C2)

which, applied over the set C(E), gives A = B ×Σ (×ΣC(E)). Thus, ×ΣC(E) ∈ C(E).
11

When conditions of Theorem 2 are satisfied, we write A/≤,E
Σ B for the lower bound

of the set of quotients with interface E.

Remark 5. The operation of division defined by Theorem 2 raises several points
for discussion. First, the set of quotients sharing the same interface is structured.
Indeed, when the interface is fixed, each finite subset of quotients has a lowest element

11Strictly speaking, closure under finite product does not necessarily imply closure under infinite
product. We leave investigating the conditions under which closure under infinite product holds, for
future work.

52

Chapter 2 Division and conformance

under ≤, which makes the definition of a division operator possible. Second, the fact
that there is, in general, no minimal element over the set of all quotients reveals the
important role that interfaces play in system decomposition. In other words, one may
consider another measure to choose a quotient interface, that is orthogonal to behavior
containment (see Section 2.2.4 for a discussion about the cost of coordination).

We use 1 to denote the component (∅,TES (∅)), and 0 to denote the component
(∅, ∅), that has the empty interface and no behavior.

A component A = (EA, LA) is closed under insertion of silent observations if, for
any σ ∈ LA, and for any silent observation (∅, t) with t ∈ R+, and given i ∈ N such
that σ(i) = (O, t1) and σ(i + 1) = (O′, t2) with t1 < t < t2, then there exists η ∈ LA

such that σ(k) = η(k) for all k ≤ i, σ(i + 1) = (∅, t), and σ(k + 2) = η(k + 1) for all
k > i.

In order to reason about components algebraically, we want some properties to
hold. For instance, that a component is divisible by itself and the set of quotients
contains the unit element.

Lemma 14. Let A be a component closed under insertion of silent observations, and
Σsync the synchronous interaction signature introduced in Example 4. Then, 1 ∈
A/∗Σsync

A.

Proof. For any element σ : A, and for any τ : 1, we have (σ, τ) ∈ R and σ[∪]τ : A.
Moreover, for any σ : A, there exists τ : 1 such that (σ, τ) ∈ R and σ[∪]τ = σ. Then,
1 is in the set of quotients of A by A.

Remark 6. Note that Lemma 14 assumes components to be closed under insertion of
silent observations. The reason, as shown in the proof, comes from the product of 1
with a component A that may insert silent observations at arbitrary points in time. A
consequence of Lemma 14 is the existence of a choice function that can pick, from the
set of quotients, the unit component for the division of A by A.

Example 28. Let (R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T)) ×ΣRF
Fµ(I) be the product

of three robot components and a field component with I = {1, 2, 3}. Consider the
component P = (E,L) with E = {read((n,m), i), (n,m)i | n,m ∈ N} and L ⊆
TES (E).

Then, ((R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T)) ×ΣRF
Fµ(I))/

≤,E′

ΣRF
P , with E′ =

(ER(1)∪ER(2)∪ER(3)∪EF (I))\{(n,m)i | n,m ∈ N}, denotes the component that, in
composition with P , recovers the initial system. Note that the component resulting from
division ranges over the interface E′. As a consequence, all events (n,m)i have been

53

Division and conformance Chapter 2

hidden in the quotient. Note that the division exists due to the interaction signature
ΣRF that imposes simultaneity on occurrence of events read((n,m), i) and (n,m)i. ■

Lemma 15 and Lemma 16 show properties of divisability of components that are
similar arithmetic divisability: (1) n/(n/m) is divisible by m, and (2) if n is divisible
by m and m is divisible by o then n is divisible by o.

Lemma 15. Let ×Σ be commutative. Given A divisible by B under Σ and χ a choice
function on the set of quotients of A divisible by B, then B ∈ A/∗Σ(A/

χ
ΣB).

Proof. If A is divisible by B under Σ and if χ selects one quotient over the set, then
C = A/χΣB is such that A = B ×Σ C. By commutativity of ×Σ, A = C ×Σ B and
B ∈ A/∗ΣC.

Lemma 16. Let ×Σ be associative. If A is divisible by B under Σ and B is divisible
by C under Σ, then A is divisible by C under Σ.

Proof. If A is divisible by B under Σ, then there exists D such that A = B×ΣD. If B
is divisible by C under Σ, then there exists E such that B = C×ΣE. By substitution,
we have A = (C ×Σ E)×Σ D. Using associativity of ×Σ, we get A = C ×Σ (E ×Σ D)

which proves that A is divisible by C under ×Σ.

2.2.2 Conformance

The criterion for divisibility of A by B, under product ×, is the existence of a quotient
C such that B×C = A. The equality between B×C and A makes division a suitable
decomposition operator. We can define, a similar operation to describe all components
C that coordinate B in order for the result to behave in conformance with specification
A. In this case, we replace equality with the refinement relation of Definition 2.

Definition 22 (Right (left) conformance). Component B is right (respectively, left)
conformable with component A under × if there exists a non-empty component C such
that C ×B ⊑ A (respectively, B × C ⊑ A).

Definition 23 (Right (left) conformance coordinators). The right (respectively, left)
conformance coordinators that make B behave in conformance with A under ×Σ, de-
noted as A ⇂∗Σ B (respectively, A ⇃∗Σ B), is the set {C | C ×Σ B ⊑ A} (respectively,
{C | B ×Σ C ⊑ A}).

If ×Σ is commutative, then A ⇂∗Σ B = A ⇃∗Σ B, in which case we write A ↓∗Σ B.
Trivially, every component can be coordinated with the empty coordinator, i.e., the

54

Chapter 2 Division and conformance

component 0 = (∅, ∅). However, the set of coordinators having the same interface is
structured and gives ways to define non-trivial coordinators, as in Theorem 3.

Definition 24 (Right (left) coordinator). Let B be conformable with component A,
and let χ be a choice function that selects the best component out of a set of components.
The right (respectively, left) coordinator that makes B behave in conformance with A,
denoted as A ⇂χσ B (respectively, A ⇃χΣ B), is the component χ(A ⇂∗Σ B) (respectively,
χ(A ⇃∗Σ B)).

Example 29 (Greatest element). One measure to order the set of coordinators is con-
tainment. The refinement relation used to define conformance also accepts coordina-
tors that have no behavior at all, and trivially satisfies the behavior inclusion relation.
To maximize the observables of the resulting composite behavior set, corresponds to
finding the greatest coordinator under the containment relation.

More generally, if C, the set of right (left) coordinators for B conformable with A
under ×, is equipped with an ordering such that the greatest element is an element of
C, then the function that picks the greatest element can act as a choice function to
select the best conformance coordinator of B to behave as A under ×. ■

Following the result of Theorem 2, if the interface of the quotient is fixed, then
the subset of quotients that have the same interface has a least element with the
containment relation introduced in Definition 3. We show in Theorem 3 that a similar
result holds for the set of coordinators.

Theorem 3. Let ≤ be the containment relation introduced in Definition 3. Let ×(R,⊕)

be a commutative, associative, idempotent, and monotonic (as in Definition 9) product
on components. Given B conformable with A under ×(R,⊕), any finite subset of coor-
dinators sharing the same interface E has an upper bound that is itself a coordinator
in A ↓∗Σ B.

Proof. Let C(E) be a finite subset of the set {C | C has interface E and C ∈ A ↓∗(R,⊕)

B}. We define the union of two components A = (EA, LA) and B = (EB , LB), as the
component A ∪ B = (EA ∪ EB , LA ∪ LB). The union of all components in C(E) is
the component

⋃
C(E) = (E,

⋃
C∈C(E) LC) where LC is the behavior of component C.

Moreover, we have that, for any component A,B,C, with B and C sharing the same
interface E, (A ×(R,⊕) B) ∪ (A ×(R,⊕) C) = A ×(R,⊕) (B ∪ C). Indeed let L be the

55

Division and conformance Chapter 2

behavior of (A×(R,⊕) B) ∪ (A×(R,⊕) C) and S be the behavior of A×(R,⊕) (B ∪ C):

L = {σ ⊕ τ | σ ∈ LA, τ ∈ LB , (σ, τ) ∈ R(EA, E)}∪

{σ ⊕ τ | σ ∈ LA, τ ∈ LC , (σ, τ) ∈ R(EA, E)}

= {σ ⊕ τ | σ ∈ LA, τ ∈ LB ∪ LC , (σ, τ) ∈ R(EA, E)} = S

We show that
⋃
C(E) is an upper bound for the set of coordinators C(E). For any

C ∈ C(E), we have
C ⊑

⋃
C(E)

which implies that C ≤
⋃
C(E) and makes

⋃
C(E) an upper bound for C(E).

Given associativity, commutativity, and idempotency of ×(R,⊕), for any C1, C2 ∈
C(E):

B ×(R,⊕) C1 ⊑ A

B ×(R,⊕) C2 ⊑ A

(B ×(R,⊕) C1) ∪ (B ×(R,⊕) C2) ⊑ A

B ×(R,⊕) (C1 ∪ C2) ⊑ A

which, applied over the set C(E), gives B ×(R,⊕) (
⋃

C(E)) ⊑ A. Thus,
⋃

C(E) ∈
C(E).

Finding a conformance coordinator that makes B behave in conformance with A

is looser than finding a quotient for A divisible by B: any quotient of A by B under
a product ×Σ is therefore a coordinator that makes B conformable with A. Such
quotient-coordinator has the property that it “coordinates” B such that the resulting
behavior covers the whole behavior of A.

For some suitable products, Theorem 2 and Theorem 3 state the existence, respec-
tively, of a lowest element in the subsets of quotients and a largest element in the set
of coordinators that share the same interface. The synchronous product introduced in
Example 4 is one product that satisfies the requirements of each theorem.

2.2.3 Applications of Division

In this section, we consider the robot, field, and protocol components introduced in
Examples 19, 20, and 21, together with the synchronous product ▷◁ of Example 4 and
the product ×ΣRF

of Example 22. Both products are commutative (Lemma 1 in [62]),

56

Chapter 2 Division and conformance

and we therefore omit the right and left qualifiers for division and conformance.

Initial conditions For each robot, we fix the power requirement of a move and the
time period T between two observations to be such that a move of a robot during
a period T corresponds to a one unit displacement on the field. Then, each move
action of a robot changes the location of the robot by a fixed number of units or none
if there is an obstacle. We write R(i) for robot R(i, P, T) with such fixed P and T .
As an example, the observation ({d(i), read(i, (x; y))}, t) followed by the observation
({read(i , (x ′; y ′))}, t+T) gives only few possibilities for (x′; y′): either (x; y) = (x′; y′),
in which case the robot got blocked in the middle of its move, or (x′; y′) increases (or
decreases) by one unit the x or y coordinates, according to the direction d.

Let the initial state µ of the field be such that µ(1) = (3; 0), µ(2) = (2; 0), and
µ(3) = (1; 0), which defines the initial positions of R(1), R(2) and R(3) respectively,
and let there be obstacles throughout the field on the 3× 2 rectangle from (0;−1) to
(4; 2), i.e., for all (x, y) ∈ (J0; 4K × J−1; 2K) \ (J1; 3K × J0, 1K), there exists i ∈ I such
that µ(i) = (x, y)i. As a result, the moves of each robot are restricted to the inside of
the 3× 2 rectangle as displayed in Table 2.5.

Approximation of the Field as a Grid

Problem A field component captures in its behavior the continuous responses of
a physical field interacting with robots roaming on its surface. The interface of the
field contains therefore an event, per object, for each possible position and each pos-
sible move. In some cases, however, only a subset of those events are of interest. For
instance, we may want to consider only integer position of objects on the grid, and dis-
card intermediate observables. As a result, such component would describe a discrete
grid instead of a continuous field, while preserving the internal physics: no two objects
are located on the same position. We show how to define the grid as a subcomponent
of the field, using the division operator.

Definition of the grid We use division to capture a discrete grid component
Gµ(I) ≤ Fµ(I) contained in the field component Fµ(I). A grid component has the
interface EG(I), where EG(I) ⊆ EF (I) with (x, y)i ∈ EG(I) implies x, y ∈ N.

We use the component C = (EG(I),TES (EG(I))) to denote the free component
whose behavior contains all TESs ranging over the interface EG(I). Then, by applica-
tion of Theorem 2, we use the least element with respect to ≤ of the set of quotients

57

Division and conformance Chapter 2

of C ×Σsync Fµ(I) divided by Fµ(I) under Σsync to define the grid. Thus,

Gµ(I) =Σsync

C ×Σsync
Fµ(I)

Fµ(I)
(≤, EG(I)) (2.2)

which naturally emerges as a subcomponent of the field component Fµ(I).

Consequences The grid component inherits some physical constraints from the
field Fµ(I), but is strictly contained in the field component. There is a fundamental
difference between an approximation of the position as a robot sensor detects, and a
restriction of the field to integer positions as in the grid component. In the former, the
component reads a value that does not corresponds precisely to its current position,
while in the latter, the position read is exact but observable only for integer values.

As a result, the two component expressions (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF
Gµ(I)

and (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Fµ(I) restrict each robot behavior in different ways:

the grid component allows discrete moves only and the position that a robot reads is
the same position as that of an object on the grid, while the field component allows
continuous moves but the position that a robot reads is an approximation of the
position of the robot on the field. In the sequel, we use the grid component Gµ(I)

instead of the field component.

Updates of components

Problem The interaction signature of a product operator on components restricts
which pairs of behaviors are composable. As a consequence, some components may
have more behavior than necessary, namely the elements that do not occur in any
composable pair. An update is an operation that preserves the global behavior of a
composite system while changing an operand of a product in the algebraic expression
that models the composed system. The goal of such update, for instance, is to remove
some behaviors that are not composable or prevent some possible runtime errors. We
give an example of such update that replaces a robot component by a new version
that removes some of its possibly blocking moves.

Scenario For each robot, we fix its behavior to consist of TESs that alternate be-
tween move and reading observations. Moreover, for a robot’s period T , and arbitrary
ni ∈ N, we let T ×ni, i ∈ N, represent the timestamp of the ith observation of a TES in
its behavior, so long as ni < ni+1. Table 2.4 displays elements of the behavior for each

58

Chapter 2 Division and conformance

Table 2.4: Prefixes of four TESs for R(1), R(2), and R(3). For direction d and robot i,
we write d(i) instead of d(i, p) since the power p is initially fixed. We omit the set notation
as observations are all singletons. We consider (ni)i∈N as an increase sequence of natural
numbers.

t/T σ : R(1) η : R(1) τ : R(2) δ : R(3)
n0 read(1, (3; 0)) read(1, (3; 0)) read(2, (2; 0)) read(3, (1; 0))
n1 N(1) W (1) N(2) E(3)
n2 read(1, (3; 1)) read(1, (2; 0)) read(2, (2; 1)) read(3, (2; 0))
n3 W (1) W (1) W (2) E(3)
n4 read(1, (2; 1)) read(1, (1; 0)) read(2, (1; 1)) read(3, (3; 0))
n5 W (1) ∅ S(2) ∅
n6 read(1, (1; 1)) ∅ read(2, (1; 0)) ∅
n7 S(1) ∅ E(2) ∅
n8 read(1, (1; 0)) ∅ read(2, (2; 0)) ∅
n9 ∅ ∅ ∅ ∅
...

robot. For instance, the TES η : R(1) captures the observations resulting from R(1)

moving west twice. Note that, in composition with the grid component, the readings
may conflict with the actual position of the robot, as some moves may not be allowed
due to obstacles on the path.

For instance, given the expression (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I), the TES η

is not observable as it is not composable with any of the TESs τ or δ from R(2) and
R(3) respectively. We show how to use division to remove all of such behaviors.

Update The replacement for R(1) should preserve the global behavior. We use
division to define an update R′(1) of R(1) that removes all elements from its behavior
that are not composable with any element from the behavior of R(2) and R(3) under
the constraints imposed by the grid.

As a result, the component

R′(1) = Σsync

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I)

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I)

(≤, ER(1)) (2.3)

contains in its behavior all elements ranging over the interface ER(1) that are compos-
able with elements in the behavior of the dividend component. Note that the set of
quotients is filtered on the interface ER(1), and R(1) trivially qualifies as a quotient.
However, R(1) is not minimal as η can be removed from its behavior.

59

Division and conformance Chapter 2

Table 2.5: Prefixes of three TESs for R(1), R(2), and R(3), graphically represented by
some trajectories on a grid.

t/T σ : R(1) τ : R(2) δ : R(3)
n1 N(1) N(2) E(3)
n2 W (1) W (2) E(3)
n3 W (1) S(2) read(3, (x3; y3))
n4 S(1) E(2) ∅
n4 read(1, (x1; y1)) read(2, (x2; y2)) ∅
n5 ∅ ∅ ∅
...

R1R2R3

Consequence As a consequence, we defined, using division, an update for com-
ponent R(1) that removes some elements of its behavior while preserving the global
behavior of the composite expression.

Note that the fact that in our example each robot alternates between a move
and a read is crucial to remove, by composition, undesired behavior. Indeed, the
readings of each robot must synchronize with the location displayed on the grid, and
therefore implies that the robot successfully moved. The constraints imposed by the
grid coordinate the robot by preventing two robots to share the same location.

Coordination and distribution

Problem Consider the scenario previously described with an additional modifica-
tion: a robot no longer observes its location after every move, but only at the end
of the sequence of moves. The TESs of each robot’s behavior are described in Ta-
ble 2.5, where (xi, yi) ranges over possible position readings for robot i. As a result,
conflicts between robots may no longer be observable, and the timing of observations
may render some incidents of robots blocking each other unobservable. We define a
coordinator that makes the system conformant to a global property. As opposed to
the division operation, a conformance coordinator may restrict the system behavior
to a subset that conforms to a specified property. We consider the following property
Psorted(I): “eventually, all the robots get sorted, i.e., every robot R(i) eventually ends
on the grid location (i; 0).”.

60

Chapter 2 Division and conformance

Global coordinator We can define, from the sort property, a component as Csorted(I) =

(Esorted(I), Lsorted(I)) whose interface is the union of the interfaces of all robots and
the grid, i.e., Esorted(I) = EG(I) ∪

⋃
i∈I ER(i), and whose behavior Lsorted(I) ⊆

TES (Esorted(I)) contains all sequences of moves that make the robots eventually end
in their respective sorted grid positions, i.e., σ ∈ Lsorted(I) if and only if there exists
t ∈ R+ such that (O, t) ∈ σ with (i; 0)i ∈ O for all i ∈ I. Note that, by construction,
the behavior of component Csorted(I) may contain some TESs from the behavior of
component (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I), namely ever TESs that satisfies the
property.

Consequently, the product of component Csorted(I) with (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF

Gµ(I), under the signature Σsync , defines a component whose behavior contains all
elements in the behavior of (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I) that are also in the
behavior of Csorted(I). Therefore, if the behavior of component ((R(1) ▷◁ R(2) ▷◁

R(3)) ×ΣRF
Gµ(I)) ▷◁ Csorted(I) is not empty, (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I)

is conformant to Csorted(I) and Csorted(I) is a principal coordinator. However, using
Csorted(I) as a coordinator requires each component to synchronize, at each step, with
every other component. We show how to define a different choice function on the set
of coordinators, in order to identify a minimalist form of coordination.

Minimalist coordinator We define a coordinator whose interface is strictly con-
tained in the interface of the global Csorted(I) coordinator. More precisely, we search
for a coordinator over the interface of robot R(1) that makes the system (R(1) ▷◁

R(2) ▷◁ R(3)) ×ΣRF
Gµ(I) conformant to the property component Csorted(I). First,

observe that the set of coordinators

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I) ↓∗Σsync

Csorted(I)

filtered on the interface ER(1) is empty. Indeed, for any set of timestamp factors n1,
n2, n3, and n4 for the observables of R(1) in Table 2.5, there exists an element from the
behavior of R(2) that delays its first action until after n3, and eventually ends up in
a blocking position. As a consequence, there is no coordinator restricted to the events
of R(1) that makes (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF

Gµ(I) conformant to Csorted(I).

Instead, we consider filtering the set of coordinators with the interface ER(1) ∪
{N(2)}. In this case, one can find a simple coordinator that makes the set of robots
to conform with the sort property. Indeed, every observation N(1) of robot R(1)
must occur after an observable N(2) of robot R(2). As a result, such coordinator C12

61

Division and conformance Chapter 2

restricts R(1) to move only after R(2) moves, which results in a composite system
conformant to Csorted(I). Thus, the new coordinator C12, in product with R(1),
R(2), R(3), and the grid Gµ(I) satisfies the sort property, i.e., ((R(1) ▷◁ R(2) ▷◁

R(3))×ΣRF
Gµ(I)) ▷◁ C12 ⊑ Csorted(I).

Consequence We showed one global coordinator for the set of robots to satisfy the
sort property, and one minimalist coordinator over the interfaces of ER(1) with an
event from ER(2). The minimalist coordinator has an interface strictly included in
the global coordinator, which therefore minimizes the amount of interaction among
components. In the next section, we discuss the cost of coordination as a possible
measure to order a set of conformance coordinators.

2.2.4 Discussion

The operations of division and conformance defined earlier characterize all possible
updates and coordinators for a composite system. In general, the set of quotients or
coordinators is not a singleton, which then necessitates a choice function to pick a
component that suits the needs. We saw in Theorem 2 how such a choice function
can be defined using an ordering on components, and choosing the least of such com-
ponent. Intuitively, such choice function prefers a quotient with the least amount of
observations. However, Theorem 2 assumes a fixed interface, and does not discuss
how to rank components according to their interface. We discuss alternative rankings
hereafter in the case of a synchronous product ▷◁ of Example 4.

Cost of coordination

Let A = (EA, LA) and B = (EB , LB) be two components such that the set of quotients
of A divisible by B under ▷◁, the synchronous product, is non empty. Consider, as well,
a component C = (EC , LC) in the set of quotients. We discuss alternative scenarios
based on the interface of component C.

Consider the case where EC∩EB ̸= ∅. Then, events in the intersection EC∩EB are
events for which C and B must perform a simultaneous observation, i.e., with equal
time stamp. The size of the intersection EC ∩ EB therefore characterizes how much
coordination should take place among two implementations of components B and C

to successfully achieve the synchronous observations. Alternatively, if a component
D = (ED, LD) is in the set of quotients such that |ED ∩EB | < |EC ∩EB |, the number

62

Chapter 2 Linearization

of shared events is smaller, which hints at a smaller amount of coordination among
components D and B.

In the case that EC ∩ EB = ∅ and EC ̸= ∅, the family of quotients with interface
EC are particularly useful. The fact that the two interfaces are disjoint tells us that
A can be decomposed in two components that do not need any coordination. Indeed,
as ▷◁ only constraints occurrences of shared events, if B and C share no events then
they can be run completely independently.

The two cases highlighted above give us some insight on how coordination can be
used as a measure to rank components. Note that such ranking is contextual to the
dividend and the divisor. Even though C may require more coordination than D to
synchronize with B in order to form component A, in the context of A divisible by
another component F , the component C may become preferable to D.

The cost of coordination discussed here is orthogonal to efficiency measures dis-
cussed in 2. For that reason, the two measures can be combined to first rank com-
ponents in terms of their interface to minimize the amount of coordination required,
and then rank components sharing the same interface in terms of the size of their
behavior. More thorough analysis could be done as to compare, from the behavior of
each component, how often coordinated event effectively occurs.

Series of division

We defined the operator of division on components. We saw that, under some criteria,
division may return a ‘better’ description of a composite system, i.e., for A = B × C,
the division of A by B may return a D better than C while preserving the behavior
of A.

Then, one question that follows is that of convergence. Consider the expression A =

B×C, and the division of A by B returning a component C ′ ̸= C. Symmetrically, the
division of A by the new component C ′ may return a component B′ ̸= B. Repeating
the same process, dividing A by B′ and so on, gives a sequence of components C(n)

and B(n) for the respective nth division. Does the sequence eventually converge to a
fixed pair of components?

2.3 Linearization

The algebra that we introduced in Section 2.1 is expressive enough to model a large
range of concurrent systems. While the focus of this thesis is on components with

63

Linearization Chapter 2

cyber-physical aspects, we can use the algebraic setting to prove useful properties of
components with cyber-cyber interactions.

In this section, we consider order sensitive components, which are components for
which the order of observations matters but not the exact time labels of observations.
For that reason, the behavior of such a component is closed under non-uniform stretch-
ing time, as long as the order of observations remains the same. We relax the notation
throughout this section, and use a sequence σ ∈ Pf (Σ)

ω to effectively reason about
all the TESs τ ∈ TES (Σ) that have the same order of observations, i.e., σ = pr1(τ).

Programming languages like Reo [47] and LUSTRE [24] describe concurrent sys-
tems in terms of sequences of transactions (or interactions). A transaction is a finite
set of actions that occur atomically, which corresponds to a timeless observation, as
introduced in Section 2.1. That is, a transactions occurs if and only if all the actions
in the set occur, without the interference of any other action in between. Atomicity
captures the notion of the all-or-nothing behavior and the possibility of interleaving of
independent events only (see Section 2.1). A prime example of a transaction in concur-
rent systems is a barrier synchronization, which allows a group of processes to proceed
only when all of them reach a particular local state. We refer to an infinite sequence
of transactions as a transactional trace, and refer to a set of transactional traces as a
transactional behavior. Note that a transactional behavior is independent of the time
at which the transaction occurs, and records the order of occuring transactions only.
We use T to denote the set of transactional behaviors. Transactional behaviors are
particularly suitable to describe what behavior is acceptable in a concurrent system,
by declaring all sequences of transactions that are allowed. A transactional compo-
nent denotes a transactional behavior restricted to a set of actions that we refer to
as its interface. Transactional components are therefore a subclass of components as
introduced in Section 2.1.

A transactional component is linear if and only if every transaction in this com-
ponent is a singleton set or the empty set. Programming languages without syntax
for such transactions, like [23, 80, 11], describe concurrent systems as linear (transac-
tional) components. Linear components describe sequential behaviors and are particu-
larly suitable to describe how the behavior of a component is generated, since at most
one action happens at any given time. We use L to denote the set of transactional
behaviors.

When two processes that have shared actions in their interfaces are composed, the
occurrence of a shared action in their behaviors must coincide. This coincidence is
understood as synchronous communication between the two processes. The concept

64

Chapter 2 Linearization

of (a)synchronous communication is orthogonal to transactional or linear behaviors.
In this section, we deal exclusively with synchronous communication. To construct
complex concurrent systems out of simpler components, we equip components with a
composition operator that captures synchronous communication.

The design of a specification of a concurrent system is easier using transactional
components [4], while its execution is better captured by linear components. However,
in practice, a sequential processor can do at most one action at a time, and the number
of actions that can happen at the same time is bounded by the number of parallel pro-
cessors. Consequently, an implementation of a synchronous component on a sequential
machine necessitates to linearize transactions to sequences of actions. A linearization
of a synchronous component is valid if it preserves the all-or-nothing semantics of its
transactions, and linearization of the product is the product of linearizations. The
problem is therefore to characterize what linearization from transactional components
in T to linear components in L are valid. Intuitively, the linearization of a transac-
tional component is valid if the behavior of the resulting components preserves the
intended semantics of the behavior of the initial transactional component.

Moreover, in the case of concurrent and distributed systems, compositionality is
an important feature that allows one to run software in parts, and assemble the com-
piled parts at runtime. Besides static composition, dynamic composition is required
for, e.g., dynamic updates, modular compilation, or reconfiguration. Semantically,
runtime composition is captured by the composition operation ⊗ in L. After defining
transactional components in Section 2.3.2, we characterize valid linearizations in Sec-
tion 2.3.4 and give two practical instances, one that runs every component in lockstep,
and one that allows for interleaving of independent transactions. More particularly,
we require that a sequence after linearization contains all events of a transactional
behavior and preserve some ordering among dependent events.

2.3.1 Dependency and concurrency

We fix a (possibly infinite) set Σ of primitive actions, and write τ /∈ Σ to denote an
internal action. We write Στ = Σ∪ {τ} to denote the set of actions. We do not make
any assumptions on the structure of primitive actions. For instance, Σ may consist
of actions ac of the meaning “the traffic light indicates color c”, or Σ may consist of
actions ap,d of the meaning “port p fires with data d”. We use regular expressions to
denote a set of sequences of actions. Given a set X, with a, b ∈ X, the expressions
a+ b, ab, a∗ respectively denote the sets of sequences {a, b}, {ab}, and {a, aa, aaa, ...}.

65

Linearization Chapter 2

Later on, we use regular expressions over a carrier that is the finite power set of X: we
should not confuse the set notation from the terms of the carrier and the set notation
from the set of sequences that the expression denotes.

Some actions are dependent. For instance, the statement “port p fires with data d
always happens before port p fires with data e” induces a dependency relation between
ap,d and ap,e. We define dependency as follows.

Definition 25. Dependency is a partial order ≤ on Στ , such that τ is not related to
any primitive action in Σ.

In the sequel, we consider a fixed but arbitrary dependency ≤ and say that a
happens before b if a ≤ b. Dependency induces a symmetric, reflexive dependency
relation

D≤ = {(a, b) ∈ Σ2 | a ≤ b or b ≤ a},

which brings us to the realm of Mazurkiewicz traces [67]. Actions a and b are depen-
dent if (a, b) ∈ D≤ and are independent if (a, b) ̸∈ D≤. Note that, without loss of
generality, we can make the partial order strict and remove the elements (a, a) from
the dependency relation.

Remark 7. Consider a client that can send requests a and b. Suppose that (a, b) ̸∈ D≤.
Then, a and b are independent (e.g., one request does not require the other request)
and the client may perform the requests in parallel. ♢

The dependency relation allows us to permute independent actions. In the case
of finite sequences, it suffices to define a trace equivalence as the smallest equivalence
relation that allows commutation of consecutive independent actions. However, such
a definition would allow only finitely many commutations, which means that (ab)ω

and (ba)ω are not trace equivalent, whenever a and b are independent. Following
Gastin [37], we define trace equivalence by means of (infinite) dependency graphs.

Definition 26. The dependency graph Γ≤(s) of a sequence s ∈ Σω
τ of actions is a

graph (V,E) with vertices V and edges E defined as

V = {(a, i) | a ∈ Στ , 0 ≤ i < |s|a}

E = {(a, i) → (b, j) | (a, b) ∈ D≤ and the ith a occurs before the jth b in s}

where |s|a ∈ N ∪ {∞} is the number of occurrences of action a ∈ Στ in s.

66

Chapter 2 Linearization

We define trace equivalence (modulo dependency ≤) as the kernel of Γ≤:

≡≤ = ker(Γ≤) = {(u, v) | Γ≤(u) = Γ≤(v)}.

In the sequel, we drop the subscript ≤, if there is no danger of confusion. For a
sequence s ∈ Σω

τ , we write [s] = {r ∈ Σω
τ | r ≡ s} for the equivalence class of s. For a

set L ⊆ Σω
τ , we write [L] = {r ∈ Σω

τ | s ∈ L, r ≡ s} for the closure of L under trace
equivalence.

Remark 8. The most primitive verification tool of a software engineer is the print
statement. Let Σ denote the set of all possible results of every print statement occurring
in a program. If the program is sequential, its observable behavior can be accurately
expressed as a set L ⊆ Σ∞ of possibly infinite sequences of observations. The set L
contains all relevant observable information of a sequential system.

If the software is concurrent, distinct statements may print simultaneously. To
prevent unreadable output, the print statements acquire exclusive access to the log
file or console before printing. While such linearization of observations restores the
readability of the output, it hides the fact that the program is concurrent. Hence, the set
of sequences of observations does not contain all relevant information of a concurrent
system. ♢

2.3.2 Transactional and linear components

We fix a collection T ⊆ Pf (Σ) of finite sets of primitive actions, called transactions. A
transaction A ∈ T is atomic, as defined in Section 2.1, such that all primitive actions
in A occur simultaneously, and no other dependent action can interleave. The empty
transaction ∅ is related to the internal τ step as we will see later. Note that some
actions in Σ are conflicting, such as ap,d and ap,e from Section 2.3.1, for distinct data
d ̸= e. Since conflicting actions never occur in the same transaction, we generally have
T ̸= Pf (Σ) and ∅ ∈ T .

A transactional trace is an infinite sequence A0A1A2 · · · ∈ Tω of transactions. A
transactional behavior is a set K ⊆ Tω of transactional traces. The composition
operator on transactional behaviors K ∈ P(Tω) is intersection, ∩, of sets. Let I ⊆ Σ

be a set of primitive actions. Consider the largest12 symmetric relation ∼I on Tω that

12This largest relation exists, because the union of all ∼I that satisfy Equation 2.4 satisfies Equa-
tion 2.4.

67

Linearization Chapter 2

satisfies

∀r, s ∈ Tω r ∼I s ⇒ r(0) ∩ I = s(0) ∩ I and r′ ∼I s
′, (2.4)

where r′(i) = r(i + 1) and s′(i) = s(i + 1), for all i ≥ 0. A transactional behavior
K ⊆ Tω is ∼I-closed, whenever r ∼I s ∈ K implies r ∈ K, for all r, s ∈ Tω.

Given a transactional behavior K, a transactional component is a pair (I,K) with
I ⊆ Σ and such that K is ∼I -closed. We call I its interface.

Example 30 (Sync channel). A Sync channel is a transactional component with I =

{a, b} as interface containing an input port a and an output port b. Whenever the
Sync fires its input port, it simultaneously fires its output port.

Formally, let Σ = {a, b} consist of two actions a and b that correspond with firing
of the input and output ports of the Sync channel, respectively. The behavior of the
Sync is defined as the set ({a, b}+ ∅)ω.

In a larger context, such as Σ = {a, b, c}, for some other port c, behavior for the
Sync component extends to ({a, b, c} + {a, b} + {c} + ∅)ω, because we assume that
components are closed under addition/removal of actions outside of their interface.
That is, the set ({a, b, c}+ {a, b}+ {c}+ ∅)ω is ∼I-closed. ♢

Remark 9. There is a subtle difference between concurrent actions and transaction.
Concurrency is about independence of actions such that they may happen simultane-
ously. A transaction is about timing of actions such that they will happen atomically,
which may also be simultaneous. Since the two terms are both referring to actions that
may happen at the same instance, it is easy to confuse the terms. A transaction makes
sense only in a concurrent setting: actions are atomic and are therefore concurrent.
However, concurrent actions are not necessarily atomic. ♢

Example 31. Let C1 and C2 be two Sync components, with interface {a, b} and {b, c},
respectively. The behavior of the composition of C1 and C2 consists of all behaviors in
C1 that are also behaviors in C2 (composition is intersection). By modelling atomicity
of actions with transactions one gets transitivity of atomicity for free. Indeed, if a and
b are atomic and b and c are atomic, then a and b occur within the same transaction
and b and c occur within the same transaction. Hence, a and c eventually occur within
the same transaction in the composition of C1 and C2, which means that they are
atomic. ♢

A linear trace is a special kind of transactional trace, where every element is either
a singleton action, or the empty set. In order to simplify notation, we identify a

68

Chapter 2 Linearization

sequence of actions a0a1a2 · · · ∈ Σω
τ with the linear trace A1A2A3 · · · ∈ P(Σ)ω, where

each action ai corresponds to the singleton transaction {ai} if ai ̸= τ , and to the
transaction ∅ otherwise. A linear behavior is a set L ⊆ Σω

τ of linear traces, and a
linear component is a pair (I,K) of an interface I and a linear behavior K that is ∼I

closed.
We consider an arbitrary associative, commutative, idempotent composition oper-

ator ⊗ on linear components. Typically, intersection of sets, ∩, is used as composition
operator but see Section 2.3.4 for an example of a different composition operator.

Linearization Every transactional behavior has one or more equivalent linear be-
haviors that are related to it via linearization. The linearization is defined hierarchi-
cally, from transactions to traces and behaviors. Each level “lifts” the definition of
linearization to sequences of transactions, and to sets of sequences of transactions.

The linearization of a transaction results in a set of sequences of actions. Our fixed
dependency of actions, ≤, restricts the order in which the actions of a transaction can
linearize. Let A ⊆ Σ be a finite set of primitive actions. An element a ∈ A is minimal
in A iff x ≤ a implies x = a, for all x ∈ A. We write min(A) for the set of all minimal
elements of A.

Let λ denote the empty sequence. The set of linearizations ℓ(A) ⊆ Σ∗
τ of a trans-

action A ∈ T with respect to dependency is defined inductively on the size of A as
λ ∈ ℓ(∅), and if u ∈ ℓ(A) and a ∈ min(A∪{a})\A, then τu ∈ ℓ(A) and au ∈ ℓ(A∪{a}).
One reason to allow arbitrary interleaving of τ -actions is that it allows us to encode
transactions with an explicit terminating τ -step.

Example 32. We have ℓ(∅) = τ∗, ℓ({a}) = τ∗aτ∗, and

ℓ({a, b}) =


τ∗aτ∗bτ∗ if a < b,

τ∗bτ∗aτ∗ if b < a,

τ∗(aτ∗b+ bτ∗a)τ∗ otherwise,

where a ̸= b and τ∗ is the Kleene star operator applied on τ , and + is union. ♢

Definition 27 (Linearization). The linearization relation is coinductively defined as
the largest13 relation ⇝ ⊆ Tω × Σω

τ that satisfies one of the following conditions. If
A0A1A2 · · ·⇝ a0a1a2 · · · , then either

13The largest relation exists, because the union of all ⇝ that satisfy Definition 27 satisfies Defini-
tion 27

69

Linearization Chapter 2

1. for all i ≥ 0, we have Ai = ∅ and ai = τ ; or

2. for some i, j ≥ 0, Ai ̸= ∅, a0 · · · aj ∈ ℓ(A0), and A1A2 · · ·⇝ aj+1aj+2 · · · .

The first item of Definition 27 considers the case of a sequence with the empty
transaction only. In this case, the resulting linear behavior is the singleton set with τ
actions only.

We explain informally the second item in Definition 27. The index i and the
condition Ai ̸= ∅ is to exclude item (1). The index j and the sequence a(0)...a(j) is
a linearization of A0, which is the head of the sequence of transactions. The last part
(i.e., A1A2...⇝ a(j + 1)a(j + 2)...) is the coinductive definition.

An empty transaction Ai = ∅, for i ≥ 0 of a sequence A0A1A2 · · · ∈ Tω is trailing
iff Aj = ∅, for all j ≥ i. Linearization ignores non-trailing empty transactions, as
they can match with the empty sequence of actions. However, linearization recognizes
trailing empty transactions and relates them to τω.

Example 33. We have ∅ω ⇝ τω. Suppose that a < b. Then, {a, b}ω ⇝ s if and
only if s ∈ (τ∗aτ∗b)ω. Also, ({a, b}∅)ω ⇝ s if and only if s ∈ (τ∗aτ∗b)ω. Thus,
linearization ignores non-trailing empty transactions. We also have ({a}{b})ω ⇝ s if
and only if s ∈ (τ∗aτ∗b)ω. Hence, linearization also confuses the transaction {a, b}
with the sequence of transactions {a}{b}. ♢

For a transactional behavior K ⊆ Tω, we define K⇝ = {s ∈ Σω
τ | ∃α ∈ K,α⇝ s}

to be the linear component that contains all linearizations of sequences from K. The
set of linearizations K⇝ of K is generally not closed under trace equivalence.

Example 34. Consider the actions Σ = {a, b, c, d}, with dependency a < b and c < d.
Let α = {a, b}{c, d}∅ω, s = abcdτω, and s′ = acτbdτω. Since τ is not related to b or
d by Definition 25, we have s ≡ s′ (see Definition 26). Furthermore, we have α⇝ s,
while α ̸⇝ s′. Therefore, {α}⇝ is not closed under trace equivalence. ♢

Definition 28 (Weak linearization). The weak linearization relation is the composi-
tion ⇝≡ of linearization and trace equivalence.

That is, α ⇝≡ s if and only if α ⇝ s′ ≡ s, for some s′ ∈ Σω
τ . By construction,

K⇝≡ = {s ∈ Σω
τ | ∃α ∈ K,α⇝≡ s} = [K⇝] is closed under trace equivalence.

2.3.3 Problem statement: compositional linearization

Let T ⊆ Pf (Σ) be a set of transactions over the set of actions Σ. Let T = P(Tω)

be the space of transactional behaviors with ∩ as composition operator. Let L ⊆ T

70

Chapter 2 Linearization

be the space of linear behaviors with an arbitrary commutative, associative, idempo-
tent product ⊗ as composition operator. As introduced in previous subsection, the
linearization relates transactional behaviors to linear behaviors.

Let φ : T → L be a linearization function. Then, φ is a compositional lin-
earization if and only if φ is a homomorphism, i.e., for all behaviors K1,K2 ∈ T,
φ(K1 ∩ K2) = φ(K1) ⊗ ϕ(K2). Not all compositional linearization give rise to a
useful linearization. As an example, take the trivial linearization that maps every
transactional behaviors to the singleton set containing the sequence of empty trans-
action. While being compositional, such linearization does not preserve the intended
semantics. Instead, we consider valid linearizations.

Definition 29 (Valid linearization). Let φ : T → L be a linearization. Then, φ is
valid if:

1. φ is compositional, i.e., for all K,K ′ ∈ T, φ(K ∩K ′) = φ(K)⊗ φ(K ′); and

2. ⇝≡ is total and surjective on K × φ(K) for all K ∈ T.

The first item in Definition 29 implies that φ preserves composition, which allows
us to linearize in parts and assemble later (possibly at run time). This is particularly
useful for the inclusion of closed-source third-party software, which is precompiled by
its vendor. Furthermore, first item in Definition 29 can be used to speed up application
of updates, since parts that are not changed do not need to be linearized again.

The second item in Definition 29 means that, for every behavior K ∈ T, every
trace in φ(K) is a linearization of some trace in K, and every trace in K has some
linearization in φ(K). In other words, the second item in Definition 29 asserts that
a valid linearization does actually ’linearize’. Moreover, the equivalence relation ≡
enables commutation of events that are independent, which corresponds to the second
clause of the definition of atomicity of a transaction, as defined in Section 2.1.

Remark 10. Delinearization is the translation of a linear behavior to a transactional
behavior. If a linearization φ is injective, it naturally comes with a delinearization
φ−1 that, for those linear behaviors in the image of φ, gives back a transactional
behavior. ♢

Note that ⇝ as defined in Section 2.3.2 is not compositional for ⊗ = ∩, and
therefore not valid. As an example, let K1 = (∅{a})ω and K2 = ({a}∅)ω. Then,
K1 ∩K2 = ∅ while K1⇝ ∩K2⇝ = (τ∗aτω) ∩ (τ∗aτω) = τ∗aτω. In the next section,
we characterize all valid linearizations, and we give two practical instances.

71

Linearization Chapter 2

2.3.4 Valid linearizations: lock step and interleaving

As defined in Definition 29, a valid linearization is a function that maps a transactional
behavior to a linear behavior while preserving the compositional structure. We seek
a morphism whose co-domain is a linear behavior from the set of transactions of its
domain.

The lock-step linearization is a valid linearization which we present first. Each
linearization is delineated with a special τ symbol. The resulting linear behavior
has, for each trace, a τ symbols that delineates every transaction, and is therefore
homomorphic with set intersection as the composition operation. While intuitive,
such linearization is not efficient and requires every component in the intersection to
run in lock-step.

We give another instance of a valid linearization, where we relax the lock-step
behavior to tolerate some interleaving of independent actions.

Lock-step linearization A straightforward example of a valid linearization is based
on synchronous rounds. Here, we use the τ action (also the empty transaction) to
indicate the end of a round. This allows us to reconstruct the transactions from a
sequence of actions. To be precise, we define grouping coinductively as follows.

Definition 30 (Grouping). The grouping relation is the largest14 subset G ⊆ Σω
τ ×Tω,

such that (a0a1 · · · , A0A1 · · ·) ∈ G implies

1. a0 = τ , A0 = ∅, and (a1a2 · · · , A1A2 · · ·) ∈ G; or

2. a0 ∈ min(A0) and (a1a2 · · · , (A0 \ {a0})A1 · · ·) ∈ G

Example 35. If a and b are independent, then (abττbaτω, {a, b}∅{a, b}∅ω) ∈ G. If a
and b are such that a < b, then (abτω, {a, b}∅ω) ∈ G but (baτω, {a, b}∅ω) ̸∈ G. ♢

Lemma 17. G is a functional relation.

Hence, we find a partial function g : Σω
τ ⇀ Tω with g(a0a1 · · ·) = A0A1 · · · if and

only if (a0a1 · · · , A0A1 · · ·) ∈ G. The domain of g consists of all sequences s ∈ Σω
τ ,

such that τ occurs infinitely often in s, and every primitive action occurs at most
once between consecutive τ actions. We define the linearization based on synchronous
rounds as the preimage of grouping g.

14Again, the largest relation exist.

72

Chapter 2 Linearization

Definition 31. For every transactional behavior K ⊆ Tω, we define

g−1(K) = {s ∈ dom(g) | g(s) ∈ K}

It is straightforward to check that g−1 is a valid linearization, if we take intersection
∩ as the composition operator ⊗ on P(Σω

τ).

Theorem 4. g−1 is a valid linearization, for ⊗ = ∩.

Although Theorem 4 shows that the linearization based on synchronous rounds is
valid, the resulting linear behaviors are locking the execution into strict rounds. As a
result, independent actions can only swap within a transaction but not over sequences
of transactions.

Example 36 (Parallel Syncs). Consider a Sync channel K1 from a to b and a Sync
channel K2 from c to d. Set Σ = {a, b, c, d} with a < b and c < d. The composition of
K1 and K2 is the behavior

K1 ∩K2 = ({a, b, c, d}+ {a, b}+ {c, d}+ ∅)ω.

Then, g−1(K1 ∩K2) equals

(a(bcd+ c(bd+ db))τ + c(dab+ a(bd+ db))τ + abτ + cdτ + τ)ω

Now consider the prefix acb of a behavior in g−1(K1∩K2). Ignoring the c from the
second Sync K2, we see that acb completes an {a, b} transaction of the first Sync K1.
One would expect that the transactions {a, b} and {c, d} are independent, because they
are disjoint and their respective actions are not related by the partial order. However,
g−1(K1 ∩ K2) dictates that the second Sync K2 must complete its {c, d} transaction
before anything else can happen. Hence, first Sync K1 can accept new input only after
acbdτ . Consequently, the concurrency of the transaction {a, b} and {c, d} is weaker
than expected: while actions a and b are independent with actions c and d, the two
transaction {a, b} and {c, d} cannot interleave arbitrarily.

We want to design a valid linearization φ, such that, for instance, the sequence
(acdcdbτ)ω is part of φ(K1 ∩K2). ♢

Interleaving tolerant linearization To avoid the oversynchronization in Theo-
rem 36, we must allow traces that minimize the explicit τ action, i.e., the τ inserted
after every round in the lock-step linearization. Observe that g−1(K) ⊆ dom(g), for

73

Related work and future work Chapter 2

every behavior K ⊆ Tω. The set dom(g) consists of sequences over Στ that contain in-
finitely many τ actions and between any two τ actions, every primitive action happens
at most once.

Recall the linearization relation ⇝ from Section 2.3.2 and from Section 2.3.1 that
[L] is the closure of L ⊆ Σω

τ with respect to trace equivalence ≡. Consider the map φ
defined, for all behavior K ⊆ Tω, as

φ(K) = g−1(K) ∪ ([K⇝] \ dom(g)),

where [K⇝] is the closure modulo trace equivalence of the set of all linearizations of
behaviors from K. Intuitively, the linearization φ adds to the image of g−1 some linear
behaviors that are not in the domain of the grouping. Observe that φ is injective, since

g(φ(K) ∩ dom(g)) = g(g−1(K)) = K.

Consider the composition operator ⊗ defined, for behaviors L1, L2 ⊆ Σω
τ , as

L1 ⊗ L2 = L1 ∩ L2 ∩ [L1 ∩ L2 ∩ dom(g)]. (2.5)

Lemma 18. For L ⊆ dom(g), we have [L] = [g(L)⇝].

Theorem 5. φ is valid, with ⊗ defined in Equation 2.5.

Example 37 (Parallel Syncs with concurrency). Consider the Sync channels as in
Example 36. Then, the linear behavior φ(K1∩K2) contains runs like acbababdτω. Al-
though actions a and b are independent to actions c and d, the linearization g−1 forbid
arbitrary interleaving of transactions {a, b} and {c, d}. As a result, the linearization
φ allows for such arbitrary interleaving. ♢

2.4 Related work and future work

(De)composition. In [27] , the authors present a declarative and an operational
theory of components, for which they define a refinement relation and compositionality
results for some composition operators. Our work is related as it aims for similar
results, but for the case of Cyber-Physical systems. Thus, instead of having input and
output actions, components have timed observations, and composability relations. We
present, as well, quotient operation on components, and show how it can be used to
synthesize coordinating CPSs.

74

Chapter 2 Related work and future work

In [76], the authors consider the problem of decomposition of constraint automata.
This work provides a semantic foundation to prove that the construction in [76] is a
valid division.

In [71], the authors consider the problem of decomposition in process algebra for
the parallel operator. The notion of prime process is introduced, and the unicity of
decomposition of a process as a parallel composition of primes is posed. The problem is
answered for different types of congruences on processes. The work has been extended
for decomposition of processes in the π-calculus in [33].

Algebra, co-algebra The algebra of components described in this paper is an exten-
sion of [62]. Algebra of communicating processes [36] (ACP) achieves similar objectives
as decoupling processes from their interaction. For instance, the encapsulation oper-
ator in process algebra is a unary operator that restricts which action to occur, i.e.,
δH(t ∥ s) prevent t and s to perform actions in H. Moreover, composition of actions
is expressed using communication functions, i.e., γ(a, b) = c means that actions a and
b, if performed together, form the new action c. Different types of coordination over
communicating processes are studied in [20]. In [12], the authors present an extension
of ACP to include time sensitive processes.

The modeling of component’s interaction using co-algebraic primitives is at the
foundation of the Reo language [8]. In [18], the question of separation of components
into two sub-components is addressed from a co-algebraic perspective.

The interaction signature that parametrizes algebraic operator is related to the
synchronization algebra in [90]. A synchronization algebra relates events labeling
edges of a synchronization tree. The product of two synchronization trees is therefore
parametrized by the underlying synchronization algebra on its events. Our interaction
signature generalizes that of synchronization algebra in the sense that composability
relations are defined at three levels: on TESs, on observations, or on events. We study
mechanisms to lift composability relations from events to observations and to TESs,
therefore proving the algebraic properties of the parametrized product given algebraic
properties of the underlying composability relation.

In [38], the authors consider a monadic semantics for hybrid programs. The hybrid
monad captures the continuous behavior of a hybrid program and enjoys a construc-
tion of an iteration operator. Our work complements this approach by focusing on
a semantics for interaction, which might be relevant to extend hybrid programs with
communication primitives.

75

Related work and future work Chapter 2

Discrete Event Systems Our work represents both cyber and physical aspects
of systems in a unified model of discrete event systems [73, 5]. In [56], the author
lists the current challenges in modelling cyber-physical systems in such a way. The
author points to the problem of modular control, where even though two modules run
without problems in isolation, the same two modules may block when they are used
in conjunction. In [81], the authors present procedures to synthesize supervisors that
control a set of interacting processes and, in the case of failure, report a diagnosis.
An application for large scale controller synthesis is given in [72]. Our framework
allows for experiments on modular control, by adding an agent controller among the
set of agents to be controlled. The implementation in Maude enables the search of,
for instance, blocking configurations.

Coordination In [73], the author describes infinite behaviors of process and their
synchronization. Notably, the problem of non-blockingness is stated: if two processes
eventually interact on some actions, how to make sure that both processes will not
block each others. The concept of centrality of a process is introduced.

Transactional components Transactional components such has in Reo have been
extensively studied from a formal perspective. In [47], Jongmans presents over 30
semantics for Reo. Current work adds an intermediate linear semantics for Reo, for
which proving the correctness of an implementation as given in [77, 78, 45, 32] would
be possible. We also believe that the results presented in this paper may be of benefit
to other similar semantics, such as [21].

From a trace theoretical perspective, the notion of transaction has also been stud-
ied. In [43], elements in Pf (Σ)

∗ are also called step sequences. However, the axiom
C = DE mentioned in [43], for C,D,E ⊆ Σ with D ∩ E = ∅, allows one to split
a step into two consecutive substeps, which does not apply in our case, because our
transactions are atomic and cannot be split. So, we consider the case of traces, where
actions are sets. In [37], Gastin investigates the problem of reconstructing sequences of
transactions from a sequence of actions investigated. The Foata normal form, defined
in [37], Definition 2.10, partitions a trace into sets of mutually independent actions,
and is used for this purpose. Unfortunately, not every sequence of transactions emerges
as a Foata normal form, which makes the normal form not suitable for our purpose.

Linearization The linearization of transactional behaviors to linear behaviors has
been approached in the context of databases queries and transactions. In [35], the

76

Chapter 2 Related work and future work

authors consider the problem of serialization, which aims at reordering a sequence
of events into a sequence of individual transactions. In their work, a transaction is
a sequence of events that starts with a unique beginning symbol and ends with a
unique final symbol. Our work relaxes the assumption that each transaction needs
two delimiters.

Synchronous and asynchronous The composition of synchronous systems with
asynchronous systems has been investigated in the context of interconnecting machines
on a network. Globally asynchronous locally synchronous (GALS) is an architecture
for designing electronic circuits which addresses the problem of safe and reliable data
transfer between independent clock domains [26]. In our paper, we do the opposite:
locally asynchronous globally synchronous (LAGS). For example, in the Sync channel,
we split the locally synchronous {a, b} transaction into asynchronous a and b steps,
and recover the {a, b} transaction via global synchronization.

77

Related work and future work Chapter 2

78

