
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

Chapter 1

Introduction

1.1 Context

Today’s technological and theoretical progress bring new challenges in the field of the-
oretical computer science. The emergence of digital systems that reliably measure and
actuate physics reveals new kinds of interconnected systems that we call cyber-physical
systems. A cyber-physical system typically refers to a system in which digital processes
(e.g., controllers) interact (e.g., via sensing or actuating) with and through physical
medium (e.g., space, time). The understanding of cyber-physical systems is branches
into several lines of research [57]. We should mention first the field of cybernetics,
whose appearance in the literature dates back to Wiener [89]. Cybernetics, and more
largely control theory, aim at studying the feedback mechanisms taking place between
a governor (kuberneties in Greek) and a physical system. Given a suitable model of
how the physics operates, the governor can steer the physical system towards a desired
objective and control its behavior [79, 25]. Also, and on top of cybernetics, the in-
teraction among cyber-physical systems is a concern in the field of emergent behavior
and swarm robotics [39]. The objective is to find suitable coordination patterns that
enable a set of interacting cyber-physical systems to reach a collective objective. Still,
challenges remain in the design and analysis for complex cyber-physical systems, and
the concurrency that produces in the interaction among their cyber and physical parts.
The specific challenge that we undertake in this thesis is that of a design framework
that is compositional and concurrent. We describe in more details the essence and im-
plications of two properties that we deem essential in formal models for cyber-physical
systems.

1

Context Chapter 1

Compositionality is, intuitively, the property that allows forming a complex system
by assembling simpler systems together. Compositionality is used as a principle [83,
44], for instance, in order to assign meanings of natural language sentences given the
meaning of its part. This principle has permeated many aspects of computer science,
such as in program semantics, e.g., assigning meanings to programs, and in system
design, e.g., defining a framework to construct systems. Given a set of small blocks,
and a rule to assemble such blocks, one can quickly get a system whose behavior
surpasses in complexity each of its parts. The emergence of new kinds of machines
(e.g., interconnected networks, cyber-physical systems) requires a new stand on the
question of compositional specification for such systems (see Chapter 2).

Concurrency is the field in theoretical computer science that studies the behavior
of a set of communicating processes. The aim is to understand the behavior emerg-
ing from a set of interacting machines as yet another machine, similarly to how the
behavior of a machine would be understood from its parts. One of the challenges, for
instance, comes from the fact that, in a network, events may occur in parallel, inde-
pendently, or at the same time. Therefore, the mode of interaction among machines
is not necessarily derivable from the behavior specification of each machine. Several
models of how machines interact through communication have been studied, from the
original neural network model [54], or the network of communicating machines [70].
While still many paths explore ways to design and analyze concurrent systems, we
observe yet another type of concurrent systems of interest: in cyber-physical systems,
the physical medium in which machines evolve plays an active role in the interaction
among the cyber parts.

We give an illustrative example to justify that compositionality and concurrency
are two important features to include in a model for cyber-physical systems. For
instance, consider a group of robots, each running a program that takes decision
based on the sequence of sensor readings. The sensors that equip a robot return the
current position of the robot and the position of any adjacent obstacle. The interaction
occurring between robots in the group cannot be derived solely from the specification
of individual robots. If the field on which the robots roam changes its property, the
same group of robots might sense different values, and therefore take different actions.
Also, the time at which a robot acts and senses will affect the decision of each controller
and will change the resulting collective behavior.

Other instances of applications emerge from the challenges to architect a cyber-
physical system, as in the trends of Industry 4.0 [82], digital twins [19], or the Internet
of Things [10]. In Industry 4.0, the manufacturing process is equipped with sensors,

2

Chapter 1 Context

that observe physical variables of interest along the supply chain, and actuators that
perform physical tasks. Such architecture aims at improving the automation of repet-
itive physical tasks, the allocation of resources, but also the detection and signaling
of malfunctioning devices. The digital twin trend aims at creating models of physical
phenomenon that gather information, update, and monitor in live physical objects to
achieve some objectives. In such cases, having a formal design framework to model in-
teraction between the physics and its discrete model is of key importance to minimize
faults and increase accuracy. The Internet of Things captures the idea of connecting
sensors and actuators over the internet. Each device therefore becomes a node that
has cyber-physical capabilities that can be addressed remotely. As a result, the pro-
tocol that rules the interaction over the nodes in such a network is central to prove
properties of, for instance, security or resilience.

Generally, a design framework gives some means to specify what behavior is desired
and hides internal details that explain how a (network of) machines would construct
such behavior. As pictured in Figure 1.1 the operational part of a system, which is
represented by machines M1 and M2 interacting under a protocol Σ, is separated from
the description of its behavior, which is given by the transformation J·K as components
C1 and C2. Ideally, operations on machine behaviors, such as the algebraic operations
×Σ, should reflect practical interactions between machines. If such is the case, the
behavior of the system consisting of machines M1 and M2 under the protocol Σ, is
formally captured by the product of components C1 and C2 under the operation ×Σ.
The parameter Σ in the algebra is a new perspective that this thesis puts forward.
This approach differs from, for instance, existing compositional models (e.g., hybrid
IO automata [79], or hybrid programs [75]) that fix the parameter Σ from within the
model, and expect each machine and component to already include the primitives to
follow the protocol described by Σ.

One benefit of having such component algebra is that it allows for reasoning about
updates. For instance, an update that preserves the behavior of the composition is a
substitution of one of the components, such that the resulting collective behavior is
unchanged. As a consequence, the class of all M2 that preserves the same collective
behavior C3, under protocol Σ, contains possible machine replacements.

We highlight some fundamental differences in the interaction occurring between
purely cyber components (e.g., discrete programs interacting with other discrete pro-
grams), and cyber-physical components (e.g., discrete programs interacting with physics).
We leave the definition of a component and an interaction signature abstract, and refer
to Chapter 2 for a more precise description.

3

Context Chapter 1

M1

M2

Σ

J·K

J·K

C3 M3
C1

C2

×Σ

Figure 1.1: Two machines M1 and M2, whose respective behavior is captured by C1 and
C2, interact through a protocol Σ. The product of the two components under the operation
×Σ reflects the behavior of the machines interacting with the protocol Σ.

Cyber-cyber interaction The models that capture interactions between two cyber
components follows, in general, several assumptions:

• Reproducibility. The time value at which two machines M1 and M2 initially start
does not change the resulting behavior. This assumption also means that the
same protocol between the two machines is independent of the initial time, and
therefore reproducible at a later time.

• Closed system. Given a fixed set of machines and a fixed protocol among the
machines, one can, in theory, reason about the whole system statically. In a
closed system, the composition of each machine’s description under the inter-
action protocol provides a full description of the system state space. Static
analysis may therefore detect beforehand, for instance, some race conditions.

• No event missed. It is possible to coordinate each machine so that no interacting
event is missed (i.e., no message exchanged is missed). For instance, the hardware
connection between each machine assumes a frequency of communication that
eliminates the possibility to miss an event on either end.

In Chapter 3, we explore the property of cyber-cyber interactions by studying the
class of components for which only the ordering of events matters, and not the precise
value of the observation’s time stamp.

Cyber-physical interaction The assumptions underlying models for cyber-physical
interactions are different in nature than assumptions for cyber-cyber interactions:

• Variance under time shift. Some physical systems have time dependent and
chaotic responses while interacting with cyber systems. In such cases, the time

4

Chapter 1 Structure

at which the system is initialized changes the resulting behavior of the composite
cyber-physical system. For instance, the program that controls the decision of
an autonomous car will receive different responses from the physics if executed at
different times (change of traffic, change of weather, change of landscape, etc.).

• Open system. Some physical systems are so complex that their analytical char-
acterization is infeasible. As a consequence, some reasoning can happen only
dynamically as reaction, and the resulting specification must adapt to unex-
pected alternatives.

• Approximation and missed events. The sensing of physical quantities is inher-
ently lossy as such quantities are continuously changing (i.e., function of time).
An observation captures samples of those quantities at a time instant. As a
result, observable properties on sensor readings are not sufficient to infer that
the underlying physical quantity satisfies as well such property. Mechanisms for
detection of deviations and diagnosis are therefore necessary to catch errors at
runtime due to approximative measurements.

• Non uniform description. Dynamics in physics is usually described using differ-
ential equations, and leads to characterizing the evolution of physical quantities
over real numbers. Alternatively, digital systems make use of discrete measures,
and clocked processors that time their sensing and actuations. Thus, modelling
concurrency between physical processes and cyber machines gives rise to the
problem of uniformly describing their interactions.

1.2 Structure

This thesis lays a foundation to tackle the challenges stated above. We record in the
following list the main points of each chapter. We give, for each chapter, a short
summary on how our results compare with the state of the art.

In Chapter 2, we present an algebra of components that can model the four points
presented above, making it suitable for modelling interaction in cyber-physical sys-
tems. More precisely, components are primitives in this algebra, and capture time-
sensitive behavior of a part of a system, which includes both cyber and physical as-
pects. A component, in isolation, denotes all possible sequences of observations over
time that a machine or physical process can exhibit. In composition with other compo-

5

Structure Chapter 1

nents, only some of such sequences will remain possible. The same component, within
different contexts, results in different behaviors as in an open system.

The relation between event occurrences in the behavior of two components is cap-
tured by algebraic operators. Each operation of the algebra is parametrized by an
interaction signature, that specifies how two components interact. Such interaction
may for instance allow or disallow events to occur independently (or simultaneously)
between two components. The same two components under different interactions
would expose different resulting behavior. The algebra therefore allows in some cases
for decomposition, using a suitable division operation.

In Section 2.3, we define an operation of linearization that transforms a transac-
tional component, i.e., observing multiple events at the same time, to a linear com-
ponent, i.e., observing a single event at a time. We give conditions that a valid lin-
earization must satisfy and present two instances of valid linearization: one lock-step
procedure that linearizes all observations of a transactional component, and one multi-
round procedure that allows for some interleaving. In both cases, the linearization can
be performed in parts, i.e., linearization distributes over the product on transactional
components. The material in this chapter is based on two journal publications and a
paper to be submitted:

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A semantic model for inter-
acting cyber-physical systems. J. Log. Algebraic Methods Program. 129: 100807
(2022)

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A formal framework for
distributed cyber-physical systems. J. Log. Algebraic Methods Program. 128:
100795 (2022)

• Kasper Dokter, Benjamin Lion, Hans-Dieter A. Hiep: Compositional Lineariza-
tions of Transactional Behaviors. To be submitted (2022)

Other models for cyber-physical systems exist, such as hybrid systems (e.g., Hybrid
Programs [75], Hybrid automata [40, 65, 79]), and our semantic model differs and
complements existing work in, at least two main points. First, we model interaction
externally, as constraints that apply on the behavior of each component. Interaction is
not limited to input/outputs as in most hybrid descriptions, and the difference between
cyber and physical aspects is abstracted in the general concept of a component. The
generality of the semantic model enables to give a specification of a component (such
as M1 and M2 in Figure 1.1) as a hybrid program, or as an I/O hybrid automata,

6

Chapter 1 Structure

and define suitable composition operators in the algebra to compositionally define
cyber-physical systems. Second, we choose to model the interaction occuring between
components in a discrete way, as sequences of observations: we choose to model the
continuity of physical systems within their description as a set of discrete sequences
of observations. This description closely represents runtime observable behaviors of
cyber-physical systems, and highlights new challenges such as proving that a cyber-
physical system is safe when considering safety of runtime observables only.

In Chapter 3, we study a class of components for which the precise time-stamp
value of the observation does not matter, under a product that models synchronous
interaction. We express, in Section 3.1, the semantics of the Reo coordination lan-
guage as an algebra of order sensitive components. As an example, we express some
well known connectors as a product of port components, under a suitable interaction
signature. In Section 3.3, we study temporal properties of Reo connectors. We give
a procedure to generate a specification in the Promela language from a logical speci-
fication of Reo connectors. We verify temporal properties of Reo connector by using
its Promela translation and the Spin model checker. Through this work, we identify
some key constructs to simplify the specification of a temporal property using Linear
Temporal Logic (LTL) given the port and memory primitives in Reo. The material of
the third chapter is based on a workshop paper and an implementation, respectively:

• Benjamin Lion, Samir Chouali, Farhad Arbab: Compiling Protocols to Promela
and Verifying their LTL Properties. MoDELS (Workshops) 2018: 31-39

• Benjamin Lion, Treo to Promela compiler, 10.5281/zenodo.7393621 (2018)

This work expands existing work on the Reo coordination language. More specially,
we should mention the existing works on Reo semantics [47], on Reo compilers [46] and
frameworks to verify temporal properties of Reo circuits [42]. Our work differs from
existing work in two main points. First, we give an algebraic semantics for Reo whose
primitive components are not channels, but ports. Basic Reo channels (such as a sync
or fifo channel) can be described as an algebraic product of their ports, parametrized by
the proper interaction signature. Moreover, the algebraic properties of the interaction
signature provides new ways to reason about equivalent Reo expressions. Second, we
give a logical specification of Reo channels and internal composition that minimizes
the size of the resulting composition. The internal representation of a Reo circuit is
then translated either to a model checker for temporal verification, or to an imperative
language for execution. The tool on which this section is based has shown state of the
art results.

7

Structure Chapter 1

In Chapter 4, we provide an operational and executable specification of compo-
nents. We first introduce in Section 4.1 an intermediate state-based representation of
a component behavior as a labeled transition system called a TES transition system.
We define a wide class of products of two such transition systems, each parametrized
by a composability relation on their observations. We show that the semantics of TES
transition systems as components is compositional with respect to their parametrized
product. Based on the intermediate TES transition system, we give in Section 4.2 an
executable finite specification of components as agents specified in rewriting logic. The
behavior resulting from a concurrent run of a set of agents depends on the compos-
ability relation that governs the interaction among the agent. We show that, for some
composability relations, the behavior of the concurrent execution of agents coincides
with the behavior of the product of the components representing those agents.

The three sections are based on three publications:

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: Runtime Composition Of
Systems of Interacting Cyber-Physical Components. In proceeding WADT (2022)

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A Rewriting Framework for
Cyber-Physical Systems. In proceeding Isola (2022)

• Tobias Kappé, Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: Soft compo-
nent automata: Composition, compilation, logic, and verification. Sci. Comput.
Program. 183 (2019)

Our work relates to existing work on state space description of cyber-physical sys-
tems, such as hybrid automata [40, 65, 79], and rewriting framework of preference
aware agents [85]. We introduce three differences. First, our state space specification
of components is compositional with respect to a large set of composition operators
on components. The structure of the interaction is therefore preserved when giving a
specification for each component. Second, we make explicit some criteria for forming
the product step-by-step at runtime, while avoiding deadlock and ensuring fairness.
Third, we include preferences to our specification, which are necessary when consid-
ering large specification for open systems. We also provide mechanisms to propagate
preferences through composition.

In Chapter 5, we give a concrete implementation of agents described in Chapter 4 in
order to analyse collective behaviors resulting from their interaction. We implement in
Section 5.1 the executable rewriting framework in Maude, and give a series of detailed
applications to demonstrate the usefulness of the modeling framework and the scope

8

Chapter 1 Running example

of analysis that are possible. In Section 5.2, we implement a concurrent version of Reo
and show that the framework is suitable for concurrent execution of Reo primitives.
We analyze in Section 5.3 the protocol governing the interactions among a controller, a
valve, and some reservoirs, by showing the safety of a controller’s strategy. We verify
in Section 5.4 some liveness, safety, and sorting properties for energy aware robots
roaming on the same field. The material of this section is based on the following
implementation:

• Benjamin Lion, Cyber-physical agent framework in Maude, Zenodo, 10.5281/zen-
odo.6592275 (2022)

The implementation is inspired from [53], which is a framework for detecting de-
viations in the concurrent execution of agent programs. The framework is written
in Maude, and has a model of its physical environment to simulate faults on agent’s
sensors. Our framework differs on two points. First, the modular structure is very
much apparent in the scenario of our framework: agents have their own module and
interact through actions. This makes the update of an agent and the reuse of the
same agent very easy. Second, our runtime has a by making the modularity of the
framework structural

1.3 Running example

We introduce, through an example, some intuitive concepts that we will formalize
later. We consider a cyber-physical system as a set of interacting processes. Whether
a process consists of a physical phenomenon (sun rising, electro-chemical reaction,
etc.) or a cyber phenomenon (computation of a function, message exchanges, etc.),
it exhibits an externally observable behavior resulting from some internal non-visible
actions. Instead of a unified way to describe internals of cyber and physical processes,
we propose in Section 2.1 a uniform description of what we can externally observe of
their behavior and interactions.

An event may describe something like the sun-rise or the temperature reading of
5◦C. An event occurs at a point in time, yielding an event occurrence (e.g., the sun-
rise event occurred at 6:28 am today), and the same event can occur repeatedly at
different times (the sun-rise event occurs every day). Typically, multiple events may
occur at “the same time" as measured within a measurement tolerance (e.g., the bird
vacated the space at the same time as the bullet arrived there; the red car arrived at
the middle of the intersection at the same time as the blue car did). We call a set

9

Running example Chapter 1

of events that occur together at the same time an observable. A pair (O, t) of a set
of observable events O together with its time-stamp t represents an observation. An
observation (O, t) in fact consists of a set of event occurrences: occurrences of events
in O at the same time t. We call an infinite sequence of observations a Timed-Event
Stream (TES). A behavior is a set of TESs. A component is a behavior with an
interface.

Consider two robot components, each interacting with its own local battery com-
ponent, and sharing a field resource. The fact that the robots share the field through
which they roam, forces them to somehow coordinate their (move) actions. Coordina-
tion is a set of constraints imposed on the otherwise possible observable behavior of
components. In the case of our robots, if nothing else, at least physics prevents the
two robots from occupying the same field space at the same time. More sophisticated
coordination may be imposed (by the robots themselves or by some other external
entity) to restrict the behavior of the robots and circumvent some undesirable out-
comes, including hard constraints imposed by the physics of the field. The behaviors of
components consist of timed-event streams, where events may include some measures
of physical quantities. We give in the sequel a detailed description of three compo-
nents, a robot (R), a battery (B), and a field (F), and of their interactions. We use
the International System of Units to quantify physical values, with time in seconds
(s), charging status in Watt hour (Wh), distance in meters (m), force in newtons (N),
speed in meters per second (ms−1).

A robot component, with identifier R, has two kinds of events: a read event
(read(bat , R); b) that measures the level b of its battery or (read(loc, R); l) that ob-
tains its position l, and a move event (move(R); (d, α)) when the robot moves in the
direction d with energy α (in W). The TES in the Robot column in Table 1.1 shows
a scenario where robot R reads its location and gets the value (0; 0) at time 1s, then
moves north with 20W at time 2s, reads its location and gets (0; 1) at time 3s, and
reads its battery value and gets 2000Wh at time 4s,

A battery component, with identifier B, has three kinds of events: a charge event
(charge(B); ηc), a discharge event (discharge(B); ηd), and a read event (read(B); s),
where ηd and ηc are respectively the discharge and charge rates of the battery, and
s is the current charge status. The TES in the Battery column in Table 1.1 shows a
scenario where the battery discharged at a rate of 20W at time 2s, and reported its
charge-level of 2000Wh at time 4s,

A field component, with identifier F , has two kinds of events: a position event
(loc(I); p) that obtains the position p of an object I, and a move event (move(I); (d, F))

10

Chapter 1 Running example

Table 1.1: Each column displays a segment of a timed-event stream for a robot, a battery,
and a field component, where observables are singleton events. For t ∈ R+, we use R(t), B(t),
and F (t) to respectively denote the observable at time t for the TES in the Robot, the Battery,
and the Field column. An explicit empty set is not mandatory if no event is observed.

Robot (R) Battery (B) Field (F)
1.0s {(read(loc, R); (0; 0))} {(loc(I); (0; 0))}
2.0s {(move(R); (N, 20W))} {(discharge(B); 20W)} {(move(I); (N, 40N))}
3.0s {(read(loc, R); (0; 1))} {(loc(I); (0; 1))}
4.0s {(read(bat , R); 2000Wh)} {(read(B); 2000Wh)}
...

Robot-Battery-Field
1.0s R(1) ∪ F (1)
2.0s R(2) ∪B(2) ∪ F (2)
3.0s R(3) ∪ F (3)
4.0s R(4) ∪B(4)
... ...

of the object I in the direction d with traction force F (in N). The TES in the Field
column in Table 1.1 shows a scenario where the field has the object I at location (0; 0)

at time 1s, then the object I moves in the north direction with a traction force of 40N
at time 2s, subsequently to which the object I is at location (0; 1) at time 3s,

When components interact with each other, in a shared environment, behaviors
in their composition must also compose with a behavior of the environment. For
instance, a battery component may constrain how many amperes it delivers, and
therefore restrict the speed of the robot that interacts with it. We specify interaction
explicitly as an exogenous binary operation that constrains the composable behaviors
of its operand components.

The robot-battery interaction imposes that a move event in the behavior of a robot
coincides with a discharge event in the behavior of the robot’s battery, such that the
discharge rate of the battery is proportional to the energy needed by the robot. The
physicality of the battery prevents the robot from moving if the energy level of the
battery is not sufficient (i.e., such an anomalous TES would not exist in the battery’s
behavior, and therefore cannot compose with a robot’s behavior). Moreover, a read
event in the behavior of a robot component should also coincide with a read event in
the behavior of its corresponding battery component, such that the two events contain
the same charge value.

The robot-field interaction imposes that a move event in the behavior of a robot
coincides with a move event of an object on the field, such that the traction force

11

Running example Chapter 1

on the field is proportional to the energy that the robot puts in the move. A read
event in the behavior of a robot coincides with a position event of the corresponding
robot object on the field, such that the two events contain the same position value.
Additional interaction constraints may be imposed by the physics of the field. For
instance, the constraint “no two robots can be observed at the same location” would
rule out every behavior where the two robots are observed at the same location.

A TES for the composite Robot-Battery-Field system collects, in sequence, all
observations from a TES in a Robot, a Battery, and a Field component behavior,
such that at any moment the interaction constraints are satisfied. The column Robot-
Battery-Field in Table 1.1 displays the first elements of such a TES.

12

