
An algebra for interaction of cyber-physical components
Lion, B.

Citation
Lion, B. (2023, June 1). An algebra for interaction of cyber-physical components.
Retrieved from https://hdl.handle.net/1887/3619936

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3619936

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619936

An Algebra for Interaction of
Cyber-Physical Components

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof. dr. ir. H. Bijl,
volgens besluit van het college voor promoties

te verdedigen op donderdag 1 juni 2023
klokke 16:15 uur

door Benjamin Lion

geboren te Frankrijk

in 1994

Promotor:
Prof. Dr. F. Arbab

Co-promotor:
Dr. C. Talcott (SRI International, USA)

Committee:
Prof. Dr. L. S. Barbosa (University of Minho, Portugal)
Prof. Dr. M. Bonsangue
Dr. S. Jongmans (Open University, the Netherlands)
Prof. Dr. J. H.C.M. Kleijn
Prof. Dr. J. Meseguer (University of Illinois Urbana-Champaign, USA)
Prof. Dr. A. Plaat

Cover design: Frédéric Vuaille.

The author’s work on this thesis was partially supported by the U. S. Office of Naval
Research under award number N00014-15-1-2202. Additionally, the author was sup-
ported by funding from NGI POINTER, the Next Generation Internet Program for
Open Internet Renovation, with financial support from the European Commission, as
part of the Horizon 2020 Research and Innovation Programme, under Grant Agree-
ment No. 871528.

Copyright 2023 Benjamin Lion.

Acknowledgements

When the weather allows for it, the Netherlands organizes the Dutch Headwind Cycling
Championships (NK Tegenwindfietsen). The principle is simple. The wind should be
of force 7 or higher (which corresponds to a storm of 120km/h), and cyclists must ride
8.5km against the wind on a simple city bike. The settings of the race would easily
puzzle an external observer. What is the point? Why wait for such a strong wind?
Why even race against it? Within the race, participants explain that the effort is real,
but enjoyable nonetheless. The race is just a means to reach a higher purpose. Going
on a PhD journey has similarities with the NK Tegenwindfietsen: the effort is real,
and the adventure is worth it.

Farhad Arbab and Carolyn Talcott, I am very glad to have been guided by your
intuition, your rigor, and your creativity. The trust and time that you have spent in
our collaboration have been exceptional to me. Farhad, you taught me that research
is best when shared, and sharing needs rhythm, music, and stories. I will do my best
to continue perfecting this subtle art. Carolyn, you taught me that research, while
requiring extreme rigor (and motivating examples!), can also be practiced with care
and kindness. I will try, as much as I can, to follow this path.

The life at CWI was very exciting, mostly due to the colleagues that became close
friends. Kasper, the first years that I spent at CWI collaborating with you were
very exciting research years. Your mathematical intuition and your constant care for
comprehension have inspired me, and I am sure will continue for long. Hans-Dieter,
your company over the past six years has changed me, for the better. Your curiosity,
your critics, and your vision of the world have inspired me and deeply contributed to
the achievement of this PhD. The broad and challenging discussions we had, from the
theory of computability to the philosophy of language have given me material to think
for the coming years: thank you! Kasper and Hans-Dieter, I am very glad to have you
next to me during the defense.

To all the group of formal method, Frank, Jan, Sung-Shik, Keyvan, Vlad, Hui,

iii

Chris, Luc, Jinting, I enjoyed the many interesting lunch discussions and coffee breaks.
I want to thank my co-authors, with whom I had the pleasure and honor to collaborate:
Marcello Bonsangue, Samir Chouali, Hui Feng, Fabio Gadducci, Tobias Kappé, and
Francesco Santini,.

Thank you to the members of the reading committee, Luís Barbosa, Marcello
Bonsangue, Sung-Shik Jongmans, José Meseguer, Aske Plaat, for taking time to read
my PhD thesis. Your comments have greatly improved the state of the thesis.

A good environment is also very important in the course of a PhD. Pawan, it was
a pleasure to explore the scientific and non-scientific world together. You made the
time at Stuurmankade memorable, with many great adventures. I wish you a lot of
success.

Jana, being around you feels so simple and relaxing. Your support in the last bits
of my PhD helped me a lot in finishing it.

Lars, your constant search for beauty keeps inspiring me. Can’t wait to spend time
quoridoring again, and crafting other crazy ideas.

Judith, your interest in understanding my PhD and your artistic insights have been
of great value for me. I hope we get to do some awesome light and glass constructions
very soon.

Mahesh, funny enough, my PhD started and ended by a trip to Nepal with you. I
somehow feel that those trips are part of my PhD as well. Your happiness and your
joy make moments in your company so colorful. Frédéric, I am impressed by your
many talents, including drawing this amazing butterfly on the cover: thank you! I
hope we all meet very soon for new hiking adventures.

Jan, I really enjoyed the time spent with you, at your maker space, discussing
about electronics. This space and your ambition have somehow resonated with me.

Dylan and William, heads up for listening to my “abstract non-sense”, and sup-
porting me during those years. I have always enjoyed so much having some relaxing
time with you during my PhD. You probably heard hundred different versions of this
thesis, and yet here it is, the final document.

To the fencing team, I hope to see you all very soon, on the piste or around a drink.
It always felt so good to conclude a hard day of thinking with an intensive fencing
lesson.

Finally, my family, Papa et Maman, Julie, Marie, Camille. There is very little place
to say how much I love you. Papa and Maman, I admire your talent to create such an
atmosphere so that home feels like heaven. Papa you gave me the taste for questions
and curiosity, and this is such a precious gift. Maman, you showed me how to craft

iv

things, care about details, and surpass myself: this thesis needed all of it. My sisters:
you are wonderful, and I am so lucky to have you. I admire the joy, complicity, and
kindness that you always keep so high. Lounes and Rémi, welcome to the family!! And
Louise: making you smile is a joy and watching you learn new things keeps fascinating
me. Ricou, un message spécial pour toi: je suis très heureux de pouvoir partager ce
moment avec toi. Depuis petit, tu m’encourages à explorer toujours un peu plus loin.
C’est aussi grâce à toi si cette thèse a pu voir le jour!

v

vi

Contents

Acknowledgements iii

1 Introduction 1
1.1 Context . 1
1.2 Structure . 5
1.3 Running example . 9

2 A semantic model for interacting cyber-physical systems 13
2.1 Algebra of Components . 14

2.1.1 Notations . 15
2.1.2 Components . 17
2.1.3 Composition . 19
2.1.4 A co-inductive construction . 26
2.1.5 Properties of TESs . 38
2.1.6 Components of the running example 41

2.2 Division and conformance . 48
2.2.1 Divisibility and quotients . 49
2.2.2 Conformance . 54
2.2.3 Applications of Division . 56
2.2.4 Discussion . 62

2.3 Linearization . 63
2.3.1 Dependency and concurrency 65
2.3.2 Transactional and linear components 67
2.3.3 Problem statement: compositional linearization 70
2.3.4 Valid linearizations: lock step and interleaving 72

2.4 Related work and future work . 74

vii

Chapter 0

3 Reo as an algebra of order sensitive components 79
3.1 Reo . 81
3.2 Logical specification of connector components 86

3.2.1 Connector as guarded commands: an intermediate form 89
3.2.2 Behavior of connectors . 94

3.3 Verification of temporal properties on connectors 97
3.3.1 From synchronous protocol to asynchronous implementation . . 98
3.3.2 Case Study . 105

3.4 Related work and future work . 107

4 Operational specifications of components 111
4.1 Components as transition systems . 113

4.1.1 TES transition systems. 113
4.1.2 Compatibility of TES transition systems 121

4.2 Components as rewrite systems . 124
4.2.1 System of agents and compositional semantics 128

4.3 DSL for agents with preferences . 133
4.4 Related work and future work . 145

5 Experimental framework 147
5.1 Maude framework for cyber-physical agents 149
5.2 Concurrent Reo . 153

5.2.1 Reo primitives as agents . 153
5.2.2 Execution and analysis . 158

5.3 Valve-controller . 160
5.3.1 N-reservoir problem . 160
5.3.2 Execution and analysis . 163

5.4 Robot-Battery-Field system . 168
5.4.1 Execution and analysis . 172

6 Conclusion 183

Summary 201

Samenvatting 203

Curriculum Vitae 205

viii

Chapter 1

Introduction

1.1 Context

Today’s technological and theoretical progress bring new challenges in the field of the-
oretical computer science. The emergence of digital systems that reliably measure and
actuate physics reveals new kinds of interconnected systems that we call cyber-physical
systems. A cyber-physical system typically refers to a system in which digital processes
(e.g., controllers) interact (e.g., via sensing or actuating) with and through physical
medium (e.g., space, time). The understanding of cyber-physical systems is branches
into several lines of research [57]. We should mention first the field of cybernetics,
whose appearance in the literature dates back to Wiener [89]. Cybernetics, and more
largely control theory, aim at studying the feedback mechanisms taking place between
a governor (kuberneties in Greek) and a physical system. Given a suitable model of
how the physics operates, the governor can steer the physical system towards a desired
objective and control its behavior [79, 25]. Also, and on top of cybernetics, the in-
teraction among cyber-physical systems is a concern in the field of emergent behavior
and swarm robotics [39]. The objective is to find suitable coordination patterns that
enable a set of interacting cyber-physical systems to reach a collective objective. Still,
challenges remain in the design and analysis for complex cyber-physical systems, and
the concurrency that produces in the interaction among their cyber and physical parts.
The specific challenge that we undertake in this thesis is that of a design framework
that is compositional and concurrent. We describe in more details the essence and im-
plications of two properties that we deem essential in formal models for cyber-physical
systems.

1

Context Chapter 1

Compositionality is, intuitively, the property that allows forming a complex system
by assembling simpler systems together. Compositionality is used as a principle [83,
44], for instance, in order to assign meanings of natural language sentences given the
meaning of its part. This principle has permeated many aspects of computer science,
such as in program semantics, e.g., assigning meanings to programs, and in system
design, e.g., defining a framework to construct systems. Given a set of small blocks,
and a rule to assemble such blocks, one can quickly get a system whose behavior
surpasses in complexity each of its parts. The emergence of new kinds of machines
(e.g., interconnected networks, cyber-physical systems) requires a new stand on the
question of compositional specification for such systems (see Chapter 2).

Concurrency is the field in theoretical computer science that studies the behavior
of a set of communicating processes. The aim is to understand the behavior emerg-
ing from a set of interacting machines as yet another machine, similarly to how the
behavior of a machine would be understood from its parts. One of the challenges, for
instance, comes from the fact that, in a network, events may occur in parallel, inde-
pendently, or at the same time. Therefore, the mode of interaction among machines
is not necessarily derivable from the behavior specification of each machine. Several
models of how machines interact through communication have been studied, from the
original neural network model [54], or the network of communicating machines [70].
While still many paths explore ways to design and analyze concurrent systems, we
observe yet another type of concurrent systems of interest: in cyber-physical systems,
the physical medium in which machines evolve plays an active role in the interaction
among the cyber parts.

We give an illustrative example to justify that compositionality and concurrency
are two important features to include in a model for cyber-physical systems. For
instance, consider a group of robots, each running a program that takes decision
based on the sequence of sensor readings. The sensors that equip a robot return the
current position of the robot and the position of any adjacent obstacle. The interaction
occurring between robots in the group cannot be derived solely from the specification
of individual robots. If the field on which the robots roam changes its property, the
same group of robots might sense different values, and therefore take different actions.
Also, the time at which a robot acts and senses will affect the decision of each controller
and will change the resulting collective behavior.

Other instances of applications emerge from the challenges to architect a cyber-
physical system, as in the trends of Industry 4.0 [82], digital twins [19], or the Internet
of Things [10]. In Industry 4.0, the manufacturing process is equipped with sensors,

2

Chapter 1 Context

that observe physical variables of interest along the supply chain, and actuators that
perform physical tasks. Such architecture aims at improving the automation of repet-
itive physical tasks, the allocation of resources, but also the detection and signaling
of malfunctioning devices. The digital twin trend aims at creating models of physical
phenomenon that gather information, update, and monitor in live physical objects to
achieve some objectives. In such cases, having a formal design framework to model in-
teraction between the physics and its discrete model is of key importance to minimize
faults and increase accuracy. The Internet of Things captures the idea of connecting
sensors and actuators over the internet. Each device therefore becomes a node that
has cyber-physical capabilities that can be addressed remotely. As a result, the pro-
tocol that rules the interaction over the nodes in such a network is central to prove
properties of, for instance, security or resilience.

Generally, a design framework gives some means to specify what behavior is desired
and hides internal details that explain how a (network of) machines would construct
such behavior. As pictured in Figure 1.1 the operational part of a system, which is
represented by machines M1 and M2 interacting under a protocol Σ, is separated from
the description of its behavior, which is given by the transformation J·K as components
C1 and C2. Ideally, operations on machine behaviors, such as the algebraic operations
×Σ, should reflect practical interactions between machines. If such is the case, the
behavior of the system consisting of machines M1 and M2 under the protocol Σ, is
formally captured by the product of components C1 and C2 under the operation ×Σ.
The parameter Σ in the algebra is a new perspective that this thesis puts forward.
This approach differs from, for instance, existing compositional models (e.g., hybrid
IO automata [79], or hybrid programs [75]) that fix the parameter Σ from within the
model, and expect each machine and component to already include the primitives to
follow the protocol described by Σ.

One benefit of having such component algebra is that it allows for reasoning about
updates. For instance, an update that preserves the behavior of the composition is a
substitution of one of the components, such that the resulting collective behavior is
unchanged. As a consequence, the class of all M2 that preserves the same collective
behavior C3, under protocol Σ, contains possible machine replacements.

We highlight some fundamental differences in the interaction occurring between
purely cyber components (e.g., discrete programs interacting with other discrete pro-
grams), and cyber-physical components (e.g., discrete programs interacting with physics).
We leave the definition of a component and an interaction signature abstract, and refer
to Chapter 2 for a more precise description.

3

Context Chapter 1

M1

M2

Σ

J·K

J·K

C3 M3
C1

C2

×Σ

Figure 1.1: Two machines M1 and M2, whose respective behavior is captured by C1 and
C2, interact through a protocol Σ. The product of the two components under the operation
×Σ reflects the behavior of the machines interacting with the protocol Σ.

Cyber-cyber interaction The models that capture interactions between two cyber
components follows, in general, several assumptions:

• Reproducibility. The time value at which two machines M1 and M2 initially start
does not change the resulting behavior. This assumption also means that the
same protocol between the two machines is independent of the initial time, and
therefore reproducible at a later time.

• Closed system. Given a fixed set of machines and a fixed protocol among the
machines, one can, in theory, reason about the whole system statically. In a
closed system, the composition of each machine’s description under the inter-
action protocol provides a full description of the system state space. Static
analysis may therefore detect beforehand, for instance, some race conditions.

• No event missed. It is possible to coordinate each machine so that no interacting
event is missed (i.e., no message exchanged is missed). For instance, the hardware
connection between each machine assumes a frequency of communication that
eliminates the possibility to miss an event on either end.

In Chapter 3, we explore the property of cyber-cyber interactions by studying the
class of components for which only the ordering of events matters, and not the precise
value of the observation’s time stamp.

Cyber-physical interaction The assumptions underlying models for cyber-physical
interactions are different in nature than assumptions for cyber-cyber interactions:

• Variance under time shift. Some physical systems have time dependent and
chaotic responses while interacting with cyber systems. In such cases, the time

4

Chapter 1 Structure

at which the system is initialized changes the resulting behavior of the composite
cyber-physical system. For instance, the program that controls the decision of
an autonomous car will receive different responses from the physics if executed at
different times (change of traffic, change of weather, change of landscape, etc.).

• Open system. Some physical systems are so complex that their analytical char-
acterization is infeasible. As a consequence, some reasoning can happen only
dynamically as reaction, and the resulting specification must adapt to unex-
pected alternatives.

• Approximation and missed events. The sensing of physical quantities is inher-
ently lossy as such quantities are continuously changing (i.e., function of time).
An observation captures samples of those quantities at a time instant. As a
result, observable properties on sensor readings are not sufficient to infer that
the underlying physical quantity satisfies as well such property. Mechanisms for
detection of deviations and diagnosis are therefore necessary to catch errors at
runtime due to approximative measurements.

• Non uniform description. Dynamics in physics is usually described using differ-
ential equations, and leads to characterizing the evolution of physical quantities
over real numbers. Alternatively, digital systems make use of discrete measures,
and clocked processors that time their sensing and actuations. Thus, modelling
concurrency between physical processes and cyber machines gives rise to the
problem of uniformly describing their interactions.

1.2 Structure

This thesis lays a foundation to tackle the challenges stated above. We record in the
following list the main points of each chapter. We give, for each chapter, a short
summary on how our results compare with the state of the art.

In Chapter 2, we present an algebra of components that can model the four points
presented above, making it suitable for modelling interaction in cyber-physical sys-
tems. More precisely, components are primitives in this algebra, and capture time-
sensitive behavior of a part of a system, which includes both cyber and physical as-
pects. A component, in isolation, denotes all possible sequences of observations over
time that a machine or physical process can exhibit. In composition with other compo-

5

Structure Chapter 1

nents, only some of such sequences will remain possible. The same component, within
different contexts, results in different behaviors as in an open system.

The relation between event occurrences in the behavior of two components is cap-
tured by algebraic operators. Each operation of the algebra is parametrized by an
interaction signature, that specifies how two components interact. Such interaction
may for instance allow or disallow events to occur independently (or simultaneously)
between two components. The same two components under different interactions
would expose different resulting behavior. The algebra therefore allows in some cases
for decomposition, using a suitable division operation.

In Section 2.3, we define an operation of linearization that transforms a transac-
tional component, i.e., observing multiple events at the same time, to a linear com-
ponent, i.e., observing a single event at a time. We give conditions that a valid lin-
earization must satisfy and present two instances of valid linearization: one lock-step
procedure that linearizes all observations of a transactional component, and one multi-
round procedure that allows for some interleaving. In both cases, the linearization can
be performed in parts, i.e., linearization distributes over the product on transactional
components. The material in this chapter is based on two journal publications and a
paper to be submitted:

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A semantic model for inter-
acting cyber-physical systems. J. Log. Algebraic Methods Program. 129: 100807
(2022)

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A formal framework for
distributed cyber-physical systems. J. Log. Algebraic Methods Program. 128:
100795 (2022)

• Kasper Dokter, Benjamin Lion, Hans-Dieter A. Hiep: Compositional Lineariza-
tions of Transactional Behaviors. To be submitted (2022)

Other models for cyber-physical systems exist, such as hybrid systems (e.g., Hybrid
Programs [75], Hybrid automata [40, 65, 79]), and our semantic model differs and
complements existing work in, at least two main points. First, we model interaction
externally, as constraints that apply on the behavior of each component. Interaction is
not limited to input/outputs as in most hybrid descriptions, and the difference between
cyber and physical aspects is abstracted in the general concept of a component. The
generality of the semantic model enables to give a specification of a component (such
as M1 and M2 in Figure 1.1) as a hybrid program, or as an I/O hybrid automata,

6

Chapter 1 Structure

and define suitable composition operators in the algebra to compositionally define
cyber-physical systems. Second, we choose to model the interaction occuring between
components in a discrete way, as sequences of observations: we choose to model the
continuity of physical systems within their description as a set of discrete sequences
of observations. This description closely represents runtime observable behaviors of
cyber-physical systems, and highlights new challenges such as proving that a cyber-
physical system is safe when considering safety of runtime observables only.

In Chapter 3, we study a class of components for which the precise time-stamp
value of the observation does not matter, under a product that models synchronous
interaction. We express, in Section 3.1, the semantics of the Reo coordination lan-
guage as an algebra of order sensitive components. As an example, we express some
well known connectors as a product of port components, under a suitable interaction
signature. In Section 3.3, we study temporal properties of Reo connectors. We give
a procedure to generate a specification in the Promela language from a logical speci-
fication of Reo connectors. We verify temporal properties of Reo connector by using
its Promela translation and the Spin model checker. Through this work, we identify
some key constructs to simplify the specification of a temporal property using Linear
Temporal Logic (LTL) given the port and memory primitives in Reo. The material of
the third chapter is based on a workshop paper and an implementation, respectively:

• Benjamin Lion, Samir Chouali, Farhad Arbab: Compiling Protocols to Promela
and Verifying their LTL Properties. MoDELS (Workshops) 2018: 31-39

• Benjamin Lion, Treo to Promela compiler, 10.5281/zenodo.7393621 (2018)

This work expands existing work on the Reo coordination language. More specially,
we should mention the existing works on Reo semantics [47], on Reo compilers [46] and
frameworks to verify temporal properties of Reo circuits [42]. Our work differs from
existing work in two main points. First, we give an algebraic semantics for Reo whose
primitive components are not channels, but ports. Basic Reo channels (such as a sync
or fifo channel) can be described as an algebraic product of their ports, parametrized by
the proper interaction signature. Moreover, the algebraic properties of the interaction
signature provides new ways to reason about equivalent Reo expressions. Second, we
give a logical specification of Reo channels and internal composition that minimizes
the size of the resulting composition. The internal representation of a Reo circuit is
then translated either to a model checker for temporal verification, or to an imperative
language for execution. The tool on which this section is based has shown state of the
art results.

7

Structure Chapter 1

In Chapter 4, we provide an operational and executable specification of compo-
nents. We first introduce in Section 4.1 an intermediate state-based representation of
a component behavior as a labeled transition system called a TES transition system.
We define a wide class of products of two such transition systems, each parametrized
by a composability relation on their observations. We show that the semantics of TES
transition systems as components is compositional with respect to their parametrized
product. Based on the intermediate TES transition system, we give in Section 4.2 an
executable finite specification of components as agents specified in rewriting logic. The
behavior resulting from a concurrent run of a set of agents depends on the compos-
ability relation that governs the interaction among the agent. We show that, for some
composability relations, the behavior of the concurrent execution of agents coincides
with the behavior of the product of the components representing those agents.

The three sections are based on three publications:

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: Runtime Composition Of
Systems of Interacting Cyber-Physical Components. In proceeding WADT (2022)

• Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: A Rewriting Framework for
Cyber-Physical Systems. In proceeding Isola (2022)

• Tobias Kappé, Benjamin Lion, Farhad Arbab, Carolyn L. Talcott: Soft compo-
nent automata: Composition, compilation, logic, and verification. Sci. Comput.
Program. 183 (2019)

Our work relates to existing work on state space description of cyber-physical sys-
tems, such as hybrid automata [40, 65, 79], and rewriting framework of preference
aware agents [85]. We introduce three differences. First, our state space specification
of components is compositional with respect to a large set of composition operators
on components. The structure of the interaction is therefore preserved when giving a
specification for each component. Second, we make explicit some criteria for forming
the product step-by-step at runtime, while avoiding deadlock and ensuring fairness.
Third, we include preferences to our specification, which are necessary when consid-
ering large specification for open systems. We also provide mechanisms to propagate
preferences through composition.

In Chapter 5, we give a concrete implementation of agents described in Chapter 4 in
order to analyse collective behaviors resulting from their interaction. We implement in
Section 5.1 the executable rewriting framework in Maude, and give a series of detailed
applications to demonstrate the usefulness of the modeling framework and the scope

8

Chapter 1 Running example

of analysis that are possible. In Section 5.2, we implement a concurrent version of Reo
and show that the framework is suitable for concurrent execution of Reo primitives.
We analyze in Section 5.3 the protocol governing the interactions among a controller, a
valve, and some reservoirs, by showing the safety of a controller’s strategy. We verify
in Section 5.4 some liveness, safety, and sorting properties for energy aware robots
roaming on the same field. The material of this section is based on the following
implementation:

• Benjamin Lion, Cyber-physical agent framework in Maude, Zenodo, 10.5281/zen-
odo.6592275 (2022)

The implementation is inspired from [53], which is a framework for detecting de-
viations in the concurrent execution of agent programs. The framework is written
in Maude, and has a model of its physical environment to simulate faults on agent’s
sensors. Our framework differs on two points. First, the modular structure is very
much apparent in the scenario of our framework: agents have their own module and
interact through actions. This makes the update of an agent and the reuse of the
same agent very easy. Second, our runtime has a by making the modularity of the
framework structural

1.3 Running example

We introduce, through an example, some intuitive concepts that we will formalize
later. We consider a cyber-physical system as a set of interacting processes. Whether
a process consists of a physical phenomenon (sun rising, electro-chemical reaction,
etc.) or a cyber phenomenon (computation of a function, message exchanges, etc.),
it exhibits an externally observable behavior resulting from some internal non-visible
actions. Instead of a unified way to describe internals of cyber and physical processes,
we propose in Section 2.1 a uniform description of what we can externally observe of
their behavior and interactions.

An event may describe something like the sun-rise or the temperature reading of
5◦C. An event occurs at a point in time, yielding an event occurrence (e.g., the sun-
rise event occurred at 6:28 am today), and the same event can occur repeatedly at
different times (the sun-rise event occurs every day). Typically, multiple events may
occur at “the same time" as measured within a measurement tolerance (e.g., the bird
vacated the space at the same time as the bullet arrived there; the red car arrived at
the middle of the intersection at the same time as the blue car did). We call a set

9

Running example Chapter 1

of events that occur together at the same time an observable. A pair (O, t) of a set
of observable events O together with its time-stamp t represents an observation. An
observation (O, t) in fact consists of a set of event occurrences: occurrences of events
in O at the same time t. We call an infinite sequence of observations a Timed-Event
Stream (TES). A behavior is a set of TESs. A component is a behavior with an
interface.

Consider two robot components, each interacting with its own local battery com-
ponent, and sharing a field resource. The fact that the robots share the field through
which they roam, forces them to somehow coordinate their (move) actions. Coordina-
tion is a set of constraints imposed on the otherwise possible observable behavior of
components. In the case of our robots, if nothing else, at least physics prevents the
two robots from occupying the same field space at the same time. More sophisticated
coordination may be imposed (by the robots themselves or by some other external
entity) to restrict the behavior of the robots and circumvent some undesirable out-
comes, including hard constraints imposed by the physics of the field. The behaviors of
components consist of timed-event streams, where events may include some measures
of physical quantities. We give in the sequel a detailed description of three compo-
nents, a robot (R), a battery (B), and a field (F), and of their interactions. We use
the International System of Units to quantify physical values, with time in seconds
(s), charging status in Watt hour (Wh), distance in meters (m), force in newtons (N),
speed in meters per second (ms−1).

A robot component, with identifier R, has two kinds of events: a read event
(read(bat , R); b) that measures the level b of its battery or (read(loc, R); l) that ob-
tains its position l, and a move event (move(R); (d, α)) when the robot moves in the
direction d with energy α (in W). The TES in the Robot column in Table 1.1 shows
a scenario where robot R reads its location and gets the value (0; 0) at time 1s, then
moves north with 20W at time 2s, reads its location and gets (0; 1) at time 3s, and
reads its battery value and gets 2000Wh at time 4s,

A battery component, with identifier B, has three kinds of events: a charge event
(charge(B); ηc), a discharge event (discharge(B); ηd), and a read event (read(B); s),
where ηd and ηc are respectively the discharge and charge rates of the battery, and
s is the current charge status. The TES in the Battery column in Table 1.1 shows a
scenario where the battery discharged at a rate of 20W at time 2s, and reported its
charge-level of 2000Wh at time 4s,

A field component, with identifier F , has two kinds of events: a position event
(loc(I); p) that obtains the position p of an object I, and a move event (move(I); (d, F))

10

Chapter 1 Running example

Table 1.1: Each column displays a segment of a timed-event stream for a robot, a battery,
and a field component, where observables are singleton events. For t ∈ R+, we use R(t), B(t),
and F (t) to respectively denote the observable at time t for the TES in the Robot, the Battery,
and the Field column. An explicit empty set is not mandatory if no event is observed.

Robot (R) Battery (B) Field (F)
1.0s {(read(loc, R); (0; 0))} {(loc(I); (0; 0))}
2.0s {(move(R); (N, 20W))} {(discharge(B); 20W)} {(move(I); (N, 40N))}
3.0s {(read(loc, R); (0; 1))} {(loc(I); (0; 1))}
4.0s {(read(bat , R); 2000Wh)} {(read(B); 2000Wh)}
...

Robot-Battery-Field
1.0s R(1) ∪ F (1)
2.0s R(2) ∪B(2) ∪ F (2)
3.0s R(3) ∪ F (3)
4.0s R(4) ∪B(4)
... ...

of the object I in the direction d with traction force F (in N). The TES in the Field
column in Table 1.1 shows a scenario where the field has the object I at location (0; 0)

at time 1s, then the object I moves in the north direction with a traction force of 40N
at time 2s, subsequently to which the object I is at location (0; 1) at time 3s,

When components interact with each other, in a shared environment, behaviors
in their composition must also compose with a behavior of the environment. For
instance, a battery component may constrain how many amperes it delivers, and
therefore restrict the speed of the robot that interacts with it. We specify interaction
explicitly as an exogenous binary operation that constrains the composable behaviors
of its operand components.

The robot-battery interaction imposes that a move event in the behavior of a robot
coincides with a discharge event in the behavior of the robot’s battery, such that the
discharge rate of the battery is proportional to the energy needed by the robot. The
physicality of the battery prevents the robot from moving if the energy level of the
battery is not sufficient (i.e., such an anomalous TES would not exist in the battery’s
behavior, and therefore cannot compose with a robot’s behavior). Moreover, a read
event in the behavior of a robot component should also coincide with a read event in
the behavior of its corresponding battery component, such that the two events contain
the same charge value.

The robot-field interaction imposes that a move event in the behavior of a robot
coincides with a move event of an object on the field, such that the traction force

11

Running example Chapter 1

on the field is proportional to the energy that the robot puts in the move. A read
event in the behavior of a robot coincides with a position event of the corresponding
robot object on the field, such that the two events contain the same position value.
Additional interaction constraints may be imposed by the physics of the field. For
instance, the constraint “no two robots can be observed at the same location” would
rule out every behavior where the two robots are observed at the same location.

A TES for the composite Robot-Battery-Field system collects, in sequence, all
observations from a TES in a Robot, a Battery, and a Field component behavior,
such that at any moment the interaction constraints are satisfied. The column Robot-
Battery-Field in Table 1.1 displays the first elements of such a TES.

12

Chapter 2

A semantic model for
interacting cyber-physical
systems

Cyber-physical systems often describe systems in which a program (cyber) has to
regulate and control a physical quantity. For instance, consider a heating system
equipped with sensors and a controller. The controller has as objective to maintain
the temperature of a room within some bounds. The controller (cyber) frequently
reads the temperature sensors located in the room, and takes decision as to turn
the heater on or off. The decision made by the controller changes the dynamic of
the temperature profile, and eventually the next readings of the sensors. A similar
structure is observed if one wants to direct autonomously a car on a field. The car
has some position and energy sensors, and actuates its wheels depending on the value
that its controller reads. The decision made by the car changes the location of the car
on the field and modifies the remaining energy in its battery.

The two examples above are commonly considered to belong to the field of control
theory, i.e., the design of control algorithms that monitor observable measures to
maintain some invariants. The design of a control algorithm is directly subject to
the physical system with which it interacts. As the physical system becomes more
complex, finding a suitable model becomes challenging as well. For instance, if the
room has several heaters and sensors distributed over the space, the decision taken at
one heater may interfere with the decision taken at the other heater. Coordination is

13

Algebra of Components Chapter 2

then necessary between controllers. Similarly, in the case where two robots move on
the same shared field, the decision of one robot may directly depend on the decision
of the other robot to move.

Our model, introduced in Section 2.1, builds on top of existing control theory to
define cyber-physical systems as a composition of its parts. Similar approaches are
taken in software design [3, 56, 34], where a complex monolithic software is broken into
subparts that interact. Doing so requires a model to specify explicitly the interaction
that occurs in between each parts. We use components to refer to the parts of a
cyber-physical system, and defines several product operations over such components
to express their interactions. Intuitively, a component encapsulates both a cyber or a
physical process.

Composition is an important feature of a specification language, as it enables the
design of a complex system in terms of a product of its parts. Decomposition is
equally important in order to reason about structural properties. Usually, however, a
system can be decomposed in more than one way, each optimizing for different criteria.
In Section 2.2, we extend our model to reason about decomposition. Components
compose using a family of algebraic products, and decompose, under some conditions,
given a corresponding family of division operators. We use division to specify invariants
of a system of components, and to model desirable updates. We apply our framework
to design a cyber-physical system consisting of robots moving on a shared field, and
identify desirable updates using our division operator

As a theoretical application of our model, we study in Section 2.3 the operation
of linearization, that transforms a transactional component, i.e., observing multiple
events at the same time, to a linear component, i.e., observing a single event at a time.
We consider the class of components for which occurrences of events are independent
of the precise value of the time at which they happen, but depend on the past or
future occurrences of other events. We give conditions for a linearization to be valid,
which intuitively preserves the integrity of the behaviors after linearization, and give
two instances of valid linearizations.

2.1 Algebra of Components

The definition of components in this section is similar to the one defined in [3, 56].
Intuitively, a component denotes a set of (infinite) sequences of observations. Whether
it is a cyber process or a physical process, our notion of component captures all of its
possible sequences of observations.

14

Chapter 2 Algebra of Components

A model of interaction emerges naturally from our component model by relat-
ing observation of events from one component to observation of events from another
component. Moreover, we give a construction to lift constraints on observations to
constraints on infinite sequences of observations, and ultimately define, from those
interaction constraints, algebraic operations on components.

2.1.1 Notations

An event is a simplex (the most primitive form of an) observable element. An event
may or may not have internal structure. For instance, the successive ticks of a clock
are occurrences of a tick event that has no internal structure; successive readings of
a thermometer, on the other hand, constitute occurrences of a temperature-reading
event, each of which has the internal structure of a name-value pair. Similarly, we can
consider successive transmissions by a mobile sensor as occurrences of a structured
event, each instance of which includes geolocation coordinates, barometric pressure,
temperature, humidity, etc. Regardless of whether or not events have internal struc-
tures, in the sequel, we regard events as uninterpreted simplex observable elements.

Notation 1 (Events). We use E to denote the universal set of events.

An observable is a set of event occurrences that happen together and an observa-
tion is a pair (O, t) of an observable O and a time-stamp t ∈ R+.1 An observation
(O, t) represents an act of atomically observing occurrences of events in O at time t.
Atomicity, in its general form, consists of two properties: all events in the set must
occur together, and no interfering event can occur in between any two events from
the set. The second clause is in general formalized by a dependence relation (see Sec-
tion 2.3). In the case of an observation, atomically observing occurrences of events
in O at time t means there exists a small ϵ ∈ R+ such that during the time interval
[t− ϵ, t+ ϵ]:

1. every event e ∈ O is observed exactly once2, and

2. no event e ̸∈ O is observed.

In the absence of a specified dependence relation, we make the safe, conservative
assumption that all events depend on each other. Therefore, the atomicity of an

1Any totally ordered dense set would be suitable as the domain for time (e.g., positive rationals
Q+). For simplicity, we use R+, the set of real numbers r ≥ 0 for this purpose.

2A finer time granularity, i.e., a smaller ϵ, may reveal some ordering relation on the set of events
that occur in the same set of observation.

15

Algebra of Components Chapter 2

observation, defined above, assumes the dependence relation to be total, i.e., all events
are dependent, and no event can interleave within an observation.

We write ⟨s0, s1, ..., sn−1⟩ to denote a finite sequence of size n of elements over an
arbitrary set S, where si ∈ S for 0 ≤ i ≤ n − 1. The set of all finite sequences of
elements in S is denoted as S∗. A stream over a domain S is a function σ : N → S.3

We use σ(i) to represent the i + 1st element of σ, and given a finite sequence s =

⟨s0, ..., sn−1⟩, we write s · σ to denote the stream τ ∈ N → S such that τ(i) = si for
0 ≤ i ≤ n− 1 and τ(i) = σ(i− n) for n ≤ i. We use σ(n) to denote the n-th derivative
of σ, such that σ(n)(i) = σ(i + n) for all i ∈ N. We use σ′ as an abbreviation for the
first derivative of the stream σ, i.e., σ′ = σ(1). We use P(X) to denote the power set
of X.

A Timed-Event Stream (TES) over a set of events E and a set of time-stamps R+

is a stream σ ∈ N → (P(E)× R+) where, for every i ∈ N, let σ(i) = (Oi, ti) and:

1. ti < ti+1, [i.e., time monotonically increases] and

2. for every n ∈ N, there exists k ∈ N such that tk > n [i.e., time is non-Zeno
progressive].

Notation 2 (Time stream). We use OS(R+) to refer to the set of all monotonically
increasing and non-Zeno infinite sequences of elements in R+.

Notation 3 (Timed-Event Stream). We use TES (E) to denote the set of all TESs
whose observables are subsets of the event set E with elements in R+ as their time-
stamps.

Given a sequence σ ∈ TES (E) with σ(i) = (Oi, ti) for i ∈ N, we use the projections
pr1(σ) ∈ N → P(E) and pr2(σ) ∈ OS(R+) to denote respectively the sequence of
observables where pr1(σ)(i) = Oi and the sequence of time stamps where pr2(σ)(i) = ti.

Notation 4 (Observable time). For σ ∈ TES (E) and t ∈ R+, we use σ(t) to denote
the observable O in σ if there exists i ∈ N with σ(i) = (O, t), and ∅ otherwise. We
write Θ(σ) for the set of all t ∈ R+ such that there exists i ∈ N with σ(i) = (Oi, t)

with Oi ⊆ E.

Note that, for t ∈ R+ where σ(t) = ∅, the meaning of σ(t) is ambiguous as it may
mean either t ̸∈ Θ(σ), or there exists an i ∈ N such that σ(i) = (∅, t). The ambiguity
is resolved by checking if t ∈ Θ(σ).

3The set N denotes the set of natural numbers n ≥ 0.

16

Chapter 2 Algebra of Components

Notation 5 (Pair derivative). For a pair (σ, τ) of TESs, we use (σ, τ)′ to denote the
new pair of TESs for which the observation(s) with the smallest time stamp has been
dropped, i.e., (σ, τ)′ = (σ(x), τ (y)) with x (resp. y) is 1 if pr2(σ)(0) ≤ pr2(τ)(0) (resp.
pr2(τ)(0) ≤ pr2(σ)(0)) and 0 otherwise.

2.1.2 Components

The design of complex systems becomes simpler if such systems can be decomposed
into smaller sub-systems that interact with each other. In order to simplify the design
of cyber-physical systems, we abstract from the internal details of both cyber and
physical processes, to expose a uniform semantic model. As a first class entity, a
component encapsulates a behavior (set of TESs) and an interface (set of events).

Like existing semantic models, such as time-data streams [3], time signal [87], or
discrete clock [34], we use a dense model of time. However, we allow for arbitrary
but finite interleavings of observations. In addition, our structure of an observation
imposes atomicity of event occurrences within an observation. These distinctions mean
that for every σ(i) = (O, t), i ≥ 0 of a σ ∈ TES (E): (1) O is finite; and (2) there exists
a real number ϵ > 0 such that in the open interval (t− ϵ, t+ ϵ) no event e ̸∈ O occurs,
and every event e ∈ O occurs exactly once. Such a constraint abstracts from the
precise timing of the occurrence of each event in the set O, and turns an observation
into an all-or-nothing transaction.

Definition 1 (Component). A component is a tuple C = (E,L) where E ⊆ E is a
set of events, and L ⊆ TES (E) is a set of TESs. We call E the interface and L the
externally observable behavior of C.

As a shorthand notation, given component C = (E,L), we use σ : C for σ ∈ L.

In contrast with other component models where observables range over the same
universal set of events, therefore making component overly specified, our model encap-
sulates the set of observable events of a component in its interface. Thus, a component
cannot observe an event that is not in its interface. Moreover, Definition 1 makes no
distinction between cyber and physical components. We use the following examples
to describe some cyber and physical aspects of components.

Example 1. Consider a set of two events E = {0, 1}, and restrict our observations to
{1} and {0}. A component whose behavior contains TESs with alternating observations

17

Algebra of Components Chapter 2

of {1} and {0} is defined by the tuple (E,L) where

L = {σ ∈ TES (E) | ∀i ∈ N. (pr1(σ)(i) = {0} ∧ pr1(σ)(i+ 1) = {1})∨
(pr1(σ)(i) = {1} ∧ pr1(σ)(i+ 1) = {0})}

Note that this component is oblivious to time, and any stream of monotonically in-
creasing non-Zeno real numbers would serve as a valid stream of time stamps for any
such sequence of observations. ■

Example 2. Consider a component encapsulating a continuous function f : (D0 ×
R+) → D, where D0 is a set of initial values, and D is the codomain of values for
f . Such a function can describe the evolution of a physical system over time, where
f(d0, t) = d means that at time t the state of the system is described by the value d ∈ D

if initialized with d0. We define the set of all events for this component as the range
of function f given an initial parameter d0 ∈ D0. The component is then defined as
the pair (D,Lf) such that:

Lf = {σ ∈ TES (D) | ∃d0 ∈ D0. ∀i ∈ N. pr1(σ)(i) = {f(d0, pr2(σ)(i))}}

Observe that the behavior of this component contains all possible discrete samplings
of the function f at monotonically increasing and non-Zeno sequences of time stamp.
Different instances of f would account for various cyber and physical aspects of com-
ponents. The function f could be specified using, for instance, hybrid automtata or
differential equations. ■

Components are declarative entities that may denote either the behavior of a spec-
ification, or the behavior of an implementation. The usual relation between the behav-
ior of a program and the property of such program constitutes a refinement relation.

Definition 2 (Refinement). A component B is a refinement of component A, written
as B ⊑ A, if and only if EB ⊆ EA and LB ⊆ LA.

Lemma 1. The relation ⊑ is a partial order on components.

Proof. Follows from reflexivity, antisymmetry, and transitivity of set inclusion.

An alternative to refinement is containment. The containment relation makes use
of a point-wise inclusion relation on observations of two TESs. The containment
relation on components requires that every TES in the behavior of one is point-wise
contained in a TES from the behavior of the other.

18

Chapter 2 Algebra of Components

Definition 3 (Containment). A TES σ is contained in a TES τ , written as σ ≤ τ , if
and only if, for all i ∈ N, pr1(σ)(i) ⊆ pr1(τ)(i) and pr2(σ) = pr2(τ).

Remark 1. The restriction in Lemma 2 to consider components with no internal
self containments between distinct TESs is necessary for having ≤ as a partial order.
Consider for instance the component A with only two TESs in its behavior, σ : A

and τ : A where pr1(σ) = ({a, b})ω and pr1(τ) = ({a})ω and pr2(σ) = pr2(τ). Let
B be a component with a singleton behavior δ : B such that pr1(δ) = ({a, b})ω and
pr2(δ) = pr2(σ). Then, A ≤ B, and B ≤ A, but A ̸= B.

We extend the containment relation to components: a component A = (EA, LA)

is contained in a component B = (EB , LB), written A ≤ B, if and only if EA ⊆ EB ,
and for every σ ∈ LA, there exists a τ ∈ LB such that σ ≤ τ .

Lemma 2. The relation ≤ is a pre-order over arbitrary set of components. Moreover,
≤ is a partial-order over the set of components C if, for all components A ∈ C and for
any two TESs σ : A and τ : A, (σ ≤ τ ∧ τ ≤ σ) =⇒ σ = τ .

Proof. Let A = (EA, LA), B = (EB , LB), and C = (EC , LC) be three components.
We show that ≤ is reflexive, transitive, and antisymmetric for any set C that satisfies
the above condition:

1. reflexivity: A ≤ A holds.

2. transitivity. Let A ≤ B and B ≤ C. Then, for all σ : A, there exists τ : B

such that σ ≤ τ , and for all τ : B, there exists δ : C such that τ ≤ δ. Then, we
conclude that for all σ : A, there exists δ : C such that σ ≤ δ and A ≤ C.

3. antisymmetric. We suppose that A and B are elements of the set C. If A ≤ B

and B ≤ A, then for all σ : B, there exists τ : A such that σ ≤ τ . As well, for
any τ : A, there exists σ : B such that τ ≤ σ. Thus, for any σ : B, there exists
τ : A and δ : B with σ ≤ τ ≤ δ. Given the assumption of A and B, we can
conclude that σ = τ = δ. Similarly, we show that LA ⊆ LB , and that A = B.

2.1.3 Composition

A complex system typically consists of multiple components that interact with each
other. The running example in Section 1.3 shows three components, a robot , a bat ,
and a field , where, for instance, a move observable of a robot must coincide with an

19

Algebra of Components Chapter 2

accommodating move observable of the field and a discharge observable of its battery.
The design challenge is to faithfully represent the interactions among involved com-
ponents, while keeping the description modular, i.e., specify the robot, the battery,
and the field as separate, independent, but interacting components. For that purpose,
we capture in an interaction signature the type of the interaction between a pair of
components, and we define a family of binary products acting on components, each
parametrized with an interaction signature. As a result, the product of two compo-
nents, under a given interaction signature, returns a new component whose behavior
reflects that the two operand components joint behavior is constrained according to
the interaction signature. Such construction opens possibilities for modular reasoning
both about the interaction among components and about their resulting composite
behavior.

An interaction signature consists of two elements: a composability relation and a
composition function. The composability relation specifies which pairs4 of TESs are
allowed to compose, and the composition function constructs a new TES out of a pair
TESs. The condition for two TESs to be composable may depend on an external
context. For instance, the observation of event a at time t in a TES may conflict with
the observation of event b at that same time t in another TES in a context where
the latter could have observed a as well. To capture this notion, we generalized the
notion of a composability relation to take as parameter a pair of carrier sets of events
that acts as a context of alternative events for the pair of TESs. Then, when we write
(σ, τ) ∈ R(E1, E2), we mean that σ and τ are composable under the composability
relation R given their respective context E1 and E2.

Definition 4 (Composability relation on TESs). A composability relation is a para-
metrized relation R such that for all E1, E2 ⊆ E, we have R(E1, E2) ⊆ TES (E1) ×
TES (E2).

Definition 5 (Symmetry). A parametrized relation Q is symmetric if, for all (x1, x2)
and for all (X1, X2): (x1, x2) ∈ Q(X1, X2) ⇐⇒ (x2, x1) ∈ Q(X2, X1).

A composability relation on TESs serves as a necessary constraint for two TESs to
compose. We define composition of TESs as the act of forming a new TES out of two
TESs.

Definition 6. A composition function ⊕ on TES is a function ⊕ : TES (E)×TES (E) →
TES (E).

4Non-binary relations may also be considered, i.e., constraints imposed on more than two compo-
nents.

20

Chapter 2 Algebra of Components

In order to simplify the development of the theory of components, we group a pair
of a composability relation and a composition function into an interaction signature.

Definition 7. An interaction signature Σ = (R,⊕) is a pair of a composability relation
R and a composition function ⊕.

Example 3 (Union of TESs). The operation ∪ forms the interleaved union of ob-
servables occurring in a pair of TESs, i.e., for two TESs σ and τ , we define σ ∪ τ

to be the TES such that Θ(σ ∪ τ) = Θ(σ) ∪ Θ(τ) and (σ ∪ τ)(t) = σ(t) ∪ τ(t) for all
t ∈ Θ(σ) ∪Θ(τ). ■

The following examples present some useful interaction signatures for composition
of TESs that, e.g., enforce synchronization or mutual exclusion of observables.

Example 4 (Synchronous interaction). In this example, we define the synchronous
interaction signature Σsync = (Rsync ,∪). In a cyber-physical system, the action (of a
cyber system) and the reaction (of a physical system) co-exist simultaneously in the
same observation, and are therefore synchronous.

Then, Rsync(E1, E2) relates pairs of TESs such that all shared events occur at the
same time in both TESs, i.e., (σ, τ) ∈ Rsync(E1, E2) if and only if, for all time stamps
t ∈ R+, σ(t)∩E2 = τ(t)∩E1. A synchronous interaction signature Σsync filters pairs
of TESs that satisfy the Rsync relation and merges composable pairs of observations.
■

Example 5 (Asynchronous interaction). In this example, we define the asynchronous
interaction signature Σasync = (Rasync ,∪). Typically, the asynchronous interaction
signature prevents the same event to occur at the same time in a pair of TESs.

Then, Rasync(E1, E2) relates pair of TESs such that all shared event between E1

and E2 occur at different time, i.e., (σ, τ) ∈ Rasync(E1, E2) if and only if σ(t)∩τ(t) = ∅
for all t ∈ Θ(σ)∪Θ(τ). An asynchronous interaction signature Σ = (Rasync ,∪) filters
pairs of TESs that satisfy the Rasync relation and merges composable pairs. ■

Example 6 (Free interaction). A free interaction signature, Σfree = (Rfree ,∪), uses
Rfree for the most permissive composability relation on TESs such that, for any E1, E2 ⊆
E and any σ ∈ TES (E1) and τ ∈ TES (E2), we have (σ, τ) ∈ Rfree(E1, E2). ■

We define a binary product operation on components, parametrized by an interac-
tion signature. Intuitively, the newly formed component describes, by its behavior, the
evolution of the joint system under the constraint that the interactions in the system
satisfy the composability relation. Formally, the product operation returns another

21

Algebra of Components Chapter 2

component, whose set of events is the union of sets of events of its operands, and its
behavior is obtained by composing all pairs of TESs in the behavior of its operands
deemed composable by the composability relation.

Definition 8 (Product). Let Σ = (R,⊕) be an interaction signature, and Ci =

(Ei, Li), i ∈ {1, 2}, two components. The product of C1 and C2, under Σ, denoted as
C1 ×Σ C2, is the component (E,L) where E = E1 ∪ E2 and L is defined by

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}

The following examples define several products on components given the interaction
signatures introduced in Example 4, 5, and 6.

Example 7 (Synchronous product). The behavior of component C1×(Rsync ,⊕)C2 con-
tains TESs obtained from the composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2

of TESs that are related by the synchronous composability relation Rsync (see Exam-
ple 4) which excludes all event occurrences that do not synchronize. In the case where
⊕ = ∪, we write ▷◁ = ×(Rsync ,∪), and we call the operator ▷◁ the join operator. ■

Example 8 (Asynchronous product). The behavior of component C1 ×(Rasync ,⊕) C2

contains TESs resulting from the composition under ⊕ of every pair σ1 ∈ L1 and
σ2 ∈ L2 of TESs that are related by the mutual exclusion composability relation Rasync

(see Example 5) which may exclude some simultaneous event occurrences. In the case
where ⊕ = ∪, we write ∦ = ×(Rasync ,∪). ■

Example 9 (Free product). The behavior of component C1 ×(Rfree ,⊕) C2 contains
every TES obtained from the composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2

of TESs. This product does not impose any constraint on event occurrences of its
operands (see Example 6). ■

Example 10. Consider a suitable interaction signature Σ that captures the interac-
tions between a robot R and its field F , such that the expression R ×Σ F represents
the resulting system. For instance, Σ may force every observable move of the robot to
synchronize with a displacement of the robot on the field F , and every read observable
of the robot with a location displayed by the field. In the case of two interacting robots
roaming on the same field, one would like to build the resulting system compositionally
as an expression of the form (R1×Σ1

F1)×Σ3
(R2×Σ2

F2), where each of the Σi locally
captures the interaction between its respective component. Note that, for instance, Σ3

may enforce that the two fields F1 and F2 exclude the joint observations of R1 and R2

to be at the same location. ■

22

Chapter 2 Algebra of Components

The product of two components indirectly depends on the interface of its operands,
since its composability relation does so. Therefore, it is a priori not certain that al-
gebraic properties such as commutativity or associativity hold for such user defined
products. Algebraic properties are important when designing a complex system in
order to find equivalent and sometimes simpler expressions. Lemma 3 relates proper-
ties of a parametrized product with properties of its parameter, i.e., properties of the
interaction signature. Intuitively, the first item of Lemma 3 considers interaction sig-
natures that yield symmetric operations. As a result, the order of which components
appear in the product parametrized by such signatures is irrelevant. The second item
shows conditions on interaction signatures that allow flattening of nested products:
the product of A with B ×Σ C becomes equivalent to the product of A×Σ B with C.
When an interaction signature satisfies both algebraic properties, the resulting prod-
uct acts as an n-ary top level operator on a multiset of components. For instance, the
synchronous interaction signature of Example 4 is one such top level n-ary operator.5

Lemma 3. Let Σ = (R,⊕) be an interaction signature. Then:

• if R is symmetric, then ×Σ is commutative if and only if σ1 ⊕ σ2 = σ2 ⊕ σ1 for
all (σ1, σ2) ∈ R;

• if R is such that, for all E1, E2, E3 ⊆ E,

(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3) ∧ (σ2, σ3) ∈ R(E2, E3) ⇐⇒

(σ1, σ2) ∈ R(E1, E2) ∧ (σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3)

then ×Σ is associative if and only if σ1 ⊕ (σ2 ⊕ σ3) = (σ1 ⊕ σ2) ⊕ σ3 for all
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3) with (σ2, σ3) ∈ R(E2, E3);

• if for all E ⊆ E and σ, τ ∈ TES (E), we have (σ, τ) ∈ R(E,E) =⇒ σ = τ , then
×Σ is idempotent if and only if σ ⊕ σ = σ for all (σ, σ) ∈ R.

Proof. Commutativity. Let C1 = (E1, L1) and C2 = (E2, L2) be two components, and
Σ = (R,⊕) be an interaction signature with R symmetric as in Definition 5. We
write C = (E,L) = C1 ×Σ C2 and C ′ = (E′, L′) = C2 ×Σ C1. We first observe
that E = E1 ∪ E2 = E′. The condition for the product of two components to be

5Distributivity holds for some products. We leave the study of the conditions under which dis-
tributivity holds as future work.

23

Algebra of Components Chapter 2

commutative reduces to showing that L = L′, also equivalently written as:

L = L′ ⇐⇒ {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}
= {σ2 ⊕ σ1 | σ1 ∈ L1, σ2 ∈ L2, (σ2, σ1) ∈ R(E2, E1)}

If σ1 ⊕ σ2 = σ2 ⊕ σ1 for (σ1, σ2) ∈ R(E1, E2), then L = L′ and ×Σ is commutative.
Oppositely, if L = L′, we show that ⊕ is commutative. Let Cσ be the component

(Eσ, {σ}) where Eσ =
⋃
{σ(i) | i ∈ N}. Thus, for any (σ1, σ2) ∈ R(E1, E2), Cσ1

×Σ

Cσ2
= (Eσ1

∪Eσ2
, {σ1 ⊕σ2}. A necessary condition for ×Σ to be commutative is that

{σ1 ⊕ σ2} = {σ2 ⊕ σ1}, which imposes that σ1 ⊕ σ2 = σ2 ⊕ σ1.

Associativity. Let (R,⊕) be a pair of a composability relation and a composition
function on TESs with R such that, for every (σ1, σ2, σ3) ∈ L1 × L2 × L3:

(σ1, σ2) ∈ R(E1, E2) ∧ (σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3) ⇐⇒
(σ2, σ3) ∈ R(E2, E3) ∧ (σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)

We consider three components Ci = (Ei, Li), with i ∈ {1, 2, 3}.
The set of events for component ((C1×ΣC2)×ΣC3) is the set E1 ∪E2 ∪E3, which

is equal to the set of events for component (C1 ×Σ (C2 ×Σ C3)).
Let L′ and L′′ respectively be the behaviors of components (C1 ×Σ C2)×Σ C3 and

C1×Σ(C2×ΣC3). If σ1⊕(σ2⊕σ3) = (σ1⊕σ2)⊕σ3 for all (σ1, σ2⊕σ3) ∈ R(E1, E2∪E3)

with (σ2, σ3) ∈ R(E2, E3), then L′ = L′′. We show some sufficient conditions for
L′ = L′′, also written as

L′ = {(σ1 ⊕ σ2)⊕ σ3 | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ1, σ2) ∈ R(E1, E2)∧
(σ1 ⊕ σ2, σ3) ∈ R(E1 ∪ E2, E3)}

= {(σ1 ⊕ σ2)⊕ σ3 | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ2, σ3) ∈ R(E2, E3)∧
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)}

= {σ1 ⊕ (σ2 ⊕ σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ2, σ3) ∈ R(E2, E3)∧
(σ1, σ2 ⊕ σ3) ∈ R(E1, E2 ∪ E3)}

= L′′

using the assumption on R for the first equality, and the assumption on ⊕ for the
second equality.

Let (σ1, σ2⊕σ3) ∈ R(E1, E2∪E3) with (σ2, σ3) ∈ R(E2, E3), then Cσ1
×Σ (Cσ2

×Σ

Cσ3
) = (Cσ1

×ΣCσ2
)×ΣCσ3

which then implies that σ1⊕ (σ2⊕σ3) = (σ1⊕σ2)⊕σ3.

Idempotency. We show that if for all E ⊆ E, and σ, τ ∈ TES (E), we have that

24

Chapter 2 Algebra of Components

(σ, τ) ∈ R(E,E) implies σ = τ , then ×Σ is idempotent if and only if σ ⊕ σ = σ

for (σ, σ) ∈ R(E,E). We first observe that, given a component C = (E,L), the
component C ×Σ C = (E,L′) has the same set of events, E.

We show that (σ1, σ2) ∈ R(E,E) =⇒ σ1 = σ2 and ⊕ idempotent is a sufficient
condition for having L′ = L. Indeed,

L′ = {σ1 ⊕ σ2 | σ1, σ2 ∈ L, (σ1, σ2) ∈ R(E,E)}

= {σ1 ⊕ σ1 | σ1 ∈ L}

= L

Similar to the previous cases, if for all E ⊆ E, and σ, τ ∈ TES (E), we have that
(σ, τ) ∈ R(E,E) implies σ = τ , then ×Σ is idempotent if and only if ⊕ is idempotent.
Conversely, if Cσ ×Σ Cσ = Cσ and (σ, σ) ∈ R(E,E), then σ ⊕ σ = σ.

Monotonicity shows that the inclusion of component’s behavior is preserved by
product. Let A and B be two components such that B ⊑ A. Suppose that P is
a component that models a property satisfied by component A and preserved under
product with a component C, then P is satisfied by component B and component
B × C, by monotonicity. Note that the definition of monotonicity assumes × to be
commutative. That assumption can be relaxed by defining left and right monotonicity.

Definition 9 (Monotonicity). Let × be a commutative product. Then, × is monotonic
if and only if, for B ⊑ A and for any C, we have B × C ⊑ A× C.

Lemma 4 (Monotonicity of ▷◁). The product ▷◁ in Example 4 is monotonic.

Proof. Let A, B, and C be three components, such that B ⊑ A. Then, the interface
of B ▷◁ C is EB ∪ EC , which is included in EA ∪ EC the interface of A ▷◁ C.

For any TES σ : B ▷◁ C, there exist two TESs β : B and δ : C such that (β, δ) are
synchronous, and σ = β ∪ δ. Since for any β : B we also have β : A, then σ is also an
element of the behavior of A ▷◁ C, and B ▷◁ C ⊑ A ▷◁ C.

The algebraic nature of our formalism allows the possibility to introduce other kinds
of operations on components, such as division, as presented in Section 2.2. Intuitively,
the operation of division is parametrized by an interaction signature Σ and follows
two steps. First, the set of quotients of component A divided by component B is
constructed as the set of all components C such that A = B ×Σ C. Practically, every
element in the set of quotients leads to the same composite behavior captured in A,

25

Algebra of Components Chapter 2

when composed with B under Σ. Then, one component is chosen from the set of
quotients as the result of division.

2.1.4 A co-inductive construction

In this section, we show how local constraints on observations can be co-inductively
lifted to global constraints on TESs. We get, as a result, a finite specification of some
interaction signatures using simpler relations on observations. Moreover, we get a
co-inductive proof mechanism to relate an interaction signature defined on TESs with
an interaction signature lifted from constraints on observables, as shown in Lemma 7.
Such construction gives, as well, an operational perspective on deriving an interaction
signature as a step-wise constraint imposed on observables. Practically, the operational
approach of the co-inductive definition is relevant when considering robots and their
step-wise decision on their next observation.

The intuition for such construction is that, in some cases, the condition for two
TESs to be composable depends only on a composability relation on observations. An
example of composability constraint for a robot with its battery and a field enforces
that each move event discharges the battery and changes the state of the field. As a
result, every move event observed by the robot must coincide with a discharge event
observed by the battery and a change of state observed by the field. The lifting of
such composability relation on observations to a constraint on TESs is defined co-
inductively. Finally, Lemma 10 gives weaker conditions for Lemma 3 to hold.

Definition 10 (Composability relation on observations). A composability relation on
observations is a parametrized relation κ such that for all pairs (E1, E2) ∈ P(E)×P(E),
we have κ(E1, E2) ⊆ (P(E1)× R+)× (P(E2)× R+).

The following examples define locally on observations some relations analogous to
those defined globally on TESs in Example 4 and Example 5.

Example 11. We give two examples of composability relations on observations:

• ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) if and only if every shared event always occurs
at the same time, i.e., t1 < t2 implies O1∩E2 = ∅, and t2 < t1 implies O2∩E1 =

∅, and t2 = t1 implies O1 ∩ E2 = O2 ∩ E1;

• ((O1, t1), (O2, t2)) ∈ κasync(E1, E2) if and only if no shared event occurs at the
same time, i.e., t1 = t2 implies O1 ∩ E2 = ∅ = O2 ∩ E1. ■

26

Chapter 2 Algebra of Components

For two composability relations κ1, κ2, their intersection or union, written κ1 ∩ κ2
and κ1 ∪ κ2 respectively, is defined, for any E1, E2, E3 ⊆ E, as (κ1 ∩ κ2)(E1, E2) =

κ1(E1, E2) ∩ κ2(E1, E2) and (κ1 ∪ κ2)(E1, E2) = κ1(E1, E2) ∪ κ2(E1, E2).

Definition 11 (Lifting). Let κ be a composability relation on observations, and, for
any R ⊆ TES (E1) × TES (E2), let Φκ(E1, E2)(R) ⊆ TES (E1) × TES (E2) be such
that:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

The lifting of κ on TESs, written [κ], is the parametrized relation obtained by taking
the greatest post fixed point of the function Φκ(E1, E2) for arbitrary pair E1, E2 ⊆ E,
i.e., the relation [κ](E1, E2) =

⋃
R⊆TES(E1)×TES(E2)

{R | R ⊆ Φκ(E1, E2)(R)}.

Lemma 5 (Correctness). For any E1, E2 ⊆ E, the function Φκ(E1, E2) is monotone,
and therefore has a greatest post fixed point.

Proof. Let κ be a composability relation on observations, and let E1, E2 ⊆ E. We
recall that the function Φκ(E1, E2) is such that, for any R ⊆ TES (E1)× TES (E2):

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

Let R1,R2 ⊆ TES (E1) × TES (E2) be such that R1 ⊆ R2. We show that
Φκ(E1, E2)(R1) ⊆ Φκ(E1, E2)(R2). For any (τ1, τ2) ∈ TES (E1)× TES (E2),

(τ1, τ2) ∈ Φκ(E1, E2)(R1) ⇐⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R1)

=⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R2)

=⇒ (τ1, τ2) ∈ Φκ(E1, E2)(R2)

Therefore, R1 ⊆ R2 implies that Φκ(E1, E2)(R1) ⊆ Φκ(E1, E2)(R2), and we con-
clude that Φκ(E1, E2) is monotonic. We use the Knaster-Tarski theorem, where the
underlying lattice is the powerset of TESs with inclusion relation, for the existence of
a greatest fixed point of the monotonic function Φκ(E1, E2) applying to that lattice 6.
Thus, Φκ(E1, E2) has a greatest fixed point defined as:

[κ](E1, E2) =
⋃

{R | R ⊆ Φκ(E1, E2)(R)}

6The Knaster-Tarski theorem shows that the greatest fixed point of Φκ(E1, E2) is also the greatest
post-fixed point of Φκ(E1, E2)

27

Algebra of Components Chapter 2

Lemma 6. If κ is a composability relation on observations, then the lifting [κ] is a
composability relation on TESs. Moreover, if κ is symmetric (as in Definition 5), then
[κ] is symmetric.

Proof. We first note that, given a composability relation κ on observables, the lifting
[κ] is a composability relation on TESs. Indeed, for any pair of interfaces E1, E2 ⊆ E,
any (σ, τ) ∈ [κ](E1, E2) is a pair in TES (E1)× TES (E2).

If κ is symmetric (as in Definition 5), we show that [κ] is also symmetric. Given a
set R ⊆ TES (E1)× TES (E2), we use the notation R to denote the smallest set such
that (σ, τ) ∈ R ⇐⇒ (τ, σ) ∈ R. Let E1, E2 ⊆ E.

If κ is symmetric, then for R ⊆ TES (E1)× TES (E2),

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1) ∧ (τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1) ∧ (τ2, τ1)
′ ∈ R)}

= {(τ1, τ2) | (τ2, τ1) ∈ Φκ(E2, E1)(R)} (1)

which shows that [κ] is symmetric since, for any E1, E2 ⊆ E,

[κ](E1, E2) =
⋃

R⊆TES(E1)×TES(E2)

{R | R ⊆ Φκ(E1, E2)(R)}

and
(σ, τ) ∈ [κ](E1, E2) ⇐⇒ ∃R. (σ, τ) ∈ R ∧R ⊆ Φκ(E1, E2)(R)

⇐⇒ ∃R. (τ, σ) ∈ R ∧R ⊆ Φκ(E2, E1)(R)

⇐⇒ (τ, σ) ∈ [κ](E2, E1)

where the first equivalence is given by the fact that [κ](E1, E2) is the greatest post
fixed point of Φκ(E1, E2), the second equivalence is obtained from equality (1), and
the third equivalence is given by the fact that [κ](E2, E1) is the greatest post fixed
point.

As a consequence of Lemma 6, any composability relation on observations gives rise
to a composability relation on TESs. Lemma 7 relates (a)synchornous composability
relations on TESs with (a)synchronous composability relations on observations.

Lemma 7. Let Rsync and Rasync be composability relations defined in Example 4 and
Example 5, respectively. Let κsync be the relation on observations defined in Exam-
ple 11. For all E1 and E2, Rsync(E1, E2) = [κsync](E1, E2) and Rasync(E1, E2) =

28

Chapter 2 Algebra of Components

[κasync](E1, E2). When E1 ∩ E2 = ∅, then Rsync(E1, E2) = Rasync(E1, E2).

Proof. We proof the result for Rsync(E1, E2) = [κsync](E1, E2) and similar reasoning
can be applied for Rasync(E1, E2) = [κasync](E1, E2). We first show Rsync(E1, E2) ⊆
[κsync](E1, E2), which is equivalent to Rsync(E1, E2) ⊆ Φκsync (E1, E2)(Rsync(E1, E2)).
First, we observe that if (σ, τ) ∈ Rsync(E1, E2), then (σ, τ)′ ∈ Rsync(E1, E2), as drop-
ping the first observation(s) of σ and τ preserves the property imposed by Rsync . For
all (σ, τ) ∈ Rsync(E1, E2), by definition of Rsync and κsync , we have that (σ(0), τ(0)) ∈
κsync(E1, E2). Since Φκsync (E1, E2)(Rsync(E1, E2)) is equal to the set

{(σ, τ) | (τ(0), σ(0)) ∈ κsync(E1, E2) ∧ (σ, τ)′ ∈ Rsync(E1, E2)}

we conclude that Rsync(E1, E2) ⊆ Φκsync (E1, E2)(Rsync(E1, E2)).

For the other inclusion, let first introduce time((σ, τ)) as the smallest time stamp of
the head of both streams σ and τ , i.e., time((σ, τ)) = min(t1, t2) where t1 = pr2(σ)(0)

and t2 = pr2(τ)(0). For a pair (σ, τ) ∈ [κsync](E1, E2), we have:

(σ(0), τ(0)) ∈ κsync(E1, E2) ∧ (σ, τ)′ ∈ [κsync](E1, E2)

=⇒ ∀t < time((σ, τ)′). σ(t) ∩ E2 = τ(t) ∩ E1 ∧ (σ, τ)′ ∈ [κsync](E1, E2)

=⇒ ∀n ∈ N.∀t < time((σ, τ)(n)). σ(t) ∩ E2 = τ(t) ∩ E1∧

(σ, τ)(n) ∈ [κsync](E1, E2)

=⇒ ∀t. σ(t) ∩ E2 = τ(t) ∩ E1

=⇒ (σ, τ) ∈ Rsync

We conclude that Rsync = [κsync].

The composability relation κ relates observations, i.e., elements of P(E)×R+. We
show in Definition 13 and Definition 14 how to define κ from a relation ⊓ on sets of
events, i.e., elements in P(E).

Definition 12 (Intersection). For any two components C1 = (E1, L1) and C2 =

(E2, L2), we define the intersection C1 ∩ C2 to be the component C1 ×([κsync],[∩]) C2 =

(E1 ∪ E2, L) with κsync defined in Example 11. ■

For the following definitions, let C1 = (E1, L1) and C2 = (E2, L2) be two compo-
nents, and ⊕ be a composition function on TESs. We use ⊓ ⊆ P(E)× P(E) to range
over relations on observables.

29

Algebra of Components Chapter 2

Definition 13 (Synchronous observations). The composability relations introduced
in Example 11 can also be extended to synchronize pairs of distinct events. Two
observations are synchronous under ⊓ if, intuitively, the two following conditions hold:

1. every observable that can compose (under ⊓) with another observable must occur
simultaneously with one of its related observables; and

2. only an observable that does not compose (under ⊓) with any other observable
can happen before another observable, i.e., at a strictly lower time.

To formalize the conditions above, we introduce the independence relation ind⊓(X,Y) =

∀x ⊆ X.∀y ⊆ Y.(x, y) ̸∈ ⊓.
The synchronous composability relation on observations κsync⊓ (E1, E2) is the small-

est set such that, for all O1 ⊆ E1 and O2 ⊆ E2:

• if (O1, O2) ∈ ⊓ ∪ (∅, ∅), then for all (O′
1, O

′
2) ∈ P(E1) × P(E2) such that

ind⊓(O
′
1, E2) and ind⊓(E1, O

′
2) and for all time stamps t, we have that ((O1 ∪

O′
1, t), (O2 ∪O′

2, t)) ∈ κsync⊓ (E1, E2).

• if ind⊓(O1, E2), then for all O′
2 ⊆ E2 and for all t1 < t2, we have that the

pair ((O1, t1), (O2, t2)) ∈ κsync⊓ (E1, E2). Reciprocally, if ind⊓(E1, O2) then for
all O′

1 ⊆ E1 and t2 < t1, we have ((O1, t1), (O2, t2)) ∈ κsync⊓ (E1, E2);

Example 12. Although the relation in Definition 13 is a binary relation on observa-
tions, we show in this example how to synchronize multiple events transitively. For in-
stance, consider three components, A = ({a}, LA), B = ({b}, LB), and C = ({c}, LC).
Let ⊓ be the smallest symmetric relation with {({a}, {b}), ({b}, {c})} ⊆ ⊓. Then,
κsync⊓ enforces every observable in A and C to occur at the same time as an observable
in B. Let Σ = ([κsync⊓],∪) with ∪ defined in Example 3. Observe that, in general,
(A ×Σ B) ×Σ C ̸= (A ×Σ C) ×Σ B. On the left hand side, the product of A and B

synchronizes every occurrence of event a with an occurrence of event b, which results
in observables of the form {a, b} only (no interleaving is allowed by κsync⊓). Since b
and c are also related events, the composition with C leads to the component with ob-
servables {a, b, c}. On the right hand side, A and C have independent observables and
their composition allows for every interleaving. The product with B, however, syn-
chronizes every occurrence of event a or c with an occurrence of event b, which results
in interleaving of observables {a, b} and {c, b}. Finally, observe that the component
(A ×Σ B) ×Σ C transitively synchronizes occurrences of event a with occurrences of
event c through occurrences of event b. ■

30

Chapter 2 Algebra of Components

The behavior of component C1 ×([κsync
⊓],⊕) C2 contains TESs obtained from the

composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related
by the synchronous composability relation [κsync⊓] which, depending on ⊓, excludes all
event occurrences that do not synchronize.7 Note that in the case where ⊓ = {(O,O) |
O ⊆ E1 ∪ E2 \ ∅}, then κsync⊓ = κsync .

Definition 14 (Mutual exclusion). Let ⊓ ⊆ P(E)2 be a relation on observables. We
define two observations to be mutually exclusive under the relation ⊓ if no pair of ob-
servables in ⊓ can be observed at the same time. The mutually exclusive composability
relation κexcl⊓ on observations allows the composition of two observations (O1, t1) and
(O2, t2), i.e., ((O1, t1), (O2, t2)) ∈ κexcl⊓ (E1, E2), if and only if t1 = t2 =⇒ ¬(O1⊓O2).

Example 13. Following Example 10, we introduce an interaction signature that com-
poses two robot-field subsystems while excluding the possibility for the robots to both ob-
serve the same location on their fields. We define ⊓ = {({(loc(R1); l)}, {(loc(R2); l)}) |
l ∈ [0; 20]× [0; 20]} as the set of pairs of observables containing, for both robots R1 and
R2, an event that displays the same location as the other robot. Let Σ = ([κexcl⊓],∪)
with ∪ defined in Example 3. Then, the product of the two subsystems, using the in-
teraction signature Σ, excludes the possibility for the two robots to observe the same
location at the same time. Strictly speaking, the exclusion imposed by the interaction
signature Σ does not imply that the two robots can not effectively be on the same
physical location. We show in Section 2.1.6 how, combined with hyper-properties, such
interaction signature may imply a safety property. ■

The behavior of component C1 ×([κexcl
⊓],⊕) C2 contains TESs resulting from the

composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related
by the mutual exclusion composability relation [κexcl⊓] which, depending on ⊓, may
exclude some simultaneous event occurrences.

We prove in Lemma 8 that the lifting of composability relations distributes across
the intersection.8

Lemma 8. For all composability relations κ1, κ2 and interfaces E1, E2:

[κ1 ∩ κ2](E1, E2) = [κ1](E1, E2) ∩ [κ2](E1, E2)

7If we let ⊕ be the element wise set union, define an event as a set of port assignments, and in
the pair ([κsync

⊓],⊕) let ⊓ be true if and only if all common ports get the same value assigned, then
this composition operator produces results similar to the composition operation in Reo [3].

8The lifting does not distribute across the union, however.

31

Algebra of Components Chapter 2

Proof.

[κ1](E1, E2) ∩ [κ2](E1, E2) =
⋃

{R | R ⊆ Φκ1
(E1, E2)(R)}∩⋃

{R | R ⊆ Φκ2
(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1(E1, E2)(R) and

R ⊆ Φκ2
(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1
(E1, E2)(R) ∩ Φκ2

(E1, E2)(R)}

=
⋃

{R | R ⊆ Φκ1∩κ2(E1, E2)(R)}

=[κ1 ∩ κ2](E1, E2)}

since

Φκ1
(E1, E2)(R) ∩ Φκ2

(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ1(E1, E2)∧

(τ1(0), τ2(0)) ∈ κ2(E1, E2)∧

(τ1, τ2)
′ ∈ R)}

= {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ1(E1, E2) ∩ κ2(E1, E2)∧

(τ1, τ2)
′ ∈ R)}

= Φκ1∩κ2
(E1, E2)(R)

Similarly, we give a mechanism to lift a composition function on observables to a
composition function on TESs. Such lifting operation interleaves observations with
different time stamps, and composes observations that occur at the same time.

Definition 15 (Lifting - composition function). Let + : P(E) × P(E) → P(E) be
a composition function on observables. The lifting of + to TESs is [+] : TES (E) ×
TES (E) → TES (E) such that, for σi ∈ TES (E) where σi(0) = (Oi, ti) with i ∈ {1, 2}:

σ1[+]σ2 =

⟨σ1(0)⟩ · (σ′

1[+]σ2) if t1 < t2

⟨σ2(0)⟩ · (σ1[+]σ′
2) if t2 < t1

⟨(O1 +O2, t1)⟩ · (σ′
1[+]σ′

2) otherwise

Definition 15 composes observations only if their time stamp is the same. Alter-
native definitions might consider time intervals instead of exact times.

32

Chapter 2 Algebra of Components

Remark 2. The last clause of Definition 15 considers the case where two observations
occur at the same time. Recall that the time of an observation, as introduced earlier,
is an abstraction that requires every event of the observation to occur after the events
of the previous observation, and before the events of the next observation. Moreover,
the time of two related observations, during composition, may be constrained by the
interaction signature of the composition. For instance, the synchronous composability
relation in Example 4 requires related observations to occur at the same time. Given
those two facts, the likelihood that two observations have the same time is non zero.

Lemma 9. Let κ1 and κ2 be two composability relations and ×([κ1∩κ2],⊕) be a product
on components. Then,

C1 ×([κ1∩κ2],⊕) C2 = C1 ×([κ1]∩[κ2],⊕) C2 = (C1 ×([κ1],⊕) C2) ∩ (C1 ×([κ2],⊕) C2)

Proof. Let C1×[κ1∩κ2],⊕C2 = (E,L) and (C1×([κ1],⊕)C2)∩(C1×([κ2],⊕)C2) = (E′, L′).
We have E = E1 ∪ E2 = E′. We show L = L′.

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ [κ1 ∩ κ2](E1, E2)}

= {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ [κ1](E1, E2) ∩ [κ2](E1, E2)}

= L′

Example 14. Composability relations as defined in Definition 13 and Definition 14
can be combined to form new relations, and therefore new products. The behavior
of component C1 ×([κsync

⊓ ∩κexcl
⊓]),⊕) C2 contains all TESs that are in the behavior of

both C1×([κsync
⊓],⊕)C2 and C1×([κexcl

⊓],⊕)C2, which excludes observations containing an
occurrence of at least one event related by ⊓. ■

Co-inductive constructions of interaction signatures make proving algebraic results
of Lemma 3 easier. Lemma 10 gives sufficient conditions to lift, by co-induction,
properties of the underlying relation and composition function to meet the conditions
of Lemma 3.

Lemma 10. Let Σ = ([κ], [+]) be an interaction signature with + be a composition
function on observables and let κ be a composability relation on observations. Then,

• ×Σ is commutative if κ is symmetric and + is commutative;

33

Algebra of Components Chapter 2

• ×Σ is associative if + is associative and, for all E1, E2, E3 and for all triple
Oi ∈ P(Ei) with i ∈ {1, 2, 3} and for all t ∈ R+:

((O1, t), (O2, t)) ∈ κ(E1, E2) ∧ ((O1 +O2, t), (O3, t)) ∈ κ(E1 ∪ E2, E3)

if and only if

((O2, t), (O3, t)) ∈ κ(E2, E3) ∧ ((O1, t), (O2 +O3, t)) ∈ κ(E1, E2 ∪ E3)

with κ such that ((O1, t1), (O2, t2)) ∈ κ(E1, E2) implies

1. ((O1, t1), (∅, t2)) ∈ κ(E1, E2) if t1 < t2; and

2. ((∅, t1), (O2, t2)) ∈ κ(E1, E2) if t2 < t1;

and with O + ∅ = ∅+O = O for all O ⊆ P(E).

• ×Σ is idempotent if + is idempotent and, for all E ⊆ E we have ((O1, t1), (O2, t2)) ∈
κ(E,E) =⇒ (O1, t1) = (O2, t2).

Proof. Commutativity. From Lemma 6, if κ is symmetric, then its lifting [κ] is also
symmetric. Therefore, it is sufficient for κ to be symmetric and for + to be com-
mutative in order for [κ] to be symmetric and [+] to be commutative, and therefore
×([κ],[+]) to be commutative.

Associativity. We recall that, for a TES σ, the domain of σ is the collection of
all time stamps of observations, i.e., dom(σ) = {t | ∃i ∈ N.σ(i) = (O, t)}. We
define a domain equalizer function ≡ that, given a tuple (σ1, ..., σn) returns a new
tuple (σ1, ..., σn)≡ = (τ1, ..., τn) such that the domains of TESs τi are the same, i.e.,
∃c.dom(τi) = c; and τi differs with σi only by empty observations, i.e., for all t ∈ R+,
σi(t) = τi(t). Thus, the operation ≡ adds silent observations to all TESs of the tuple
such that the resulting domain for all τi is equal.

Let us first introduce a property induced by the assumptions on the composability
relation κ. The fact that, forallO1 ⊆ E1 andO2 ⊆ E2, ((O1, t1), (O2, t2)) ∈ κ(E1, E2)∧
t1 < t2 ⇐⇒ ((O1, t1), (∅, t1)) ∈ κ(E1, E2) implies that a pair of TESs (σ1, σ2) is
related by [κ] if and only if their extension with silent observations on equal domains,
i.e., (σ1, σ2)≡, is also related by [κ]. We show by co-induction such property.

34

Chapter 2 Algebra of Components

For R ⊆ TES (E1)× TES (E2), let

Φ≡
k (R) = {(σ1, σ2) | σ1(0) = (O1, t1) ∧ σ2(0) = (O2, t2)∧

t1 < t2 =⇒ (σ1(0), (∅, t1)) ∈ κ(E1, E2)∧

t2 < t1 =⇒ ((∅, t2), σ2(0)) ∈ κ(E1, E2)∧

t1 = t2 =⇒ (σ1(0), σ2(0)) ∈ κ(E1, E2)∧

(σ1, σ2)
′ ∈ R}

The function Φ≡
κ is a monotonous function applied on a complete lattice. By Knaster

Tarksi theorem, Φ≡
κ has a greatest fixed point that we call [κ≡]. Given the assumption

on κ, we can show that [κ] ⊆ Φ≡
κ ([κ]) and [κ≡] ⊆ Φκ([κ≡]), which implies that [κ] =

[κ≡]. It follows that (σ1, σ2) ∈ [κ] ⇐⇒ (σ1, σ2)≡ ∈ [κ].

A sufficient condition for the product ×([κ],[+]) to be associative is that + is asso-
ciative and for every σi ∈ TES (Ei) for i ∈ {1, 2, 3}:

P1 :=(σ1, σ2) ∈ [κ](E1, E2) ∧ (σ1[+]σ2, σ3) ∈ [κ](E1 ∪ E2, E3) ⇐⇒

(σ2, σ3) ∈ [κ](E2, E3) ∧ (σ1, σ2[+]σ3) ∈ [κ](E1, E2 ∪ E3)

which is equivalent to

(σ1, σ2) ∈ [κ≡](E1, E2) ∧ (σ1[+]σ2, σ3) ∈ [κ≡](E1 ∪ E2, E3) ⇐⇒

(σ2, σ3) ∈ [κ≡](E2, E3) ∧ (σ1, σ2[+]σ3) ∈ [κ≡](E1, E2 ∪ E3)

and with similar arguments as before, is equivalent to

(τ1, τ2) ∈ [κ≡](E1, E2) ∧ (τ1[+]τ2, τ3) ∈ [κ≡](E1 ∪ E2, E3) ⇐⇒

(τ2, τ3) ∈ [κ≡](E2, E3) ∧ (τ1, τ2[+]τ3) ∈ [κ≡](E1, E2 ∪ E3)

with (τ1, τ2, τ3) = (σ1, σ2, σ3)≡.

As we can assume that all TESs in a triple satisfying P1 have the same domain, it
is sufficient to show that, for all Oi ⊆ Ei with i ∈ {1, 2, 3} and all t ∈ R+:

((O1, t), (O2, t)) ∈ κ(E1, E2) ∧ ((O1 +O2, t), (O3, t)) ∈ κ(E1 ∪ E2, E3)

35

Algebra of Components Chapter 2

if and only if

((O2, t), (O3, t)) ∈ κ(E2, E3) ∧ ((O1, t), (O2 +O3, t)) ∈ κ(E1, E2 ∪ E3)

which is assumed by κ. Thus, given the properties of κ, P1 holds.

Finally, we prove that if + is associative, then [+] is associative. Let σi ∈ Li and
we write σi(0) = (Oi, ti) for i ∈ {1, 2, 3}, then:

σ1[+](σ2[+]σ3) =

⟨(O1, t1)⟩ · (σ′
1[+](σ2[+]σ3) if t1 < t2, t3

⟨(O2, t2)⟩ · (σ1[+](σ′
2[+]σ3) if t2 < t1, t3

⟨(O3, t3)⟩ · (σ1[+](σ2[+]σ′
3) if t3 < t2, t1

⟨(O1 +O2, t1)⟩ · (σ′
1[+](σ′

2[+]σ3) if t1 = t2 < t3

⟨(O2 +O3, t2)⟩ · (σ1[+](σ′
2[+]σ′

3) if t2 = t3 < t1

⟨(O1 +O3, t1)⟩ · (σ′
1[+](σ2[+]σ′

3) if t1 = t3 < t2

⟨(O1 + (O2 +O3), t1)⟩ · (σ′
1[+](σ′

2[+]σ′
3) if t1 = t3 = t2

The only case that differs from (σ1[+]σ2)[+]σ3 is when t1 = t3 = t2, which gives
((O1 + O2) + O3, t1). Thus, if ((O1 + O2) + O3, t1) = (O1 + (O2 + O3), t1) for every
Oi ∈ P(Ei) with i ∈ {1, 2, 3}, then σ1[+](σ2[+]σ3) = σ1[+](σ2[+]σ3) for every σi ∈ Li

with i ∈ {1, 2, 3}.
Idempotency. If + is idempotent, then the lifting [+] is also idempotent. We

consider + to be idempotent. We show that, for all E ⊆ E and o1, o2 ∈ P(E) × R+

we have (o1, o2) ∈ κ(E,E) =⇒ o1 = o2, then for all σ, τ ∈ TES (E), (σ, τ) ∈
[κ](E,E) =⇒ σ = τ , which is a sufficient condition for ×([κ],[+]) to be idempotent.

By definition [κ](E,E) is the greatest fixed point of the function:

Φκ(E,E)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E,E) ∧ (τ1, τ2)
′ ∈ R)}

⊆ {(τ1, τ2) | τ1(0) = τ2(0) ∧ (τ ′1, τ
′
2) ∈ R}

Therefore, we conclude that [κ](E,E) ⊆ {(σ, σ) | σ ∈ TES (E)}.

The conditions exposed in Lemma 10 are applicable for the case of the join product,
as shown in Theorem 1.

Theorem 1. The product ▷◁ of Example 7 is commutative, associative, and idempo-
tent.

36

Chapter 2 Algebra of Components

Proof. Commutativity and idempotency of ▷◁ are following from κsync being symmetric
and satisfying the condition for idempotency.

Assume that ((O1, t), (O2, t)) ∈ κsync(E1, E2)∧ ((O1 ∪O2, t), (O3, t)) ∈ κsync(E1 ∪
E2, E3) holds, then O1 ∩ E2 = O2 ∩ E1 ∧ (O1 ∪O2) ∩ E3 = O3 ∩ (E1 ∪ E2) is true by
definition of κsync .

We first observe that (O1 ∪ O2) ∩ E3 ∩ E2 = O3 ∩ (E1 ∪ E2) ∩ E2 implies that
O2 ∩ E3 = O3 ∩ E2. Then, (O1 ∪ O2) ∩ E3 ∩ E1 = O3 ∩ (E1 ∪ E2) ∩ E1 implies that
O1 ∩ E3 = O3 ∩ E1, using O1 ∩ E2 = O2 ∩ E1 we conclude that O1 ∩ (E1 ∪ E3) =

(O2 ∪O3) ∩ E1.
Thus, we showed that

((O1, t), (O2, t)) ∈ κsync(E1, E2) ∧ ((O1 ∪O2, t), (O3, t)) ∈ κsync(E1 ∪ E2, E3)

if and only if

((O2, t), (O3, t)) ∈ κsync(E2, E3) ∧ ((O1, t), (O2 ∪O3, t)) ∈ κsync(E1, E2 ∪ E3)

for all Oi ⊆ Ei and t ∈ R+. Finally, by definition, κsync is such that, for all O1 ⊆ E1

and O2 ⊆ E2:

1. ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) and t1 < t2 if and only if ((O1, t1), (∅, t1)) ∈
κsync(E1, E2); and

2. ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) and t2 < t1 if and only if ((∅, t2), (O2, t2)) ∈
κsync(E1, E2).

Given that ∪ is associative and O ∪ ∅ = O for all O, we conclude that ▷◁ is
associative.

We give in Lemma 11 some conditions for two products to distribute, and in
Lemma 12 some conditions to extend the underlying relation on observables for a
synchronous composability relation.

Lemma 11. Let C1, C2, and C3 be three components, and let κ1 and κ2 be two
composability relations on observables such that for all σ1, σ2, σ3 ∈ L1 × L2 × L3:

• (σ1, σ2[∪]σ3) ∈ [κ1] if and only if (σ1, σ2) ∈ [κ1] and (σ1, σ3) ∈ [κ1], and

• for all τ1 ∈ L1, (τ1[∪]σ2, σ1[∪]σ3) ∈ [κ2] if and only if (σ2, σ3) ∈ [κ2] and σ1 = τ1.

37

Algebra of Components Chapter 2

Then,
C1 ×[κ1] (C2 ×[κ2] C3) = (C1 ×[κ1] C2)×[κ2] (C1 ×[κ1] C3)

Proof. Let L be the behavior of component (C1×[κ1]C2)×[κ2] (C1×[κ1]C3), L′ be the
behavior of C1×[κ1] (C2×[κ2]C3), L12 be the behavior of (C1×[κ1]C2) and L13 be the
behavior of (C1 ×[κ1] C3). Then,

L ={σ1[∪](σ2[∪]σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3,

(σ1, σ2[∪]σ3) ∈ [κ1], (σ2, σ3) ∈ [κ2]}

={σ1[∪](σ2[∪]σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3,

(σ1, σ2) ∈ [κ1], (σ1, σ3) ∈ [κ1], (σ2, σ3) ∈ [κ2]}

={σ[∪]τ | σ ∈ L12, τ ∈ L13, (σ, τ) ∈ [κ2]}

=L′

Lemma 12. Let C1 = (E1, L1) and C2 = (E2, L2) be two components. Let κsync⊓ be a
composability relation on observables with ⊓ ⊆ P(E1)×P(E2). Then, for any ⊓′ with
⊓′ ∩ (P(E1)× P(E2)) = ∅, then:

C1 ×[κsync
⊓] C2 = C1 ×[κsync

⊓∪⊓′]
C2

Proof. For any pair of composable observations ((O1, t1), (O2, t2)) ∈ κsync⊓ , we have
that ((O1, t1), (O2, t2)) ∈ κsync⊓∪⊓′ since (O1, O2) ∈ ⊓ implies that (O1, O2) ∈ ⊓ ∪ ⊓′.
Conversely, if (O1, O2) ∈ ⊓∪⊓′ and ⊓′∩P(E1)×P(E2) = ∅, then (O1, O2) ∈ ⊓. Thus,
for any (σ1, σ2), (σ1, σ2) ∈ [κsync⊓] if and only if (σ1, σ2) ∈ [κsync⊓∪⊓′].

2.1.5 Properties of TESs

We distinguish two kinds of properties of TESs: properties that we call trace properties,
and properties on sets of TESs that we call behavior properties, which correspond
to hyper-properties in [28]. The generality of our model permits to interchangeably
construct a component from a property and extract a property from a component.
As illustrated in Example 16, when composed with a set of interacting components, a
component property constrains the components to only expose desired behavior (i.e.,
behavior in the property). In Section 2.1.6, we provide more intuition for the practical
relevance of these properties.

38

Chapter 2 Algebra of Components

Definition 16. A trace property P is a subset P ⊆ TES (E) for some set of events E.
A component C = (E,L) satisfies a property P , if L ⊆ P , which we denote as C |= P .

Example 15. We distinguish the usual safety and liveness properties [2, 28], and
recall that every trace property can be written as the intersection of a safety and a
liveness property. Let X be an arbitrary set, and P be a subset of N → X. Intuitively,
P is safe if every bad stream not in P has a finite prefix every completion of which is
bad, hence not in P . A property P is a liveness property if every finite sequence in X∗

can be completed to yield an infinite sequence in P , where X∗ is the set of all finite
sequences of elements in X. For instance, the property of terminating behavior for a
component with interface E is a liveness property, defined as:

Pfinite(E) = {σ ∈ TES (E) | ∃n ∈ N.∀i > n. pr1(σ)(i) = ∅}

Pfinite(E) says that, for every finite prefix of any stream in TES (E), there exists a
completion of that prefix with an infinite sequence of silent observations ∅ in Pfinite(E).
■

Definition 17. A trace property is similar to a component, since it describes a set of
TESs, except that it is a priori not restricted to any interface 9. A trace property P
can then be turned into a component, by constructing the smallest interface EP such
that, for all σ ∈ P , and i ∈ N, pr1(σ)(i) ⊆ EP . The component CP = (EP , P) is then
the componentized-version of property P . ■

Lemma 13. Given a property P over E, its componentized-version CP (see Defini-
tion 17) and a component C = (E,L), then C |= P if and only if C ∩ CP = C.

Proof. We recall the definition of the intersection in Definition 12. For any two com-
ponents C1 = (E1, L1) and C2 = (E2, L2), the intersection C1 ∩ C2 is the component
C1 ×([κsync],[∩]) C2 = (E1 ∪ E2, L). Given that ∩ satisfies the condition for using
Lemma 10, the product ∩ is idempotent. Let C ∩ CP = (E,L′). If (σ, τ) ∈ L′ then
σ = τ . Thus, L′ ⊆ L ∩ LP .

Alternatively, let σ ∈ L ∩ LP . We observe that at any point n ∈ N, we have
(σ(n), σ(n)) ∈ κsync(E,E). Therefore, (σ, σ) ∈ [κsync⊓].

We conclude that L ∩ LP = L′.

9In our formalism, a property is a set of TESs L ⊆ TES(E) for some E ⊆ E. Two properties P
and L are equal if they contain identical TESs, and equality is not subject to the interface over which
properties are defined.

39

Algebra of Components Chapter 2

Example 16. We use the term coordination property to refer to a property used in
order to coordinate behaviors. Given a set of n components Ci = (Ei, Li), i ∈ {1, ..., n},
a coordination property Coord for the composed components is a property over events
E = E1 ∪ ... ∪ En, i.e., Coord ⊆ TES (E).

Consider the synchronous interaction, as introduced in Example 4, of the n com-
ponents and let C = C1 ▷◁ C2 ▷◁ ... ▷◁ Cn be their synchronous product. Typically, a
coordination property will not necessarily be satisfied by the composite component C,
but some of the behavior of C is contained in the coordination property. The coordina-
tion problem is to find (e.g., synthesize) an orchestrator component Orch = (EO, LO)

such that C ▷◁ Orch |= Coord . The orchestrator restricts the component C to ex-
hibit only the subset of its behavior that satisfies the coordination property. In other
words, in their composition, Orch coordinates C to satisfy Coord . As introduced in
Definition 17, since Coord ranges over the same set E that is the interface of compo-
nent C1 ▷◁ C2 ▷◁ ... ▷◁ Cn, a coordination property can be turned into an orchestrator
by building its corresponding component. The coordination problem can be made even
more general by changing the composability relations or the composition functions used
in the construction of C. ■

Trace properties are not sufficient to fully capture the scope of interesting properties
of components of cyber-physical systems. Some of their limitations are highlighted in
Section 2.1.6. To address this issue, we introduce behavior properties, which are strictly
more expressive than trace properties, and give two illustrative examples.

Definition 18. A behavior property ϕ over a set of events E is a hyper-property
ϕ ⊆ P(TES (E)). A component C = (E,L) satisfies a hyper-property ϕ if L ∈ ϕ,
which we denote as C ||= ϕ.

Example 17. A component C = (E,L) can be oblivious to time. Any sequence of
time-stamps for an acceptable sequence of observables is acceptable in the behavior of
such a component. This “obliviousness to time" property is not a trace property, but a
hyper-property, defined as:

ϕshift(E) := {Q ⊆ TES (E) | ∀σ ∈ Q.∀t ∈ OS(R+).∃τ ∈ Q.

pr1(σ) = pr1(τ) ∧ pr2(τ) = t}

Intuitively, if C ||= ϕshift(E), then C is independent of time. ■

Example 18. We use ϕinsert(X,E) to denote the hyper-property that allows for ar-
bitrary insertion of observations in X ⊆ P(E) into every TES at any point in time,

40

Chapter 2 Algebra of Components

i.e., the set defined as:

{Q ⊆ TES (E) | ∀σ ∈ Q.∀i ∈ N.∃τ ∈ Q.∃x ∈ X.

(∀j < i.σ(j) = τ(j))∧

(∃t ∈ R+.τ(i) = (x, t))∧

(∀j ≥ i.τ(j + 1) = σ(j))}

Intuitively, elements of ϕinsert(X,E) are closed under insertion of an observation x ∈
X at an arbitrary time. ■

2.1.6 Components of the running example

This section is inspired by the work on soft-agents [84, 50], and elaborates on the
more intuitive version that we presented in Section 1.3. Interactive cyber-physical
systems are represented as components, and behavioral properties of those systems
are formulated as components, as well. Through these examples, we show how we use
component-based descriptions to model a simple scenario of a robot roaming around
in a field while taking energy from its battery. We structurally separate the battery,
the robot, and the field as independent components, and we explicitly model their
interaction in a specific composed system.

Example 19 (Roaming robots). We capture, as a component, sequences of observa-
tions emerging from discrete actions of a robot at a fixed time rate. For simplicity, we
consider that the robot can perform actions of two types only: a move in a cardinal
direction, and a read of its position sensor. A move action of robot i creates an event
of the form d(i , p) where d is the direction, and p is the power displayed by the robot.
The read action of robot i generates an event of the form read(i , (x ; y)) where (x; y)

is a coordinate location.
Formally, we write R(i, T, P) = (ER(i, P), LR(T)) for the robot component with

identifier i with ER(i, P) the set

{S(i, p),W (i, p), N(i, p), E(i, p), read(i, (x; y)) | x, y ∈ J−20, 20K, p ≤ P}

and LR(T) ⊆ TES (ER(i, P)) be such that all observations are time stamped with a
multiple of the period T ∈ R+, i.e., for all σ ∈ LR(T), if (O, t) ∈ σ then there
exists k ∈ N such that t = k · T . The component R(i, T) therefore captures all robots
whose directions are restricted to S(outh), W(est), N(orth), and E(ast), whose power

41

Algebra of Components Chapter 2

Table 2.1: Three prefixes of timed-event streams for R(1, T, P), R(2, T, P), and R(3, T, P),
where T and P are fixed, and each move action consumes the same power p.

t/T σ : R(1, T, P) τ : R(2, T, P) δ : R(3, T, P)
1 {N(1, p)} − −
2 {W (1, p)} − −
3 {W (1, p)} {N(2, p)} {E(3, p)}
4 {S(1, p)} {W (2, p)} {E(3, p)}
... −

is limited to P , and whose location values are integers in the interval J−20, 20K. The
robot stops whenever p = 0.

In Table 2.1, we display the prefix of one TES from the behavior of three robot
components. Note that each line corresponds to a time instant, for which each robot
may or may not have observed events. The symbol ‘−’ represents no observable, while
otherwise we show the set of events observed. The time column is factorized by the
period T , shared by all robots. Thus, at time 3 · T , robot R(1, T, P) moves west, while
robot R(2, T, P) moves north, and robot R(3, T, P) moves east, all with power p. We
use R(i) to denote the robot R(i, T, P) with a fixed by arbitrary period T and upper
power P . ■

In the robot component of Example 19, observations occur at a fixed frequency.
For some physical components, however, observations may occur at any point in time.
For instance, consider the field on which the robot moves. Each time a robot moves
may induce a change in the field’s state, and the field’s state may be observable at
any time and frequency. Internally, the field may record its state changes by a contin-
uous function, while restricting the possibilities of the robots to move due to physical
limitations. We describe the field on which the robot moves as a component, and we
specify, in Example 22, how robot components interact with the field component.

Example 20 (Field). The field component captures, in its behavior, the dynamics of
its state as a sequence of observations. The collection of objects on a field is given
by the set I. The state of a field is a triple (((x; y)i)i∈I , (

−→vi)i∈I , t) that describes, at
time t ∈ R+, the position (x; y)i and the velocity −→vi of each object in I. We model
each object in I by a square of dimension 1 by 1, and the coordinate (x; y)i represents
the central position of the square. We use µ = (((x0, y0)i)i∈I , (

−→v0i)i∈I , t0) as an initial
state for the field, which gives for each robot in i ∈ I a position and an initial velocity.
Note that static obstacles on the field can be modeled as objects i ∈ I with position
(x; y)i and zero velocity.

42

Chapter 2 Algebra of Components

Formally, the field component is the pair Fµ(I) = (EF (I), LF (I, µ)) with

EF (I) = {(x; y)i,move(i ,−→v) | i ∈ I , x , y ∈ R, −→v ∈ R× R}

where each event move(i ,−→v) continuously moves object i with velocity −→v , and event
(x; y)i displays the location of object i on the field.

The set LF (I, µ) ⊆ TES (EF (I)) captures all sequences of observations that con-
sistently sample trajectories of each objects in I, according to the change of state of
the field and the internal constraint. As a physical constraint, we impose that no
two objects can overlap, i.e., for any disjoint i, j ∈ I and for all time t ∈ R+, with
(x; y)i and (u; v)j their respective positions, then [x− 0.5, x+0.5]∩ [u− 0.5, u+0.5] =

[y−0.5, y+0.5]∩[v−0.5, v+0.5] = ∅. Even though the mechanism for such a constraint
is hidden in the field component, typically, the move of a robot is eventually limited by
the physics of the field. We write F (I) when µ is fixed but arbitrary. ■

There is a fundamental difference between the robot component in Example 19 and
the field component in Example 20. The robot component has an adequate underlying
sampling frequency which prevents missing any event if observations are made by
that frequency. However, the field has no such frequency for its observations, which
means that there may be another intermediate observation occurring between any
two observations. In [62], we capture, as a behavioral property, the property for a
component to interleave observations between any two observation.

Example 21 (Protocol). As shown in Example 20, physics may impose some con-
straints that force robots to coordinate. A protocol is a component that, for instance,
coordinates the synchronous movement of a pair of robots. For example, when two
robots face each other on the field, the swap(i, j) protocol moves robot R(i, P, T) north,
west, and then south, as it moves robot R(j, P, T) east. Note that the protocol requires
the completion of a sequence of moves to succeed. Another robot could be in the way,
and therefore delay the last observables of the sequence. The swap component is defined
by swap(i, j) = (EP (i, j), LP (i, j)) where EP (i, j) = ER(i, P) ∪ ER(j, P) and LP (i, j)

captures all sequences of observations where the two robots i and j swap positions. ■

A useful interaction signature Σ is the one that synchronizes shared events between
two components. We write Σsync = (Rsync ,∪) for such interaction signature, and
give its specification in Example 4. The synchronous interaction signature Σsync =

(Rsync ,∪) leads to the product ×Σsync that forces two components to observe shared
events at the same time. We write ▷◁ for such product. As a result, R(1, P, T) ▷◁

43

Algebra of Components Chapter 2

Table 2.2: Three prefixes of timed-event streams for R(1, T, P), R(2, T, P), and R(3, T, P),
together with the prefix resulting from forming their synchronous product with the swap
protocol. Initially, µ(1) = (0; 2), µ(2) = (0; 1), µ(3) = (0; 0).

t/T η : R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T) ▷◁ swap(2, 3)
1 {N(1, p)}
2 {W (1, p)}
3 {W (1, p), N(2, p)}
4 {S(1, p),W (2, p), E(3, p)}
5 {S(2, p)}
... ...

R(2, P, T) ▷◁ R(3, P, T) ▷◁ swap(2, 3) captures all sequences of moves for the robots
constrained by the swap protocol, as shown by the elements of table 2.2.

Example 22 (Field-Robot signature). The interactions occurring between the field
and the robot components impose simultaneity on some disjoint events. For instance,
every observation of the robot containing the event d(i, p) ∈ ER(i, P) must occur at the
same time as an observation of the field containing the event move(i ,

−−−−→
v(d, p)) ∈ EF (I)

with
−−−−→
v(d, p) returning the velocity as a function of direction d and power p. Also, every

observation containing the event read(i , (⌊x⌋, ⌊y⌋)) ∈ ER(i ,P) must occur at the same
time as an event (x; y)i ∈ EF (I) where ⌊z⌋ gives the integer part of z.

Formally, we capture such interaction in the interaction signature ΣRF = (RRF ,∪),
where RRF is the smallest symmetric relation defined as for all (τ, σ) ∈ RRF , for all
t ∈ R+, for all i ∈ N,

read(i , (n,m)) ∈ τ(t) ⇐⇒ (∃(x ; y)i ∈ σ(t) ∧ n = ⌊x⌋ ∧m = ⌊y⌋)

and d(i , p) ∈ τ(t) ⇐⇒ move(i ,
−−−−→
v(d, p)) ∈ σ(t) with d ∈ {N,W,E, S}.

As a result, the product (R(1, T, P) ▷◁ R(2, T, P) ▷◁ R(3, T, P))×ΣRF
Fµ(I) captures

all sequences of observations for the three robots constrained by the field component.
■

Remark 3. The floor part ⌊·⌋ acts as an approximation of the robot sensor on the
field’s position value. A different interaction signature may, for instance, introduce
some errors in the reading.

The interaction signature may also impose that d(i, p) relates to the speed (0, 1/T),
(0,−1/T), (−1/T, 0), and (1/T, 0) when d = N , d = S, d = W , and d = E, respec-
tively. Then, for a time interval T , the power p moves the robot by one unit on the
field.

44

Chapter 2 Algebra of Components

Remark 4. In practice, it is unlikely that two observations happen at exactly at the
same time. However, in our framework, the time of an observation is an abstraction
that requires every event of the observation to occur after the events of the previous
observation, and before the events of the next observation.

Example 23 (Battery). A battery component with capacity C in mAH is a pair
B = (EB(C), LB(C)) with events read(l) ∈ EB(C) for 0% ≤ l ≤ 100%, charge(µ) ∈
EB(C), and discharge(µ) ∈ EB(C) with µ a (dis)charging coefficient in % per seconds.
The battery displays its capacity with the event capacity(C). The behavior LB is a set
of sequences σ ∈ LB such that there exists a piecewise linear function f : R+ → P(EB)

with, for σ(i) = (Oi, ti),

• for σ(0) = (O0, t0), f([0; t0]) = 100%, i.e., the battery is initially fully charged;

• if Oi = {read(l)}, then f(ti) = l and the derivation f ′[ti−1,ti+1]
of f is constant

in [ti−1, ti+1], i.e., the observation does not change the slope of f at time ti;

• if Oi = {discharge(µ)}, then f[ti,ti+1](t) = max(f(ti)− (t− ti)µ, 0);

• if Oi = {charge(µ)}, then f[ti,ti+1](t) = min(f(ti) + (t− ti)µ, 100);

where f[t1;t2] is the restriction of function f on the interval [t1; t2]. There is a priori no
restrictions on the time interval between two observations, as long as the sequence of
timestamps is increasing and non-Zeno. Finally, we use Bi for a battery whose events
are identified by the natural number i. Then, for B = (EB(C), LB(C)), we have
Bi = (EBi

(C), LBi
(C)) with e ∈ EB(C) if and only if the corresponding identified

event ei ∈ EBi
(C), e.g. read i(l) ∈ EBi

(C) for all read(l) ∈ EB(C). The set of TESs
LBi

(C) is obtained by replacing in every TESs in LB(C) the corresponding identified
event in EBi

(C). □

Example 24. We define ΣRB = ([κRB],∪) where ∪ unions two TESs as defined in
the preliminaries, and [κRB] specifies co-inductively (see [62] for details of the con-
struction), from a relation on observations κRB, how event occurrences relate in the
robot and the battery components of capacity C. More specifically, κRB is the smallest
symmetric relation over observations such that ((O1, t1), (O2, t2)) ∈ κRB implies that
t1 = t2 and

• the discharge event in the battery coincides with a move of the robot, i.e., d(i, p) ∈
O1 if and only if discharge(µ) ∈ O2. Moreover, the interaction signature imposes
a relation between the discharge coefficient µ and the required power p, i.e.,
µ = p/C;

45

Algebra of Components Chapter 2

• the read value of the robot sensor coincides with a value from the battery compo-
nent, i.e., read(i, l) ∈ O1 if and only if read(l) ∈ O2;

• the robot reads the capacity value that corresponds to the battery capacity, i.e.,
getCapacity(i,c) ∈ O1 if and only if capacity(c) ∈ O2.

The product B×ΣRB
R(i, P, T) of a robot and a battery component, under the interac-

tion signature ΣRB, restricts the behavior of the battery to match the periodic behavior
of the robot, and restricts the behavior of the robot to match the sensor values delivered
by the battery.
As a result, the behavior of the product component B ×ΣRB

R(i, P, T) contains all
observations that the robot performs in interaction with its battery. Note that trace
properties, such as all energy sensor values observed by the robot are within a safety
interval, does not necessarily entail safety of the system: some unobserved energy val-
ues may fall outside of the safety interval. Moreover, the frequency by which the robot
samples may reveal some new observations, and such robot can safely sample at pe-
riod T if, for any period T ′ ≤ T , the product B ×ΣRB

R(i, P, T ′) satisfies the safety
property.
In case of a battery Bj with identifier j and a robot R(i) with identifier i, we use
ΣRiBj for the interactio signature that synchronizes, as described above, occurrences
of events of the battery Bj with occurrences of events of the robot R(i). □

Behavioral properties of components

Consider the system

S(n, T1, ..., Tn) = ▷◁i∈{1,...,n} (R(i, Ti)×ΣRiBi
Bi)×ΣRF

F ({1, ..., n}) (2.1)

made of n robots R(i, Ti), each interacting with a private battery Bi under the inter-
action signatures ΣRiBi

, and in product with a field F under the interaction signature
ΣRF . We use ▷◁ for the product with the free interaction signature (i.e., every pair
of TESs is composable), and the notation ▷◁i∈{1,...,n} {Ci} for C1 ▷◁ ... ▷◁ Cn as ▷◁ is
commutative and associative.

We fix n = 2 in Equation (2.1) and the same period T for the two robots. We write
E for the set of events of the composite system S(2, T). We formulate the scenarios
described in Section 1.3 in terms of a satisfaction problem involving a safety property
on TESs and a behavioral property on the composite system. We first consider two

46

Chapter 2 Algebra of Components

safety properties:

Penergy = {σ ∈ TES (E) | ∀i ∈ N.{read1(0), read2(0)} ⊈ pr1(σ)(i)}

which models that the two batteries don’t display simultaneously that their level is
empty; and Pno−overlap which is the set

{σ ∈ TES (E) | ∀i ∈ N.∀(x, y) ∈ [0, 20]2, {(x, y)1, (x, y)2} ⊈ pr1(σ)(i)}

that captures all behaviors where the two robots are never observed together at the
same location.

Observe that, while both Penergy and Pno−overlap specify some safety properties,
they are not sufficient to ensure the safety of the system. We illustrate some scenarios
with the property Penergy . If a component never reads its battery level, then the
property Penergy is trivially satisfied, although effectively the battery may run out of
energy. Also, if a component reads its battery level periodically, each of its readings
may return an observation agreeing with the property. However, in between two read
events, the battery may run out of energy (and somehow recharge). To circumvent
those unsafe scenarios, we add an additional behavioral property.

Let Xread = {read(l1)1, read(l2) | 0 ≤ l1 ≤ C1, 0 ≤ l2 ≤ C2} be the set of reading
events for battery components B1 and B2, with capacities C1 and C2 respectively. The
property ϕinsert(Xread , E), as detailed in Example 18, defines a class of component
behaviors that are closed under insertion of read events for the battery component.
Therefore, the system S(2, T) is energy safe if S(2, T) |= Penergy and its behavior is
closed under insertion of battery read events, i.e., S(2, T) ||= ϕinsert(Xread , E). In
that case, every TES of the component’s behavior is part of a set that is closed under
insertion, which means all read events that the robot may do in between two events
observe a battery level greater than 0Wh. The behavior property enforces the following
safety principle: had there been a violating behavior (i.e., a run where the battery has
no energy), then an underlying TES would have observed it, and hence the behavioral
property would have been violated.

Another scenario for the two robots is to consider their coordination in order to
have them exchange their positions. Let F be initialized to have robot R1 at position
(0, 0) and robot R2 at position (5, 0). The property of exchanging position is a liveness

47

Division and conformance Chapter 2

property defined as:

Pexch = {σ ∈ TES (E) |{(0, 0)1, (5, 0)2} ⊆ pr1(σ)(0) and

∃i ∈ N.{(5, 0)1, (0, 0)2} ⊆ pr1(σ)(i)}

where (x, y)i is the position of robot i on the field. It is sufficient for a liveness property
to be satisfied for the system to be live, i.e., in the case of Pexch being satisfied, the
two robots eventually exchanged position. However, it may be that the two robots
exchange their positions before the actual observation happens. In that case, using a
similar behavioral property as for safety property will make sure that if there exists
a behavior where robots exchange their positions, then such behavior is observed as
soon as it happens.

2.2 Division and conformance

Composition is the act of assembling components to form complex systems. This prop-
erty is particularly desirable if the underlying parts have different type of specifications
(e.g., continuous or discrete), but still need to communicate and interact. Our work in
Section 2.1 presents a component model that captures both discrete and continuous
changes, for which timed-event streams (TESs) are instances of a component behav-
ior. An observation is a set of events with a unique time stamp. A component has
an interface that defines which events are observable, and a behavior that denotes all
possible sequences of its observations (i.e., a set of TESs). The precise machinery that
generates such component is abstracted away. Instead, we present interaction between
components as an algebra on components, and we give a wide variety of user defined
operations.

Decomposition is dual to composition, as it simplifies a component behavior by
removing some of its parts. Decomposition is interesting in two ways: it gives insight
on whether a system is composite of a specific component, and it returns a subsystem
that, in composition with that component, would give back the initial system. De-
composition is not unique, and may induce a cost or a measure, i.e., a component A
may be seen as a product B×C or B×D with C ̸= D. While the qualitative behavior
may not change, i.e., the set of sequences of observations stays the same, the substitu-
tion of a component with another may somehow improve the overall system, e.g., by
enhancing its efficiency. For instance, running time is often omitted when specifying
systems whose behavior is oblivious to time itself. However, in practice, the time that

48

Chapter 2 Division and conformance

a program takes to process its inputs matters. Thus, a component may be substituted
with a component exposing the same behavior but running faster. Other criteria such
as the size of the implementation, the cost of the production, procurement, mainte-
nance, etc., may be considered in changing one component for another. In this paper,
we also consider an orthogonal concern: the cost of coordination. Intuitively, the cost
of coordination captures the fact that events of two components are tightly related.
For example, if two events are related, the occurrence of an event in one component
implies the occurrence of some events in another component. While such constraints
are declarative in our model, their implementation may be costly. Thus, the relation
between observable events of two components may increase the underlying cost to con-
currently execute those two components. Finally, having operation to study system
decomposition brings alternative perspective on fault detections and diagnosis [50].

Formally, we extend our algebra of components [62] with a new type of operator: a
division operation. Division intuitively models decomposition, and acts as an inverse
composition operation. Practically, the division of component A by component B
returns one component C from all the components D such that A = B×D. Different
cost models give rise to different operations of division. We abstractly reason about
cost using a partially ordered set of components and show that, for some orders, the
set of candidates naturally gives rise to a maximal (minimal) element.

As a running example, we consider a set of robots moving continuously on a shared
field. We use the operation of division to specify desirable updates that would prevent
robots from interfering with other robots. We also apply division to find simpler
components that, if used, would still preserve the entire system behavior. We finally
specify the necessary coordination for the robots to self sort on the field.

2.2.1 Divisibility and quotients

Consider two components B and C, and a product × over components, modelling
the interaction constraints on B and C. Then, the composite expression A = C × B

captures, as a component, the concurrent observation of components C and B under
the interaction modelled by ×. Consider a component D such that C × B = D × B.
If D is different from C, then the equality states that the result of D interacting with
B is the same as C interacting with B. Consequently, in this context, component C
can be replaced by component D while preserving the global behavior of A.

In general, a component D that can substitute for C is not unique. The set
of alternatives for D depends, moreover, on the product ×, on the component B,

49

Division and conformance Chapter 2

and on the behavior of A. A ‘goodness’ measure may induce an order on this set
of components, and eventually give rise to a best substitution. More generally, the
problem is to characterize, given two components A and B and an interaction product
×, the set of all C such that A = C ×B.

The divisibility of a component A by a component B under product × captures
the possibility to write A as a product of B with another component.

Definition 19 (Right (left) divisibility). A component A is right (respectively, left)
divisible by B under the product × if there exists a component C such that B×C = A

(respectively, C ×B = A).

A is divisible by B under × when A is both left and right divisible by B under
×. Intuitively, the set of witnesses for divisibility, contains all the components that, if
taken in a product (under the same interaction signature) with the divisor, yield the
dividend. Such witnesses are called quotients.

Definition 20 (Right (left) quotients). The right (respectively, left) quotients of A
by B under the product ×Σ, written A/∗ΣB (respectively, A \∗Σ B), is the set {C |
B ×Σ C = A} (respectively, {C | C ×Σ B = A}).

If ×Σ is commutative, then A/∗ΣB = A\∗ΣB, in which case we write Σ

A

B
∗. We define

left (right) division operators that pick, given a choice function10, the best element
from their respective sets of quotients as their quotients.

Example 25. Consider a robot that performs 5 moves, and then stops. Each move
consumes some energy, and the robot therefore requires sufficient amount of energy to
achieve its moves. The product of a robot C with its battery B under the interaction
signature Σ is given by the expression A = C ×Σ B, where Σ synchronizes a move
of robot C with battery B. Note that different batteries behave differently. The set of
batteries that would lead to the same behavior is given by the quotients of A by B.

Definition 21 (Right (left) division). Let A be divisible by B under ×Σ. The right
(respectively, left) quotient of A divided by B, under the product ×Σ and the choice
function χ over the right (respectively, left) quotients, is the element χ(A/∗ΣB) (respec-
tively, χ(A \∗Σ B)). We write A/χΣB (respectively, A \χΣ B) to represent the quotient.

Example 26. It is usual (e.g., [92]) to consider the greatest common divisor when
forming the product of cyber-physical components, so that no observation is missed.

10We assume the axiom of choice [86] and the existence of a function χ that picks an element from
a set.

50

Chapter 2 Division and conformance

Our operation of division, however, gives an alternative perspective. Let C(H) be a
component whose observations have time stamps that are natural multiples of H ∈ R+.
Then, let A = C(H1) ×Σ C(H2). The set of components {C(H) | A = C(H1) ×Σ

C(H), H ∈ R+} contains all the quotients of A divisible by C(H1). The selection of
the component with the lowest period H would be one choice function for the division
of A by C(H) under Σ. When Σ enforces events from C(H1) and C(H) to occur
simultaneously, the product ×Σ projects observation on a common multiple period, and
the division returns one component with H as period and whose natural multiplers
correspond to the greatest common divisor between integer multiplier in C(H1) and
C(H2).

If ×Σ is commutative, then A/χΣB = A \χΣ B, in which case we denote the division

as Σ

A

B
χ.

Example 27 (Lowest element). One measure to order the set of quotients is to find
a component that is contained in all the other component behaviors. Indeed, every
quotient has the property that, in composition with the divisor, the resulting component
equals the dividend. Then, finding a quotient that is contained in all other quotients
may be optimal in terms of behavior complexity.

Let C, the set of right (left) quotients for A divisible by B for product ×, is equipped
with an ordering such that the lowest element is an element of C, then a function that
picks the lowest element can act as a choice function to define the result of the division
of A by B. ■

One may consider ≤ as a natural ordering on quotients. However, the set of quo-
tients equipped with the containment relation may not have a lowest element. One
such example is shown in Table 2.3. Consider A, B, C, and D with {0, 1, 2}, {0, 1},
{0, 2}, and {1, 2} as interface, respectively. Using the synchronous composition oper-
ation, the TESs τ and η compose with the TES δ to give the TES σ. However, C
and D require synchronization on their shared event to compose with B. A smaller
component than C and D would be a component F , whose interface is the singleton
set containing event 2. However, such component has no shared event with B, and
may therefore freely interleave its observations, which does not correspond with ob-
servations in A. Thus, F is not an element of the quotients, and C and D have no
lower bound in the set of quotients.

We show in the next theorem that a subset of quotients with a shared interface
has a lower bound. We discuss how the choice of an interface for a quotient may be
guided by some qualitative design choices.

51

Division and conformance Chapter 2

Table 2.3: Counter example for a lowest element in the division of A by B, with C and D
two quotients.

σ : A τ : B δ : C η : D
t1 {0, 1, 2} {0, 1} {0, 2} {1, 2}
t2 {0, 1, 2} {0, 1} {0, 2} {1, 2}
t3 {0, 1, 2} {0, 1} {0, 2} {1, 2}
...

Theorem 2. Let ≤ be the containment relation introduced in Definition 3. Let ×Σ

be a commutative, associative, and idempotent product on components, and such that
for any two components C and D with the same interface, C ×Σ D ≤ C. Given A

divisible by B under ×Σ, any finite subset of quotients sharing the same interface E
has a lower bound that is itself a quotient in A/∗ΣB.

Proof. Let C(E) be a finite subset of the set {C | C has interface E and C ∈ A/∗ΣB}.
We also write ×ΣC(E) for the product of all components in C(E).

For any C ∈ C(E), we have
×ΣC(E) ≤ C

which makes ×ΣC(E) a lower bound for C(E).
Given associativity, commutativity, and idempotency of ×Σ, for any C1, C2 ∈ C(E):

A = B ×Σ C1

A = B ×Σ C2

A×Σ A = A = (B ×Σ C1)×Σ (B ×Σ C2)

A = B ×Σ (C1 ×Σ C2)

which, applied over the set C(E), gives A = B ×Σ (×ΣC(E)). Thus, ×ΣC(E) ∈ C(E).
11

When conditions of Theorem 2 are satisfied, we write A/≤,E
Σ B for the lower bound

of the set of quotients with interface E.

Remark 5. The operation of division defined by Theorem 2 raises several points
for discussion. First, the set of quotients sharing the same interface is structured.
Indeed, when the interface is fixed, each finite subset of quotients has a lowest element

11Strictly speaking, closure under finite product does not necessarily imply closure under infinite
product. We leave investigating the conditions under which closure under infinite product holds, for
future work.

52

Chapter 2 Division and conformance

under ≤, which makes the definition of a division operator possible. Second, the fact
that there is, in general, no minimal element over the set of all quotients reveals the
important role that interfaces play in system decomposition. In other words, one may
consider another measure to choose a quotient interface, that is orthogonal to behavior
containment (see Section 2.2.4 for a discussion about the cost of coordination).

We use 1 to denote the component (∅,TES (∅)), and 0 to denote the component
(∅, ∅), that has the empty interface and no behavior.

A component A = (EA, LA) is closed under insertion of silent observations if, for
any σ ∈ LA, and for any silent observation (∅, t) with t ∈ R+, and given i ∈ N such
that σ(i) = (O, t1) and σ(i + 1) = (O′, t2) with t1 < t < t2, then there exists η ∈ LA

such that σ(k) = η(k) for all k ≤ i, σ(i + 1) = (∅, t), and σ(k + 2) = η(k + 1) for all
k > i.

In order to reason about components algebraically, we want some properties to
hold. For instance, that a component is divisible by itself and the set of quotients
contains the unit element.

Lemma 14. Let A be a component closed under insertion of silent observations, and
Σsync the synchronous interaction signature introduced in Example 4. Then, 1 ∈
A/∗Σsync

A.

Proof. For any element σ : A, and for any τ : 1, we have (σ, τ) ∈ R and σ[∪]τ : A.
Moreover, for any σ : A, there exists τ : 1 such that (σ, τ) ∈ R and σ[∪]τ = σ. Then,
1 is in the set of quotients of A by A.

Remark 6. Note that Lemma 14 assumes components to be closed under insertion of
silent observations. The reason, as shown in the proof, comes from the product of 1
with a component A that may insert silent observations at arbitrary points in time. A
consequence of Lemma 14 is the existence of a choice function that can pick, from the
set of quotients, the unit component for the division of A by A.

Example 28. Let (R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T)) ×ΣRF
Fµ(I) be the product

of three robot components and a field component with I = {1, 2, 3}. Consider the
component P = (E,L) with E = {read((n,m), i), (n,m)i | n,m ∈ N} and L ⊆
TES (E).

Then, ((R(1, P, T) ▷◁ R(2, P, T) ▷◁ R(3, P, T)) ×ΣRF
Fµ(I))/

≤,E′

ΣRF
P , with E′ =

(ER(1)∪ER(2)∪ER(3)∪EF (I))\{(n,m)i | n,m ∈ N}, denotes the component that, in
composition with P , recovers the initial system. Note that the component resulting from
division ranges over the interface E′. As a consequence, all events (n,m)i have been

53

Division and conformance Chapter 2

hidden in the quotient. Note that the division exists due to the interaction signature
ΣRF that imposes simultaneity on occurrence of events read((n,m), i) and (n,m)i. ■

Lemma 15 and Lemma 16 show properties of divisability of components that are
similar arithmetic divisability: (1) n/(n/m) is divisible by m, and (2) if n is divisible
by m and m is divisible by o then n is divisible by o.

Lemma 15. Let ×Σ be commutative. Given A divisible by B under Σ and χ a choice
function on the set of quotients of A divisible by B, then B ∈ A/∗Σ(A/

χ
ΣB).

Proof. If A is divisible by B under Σ and if χ selects one quotient over the set, then
C = A/χΣB is such that A = B ×Σ C. By commutativity of ×Σ, A = C ×Σ B and
B ∈ A/∗ΣC.

Lemma 16. Let ×Σ be associative. If A is divisible by B under Σ and B is divisible
by C under Σ, then A is divisible by C under Σ.

Proof. If A is divisible by B under Σ, then there exists D such that A = B×ΣD. If B
is divisible by C under Σ, then there exists E such that B = C×ΣE. By substitution,
we have A = (C ×Σ E)×Σ D. Using associativity of ×Σ, we get A = C ×Σ (E ×Σ D)

which proves that A is divisible by C under ×Σ.

2.2.2 Conformance

The criterion for divisibility of A by B, under product ×, is the existence of a quotient
C such that B×C = A. The equality between B×C and A makes division a suitable
decomposition operator. We can define, a similar operation to describe all components
C that coordinate B in order for the result to behave in conformance with specification
A. In this case, we replace equality with the refinement relation of Definition 2.

Definition 22 (Right (left) conformance). Component B is right (respectively, left)
conformable with component A under × if there exists a non-empty component C such
that C ×B ⊑ A (respectively, B × C ⊑ A).

Definition 23 (Right (left) conformance coordinators). The right (respectively, left)
conformance coordinators that make B behave in conformance with A under ×Σ, de-
noted as A ⇂∗Σ B (respectively, A ⇃∗Σ B), is the set {C | C ×Σ B ⊑ A} (respectively,
{C | B ×Σ C ⊑ A}).

If ×Σ is commutative, then A ⇂∗Σ B = A ⇃∗Σ B, in which case we write A ↓∗Σ B.
Trivially, every component can be coordinated with the empty coordinator, i.e., the

54

Chapter 2 Division and conformance

component 0 = (∅, ∅). However, the set of coordinators having the same interface is
structured and gives ways to define non-trivial coordinators, as in Theorem 3.

Definition 24 (Right (left) coordinator). Let B be conformable with component A,
and let χ be a choice function that selects the best component out of a set of components.
The right (respectively, left) coordinator that makes B behave in conformance with A,
denoted as A ⇂χσ B (respectively, A ⇃χΣ B), is the component χ(A ⇂∗Σ B) (respectively,
χ(A ⇃∗Σ B)).

Example 29 (Greatest element). One measure to order the set of coordinators is con-
tainment. The refinement relation used to define conformance also accepts coordina-
tors that have no behavior at all, and trivially satisfies the behavior inclusion relation.
To maximize the observables of the resulting composite behavior set, corresponds to
finding the greatest coordinator under the containment relation.

More generally, if C, the set of right (left) coordinators for B conformable with A
under ×, is equipped with an ordering such that the greatest element is an element of
C, then the function that picks the greatest element can act as a choice function to
select the best conformance coordinator of B to behave as A under ×. ■

Following the result of Theorem 2, if the interface of the quotient is fixed, then
the subset of quotients that have the same interface has a least element with the
containment relation introduced in Definition 3. We show in Theorem 3 that a similar
result holds for the set of coordinators.

Theorem 3. Let ≤ be the containment relation introduced in Definition 3. Let ×(R,⊕)

be a commutative, associative, idempotent, and monotonic (as in Definition 9) product
on components. Given B conformable with A under ×(R,⊕), any finite subset of coor-
dinators sharing the same interface E has an upper bound that is itself a coordinator
in A ↓∗Σ B.

Proof. Let C(E) be a finite subset of the set {C | C has interface E and C ∈ A ↓∗(R,⊕)

B}. We define the union of two components A = (EA, LA) and B = (EB , LB), as the
component A ∪ B = (EA ∪ EB , LA ∪ LB). The union of all components in C(E) is
the component

⋃
C(E) = (E,

⋃
C∈C(E) LC) where LC is the behavior of component C.

Moreover, we have that, for any component A,B,C, with B and C sharing the same
interface E, (A ×(R,⊕) B) ∪ (A ×(R,⊕) C) = A ×(R,⊕) (B ∪ C). Indeed let L be the

55

Division and conformance Chapter 2

behavior of (A×(R,⊕) B) ∪ (A×(R,⊕) C) and S be the behavior of A×(R,⊕) (B ∪ C):

L = {σ ⊕ τ | σ ∈ LA, τ ∈ LB , (σ, τ) ∈ R(EA, E)}∪

{σ ⊕ τ | σ ∈ LA, τ ∈ LC , (σ, τ) ∈ R(EA, E)}

= {σ ⊕ τ | σ ∈ LA, τ ∈ LB ∪ LC , (σ, τ) ∈ R(EA, E)} = S

We show that
⋃
C(E) is an upper bound for the set of coordinators C(E). For any

C ∈ C(E), we have
C ⊑

⋃
C(E)

which implies that C ≤
⋃
C(E) and makes

⋃
C(E) an upper bound for C(E).

Given associativity, commutativity, and idempotency of ×(R,⊕), for any C1, C2 ∈
C(E):

B ×(R,⊕) C1 ⊑ A

B ×(R,⊕) C2 ⊑ A

(B ×(R,⊕) C1) ∪ (B ×(R,⊕) C2) ⊑ A

B ×(R,⊕) (C1 ∪ C2) ⊑ A

which, applied over the set C(E), gives B ×(R,⊕) (
⋃

C(E)) ⊑ A. Thus,
⋃

C(E) ∈
C(E).

Finding a conformance coordinator that makes B behave in conformance with A

is looser than finding a quotient for A divisible by B: any quotient of A by B under
a product ×Σ is therefore a coordinator that makes B conformable with A. Such
quotient-coordinator has the property that it “coordinates” B such that the resulting
behavior covers the whole behavior of A.

For some suitable products, Theorem 2 and Theorem 3 state the existence, respec-
tively, of a lowest element in the subsets of quotients and a largest element in the set
of coordinators that share the same interface. The synchronous product introduced in
Example 4 is one product that satisfies the requirements of each theorem.

2.2.3 Applications of Division

In this section, we consider the robot, field, and protocol components introduced in
Examples 19, 20, and 21, together with the synchronous product ▷◁ of Example 4 and
the product ×ΣRF

of Example 22. Both products are commutative (Lemma 1 in [62]),

56

Chapter 2 Division and conformance

and we therefore omit the right and left qualifiers for division and conformance.

Initial conditions For each robot, we fix the power requirement of a move and the
time period T between two observations to be such that a move of a robot during
a period T corresponds to a one unit displacement on the field. Then, each move
action of a robot changes the location of the robot by a fixed number of units or none
if there is an obstacle. We write R(i) for robot R(i, P, T) with such fixed P and T .
As an example, the observation ({d(i), read(i, (x; y))}, t) followed by the observation
({read(i , (x ′; y ′))}, t+T) gives only few possibilities for (x′; y′): either (x; y) = (x′; y′),
in which case the robot got blocked in the middle of its move, or (x′; y′) increases (or
decreases) by one unit the x or y coordinates, according to the direction d.

Let the initial state µ of the field be such that µ(1) = (3; 0), µ(2) = (2; 0), and
µ(3) = (1; 0), which defines the initial positions of R(1), R(2) and R(3) respectively,
and let there be obstacles throughout the field on the 3× 2 rectangle from (0;−1) to
(4; 2), i.e., for all (x, y) ∈ (J0; 4K × J−1; 2K) \ (J1; 3K × J0, 1K), there exists i ∈ I such
that µ(i) = (x, y)i. As a result, the moves of each robot are restricted to the inside of
the 3× 2 rectangle as displayed in Table 2.5.

Approximation of the Field as a Grid

Problem A field component captures in its behavior the continuous responses of
a physical field interacting with robots roaming on its surface. The interface of the
field contains therefore an event, per object, for each possible position and each pos-
sible move. In some cases, however, only a subset of those events are of interest. For
instance, we may want to consider only integer position of objects on the grid, and dis-
card intermediate observables. As a result, such component would describe a discrete
grid instead of a continuous field, while preserving the internal physics: no two objects
are located on the same position. We show how to define the grid as a subcomponent
of the field, using the division operator.

Definition of the grid We use division to capture a discrete grid component
Gµ(I) ≤ Fµ(I) contained in the field component Fµ(I). A grid component has the
interface EG(I), where EG(I) ⊆ EF (I) with (x, y)i ∈ EG(I) implies x, y ∈ N.

We use the component C = (EG(I),TES (EG(I))) to denote the free component
whose behavior contains all TESs ranging over the interface EG(I). Then, by applica-
tion of Theorem 2, we use the least element with respect to ≤ of the set of quotients

57

Division and conformance Chapter 2

of C ×Σsync Fµ(I) divided by Fµ(I) under Σsync to define the grid. Thus,

Gµ(I) =Σsync

C ×Σsync
Fµ(I)

Fµ(I)
(≤, EG(I)) (2.2)

which naturally emerges as a subcomponent of the field component Fµ(I).

Consequences The grid component inherits some physical constraints from the
field Fµ(I), but is strictly contained in the field component. There is a fundamental
difference between an approximation of the position as a robot sensor detects, and a
restriction of the field to integer positions as in the grid component. In the former, the
component reads a value that does not corresponds precisely to its current position,
while in the latter, the position read is exact but observable only for integer values.

As a result, the two component expressions (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF
Gµ(I)

and (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Fµ(I) restrict each robot behavior in different ways:

the grid component allows discrete moves only and the position that a robot reads is
the same position as that of an object on the grid, while the field component allows
continuous moves but the position that a robot reads is an approximation of the
position of the robot on the field. In the sequel, we use the grid component Gµ(I)

instead of the field component.

Updates of components

Problem The interaction signature of a product operator on components restricts
which pairs of behaviors are composable. As a consequence, some components may
have more behavior than necessary, namely the elements that do not occur in any
composable pair. An update is an operation that preserves the global behavior of a
composite system while changing an operand of a product in the algebraic expression
that models the composed system. The goal of such update, for instance, is to remove
some behaviors that are not composable or prevent some possible runtime errors. We
give an example of such update that replaces a robot component by a new version
that removes some of its possibly blocking moves.

Scenario For each robot, we fix its behavior to consist of TESs that alternate be-
tween move and reading observations. Moreover, for a robot’s period T , and arbitrary
ni ∈ N, we let T ×ni, i ∈ N, represent the timestamp of the ith observation of a TES in
its behavior, so long as ni < ni+1. Table 2.4 displays elements of the behavior for each

58

Chapter 2 Division and conformance

Table 2.4: Prefixes of four TESs for R(1), R(2), and R(3). For direction d and robot i,
we write d(i) instead of d(i, p) since the power p is initially fixed. We omit the set notation
as observations are all singletons. We consider (ni)i∈N as an increase sequence of natural
numbers.

t/T σ : R(1) η : R(1) τ : R(2) δ : R(3)
n0 read(1, (3; 0)) read(1, (3; 0)) read(2, (2; 0)) read(3, (1; 0))
n1 N(1) W (1) N(2) E(3)
n2 read(1, (3; 1)) read(1, (2; 0)) read(2, (2; 1)) read(3, (2; 0))
n3 W (1) W (1) W (2) E(3)
n4 read(1, (2; 1)) read(1, (1; 0)) read(2, (1; 1)) read(3, (3; 0))
n5 W (1) ∅ S(2) ∅
n6 read(1, (1; 1)) ∅ read(2, (1; 0)) ∅
n7 S(1) ∅ E(2) ∅
n8 read(1, (1; 0)) ∅ read(2, (2; 0)) ∅
n9 ∅ ∅ ∅ ∅
...

robot. For instance, the TES η : R(1) captures the observations resulting from R(1)

moving west twice. Note that, in composition with the grid component, the readings
may conflict with the actual position of the robot, as some moves may not be allowed
due to obstacles on the path.

For instance, given the expression (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I), the TES η

is not observable as it is not composable with any of the TESs τ or δ from R(2) and
R(3) respectively. We show how to use division to remove all of such behaviors.

Update The replacement for R(1) should preserve the global behavior. We use
division to define an update R′(1) of R(1) that removes all elements from its behavior
that are not composable with any element from the behavior of R(2) and R(3) under
the constraints imposed by the grid.

As a result, the component

R′(1) = Σsync

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I)

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I)

(≤, ER(1)) (2.3)

contains in its behavior all elements ranging over the interface ER(1) that are compos-
able with elements in the behavior of the dividend component. Note that the set of
quotients is filtered on the interface ER(1), and R(1) trivially qualifies as a quotient.
However, R(1) is not minimal as η can be removed from its behavior.

59

Division and conformance Chapter 2

Table 2.5: Prefixes of three TESs for R(1), R(2), and R(3), graphically represented by
some trajectories on a grid.

t/T σ : R(1) τ : R(2) δ : R(3)
n1 N(1) N(2) E(3)
n2 W (1) W (2) E(3)
n3 W (1) S(2) read(3, (x3; y3))
n4 S(1) E(2) ∅
n4 read(1, (x1; y1)) read(2, (x2; y2)) ∅
n5 ∅ ∅ ∅
...

R1R2R3

Consequence As a consequence, we defined, using division, an update for com-
ponent R(1) that removes some elements of its behavior while preserving the global
behavior of the composite expression.

Note that the fact that in our example each robot alternates between a move
and a read is crucial to remove, by composition, undesired behavior. Indeed, the
readings of each robot must synchronize with the location displayed on the grid, and
therefore implies that the robot successfully moved. The constraints imposed by the
grid coordinate the robot by preventing two robots to share the same location.

Coordination and distribution

Problem Consider the scenario previously described with an additional modifica-
tion: a robot no longer observes its location after every move, but only at the end
of the sequence of moves. The TESs of each robot’s behavior are described in Ta-
ble 2.5, where (xi, yi) ranges over possible position readings for robot i. As a result,
conflicts between robots may no longer be observable, and the timing of observations
may render some incidents of robots blocking each other unobservable. We define a
coordinator that makes the system conformant to a global property. As opposed to
the division operation, a conformance coordinator may restrict the system behavior
to a subset that conforms to a specified property. We consider the following property
Psorted(I): “eventually, all the robots get sorted, i.e., every robot R(i) eventually ends
on the grid location (i; 0).”.

60

Chapter 2 Division and conformance

Global coordinator We can define, from the sort property, a component as Csorted(I) =

(Esorted(I), Lsorted(I)) whose interface is the union of the interfaces of all robots and
the grid, i.e., Esorted(I) = EG(I) ∪

⋃
i∈I ER(i), and whose behavior Lsorted(I) ⊆

TES (Esorted(I)) contains all sequences of moves that make the robots eventually end
in their respective sorted grid positions, i.e., σ ∈ Lsorted(I) if and only if there exists
t ∈ R+ such that (O, t) ∈ σ with (i; 0)i ∈ O for all i ∈ I. Note that, by construction,
the behavior of component Csorted(I) may contain some TESs from the behavior of
component (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I), namely ever TESs that satisfies the
property.

Consequently, the product of component Csorted(I) with (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF

Gµ(I), under the signature Σsync , defines a component whose behavior contains all
elements in the behavior of (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I) that are also in the
behavior of Csorted(I). Therefore, if the behavior of component ((R(1) ▷◁ R(2) ▷◁

R(3)) ×ΣRF
Gµ(I)) ▷◁ Csorted(I) is not empty, (R(1) ▷◁ R(2) ▷◁ R(3)) ×ΣRF

Gµ(I)

is conformant to Csorted(I) and Csorted(I) is a principal coordinator. However, using
Csorted(I) as a coordinator requires each component to synchronize, at each step, with
every other component. We show how to define a different choice function on the set
of coordinators, in order to identify a minimalist form of coordination.

Minimalist coordinator We define a coordinator whose interface is strictly con-
tained in the interface of the global Csorted(I) coordinator. More precisely, we search
for a coordinator over the interface of robot R(1) that makes the system (R(1) ▷◁

R(2) ▷◁ R(3)) ×ΣRF
Gµ(I) conformant to the property component Csorted(I). First,

observe that the set of coordinators

(R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF
Gµ(I) ↓∗Σsync

Csorted(I)

filtered on the interface ER(1) is empty. Indeed, for any set of timestamp factors n1,
n2, n3, and n4 for the observables of R(1) in Table 2.5, there exists an element from the
behavior of R(2) that delays its first action until after n3, and eventually ends up in
a blocking position. As a consequence, there is no coordinator restricted to the events
of R(1) that makes (R(1) ▷◁ R(2) ▷◁ R(3))×ΣRF

Gµ(I) conformant to Csorted(I).

Instead, we consider filtering the set of coordinators with the interface ER(1) ∪
{N(2)}. In this case, one can find a simple coordinator that makes the set of robots
to conform with the sort property. Indeed, every observation N(1) of robot R(1)
must occur after an observable N(2) of robot R(2). As a result, such coordinator C12

61

Division and conformance Chapter 2

restricts R(1) to move only after R(2) moves, which results in a composite system
conformant to Csorted(I). Thus, the new coordinator C12, in product with R(1),
R(2), R(3), and the grid Gµ(I) satisfies the sort property, i.e., ((R(1) ▷◁ R(2) ▷◁

R(3))×ΣRF
Gµ(I)) ▷◁ C12 ⊑ Csorted(I).

Consequence We showed one global coordinator for the set of robots to satisfy the
sort property, and one minimalist coordinator over the interfaces of ER(1) with an
event from ER(2). The minimalist coordinator has an interface strictly included in
the global coordinator, which therefore minimizes the amount of interaction among
components. In the next section, we discuss the cost of coordination as a possible
measure to order a set of conformance coordinators.

2.2.4 Discussion

The operations of division and conformance defined earlier characterize all possible
updates and coordinators for a composite system. In general, the set of quotients or
coordinators is not a singleton, which then necessitates a choice function to pick a
component that suits the needs. We saw in Theorem 2 how such a choice function
can be defined using an ordering on components, and choosing the least of such com-
ponent. Intuitively, such choice function prefers a quotient with the least amount of
observations. However, Theorem 2 assumes a fixed interface, and does not discuss
how to rank components according to their interface. We discuss alternative rankings
hereafter in the case of a synchronous product ▷◁ of Example 4.

Cost of coordination

Let A = (EA, LA) and B = (EB , LB) be two components such that the set of quotients
of A divisible by B under ▷◁, the synchronous product, is non empty. Consider, as well,
a component C = (EC , LC) in the set of quotients. We discuss alternative scenarios
based on the interface of component C.

Consider the case where EC∩EB ̸= ∅. Then, events in the intersection EC∩EB are
events for which C and B must perform a simultaneous observation, i.e., with equal
time stamp. The size of the intersection EC ∩ EB therefore characterizes how much
coordination should take place among two implementations of components B and C

to successfully achieve the synchronous observations. Alternatively, if a component
D = (ED, LD) is in the set of quotients such that |ED ∩EB | < |EC ∩EB |, the number

62

Chapter 2 Linearization

of shared events is smaller, which hints at a smaller amount of coordination among
components D and B.

In the case that EC ∩ EB = ∅ and EC ̸= ∅, the family of quotients with interface
EC are particularly useful. The fact that the two interfaces are disjoint tells us that
A can be decomposed in two components that do not need any coordination. Indeed,
as ▷◁ only constraints occurrences of shared events, if B and C share no events then
they can be run completely independently.

The two cases highlighted above give us some insight on how coordination can be
used as a measure to rank components. Note that such ranking is contextual to the
dividend and the divisor. Even though C may require more coordination than D to
synchronize with B in order to form component A, in the context of A divisible by
another component F , the component C may become preferable to D.

The cost of coordination discussed here is orthogonal to efficiency measures dis-
cussed in 2. For that reason, the two measures can be combined to first rank com-
ponents in terms of their interface to minimize the amount of coordination required,
and then rank components sharing the same interface in terms of the size of their
behavior. More thorough analysis could be done as to compare, from the behavior of
each component, how often coordinated event effectively occurs.

Series of division

We defined the operator of division on components. We saw that, under some criteria,
division may return a ‘better’ description of a composite system, i.e., for A = B × C,
the division of A by B may return a D better than C while preserving the behavior
of A.

Then, one question that follows is that of convergence. Consider the expression A =

B×C, and the division of A by B returning a component C ′ ̸= C. Symmetrically, the
division of A by the new component C ′ may return a component B′ ̸= B. Repeating
the same process, dividing A by B′ and so on, gives a sequence of components C(n)

and B(n) for the respective nth division. Does the sequence eventually converge to a
fixed pair of components?

2.3 Linearization

The algebra that we introduced in Section 2.1 is expressive enough to model a large
range of concurrent systems. While the focus of this thesis is on components with

63

Linearization Chapter 2

cyber-physical aspects, we can use the algebraic setting to prove useful properties of
components with cyber-cyber interactions.

In this section, we consider order sensitive components, which are components for
which the order of observations matters but not the exact time labels of observations.
For that reason, the behavior of such a component is closed under non-uniform stretch-
ing time, as long as the order of observations remains the same. We relax the notation
throughout this section, and use a sequence σ ∈ Pf (Σ)

ω to effectively reason about
all the TESs τ ∈ TES (Σ) that have the same order of observations, i.e., σ = pr1(τ).

Programming languages like Reo [47] and LUSTRE [24] describe concurrent sys-
tems in terms of sequences of transactions (or interactions). A transaction is a finite
set of actions that occur atomically, which corresponds to a timeless observation, as
introduced in Section 2.1. That is, a transactions occurs if and only if all the actions
in the set occur, without the interference of any other action in between. Atomicity
captures the notion of the all-or-nothing behavior and the possibility of interleaving of
independent events only (see Section 2.1). A prime example of a transaction in concur-
rent systems is a barrier synchronization, which allows a group of processes to proceed
only when all of them reach a particular local state. We refer to an infinite sequence
of transactions as a transactional trace, and refer to a set of transactional traces as a
transactional behavior. Note that a transactional behavior is independent of the time
at which the transaction occurs, and records the order of occuring transactions only.
We use T to denote the set of transactional behaviors. Transactional behaviors are
particularly suitable to describe what behavior is acceptable in a concurrent system,
by declaring all sequences of transactions that are allowed. A transactional compo-
nent denotes a transactional behavior restricted to a set of actions that we refer to
as its interface. Transactional components are therefore a subclass of components as
introduced in Section 2.1.

A transactional component is linear if and only if every transaction in this com-
ponent is a singleton set or the empty set. Programming languages without syntax
for such transactions, like [23, 80, 11], describe concurrent systems as linear (transac-
tional) components. Linear components describe sequential behaviors and are particu-
larly suitable to describe how the behavior of a component is generated, since at most
one action happens at any given time. We use L to denote the set of transactional
behaviors.

When two processes that have shared actions in their interfaces are composed, the
occurrence of a shared action in their behaviors must coincide. This coincidence is
understood as synchronous communication between the two processes. The concept

64

Chapter 2 Linearization

of (a)synchronous communication is orthogonal to transactional or linear behaviors.
In this section, we deal exclusively with synchronous communication. To construct
complex concurrent systems out of simpler components, we equip components with a
composition operator that captures synchronous communication.

The design of a specification of a concurrent system is easier using transactional
components [4], while its execution is better captured by linear components. However,
in practice, a sequential processor can do at most one action at a time, and the number
of actions that can happen at the same time is bounded by the number of parallel pro-
cessors. Consequently, an implementation of a synchronous component on a sequential
machine necessitates to linearize transactions to sequences of actions. A linearization
of a synchronous component is valid if it preserves the all-or-nothing semantics of its
transactions, and linearization of the product is the product of linearizations. The
problem is therefore to characterize what linearization from transactional components
in T to linear components in L are valid. Intuitively, the linearization of a transac-
tional component is valid if the behavior of the resulting components preserves the
intended semantics of the behavior of the initial transactional component.

Moreover, in the case of concurrent and distributed systems, compositionality is
an important feature that allows one to run software in parts, and assemble the com-
piled parts at runtime. Besides static composition, dynamic composition is required
for, e.g., dynamic updates, modular compilation, or reconfiguration. Semantically,
runtime composition is captured by the composition operation ⊗ in L. After defining
transactional components in Section 2.3.2, we characterize valid linearizations in Sec-
tion 2.3.4 and give two practical instances, one that runs every component in lockstep,
and one that allows for interleaving of independent transactions. More particularly,
we require that a sequence after linearization contains all events of a transactional
behavior and preserve some ordering among dependent events.

2.3.1 Dependency and concurrency

We fix a (possibly infinite) set Σ of primitive actions, and write τ /∈ Σ to denote an
internal action. We write Στ = Σ∪ {τ} to denote the set of actions. We do not make
any assumptions on the structure of primitive actions. For instance, Σ may consist
of actions ac of the meaning “the traffic light indicates color c”, or Σ may consist of
actions ap,d of the meaning “port p fires with data d”. We use regular expressions to
denote a set of sequences of actions. Given a set X, with a, b ∈ X, the expressions
a+ b, ab, a∗ respectively denote the sets of sequences {a, b}, {ab}, and {a, aa, aaa, ...}.

65

Linearization Chapter 2

Later on, we use regular expressions over a carrier that is the finite power set of X: we
should not confuse the set notation from the terms of the carrier and the set notation
from the set of sequences that the expression denotes.

Some actions are dependent. For instance, the statement “port p fires with data d
always happens before port p fires with data e” induces a dependency relation between
ap,d and ap,e. We define dependency as follows.

Definition 25. Dependency is a partial order ≤ on Στ , such that τ is not related to
any primitive action in Σ.

In the sequel, we consider a fixed but arbitrary dependency ≤ and say that a
happens before b if a ≤ b. Dependency induces a symmetric, reflexive dependency
relation

D≤ = {(a, b) ∈ Σ2 | a ≤ b or b ≤ a},

which brings us to the realm of Mazurkiewicz traces [67]. Actions a and b are depen-
dent if (a, b) ∈ D≤ and are independent if (a, b) ̸∈ D≤. Note that, without loss of
generality, we can make the partial order strict and remove the elements (a, a) from
the dependency relation.

Remark 7. Consider a client that can send requests a and b. Suppose that (a, b) ̸∈ D≤.
Then, a and b are independent (e.g., one request does not require the other request)
and the client may perform the requests in parallel. ♢

The dependency relation allows us to permute independent actions. In the case
of finite sequences, it suffices to define a trace equivalence as the smallest equivalence
relation that allows commutation of consecutive independent actions. However, such
a definition would allow only finitely many commutations, which means that (ab)ω

and (ba)ω are not trace equivalent, whenever a and b are independent. Following
Gastin [37], we define trace equivalence by means of (infinite) dependency graphs.

Definition 26. The dependency graph Γ≤(s) of a sequence s ∈ Σω
τ of actions is a

graph (V,E) with vertices V and edges E defined as

V = {(a, i) | a ∈ Στ , 0 ≤ i < |s|a}

E = {(a, i) → (b, j) | (a, b) ∈ D≤ and the ith a occurs before the jth b in s}

where |s|a ∈ N ∪ {∞} is the number of occurrences of action a ∈ Στ in s.

66

Chapter 2 Linearization

We define trace equivalence (modulo dependency ≤) as the kernel of Γ≤:

≡≤ = ker(Γ≤) = {(u, v) | Γ≤(u) = Γ≤(v)}.

In the sequel, we drop the subscript ≤, if there is no danger of confusion. For a
sequence s ∈ Σω

τ , we write [s] = {r ∈ Σω
τ | r ≡ s} for the equivalence class of s. For a

set L ⊆ Σω
τ , we write [L] = {r ∈ Σω

τ | s ∈ L, r ≡ s} for the closure of L under trace
equivalence.

Remark 8. The most primitive verification tool of a software engineer is the print
statement. Let Σ denote the set of all possible results of every print statement occurring
in a program. If the program is sequential, its observable behavior can be accurately
expressed as a set L ⊆ Σ∞ of possibly infinite sequences of observations. The set L
contains all relevant observable information of a sequential system.

If the software is concurrent, distinct statements may print simultaneously. To
prevent unreadable output, the print statements acquire exclusive access to the log
file or console before printing. While such linearization of observations restores the
readability of the output, it hides the fact that the program is concurrent. Hence, the set
of sequences of observations does not contain all relevant information of a concurrent
system. ♢

2.3.2 Transactional and linear components

We fix a collection T ⊆ Pf (Σ) of finite sets of primitive actions, called transactions. A
transaction A ∈ T is atomic, as defined in Section 2.1, such that all primitive actions
in A occur simultaneously, and no other dependent action can interleave. The empty
transaction ∅ is related to the internal τ step as we will see later. Note that some
actions in Σ are conflicting, such as ap,d and ap,e from Section 2.3.1, for distinct data
d ̸= e. Since conflicting actions never occur in the same transaction, we generally have
T ̸= Pf (Σ) and ∅ ∈ T .

A transactional trace is an infinite sequence A0A1A2 · · · ∈ Tω of transactions. A
transactional behavior is a set K ⊆ Tω of transactional traces. The composition
operator on transactional behaviors K ∈ P(Tω) is intersection, ∩, of sets. Let I ⊆ Σ

be a set of primitive actions. Consider the largest12 symmetric relation ∼I on Tω that

12This largest relation exists, because the union of all ∼I that satisfy Equation 2.4 satisfies Equa-
tion 2.4.

67

Linearization Chapter 2

satisfies

∀r, s ∈ Tω r ∼I s ⇒ r(0) ∩ I = s(0) ∩ I and r′ ∼I s
′, (2.4)

where r′(i) = r(i + 1) and s′(i) = s(i + 1), for all i ≥ 0. A transactional behavior
K ⊆ Tω is ∼I-closed, whenever r ∼I s ∈ K implies r ∈ K, for all r, s ∈ Tω.

Given a transactional behavior K, a transactional component is a pair (I,K) with
I ⊆ Σ and such that K is ∼I -closed. We call I its interface.

Example 30 (Sync channel). A Sync channel is a transactional component with I =

{a, b} as interface containing an input port a and an output port b. Whenever the
Sync fires its input port, it simultaneously fires its output port.

Formally, let Σ = {a, b} consist of two actions a and b that correspond with firing
of the input and output ports of the Sync channel, respectively. The behavior of the
Sync is defined as the set ({a, b}+ ∅)ω.

In a larger context, such as Σ = {a, b, c}, for some other port c, behavior for the
Sync component extends to ({a, b, c} + {a, b} + {c} + ∅)ω, because we assume that
components are closed under addition/removal of actions outside of their interface.
That is, the set ({a, b, c}+ {a, b}+ {c}+ ∅)ω is ∼I-closed. ♢

Remark 9. There is a subtle difference between concurrent actions and transaction.
Concurrency is about independence of actions such that they may happen simultane-
ously. A transaction is about timing of actions such that they will happen atomically,
which may also be simultaneous. Since the two terms are both referring to actions that
may happen at the same instance, it is easy to confuse the terms. A transaction makes
sense only in a concurrent setting: actions are atomic and are therefore concurrent.
However, concurrent actions are not necessarily atomic. ♢

Example 31. Let C1 and C2 be two Sync components, with interface {a, b} and {b, c},
respectively. The behavior of the composition of C1 and C2 consists of all behaviors in
C1 that are also behaviors in C2 (composition is intersection). By modelling atomicity
of actions with transactions one gets transitivity of atomicity for free. Indeed, if a and
b are atomic and b and c are atomic, then a and b occur within the same transaction
and b and c occur within the same transaction. Hence, a and c eventually occur within
the same transaction in the composition of C1 and C2, which means that they are
atomic. ♢

A linear trace is a special kind of transactional trace, where every element is either
a singleton action, or the empty set. In order to simplify notation, we identify a

68

Chapter 2 Linearization

sequence of actions a0a1a2 · · · ∈ Σω
τ with the linear trace A1A2A3 · · · ∈ P(Σ)ω, where

each action ai corresponds to the singleton transaction {ai} if ai ̸= τ , and to the
transaction ∅ otherwise. A linear behavior is a set L ⊆ Σω

τ of linear traces, and a
linear component is a pair (I,K) of an interface I and a linear behavior K that is ∼I

closed.
We consider an arbitrary associative, commutative, idempotent composition oper-

ator ⊗ on linear components. Typically, intersection of sets, ∩, is used as composition
operator but see Section 2.3.4 for an example of a different composition operator.

Linearization Every transactional behavior has one or more equivalent linear be-
haviors that are related to it via linearization. The linearization is defined hierarchi-
cally, from transactions to traces and behaviors. Each level “lifts” the definition of
linearization to sequences of transactions, and to sets of sequences of transactions.

The linearization of a transaction results in a set of sequences of actions. Our fixed
dependency of actions, ≤, restricts the order in which the actions of a transaction can
linearize. Let A ⊆ Σ be a finite set of primitive actions. An element a ∈ A is minimal
in A iff x ≤ a implies x = a, for all x ∈ A. We write min(A) for the set of all minimal
elements of A.

Let λ denote the empty sequence. The set of linearizations ℓ(A) ⊆ Σ∗
τ of a trans-

action A ∈ T with respect to dependency is defined inductively on the size of A as
λ ∈ ℓ(∅), and if u ∈ ℓ(A) and a ∈ min(A∪{a})\A, then τu ∈ ℓ(A) and au ∈ ℓ(A∪{a}).
One reason to allow arbitrary interleaving of τ -actions is that it allows us to encode
transactions with an explicit terminating τ -step.

Example 32. We have ℓ(∅) = τ∗, ℓ({a}) = τ∗aτ∗, and

ℓ({a, b}) =

τ∗aτ∗bτ∗ if a < b,

τ∗bτ∗aτ∗ if b < a,

τ∗(aτ∗b+ bτ∗a)τ∗ otherwise,

where a ̸= b and τ∗ is the Kleene star operator applied on τ , and + is union. ♢

Definition 27 (Linearization). The linearization relation is coinductively defined as
the largest13 relation ⇝ ⊆ Tω × Σω

τ that satisfies one of the following conditions. If
A0A1A2 · · ·⇝ a0a1a2 · · · , then either

13The largest relation exists, because the union of all ⇝ that satisfy Definition 27 satisfies Defini-
tion 27

69

Linearization Chapter 2

1. for all i ≥ 0, we have Ai = ∅ and ai = τ ; or

2. for some i, j ≥ 0, Ai ̸= ∅, a0 · · · aj ∈ ℓ(A0), and A1A2 · · ·⇝ aj+1aj+2 · · · .

The first item of Definition 27 considers the case of a sequence with the empty
transaction only. In this case, the resulting linear behavior is the singleton set with τ
actions only.

We explain informally the second item in Definition 27. The index i and the
condition Ai ̸= ∅ is to exclude item (1). The index j and the sequence a(0)...a(j) is
a linearization of A0, which is the head of the sequence of transactions. The last part
(i.e., A1A2...⇝ a(j + 1)a(j + 2)...) is the coinductive definition.

An empty transaction Ai = ∅, for i ≥ 0 of a sequence A0A1A2 · · · ∈ Tω is trailing
iff Aj = ∅, for all j ≥ i. Linearization ignores non-trailing empty transactions, as
they can match with the empty sequence of actions. However, linearization recognizes
trailing empty transactions and relates them to τω.

Example 33. We have ∅ω ⇝ τω. Suppose that a < b. Then, {a, b}ω ⇝ s if and
only if s ∈ (τ∗aτ∗b)ω. Also, ({a, b}∅)ω ⇝ s if and only if s ∈ (τ∗aτ∗b)ω. Thus,
linearization ignores non-trailing empty transactions. We also have ({a}{b})ω ⇝ s if
and only if s ∈ (τ∗aτ∗b)ω. Hence, linearization also confuses the transaction {a, b}
with the sequence of transactions {a}{b}. ♢

For a transactional behavior K ⊆ Tω, we define K⇝ = {s ∈ Σω
τ | ∃α ∈ K,α⇝ s}

to be the linear component that contains all linearizations of sequences from K. The
set of linearizations K⇝ of K is generally not closed under trace equivalence.

Example 34. Consider the actions Σ = {a, b, c, d}, with dependency a < b and c < d.
Let α = {a, b}{c, d}∅ω, s = abcdτω, and s′ = acτbdτω. Since τ is not related to b or
d by Definition 25, we have s ≡ s′ (see Definition 26). Furthermore, we have α⇝ s,
while α ̸⇝ s′. Therefore, {α}⇝ is not closed under trace equivalence. ♢

Definition 28 (Weak linearization). The weak linearization relation is the composi-
tion ⇝≡ of linearization and trace equivalence.

That is, α ⇝≡ s if and only if α ⇝ s′ ≡ s, for some s′ ∈ Σω
τ . By construction,

K⇝≡ = {s ∈ Σω
τ | ∃α ∈ K,α⇝≡ s} = [K⇝] is closed under trace equivalence.

2.3.3 Problem statement: compositional linearization

Let T ⊆ Pf (Σ) be a set of transactions over the set of actions Σ. Let T = P(Tω)

be the space of transactional behaviors with ∩ as composition operator. Let L ⊆ T

70

Chapter 2 Linearization

be the space of linear behaviors with an arbitrary commutative, associative, idempo-
tent product ⊗ as composition operator. As introduced in previous subsection, the
linearization relates transactional behaviors to linear behaviors.

Let φ : T → L be a linearization function. Then, φ is a compositional lin-
earization if and only if φ is a homomorphism, i.e., for all behaviors K1,K2 ∈ T,
φ(K1 ∩ K2) = φ(K1) ⊗ ϕ(K2). Not all compositional linearization give rise to a
useful linearization. As an example, take the trivial linearization that maps every
transactional behaviors to the singleton set containing the sequence of empty trans-
action. While being compositional, such linearization does not preserve the intended
semantics. Instead, we consider valid linearizations.

Definition 29 (Valid linearization). Let φ : T → L be a linearization. Then, φ is
valid if:

1. φ is compositional, i.e., for all K,K ′ ∈ T, φ(K ∩K ′) = φ(K)⊗ φ(K ′); and

2. ⇝≡ is total and surjective on K × φ(K) for all K ∈ T.

The first item in Definition 29 implies that φ preserves composition, which allows
us to linearize in parts and assemble later (possibly at run time). This is particularly
useful for the inclusion of closed-source third-party software, which is precompiled by
its vendor. Furthermore, first item in Definition 29 can be used to speed up application
of updates, since parts that are not changed do not need to be linearized again.

The second item in Definition 29 means that, for every behavior K ∈ T, every
trace in φ(K) is a linearization of some trace in K, and every trace in K has some
linearization in φ(K). In other words, the second item in Definition 29 asserts that
a valid linearization does actually ’linearize’. Moreover, the equivalence relation ≡
enables commutation of events that are independent, which corresponds to the second
clause of the definition of atomicity of a transaction, as defined in Section 2.1.

Remark 10. Delinearization is the translation of a linear behavior to a transactional
behavior. If a linearization φ is injective, it naturally comes with a delinearization
φ−1 that, for those linear behaviors in the image of φ, gives back a transactional
behavior. ♢

Note that ⇝ as defined in Section 2.3.2 is not compositional for ⊗ = ∩, and
therefore not valid. As an example, let K1 = (∅{a})ω and K2 = ({a}∅)ω. Then,
K1 ∩K2 = ∅ while K1⇝ ∩K2⇝ = (τ∗aτω) ∩ (τ∗aτω) = τ∗aτω. In the next section,
we characterize all valid linearizations, and we give two practical instances.

71

Linearization Chapter 2

2.3.4 Valid linearizations: lock step and interleaving

As defined in Definition 29, a valid linearization is a function that maps a transactional
behavior to a linear behavior while preserving the compositional structure. We seek
a morphism whose co-domain is a linear behavior from the set of transactions of its
domain.

The lock-step linearization is a valid linearization which we present first. Each
linearization is delineated with a special τ symbol. The resulting linear behavior
has, for each trace, a τ symbols that delineates every transaction, and is therefore
homomorphic with set intersection as the composition operation. While intuitive,
such linearization is not efficient and requires every component in the intersection to
run in lock-step.

We give another instance of a valid linearization, where we relax the lock-step
behavior to tolerate some interleaving of independent actions.

Lock-step linearization A straightforward example of a valid linearization is based
on synchronous rounds. Here, we use the τ action (also the empty transaction) to
indicate the end of a round. This allows us to reconstruct the transactions from a
sequence of actions. To be precise, we define grouping coinductively as follows.

Definition 30 (Grouping). The grouping relation is the largest14 subset G ⊆ Σω
τ ×Tω,

such that (a0a1 · · · , A0A1 · · ·) ∈ G implies

1. a0 = τ , A0 = ∅, and (a1a2 · · · , A1A2 · · ·) ∈ G; or

2. a0 ∈ min(A0) and (a1a2 · · · , (A0 \ {a0})A1 · · ·) ∈ G

Example 35. If a and b are independent, then (abττbaτω, {a, b}∅{a, b}∅ω) ∈ G. If a
and b are such that a < b, then (abτω, {a, b}∅ω) ∈ G but (baτω, {a, b}∅ω) ̸∈ G. ♢

Lemma 17. G is a functional relation.

Hence, we find a partial function g : Σω
τ ⇀ Tω with g(a0a1 · · ·) = A0A1 · · · if and

only if (a0a1 · · · , A0A1 · · ·) ∈ G. The domain of g consists of all sequences s ∈ Σω
τ ,

such that τ occurs infinitely often in s, and every primitive action occurs at most
once between consecutive τ actions. We define the linearization based on synchronous
rounds as the preimage of grouping g.

14Again, the largest relation exist.

72

Chapter 2 Linearization

Definition 31. For every transactional behavior K ⊆ Tω, we define

g−1(K) = {s ∈ dom(g) | g(s) ∈ K}

It is straightforward to check that g−1 is a valid linearization, if we take intersection
∩ as the composition operator ⊗ on P(Σω

τ).

Theorem 4. g−1 is a valid linearization, for ⊗ = ∩.

Although Theorem 4 shows that the linearization based on synchronous rounds is
valid, the resulting linear behaviors are locking the execution into strict rounds. As a
result, independent actions can only swap within a transaction but not over sequences
of transactions.

Example 36 (Parallel Syncs). Consider a Sync channel K1 from a to b and a Sync
channel K2 from c to d. Set Σ = {a, b, c, d} with a < b and c < d. The composition of
K1 and K2 is the behavior

K1 ∩K2 = ({a, b, c, d}+ {a, b}+ {c, d}+ ∅)ω.

Then, g−1(K1 ∩K2) equals

(a(bcd+ c(bd+ db))τ + c(dab+ a(bd+ db))τ + abτ + cdτ + τ)ω

Now consider the prefix acb of a behavior in g−1(K1∩K2). Ignoring the c from the
second Sync K2, we see that acb completes an {a, b} transaction of the first Sync K1.
One would expect that the transactions {a, b} and {c, d} are independent, because they
are disjoint and their respective actions are not related by the partial order. However,
g−1(K1 ∩ K2) dictates that the second Sync K2 must complete its {c, d} transaction
before anything else can happen. Hence, first Sync K1 can accept new input only after
acbdτ . Consequently, the concurrency of the transaction {a, b} and {c, d} is weaker
than expected: while actions a and b are independent with actions c and d, the two
transaction {a, b} and {c, d} cannot interleave arbitrarily.

We want to design a valid linearization φ, such that, for instance, the sequence
(acdcdbτ)ω is part of φ(K1 ∩K2). ♢

Interleaving tolerant linearization To avoid the oversynchronization in Theo-
rem 36, we must allow traces that minimize the explicit τ action, i.e., the τ inserted
after every round in the lock-step linearization. Observe that g−1(K) ⊆ dom(g), for

73

Related work and future work Chapter 2

every behavior K ⊆ Tω. The set dom(g) consists of sequences over Στ that contain in-
finitely many τ actions and between any two τ actions, every primitive action happens
at most once.

Recall the linearization relation ⇝ from Section 2.3.2 and from Section 2.3.1 that
[L] is the closure of L ⊆ Σω

τ with respect to trace equivalence ≡. Consider the map φ
defined, for all behavior K ⊆ Tω, as

φ(K) = g−1(K) ∪ ([K⇝] \ dom(g)),

where [K⇝] is the closure modulo trace equivalence of the set of all linearizations of
behaviors from K. Intuitively, the linearization φ adds to the image of g−1 some linear
behaviors that are not in the domain of the grouping. Observe that φ is injective, since

g(φ(K) ∩ dom(g)) = g(g−1(K)) = K.

Consider the composition operator ⊗ defined, for behaviors L1, L2 ⊆ Σω
τ , as

L1 ⊗ L2 = L1 ∩ L2 ∩ [L1 ∩ L2 ∩ dom(g)]. (2.5)

Lemma 18. For L ⊆ dom(g), we have [L] = [g(L)⇝].

Theorem 5. φ is valid, with ⊗ defined in Equation 2.5.

Example 37 (Parallel Syncs with concurrency). Consider the Sync channels as in
Example 36. Then, the linear behavior φ(K1∩K2) contains runs like acbababdτω. Al-
though actions a and b are independent to actions c and d, the linearization g−1 forbid
arbitrary interleaving of transactions {a, b} and {c, d}. As a result, the linearization
φ allows for such arbitrary interleaving. ♢

2.4 Related work and future work

(De)composition. In [27] , the authors present a declarative and an operational
theory of components, for which they define a refinement relation and compositionality
results for some composition operators. Our work is related as it aims for similar
results, but for the case of Cyber-Physical systems. Thus, instead of having input and
output actions, components have timed observations, and composability relations. We
present, as well, quotient operation on components, and show how it can be used to
synthesize coordinating CPSs.

74

Chapter 2 Related work and future work

In [76], the authors consider the problem of decomposition of constraint automata.
This work provides a semantic foundation to prove that the construction in [76] is a
valid division.

In [71], the authors consider the problem of decomposition in process algebra for
the parallel operator. The notion of prime process is introduced, and the unicity of
decomposition of a process as a parallel composition of primes is posed. The problem is
answered for different types of congruences on processes. The work has been extended
for decomposition of processes in the π-calculus in [33].

Algebra, co-algebra The algebra of components described in this paper is an exten-
sion of [62]. Algebra of communicating processes [36] (ACP) achieves similar objectives
as decoupling processes from their interaction. For instance, the encapsulation oper-
ator in process algebra is a unary operator that restricts which action to occur, i.e.,
δH(t ∥ s) prevent t and s to perform actions in H. Moreover, composition of actions
is expressed using communication functions, i.e., γ(a, b) = c means that actions a and
b, if performed together, form the new action c. Different types of coordination over
communicating processes are studied in [20]. In [12], the authors present an extension
of ACP to include time sensitive processes.

The modeling of component’s interaction using co-algebraic primitives is at the
foundation of the Reo language [8]. In [18], the question of separation of components
into two sub-components is addressed from a co-algebraic perspective.

The interaction signature that parametrizes algebraic operator is related to the
synchronization algebra in [90]. A synchronization algebra relates events labeling
edges of a synchronization tree. The product of two synchronization trees is therefore
parametrized by the underlying synchronization algebra on its events. Our interaction
signature generalizes that of synchronization algebra in the sense that composability
relations are defined at three levels: on TESs, on observations, or on events. We study
mechanisms to lift composability relations from events to observations and to TESs,
therefore proving the algebraic properties of the parametrized product given algebraic
properties of the underlying composability relation.

In [38], the authors consider a monadic semantics for hybrid programs. The hybrid
monad captures the continuous behavior of a hybrid program and enjoys a construc-
tion of an iteration operator. Our work complements this approach by focusing on
a semantics for interaction, which might be relevant to extend hybrid programs with
communication primitives.

75

Related work and future work Chapter 2

Discrete Event Systems Our work represents both cyber and physical aspects
of systems in a unified model of discrete event systems [73, 5]. In [56], the author
lists the current challenges in modelling cyber-physical systems in such a way. The
author points to the problem of modular control, where even though two modules run
without problems in isolation, the same two modules may block when they are used
in conjunction. In [81], the authors present procedures to synthesize supervisors that
control a set of interacting processes and, in the case of failure, report a diagnosis.
An application for large scale controller synthesis is given in [72]. Our framework
allows for experiments on modular control, by adding an agent controller among the
set of agents to be controlled. The implementation in Maude enables the search of,
for instance, blocking configurations.

Coordination In [73], the author describes infinite behaviors of process and their
synchronization. Notably, the problem of non-blockingness is stated: if two processes
eventually interact on some actions, how to make sure that both processes will not
block each others. The concept of centrality of a process is introduced.

Transactional components Transactional components such has in Reo have been
extensively studied from a formal perspective. In [47], Jongmans presents over 30
semantics for Reo. Current work adds an intermediate linear semantics for Reo, for
which proving the correctness of an implementation as given in [77, 78, 45, 32] would
be possible. We also believe that the results presented in this paper may be of benefit
to other similar semantics, such as [21].

From a trace theoretical perspective, the notion of transaction has also been stud-
ied. In [43], elements in Pf (Σ)

∗ are also called step sequences. However, the axiom
C = DE mentioned in [43], for C,D,E ⊆ Σ with D ∩ E = ∅, allows one to split
a step into two consecutive substeps, which does not apply in our case, because our
transactions are atomic and cannot be split. So, we consider the case of traces, where
actions are sets. In [37], Gastin investigates the problem of reconstructing sequences of
transactions from a sequence of actions investigated. The Foata normal form, defined
in [37], Definition 2.10, partitions a trace into sets of mutually independent actions,
and is used for this purpose. Unfortunately, not every sequence of transactions emerges
as a Foata normal form, which makes the normal form not suitable for our purpose.

Linearization The linearization of transactional behaviors to linear behaviors has
been approached in the context of databases queries and transactions. In [35], the

76

Chapter 2 Related work and future work

authors consider the problem of serialization, which aims at reordering a sequence
of events into a sequence of individual transactions. In their work, a transaction is
a sequence of events that starts with a unique beginning symbol and ends with a
unique final symbol. Our work relaxes the assumption that each transaction needs
two delimiters.

Synchronous and asynchronous The composition of synchronous systems with
asynchronous systems has been investigated in the context of interconnecting machines
on a network. Globally asynchronous locally synchronous (GALS) is an architecture
for designing electronic circuits which addresses the problem of safe and reliable data
transfer between independent clock domains [26]. In our paper, we do the opposite:
locally asynchronous globally synchronous (LAGS). For example, in the Sync channel,
we split the locally synchronous {a, b} transaction into asynchronous a and b steps,
and recover the {a, b} transaction via global synchronization.

77

Related work and future work Chapter 2

78

Chapter 3

Reo as an algebra of order
sensitive components

In this Chapter, we instantiate the algebra of components introduced in Chapter 2
to compositionally design, compile, and analyse order sensitive components. Order
sensitive components are components for which only the fact that an observation
happens before another observation matters, but not the absolute time at which the
observation occurs nor the interval of time between two observations. Many real world
applications fall in the class of interacting order sensitive components, and dedicated
design languages, such as the Reo coordination language [6, 3, 48], focus on formally
specifying the interaction occurring among such components.

Reo protocols coordinate components by means of elementary and composite con-
nectors. The behavior of a whole system based on these components is mainly defined
by its Reo protocol, which makes the reliability of the coordination protocol a central
part of the verification. We list in Table 3.1 few properties of interest to study the
temporal behavior of connectors. We note a port p in italic, together with some key
words such as silent and always. Reo semantics is at the level of transactional com-
ponents: ports fire within transactions. An executable of a Reo specification (e.g., an
implementation) would however use sequential (yet concurrent) primitives, and falls
into the category of linear components. This Chapter discusses a possible implementa-
tion of the linearization introduced in Section 2.3. The property of synchrony captures
that two ports a and b fire together. In a sequential setting, we allow, as shown in
Section 2.3, silent steps between firing of a and firing of b: we call this relation a then

79

Chapter 3

b.

Table 3.1: Properties on firing of ports and their meaning

Properties Relations
a fires exchange of data at a
silent no firings

a before b a fires then eventually b fires
a then b a fires then silent until b fires

synchrony (sync) always a fires iff b fires
asynchrony (async) always a before b or b before a

We show that the property of synchrony on transactional components is then re-
flected by the property a then b on a sequential setting. To experiment and verify
temporal properties, we give a translation from Reo to Promela. Promela, the spec-
ification language used for the LTL model checker SPIN, is sequential and relies on
message passing through channels. Some tools currently exist to translate a Reo cir-
cuit into a language used by a model checker [55]. However, no general mechanism
is described to deal with the translation of synchronous properties on Reo circuits to
asynchronous properties on the target language. This section extends a prior work[63].

We express, in Section 3.1, the formal semantics of Reo as an algebra of order
sensitive components. We show that this algebra can express Reo connectors using
the primitive notion of a port component, and a set of interaction signatures. We
use the results of Chapter 2 to show algebraic properties of the Reo composition
operator, and discuss some connector equivalences. Section 3.2 introduces a logical
specification of Reo connector as guarded commands. The semantics of such connector
is linked to the Reo semantics by considering sequences of observations that satisfy
the connector’s constraint. Section 3.3 is motivated by the extension [60] of our Reo
compiler to generate verifiable specification using the SPIN model checker [41]. We
implement a translation from a logical specification of Reo connectors to Promela,
an executable language, and show that properties of synchrony are preserved during
translation. We use the SPIN model checker to investigate some temporal properties
of basic Reo connectors, and give a general framework and domain specific language
for verifying temporal properties of Reo protocols.

80

Chapter 3 Reo

3.1 Reo

In Chapter 2, we introduced an algebra of components and their parametrized prod-
ucts. We also presented properties of components, such as being order sensitive. The
order sensitivity property manifests the fact that a component behavior is indepen-
dent to the concrete time value of its observations, and only the order of observations
matters. For instance, the time at which a packet is sent on a network is usually
irrelevant, but the order at which each packet arrives at its destination is important.

We show in this section how to define Reo connectors (and Reo primitives) using
our algebra of components. More precisely, we give a description of Reo primitives (like
a merger, a replicator, a fifo1, etc.) as product of port components under some inter-
action signatures. This way, we open new reasoning about circuit equivalences based
on the underlying algebraic laws of such operators (e.g., associativity, commutativity,
and distributivity).

A component in Reo has an interface consisting of a set of ports, and a behavior
specifying the sequence of data flowing at each port. Components interact with other
components via shared ports by agreeing on the data flowing at that port.

Current work on Reo focuses particularly on a specific class called connector. A
connector specifies the exchange or transformation of data only, but not its creation
nor its deletion. Therefore, a connector has open ended input and outputs ports, to
which consumer and producers are eventually placed. Typically, for a connector to
have observable behaviors, components plugged at the input ports must feed data into
that port, while components at the output ports must consume data through that port.
As an example, the sync connector in Reo has an input and output open ended points,
and synchronously forwards input data to its output. If connected to two components,
one at each endpoint, a sync connector essentially models a simultaneous send and
receive operation between those two components. Connectors may be connected to
each others, forming of more complex input/output relations [6].

Formally, each port denotes a set of Timed-Data Streams (TDS), which are infinite
sequences of a datum paired with a time stamp. Intuitively, a Timed-Data Stream tells
what data flows at what time through a port, and faithfully transcribes the observable
behavior of that port. A component denotes a set of tuples of TDSs, where each
port from the component’s interface is uniquely represented by a TDS in each tuple.
A component therefore specifies which of the TDS tuples are accepted or rejected.
We study properties of Reo connectors expressed as a fragment of the component
framework of Chapter 2.

81

Reo Chapter 3

The first model for Reo was introduced in [3], and made use of timed-data streams
where each port labels its firing with a time stamp. The representation of time as a
real value is motivated by the necessity to allow arbitrarily many finite interleavings
between two observations. Most of Reo connectors, however, are order sensitive, which
implies that the precise value of the time stamp of an observation does not matter,
only the order of observations matters.

Port as a component In Reo, the most primitive form of computations take place
at a port. A port denotes events that occur over time at a unique location. Often, a
port does not restrict which sequence of events may occur, and captures all possible
such sequences.

We therefore model a port as a unary component from the model introduced in
Chapter 2. We use Pa(D) = (Ea(D), La) to denote the port a with domain D where
Ea(D) = {(a, d) | d ∈ D} that contains all events for port a, and its behavior La ⊆
TES (Ea(D)) contains all TESs with singleton or empty observations, i.e., such that
σ ∈ La implies that for all i ∈ N, |σ(i)| ≤ 1. When the context is clear, we drop
the domain of a port and simply write Pa = (Ea, La). Note that a port is an order
sensitive component, as only the order between occurrences of events matter, but not
the exact time nor the time interval between two observations.

Example 38 (Alternating port). We define Pm = (Em, Lm) where Em = {(m, 0), (m, 1)}
and σ ∈ Lm ⊆ TES (Em) if and only if, for all i ∈ N, σ(2i) = ({(m, 0)}, ti) and
σ(2i+ 1) = ({(m, 1)}, ti+1), which consists of a stream of alternating bits at port m.

Interaction signature Following Example 11, we define three main interaction
signatures that are used to form binary and n-ary Reo components.

The synchronous signature Σsync
(a,b) = ([κsync(a,b)], [∪]) enforces events at port a to occur

at the same time as the same event at port b, i.e., ((O1, t1), (O2, t2)) ∈ κsync(a,b)(Ea, Eb)

if and only if

t1 < t2 =⇒ O1 ∩ Eb = ∅∧

t2 < t1 =⇒ O2 ∩ Ea = ∅∧

t2 = t1 =⇒ ∀d.((a, d) ∈ O1 ⇐⇒ (b, d) ∈ O2)

Note that κsync from Example 11, when restricted to observations occurring at ports,
is the symmetric and reflexive relation that synchronizes the occurrences of events at
every shared port, i.e., κsync is the union of all κsync(x,x) with x a port name.

82

Chapter 3 Reo

The asynchronous signature Σasync
(a,b) = ([κasync(a,b)], [∪]) prevents events from port a

and b to occur at the same time, i.e., ((O1, t1), (O2, t2)) ∈ κasync(a,b) (Ea, Eb) if and only if

∀d1, d2.((a, d1) ∈ O1 ∧ (b, d2) ∈ O2) =⇒ t1 ̸= t2

The relational signature Σrel
(a,b,⊓) = ([κrel(a,b,⊓)], [∪]), for ⊓ ⊆ Ea × Eb a relation,

relates an event (a, d1) from port a to a simultaneous event (b, d2) at port b such that
((a, d1), (b, d2)) ∈ ⊓, i.e., ((O1, t1), (O2, t2)) ∈ κrel(a,b,f)(Ea, Eb) if and only if

t1 < t2 =⇒ O1 ∩ dom(⊓) = ∅∧

t2 < t1 =⇒ O2 ∩ codom(⊓) = ∅∧

t2 = t1 =⇒ (∀d1.(a, d1) ∈ O1 ∩ dom(⊓)

=⇒ (∀d2.(b, d2) ∈ O2 ∩ codom(⊓)

=⇒ ((a, d1), (b, d2)) ∈ ⊓)

where dom(⊓) ⊆ Ea and codom(⊓) ⊆ Eb are the sets of events in the domain and
co-domain of the relation ⊓. Every event that is not in the related by ⊓ can therefore
freely occur at anytime. Note that if ⊓ is the identity relation on the data element,
i.e., (a, d1), (b, d2) ∈ ⊓ implies d1 = d2, then Σrel

(a,b,⊓) is equal to the signature Σsync
(a,b).

Example 39 (Binary component). Let a be a port, and m an alternating port. Let
f0 be the functional relation such that f0(a, v) = (m, 0) for all (a, v) ∈ Ea, the prod-
uct Pa ×Σrel

(a,m,f0)
Pm represents the component that synchronizes all values at port a

with the value 0 at port m. Reciprocally, fixing the functional relation f1 to be such
that f1(b, v) = (m, 1) for all (b, v) ∈ Eb, the product Pb ×Σrel

(b,m,f1)
Pm represents the

component that synchronizes all values at port b with the value 1 at port m.

The delay signature Σdelay
(a,b,⊓) = ([κdelay(a,b,⊓)], [∪]), for port a, b, and a relation ⊓ ⊆

Ea×Eb, restricts every occurrence of data at port a to be related to a later observable
at port b, i.e., ((O1, t1), (O2, t2)) ∈ κdelay(a,b,⊓) if and only if

t1 < t2 =⇒ (∀d1.(a, d1) ∈ O1 =⇒ (∀d2.(b, d2) ∈ O2 =⇒ ((a, d1), (b, d2)) ∈ ⊓))

When ⊓ is the identity relation on the data element, i.e., ((a, d1), (b, d2)) ∈ ⊓ implies
d1 = d2, we simplify the notation to write Σdelay

(a,b) .

83

Reo Chapter 3

Reo syntax Reo has a graphical syntax that visualizes composition of components.
Figure 3.1 shows three kinds of components: synchronous channels, asynchronous
channels and nodes. In this section, we describe the semantics of these kinds only
intuitively. Typically, we call a binary component a channel and certain kinds of other
components nodes.

First, we consider two synchronous channels. The sync channel in Figure 3.1
represents a synchronous transfer of data from port a to port b. The syncdrain in
Figure 3.1 models a synchronous firing of port a and b without necessarily equating
data at those ports. There are also asynchronous channels. A fifo1 channel (depicted
in Figure 3.1) has an internal buffer with the capacity to hold one data item. This
buffer is initially empty. When its buffer is empty, a fifo1 channel accepts a data
item through its input port a, places it in its buffer, which then becomes full. When
its buffer is full, a fifo1 channel no longer accepts any intput. When the buffer of a
fifo1 channel is full, the channel delivers the content of its buffer to a get operation
performed by the environment on its output port b, and its buffer becomes empty. A
get on the output port of a fifo1 channel with an empty buffer blocks until after its
buffer becomes full. Thus, the get and put operations on the ports of a fifo1 channel
succeed only asynchronously: never together. The asyncdrain channel in Figure 3.1
never allows a pair of put operations on its boundary ports to succeed synchronously.
Finally, Figure 3.1 has two ternary components: a merger and a replicator. A merger
synchronizes data transfer through at most one of its input boundary ports with data
transfer through its output port. If data is available at both input ports, a merger
non-deterministically chooses one to synchronize with its output port. A replicator
forwards the data from its input port to both of its output ports. All ports must be
ready for the replicator to proceed. A filter forwards the data from its input to its
output if the predicate ϕ labeling the filter holds on the input data. In the case where
the predicate ϕ does not hold on the data at its input, the data is lost. Oppositely, the
blocking filter, written bfilter, blocks when the data at its input violates the constraint
ϕ. See Section 4.3 for the use of Reo primitives to construct connectors.

Reo semantics Typically, the composition operator is fixed in Reo to be ×sync that
joins behaviors of components on shared port names. We use the notation ▷◁ to denote
such operation. Reo fixes the semantics of a node [6], whereas all channels are user
defined. There is, however, a commonly useful set of channels (see Figure 3.1) that
we use in this section. We define algebraically some common channels out of the port
component introduced earlier and few interaction signatures that we listed.

84

Chapter 3 Reo

a b

sync(a, b)

a b

syncdrain(a, b)

a b
•

fifo1(a, b)

a b

asyncdrain(a, b)

a

b

c

replicator(a, b, c)

a

b

c

merger(a, b, c)

a b

ϕ

bfilterϕ(a, b)

a b

ϕ

filterϕ(a, b)

Figure 3.1: Graphical syntax for some primitives.

More generally, we define Reo components as a fragment of our component algebra:

C := C ×Σ C | Px

where Σ ∈ {Σsync ,Σsync
(a,b),Σ

async
(a,b) ,Σ

delay
(a,b,⊓),Σ

rel
(a,b,⊓)} for some port names a, b, x, for

some relation on events ⊓.

We define the following Reo channels and nodes:

sync(a, b) = Pa ×Σsync
(a,b)

Pb

syncdrain(a, b) = Pa ×Σrel
(a,b,⊓)

Pb with ⊓ = (Ea × Eb)

filter(a, b, f) = Pa ×Σrel
(a,b,⊓f)

Pb with ⊓f = {((a, d), (b, f(d)) | d ∈ dom(f)}

fifo1 (a, b,M) = (Pa ×Σrel
(a,m,f0)

Pm)×Σdelay
(a,b)

∪Σsync
(m,m)

(Pb ×Σrel
(b,m,f1)

Pm)

merger(a, b, c) = (Pa ×Σexcl
(a,b)

Pb)×Σsync
(a,c)

∪Σsync
(b,c)

Pc

with Σdelay
(a,b) ∪Σ

sync
(m,m) = ([κdelay(a,b)]∪[κ

sync
(m,m)], [∪]) and Σsync

(a,c)∪Σ
sync
(b,c) = ([κsync(a,b)]∪[κ

sync
(b,c)], [∪])

and ⊓f = {({(a, d1)}, {(b, d2)}) | d2 = f(d1) or }. The sync(a, b) component is such
that the data observed at port a and b are equal and synchronous, i.e., occurs at
the same time. The syncdrain(a, b) component ensures that both the data of a and
b are observed at the same time, but does not restric their data to be equal. The
component fifo1 (a, b,M) synchronizes the observation of a data at a with the change
of the memory state M , and then outputs the same data at b. As defined here, the
fifo1 (a, b,M) component is infinitely productive, i.e., always eventually has an input
at a and an output at b. The component filter(a, b, f) synchronizes events from a with

85

Logical specification of connector components Chapter 3

event from b related by the function f . Any unrelated event at a or b can freely happen.
Note that, in the case that f is the identity, we recover the Reo filter behavior where
the condition d ∈ dom(f) denotes some predicate ϕ. The blocking filter behavior can
be encoded by composition of a non-blocking filter and other Reo primitives. The
merger(a, b, c) component either synchronizes a with c or b with c but never all ports
together.

A strength of Reo is its compositional nature: protocols are built out of primitives.
We use the join operation defined in Example 7 (see Theorem 1) for the proof of
associativity and commutativity of ▷◁) to define two Reo connectors:

alternator(a, b, c) = sync(a, c1) ▷◁ fifo1 (x, c2) ▷◁ syncdrain(a, b) ▷◁

sync(b, x) ▷◁ merger(c1, c2, c)

fifo2 (a, b) = fifo1 (a, x,M1) ▷◁ fifo1 (x, b,M2)

3.2 Logical specification of connector components

Components defined in Section 3.1 are order sensitive components: the order of the
sets of events in their behavior matters, but not the exact time of occurrence of that
set. Yet, no finite specification of component behavior is given.

In this section, we give a logical specification of components as a predicate in
guarded command form. Intuitively, the guards of the perdicates are conditions for
the commands to be executed. Consecutive satisfactions of the guarded command
predicate form the behavior of the corresponding component. The resulting logical
specification can be translated to an output language for execution or verification.

This work relates to existing work on verification of temporal on Reo compo-
nents. In addition, this section presents a powerful intermediate representation in
Section 3.2.1, that minimizes the size of the conjunction of guarded command predi-
cates. Moreover, we introduce a structure for a port at runtime that facilitates that
specification of properties in Table 3.1 as temporal properties.

Language of constraints We formally characterize the behavior of a component
as a predicate relating the data flow through its ports. Note that we first study the
behavior of a component in its ideal environment, i.e. all input and output sequences
are possible. The resulting behavior that a component describes is a set of tuples of
data streams representing the synchronous flowing of data through the ports of its
interface.

86

Chapter 3 Logical specification of connector components

Data elements that flow through ports and get stored in memory belong to a
domain that we call D. In this work, we use a unique domain for all port and memory,
since we do not use any algebraic operations on data. Note that Reo allows more
structured data elements exchanged through ports and memories. As we will later see
in the characterization of components’ behavior, the need of talking about the case
where no data is observed at a port or memory is of importance. The item ∗ is added
to the data domain D, and D∗ denotes the resulting data domain.

Ports and memories appear as variables in the logical characterization. Port and
memory variables take values in the domain D∗. The set of port variables is denoted as
P , and M denotes the set of memory variables. While ports do not have any memory
(as mentioned in the previous paragraph), memories always store the previous data
item. For each memory variable m ∈ M , there is a memory variable m′ ∈ M ′. Their
interpretation becomes clear in the next paragraph.

User defined components are characterized by a user supplied predicate or function
among the ports of its interface. The sets Q and F respectively denote the set of n-ary
predicate symbols and n-ary function symbols.

A term is either a variable p ∈ P , m ∈ M , or m′ ∈ M ′, an n-ary function
application f(t1, ..., tn) where f ∈ F is an n-ary function symbol, or a constant d ∈ C.

A formula is built inductively by:

ϕ ::= t1 = t2 | B(t1, ..., tn) | ϕ1 ∧ ϕ2 | ¬ϕ

Where B ∈ Q is a predicate symbol. The set of formula expressions is denoted by
F . We use the shorthand notation t1 ̸= t2 for ¬(t1 = t2), ⊥ for t1 ̸= t1, and we get
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) as well as ϕ =⇒ ψ = ¬ϕ ∨ ψ.

We allow existential quantifier at the outermost left position of a formula. Quan-
tifiers range over port variables only. A port occurring in ϕ but not existentially
quantified is called a free port variable. We call atomic a formula that is either an
equality, an inequality, or a predicate. We call Vϕ the set of free variables occurring in
ϕ, and similarly Pϕ ⊆ Vϕ and Mϕ ⊆ Vϕ for the set of free port and memory variables.
When ϕ is clear from the context, we drop the subscript notation.

Example 40. A Reo component, as introduced earlier, constrains the flow of data
through its boundary ports. We call constraint of the component the logical formula
used to relate the data flowing through the ports. We usually write comp(a, b) for the
formula of the component comp having as free port variables a and b. We give below
two examples for components sync and fifo1.

87

Logical specification of connector components Chapter 3

Given a port p ∈ P , the proposition of whether or not p fires is encoded as an
equality between p and elements of D∗. We say that p fires if p ̸= ∗. On the other
hand, p does not fire if p = ∗. Taking a, b ∈ P , we can now express that a and b fire
synchronously with the same datum, as the formula a = b.

sync(a, b) = a = b (3.1)

fifo1(a, b) = (m′ = a ∧ a ̸= ∗ ∧ b = ∗ ∧m = b) ∨

(m′ = a ∧ a = ∗ ∧ b ̸= ∗ ∧m = b) ∨

(m′ = m ∧ a = ∗ ∧ b = ∗) (3.2)

The constraint for a fifo1 channel has three clauses. The first one corresponds to
filling the buffer with the data item observed at port a; the second one empties the
buffer through port b; and the last one corresponds to the case where no port fires, in
which case the value in the buffer must remain unchanged.

As hinted previously, protocols can be built by composing primitives. In the case
of a composite component, the resulting constraint is defined as the conjunction of the
constraints of the underlying components.

The logic is agnostic regarding the direction of data flow and merely represents the
constraint on the data observed at each port.

Solution of constraints Every constant element of D∗ get mapped to an element
of the homonym domain D∗. Let γ be the map for every n-ary function symbol f ∈ F

to an element of Dn
∗ → D. Let I be the map for every n-ary predicate symbol B ∈ Q

to an element of Dn
∗ → 2. Let Γ : V → D∗ be the interpretation function for variable

symbols where V = P ∪M ∪M ′. The interpretation of a term t, noted JtK(Γ,γ), is the
standard inductive interpretation providing the signature (Γ, γ)

A solution to a formula ϕ is an assignment Γ such that Γ satisfies ϕ, written as
Γ |= ϕ, defined inductively on ϕ as:

Γ |= ⊤ always

Γ |= t1 = t2 iff Jt1K(Γ,γ) = Jt2K(Γ,γ)

Γ |= ϕ1 ∧ ϕ2 iff Γ |= ϕ1 and Γ |= ϕ2

Γ |= ¬ϕ iff Γ ̸|= ϕ

Γ |= ∃pϕ iff there exists d ∈ D∗ such that Γ |= ϕ[d/p]

Γ |= B(t1, ..., tn) iff (Jt1K(Γ,γ), ..., JtnK(Γ,γ)) ∈ I(B)

88

Chapter 3 Logical specification of connector components

We extend the domain definition of an n-ary function from Dn to Dn
∗ by defining

f(t1, ..., tn) = ∗ ⇐⇒ t1 = ∗ ∨ ... ∨ tn = ∗.

Example 41. Following the Example 40, the set of solutions for a sync and a fifo1
channel corresponds to the assignments for all free variables in the formula sync(a, b)

and fifo1(a, b) that satisfy the formula. We use the data domain D = {0, 1, ∗}, and
for clarity, we write (0, 1) as the assignment that maps a 7→ 0 and b 7→ 1. In this
context, the assignments (0, 0), (1, 1), and (∗, ∗) are the only assignments that satisfy
the constraint sync(a, b). We write (0, 1, 0, 1) the assignment that maps a to the first
element, b to the second element, m to the third, and m′ to the last element. Thus,
considering the constraint fifo1(a, b), the assignment (0, ∗, ∗, 0) and (1, ∗, ∗, 1) both sat-
isfy the constraint. In the case of the latter, the next value of the memory should now
be equal to 1, and only assignment mapping the memory to 1 would be allowed. We
explain in the next paragraph the behavior of a component as all the infinite sequences
of assignments that satisfy its internal constraint.

3.2.1 Connector as guarded commands: an intermediate form

A component, if it has some open ports, is not in isolation but must co-evolve with
its environment. The solution of its internal constraints must conform with the data
provided or requested by the environment.

Guarded commands We propose a method based on guards and command to
implement and simulate transactional behavior. The guard is a predicate on the state
of the ports and the memory. If the guard is true, the update describes a constraint
that both the component and its environment must satisfy. In an implementation
language, updates are themselves sequential, which can introduce some interleaving in
a concurrent setting. We later show, by making use of temporal properties, that the
translation to an sequential (yet concurrent) implementation preserves the atomicity
property.

We first refine the language of constraint and impose some requirement on ϕ to be
a guarded command. We show some properties if ϕ satisfied those requirements.

We denote by vin an input variable and vout an output variable. An input term
tin refers to either a data element d ∈ D∗, an n-ary function f(tin1 , ..., t

in
n) whose

arguments are input terms tin1 , ..., tinn .

89

Logical specification of connector components Chapter 3

A guards g is a conjunction of literals l defined as follows:

l ::= B(tin1 , ..., t
in
n) | tin1 ∼ tin2 | vout ∼ d

where ∼∈ {=, ̸=}.
A commands c is a conjunction of equalities of the kind vout = tin. We say that a

formula ϕ is in guarded command form if

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
j

gj)

where gi are formulas in the language of guards and ci are formulas in the language
of commands.

Given ϕ in guarded command form, we call an implication of the type g =⇒ c

in ϕ, a guarded command of ϕ. We call the number of guarded commands in such a
formula, the size of that formula. We denote the set of guards by G, and the set of
commands by C. Note that guarded commands are quantifier free formulas.

We say that a quantifier free formula ϕ = ϕ1 ∨ ... ∨ ϕn in disjunctive normal form
and expressed in the language of constraints is deterministic if ϕ can be written with
the grammar of guarded commands such that ϕ = g1 ∧ c1 ∨ ... ∨ gn ∧ cn, where ∧ has
precedence over ∨, gi are guards, ci are commands, and gi ∧ gj ≡ ⊥ for all i, j where
i ̸= j.

We assume that if a vout is involved in an equality, then the other term is either
∗, or an input term tin. In other words, if an equality vout1 = vout2 appears in the
constraint ϕ, there must exist an input term tin such that vout1 = tin and vout2 = tin

in order for ϕ to be written in the guarded command form. Moreover,

Proposition 1. A deterministic formula ϕ =
∨

i(gi ∧ ci) can be written as a guarded
command where:

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

where i ranges over the number of disjuncts of ϕ.

Proof. By induction on the structure of ϕ. We assume ϕ is in disjunctive normal form,
and negation is pushed to the literals. We can write ϕ = ϕ1 ∨ ... ∨ ϕn where ϕi are
conjunctions of equalities, inequalities, or predicates.
Step 1 (identification): We syntactically partition each ϕi with its corresponding guard
gi and command ci such that ϕi = gi ∧ ci. We get the resulting formula ϕ = g1 ∧ c1 ∨
... ∨ gn ∧ cn. We syntactically substitute gi ∧ ci by (gi =⇒ ci) ∧ gi. We then get

90

Chapter 3 Logical specification of connector components

ϕ = (g1 =⇒ c1) ∧ g1 ∨ ... ∨ (gn =⇒ cn) ∧ gn.
Step 2 (factorization): Because the formula ϕ is deterministic, for all i ̸= j we have
gi∧gj ≡ ⊥, which equivalently gives gi∧¬gj ≡ gi. We can then rewrite (g1 =⇒ c1)∧g1
as (g1 =⇒ c1) ∧ (g2 =⇒ c2) ∧ g1, since

(g1 =⇒ c1) ∧ (g2 =⇒ c2) ∧ g1 = g1 ∧ c1 ∧ (¬g2 ∨ c2)

= g1 ∧ c1 ∧ ¬g2 ∨ g1 ∧ c1 ∧ c2
≡ g1 ∧ c1 ∨ g1 ∧ c1 ∧ c2
≡ g1 ∧ c1
≡ (g1 =⇒ c1) ∧ g1

By induction on the number of implications, we conclude that (gj =⇒ cj) ∧ gj is
equivalent to

∧
i(gi =⇒ ci) ∧ gj for all j, and thus:

ϕ =
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

Given two guarded commands ϕ =
∧

i(gi =⇒ ci) ∧ (
∨

j gj) and ψ =
∧

i(g
′
i =⇒

c′i) ∧ (
∨

j g
′
j), we write the composition ϕ ∧ ψ as the formula:

ϕ ∧ ψ =
∧
i

(gi =⇒ ci)
∧
i

(g′i =⇒ c′i) ∧ (
∨
i,j

g′i ∧ gj)

Proposition 2. Given two deterministic formulas ϕ and ψ, their product ϕ ∧ ψ is
also deterministic.

Proof. Since ϕ and ψ are deterministic, we can write ϕ =
∧

i(gi =⇒ ci) ∧ (
∨

j gj)

and ψ =
∧

i(g
′
i =⇒ c′i) ∧ (

∨
j g

′
j) where for i ̸= j, gi ∧ gj ≡ ⊥ and g′i ∧ g′j ≡ ⊥. The

product ϕ ∧ ψ can be seen as:

ϕ ∧ ψ = (g1 ∧ c1 ∨ ... ∨ gn ∧ cn) ∧ (g′1 ∧ c′1 ∨ ... ∨ g′n ∧ c′n)

= (g1 ∧ g′1 ∧ c1 ∧ c′1 ∨ ... ∨ gn ∧ g′n ∧ cn ∧ c′n)

The new formula ϕ ∧ ψ inherits from ϕ ∧ ψ that for any i, j, k and l such that
i ̸= j ∨ k ̸= l, we have gi ∧ g′k ∧ gj ∧ g′l ≡ ⊥. Therefore, ϕ∧ψ is also deterministic and

91

Logical specification of connector components Chapter 3

can be written as a guarded command:

ϕ ∧ ψ =
∧
i,j

((gi ∧ g′j) =⇒ (ci ∧ c′j)) ∧
∨
i,j

(gi ∧ g′j)

As the construction in the proof of Proposition 2 shows, writing the composition
of two deterministic formulas as a deterministic formula may increase the size of the
resulting formula.

We present some optimizations that can be applied to formulas before forming
their product. We use the formula ϕ =

∧
i(gi =⇒ ci) ∧ (

∨
i gi) and ψ =

∧
j(g

′
j =⇒

c′j) ∧ (
∨

j g
′
j) to illustrate these transformations, where i and j range over a finite set

of natural numbers.

In general, the disjunction of guards
∨

i gi constituting the last part of the guarded
command can imply a relation on the literals of the guards, and simplify the guards
themselves. We consider the example of the sync channel:

ϕsync =(a = ∗ ∧ b = ∗ ∧ a = b) ∨ (a ̸= ∗ ∧ b ̸= ∗ ∧ a = b)

=((a ̸= ∗ ∧ b ̸= ∗) =⇒ a = b)∧

((a = ∗ ∧ b ̸= ∗) =⇒ a = b)∧

((a = ∗ ∧ b = ∗) ∨ (a ̸= ∗ ∧ b ̸= ∗))

=(a ̸= ∗ =⇒ a = b) ∧ (a ̸= ∗ ⇐⇒ b ̸= ∗)

In this example, the guarded command form of the formula for sync induces a relation
on a fires and b fires that simplifies the formula. It also means that in subsequent
compositions, we can consider literals a ̸= ∗ and b ̸= ∗ as interchangeable. We consider
as future work the exploitation of such relations that emerge from the disjunction of
guards.

Given the product ϕ ∧ ψ, if we find gk and g′l such that gk ⇐⇒ g′l, we can
equivalently consider ϕ ∧ ψ as the following formula:

ϕ ∧ ψ =((gk ∧ g′l) =⇒ (ck ∧ c′l))∧∧
i ̸=k

(gi =⇒ ci)
∧
i ̸=l

(g′i =⇒ c′i) ∧ (
∨
i,j

gi ∧ g′j)

92

Chapter 3 Logical specification of connector components

In other words, if ϕ is of size N and ψ of size M , we decrease the size of ϕ ∧ ψ
by 1 by identifying two guards, i.e., the size of ϕ ∧ ψ is M + N − 1. If we compare
the resulting size of the disjunctive normal form, since gk ∧ g′l is exclusive of all other
guards gi and g′j for all i ̸= k and j ̸= l, identifying two guards remove M +N clauses
from M ×N .

Example 42. We now consider an example of guarded commands for the fifo1 prim-
itive. The fifo1 primitive has a permanent constraint written in Fig. 3.2, with the io
designation of io(a) = 1 and io(b) = 0, i.e., a is an input port and b is an output port.
The formula of a fifo1 is deterministic, and with the result of Proposition 1, we can
write its permanent constraint as a guarded command:

ϕfifo1 = (g1 =⇒ c1) ∧ (g2 =⇒ c1)∧(g3 =⇒ c2)∧

(g1 ∨ g2 ∨ g3)

where we have the following guards g1 := (a ̸= ∗ ∧ b = ∗ ∧ m = ∗), g2 := (a =

∗ ∧ b ̸= ∗ ∧ m ̸= ∗), and g3 := (a = ∗ ∧ b = ∗); and the following commands
c1 := (m′ = a ∧m = b), and c2 := m′ = m.

The formula for a fifo1 channel has three different guards. The first guard g1 checks
whether its source port a is active, in which case the command c1 fills the buffer with
the data observed at port a; the second guard g2 checks whether the channel’s sink port
b is active, in which case its command c1 empties the buffer through port b. The last
guard g3 checks if the two ports a and b are inactive, and if true, triggers the command
c2 where memories are copied over.

Proposition 3. Given ϕ a deterministic formula written in guarded command form,
Γ is a solution of ϕ if and only if there exists a unique guarded command g =⇒ c of
ϕ such that:

Γ |= g ∧ c

Proof. We assume ϕ =
∧

i(gi =⇒ ci) of size n ∈ N where gi are guards and ci are
commands for all 1 ≤ i ≤ n.

Γ |= ϕ iff Γ |=
∧
i

(gi =⇒ ci) ∧ (
∨
i

gi)

iff ∀ 1 ≤ i ≤ n, Γ |= gi =⇒ ci and Γ |=
∨
j≤n

gj

Because guards are exclusive to each others (ϕ is a deterministic formula), if there

93

Logical specification of connector components Chapter 3

exists 1 ≤ i ≤ n such that Γ |= gi, then Γ ̸|= gj for all j ̸= i. Therefore, there exists a
unique 1 ≤ j ≤ n such that Γ |= gj .

Γ |= ϕ iff for all 1 ≤ i ≤ n, Γ |= gi =⇒ ci and

there exists a unique 1 ≤ j ≤ n, Γ |= gj

Since there exists a unique guard that Γ can satisfy, for all 1 ≤ i ≤ n such that i ̸= j,
Γ |= gi =⇒ ci since Γ |= ¬gi. Thus:

Γ |= ϕ iff there exists a unique 1 ≤ j ≤ n, Γ |= gj

and Γ |= gj =⇒ cj

Which is equivalent to:

Γ |= ϕ iff there exists a unique 1 ≤ j ≤ n, Γ |= gj

and Γ |= cj

3.2.2 Behavior of connectors

Operational semantics. We present in this section the operational semantics of
constraint ϕ specifying a protocol as a labeled transition system, where we consider
memory assignment as labels for states, and port assignments as labels for transitions
between states. We call ΓVϕ

the set of assignment functions Γ : P ∪M ∪M ′ → D∗

that satisfy the constraint ϕ. Given an assignment Γ ∈ ΓVϕ
, we denote by ΓP , ΓM ,

and ΓM ′ the restrictions of Γ to respectively the port variables, un-primed memory
variables, and primed memory variables assignment.

The operational semantics of a connector characterized by an internal constraint
ϕ, where Vϕ = P ∪ M ∪ M ′, is defined in terms of a labeled transition system
(S,L, s0,ΓVϕ

,→), where:

• S the set of states

• s0 is the initial state

• L : S → (M → D∗) is a labeling function

• ΓVϕ
= {Γ | Γ |= ϕ} is the set of solutions of ϕ

94

Chapter 3 Logical specification of connector components

(∗) (1)(∗, ∗)

(1, ∗)

(∗, 1)

(∗, ∗)

Figure 3.2: LTS of a fifo1 channel with domain D = {∗, 1}

• →⊆ S × (P → D∗) × S the transition relation s.t.: (s0,ΓP , s1) ∈→ iff there
exists ∆ ∈ ΓVϕ

such that ∆P = ΓP , ∆M = L(s0), and ∆M ′ = L(s1).

According to this definition, each state in si ∈ S represents a data assignment for
memories of a component (free variables in ϕ) at an instant i.

In the case where M = ∅, which means no memories are defined in the protocol,
then the set of states S is composed only of one state s0, such that L(s0) = ∅.

By Proposition 3, the label transition system of a deterministic constraint is de-
terministic with respect to its label: for any state s ∈ S and pair of distinct states
s′, s′′ ∈ S, if (s,Γ, s′) ∈→ and (s,Γ′, s′′) ∈→, then Γ ̸= Γ′. Indeed, the two solutions
Γ and Γ′ must satisfy two different guarded commands, and since ϕ is deterministic,
the two guards cannot be satisfied at the same time. Then, Γ and Γ′ must differ in
at least one port assignment. It makes sense therefore to use such a label transition
system to define the operational semantics of a connector specified by a deterministic
constraint, as the resulting LTS is deterministic.

Example 43. This example prolongs the Example 41, and use the data domain D =

{1, ∗}. States are labeled by memory assignment. A fifo1 has only one memory,
therefore a state labeled by the element (d) represents the assignment of value d to
the memory. Transitions are labeled by port assignment. A fifo1 has two ports in its
interface, therefore we express the assignment a maps to da and b maps to db as the
tuple (da, db). Initially, the fifo1 start with an empty memory.

The set ΓVϕ
for the fifo1 channel corresponds to all solution of the constraint

fifo1(a, b), that could be listed in the same manner as explained in Example 41. The
resulting LTS for a fifo1 channel is shown in Figure 3.2.

Execution path We define an infinite execution path σ of a transition system LTS

as a sequence of transitions, i.e. σ = s0,ΓP0, s1,ΓP1, s2, ..., si,ΓPi, si+1, ..., where
(si,ΓPi, si+1) ∈→.

We denote by wσ the word induced by the path σ consisting of the sequence of
the assignments Γ, i.e. wσ = (Γi)i∈N where Γi(p) = ΓPi(p) and Γi(m) = L(si)(m) for

95

Logical specification of connector components Chapter 3

all p ∈ P , and m ∈ M where L is the labeling function of the LTS. We write T for
the set of infinite words, and w ∈ T is accepted if there exists an infinite execution
path σ of LTS such that w = wσ. Given w ∈ T , the element w(i) designates the i-th
port and memory assignment in w, and w(i)(v) gives the specific assignment for the
port variable if v ∈ P or memory variable if v ∈ M . The n-th derivation of a word
w is noted as w(n) and defined such that w(n)(i) = w(n + i) for all i ∈ N. Based on
this definition, we have w(0)(i) = w(i). For example, in the first table (from the left)
in Table 3.2, we have: w(0)(0) = (∗, ∗, ∗), w(0)(1) = (1, ∗, ∗), and w(1)(0) = (1, ∗, ∗),
w(1)(1) = (∗, 1, ∗), where the values of the first, the second, and the third elements in
the tuples are associated respectively to the ports and memory, a, m, and b.

Behavior of components We define the behavior of a component whose specifica-
tion is given by a formula ϕ as the set of infinite words accepted by the LTS, i.e.:

Lϕ =
⋃
w∈T

{w | w is an accepted word }

We refer to the behavior of a port as the restriction of the behavior of a component
to a single variable. We note w|a the restriction of the word w to the port variable
a ∈ P . The restriction w|a thus denotes the stream of values observed at port a, and
is such that w|a(i) = w(i)(a) for all i ∈ N.

Example 44. The example of an execution of the protocol corresponding to the con-
nector fifo1 is represented by Table 3.2.

a m b
∗ ∗ ∗
1 ∗ ∗
∗ 1 ∗
∗ 1 1
...

a m b
1 ∗ ∗
∗ 1 ∗
∗ 1 ∗
∗ 1 1
...

a m b
1 ∗ ∗
∗ 1 1
1 ∗ ∗
∗ 1 1
...

Table 3.2: Three words in the behavior set of a fifo1 channel with domain D = {1, ∗}

We use the same convention as in Section 2.3, namely that a behavior of a order
sensitive component is described without time labels. Moreover, using the set notation
for an assignment Γ of ports to values, a word labeling an LTS is a sequence of sets of
assignments, which denotes the representative of a set of equivalent behaviors under
stretching. Thus, the semantics of a constraint ϕ is given as a component (Eϕ, Lϕ)

96

Chapter 3 Verification of temporal properties on connectors

where Eϕ contains all possible assignments for all free ports and memories occurring
in ϕ.

3.3 Verification of temporal properties on connectors

To specify the properties of the executions of Reo protocols, we define in t this section
the LTL formulas semantics on Reo connector behaviors.

Let C be a Reo protocol specified with the formula ϕ, such that its operational
semantics is specified with LTS. Let σ be an execution path of LTS. We refer by wσ a
word accepted by LTS over σ, and denote T the set of accepted words.

An LTL formula is expressed using the following syntax:

φ ::= v = d | φ1 ∧ φ2 | ¬φ | Xφ | □φ | ♢φ | φ1Uφ2

where v is a port or memory variable in P ∪M and d is an element of the data domain
D∗.

We interpret the LTL formulas over the accepted word wσ and define the satisfac-
tion relation |= such as,

• wσ |= v = d iff w
(0)
σ (0)(v) = d

• wσ |= φ1 ∧ φ2 if and only if wσ |= φ1 and wσ |= φ2

• wσ |= ¬φ if and only if wσ ̸|= φ

• wσ |= Xϕ if and only if w(1)
σ |= ϕ

• wσ |= □φ if and only if w(i)
σ |= φ for all i ∈ N

• wσ |= ♢φ if and only if w(i)
σ |= φ for some i ∈ N

• wσ |= φ1Uφ2 if and only if there exists j ∈ N such that w(j)
σ |= φ2, and w(i)

σ |= φ1

for all 0 ≤ i < j.

We introduce several properties of interest on Reo circuit. Given p, m, and m′

respectively port, memory, and next memory variables, we denote by p and m the
atomic propositions p ̸= ∗ and m′ ̸= m which represent that p is firing and m is
changing value. In both cases, we say that p or m fires.

Example 45. As an example of LTL formula for a sync channel, we have □(a ⇐⇒
b) where a and b are port variables. For a fifo1 channel, we have □(a =⇒ X(¬aUb))
and also □(b =⇒ X(¬bUa)).

97

Verification of temporal properties on connectors Chapter 3

Properties Temporal formulas
a fires a
a silent ¬a
a before b a =⇒ ♢b
a then b a =⇒ X(silent U b)
a sync b □(a ⇐⇒ b)
a async b □((a =⇒ ♢b) ∨ (b =⇒ ♢a))

We now look into the implementation and verification of a protocol described by a
formula in guarded command form. As Proposition 3 shows each solution is described
by a unique guarded command. Therefore a program implementing a protocol checks
the set of guards that are satisfied by the state of the environment and the internal
state, and nondeterministically satisfies one and only one corresponding command.
We develop in the next section the steps leading from a protocol specification to a
program written in Promela.

3.3.1 From synchronous protocol to asynchronous implemen-
tation

In the previous section, we detailed the requirement and the procedure to write a
protocol as a formula in the guarded command form. The implication of having such
a form for a protocol makes it possible and easier to translate it into a program. In
this section, we define a translation from a formula written as a guarded command
to a Promela program. We show the correctness of the translation, by comparing the
semantic of a Reo specification, and that of its target program in Promela.

Translation of Reo to Promela Throughout this section, we assume a generic
data type denoted as Data for data flowing in the protocol, since data type is specific
in the application that employs the protocol. We go through the main constructs in
Reo, being ports, components, and connectors.

Ports In Reo, as defined in the previous section, a port is a location where two
components synchronize and exchange data. In Promela, we implement a Reo port
as a pair of two Promela channels, each with a buffer size of one. We show that
our Promela implementation of a port simulates Reo’s synchronized message passing
between components.

typedef port {
chan data = [1] of {Data};

98

Chapter 3 Verification of temporal properties on connectors

chan trig = [1] of {int}; }

Listing 3.1: definition of a Reo port in Promela

As expressed in Listing 3.1, a port has a data channel and a synchronization chan-
nel. The data channel is responsible of the data flow between input and output ends
of a port. The Promela synch channel ensures synchronous exchange between these
two ends.

As described in Listing 3.2, two actions can be performed on such a constructed
port: put and take.

inline put(q,a) {
int x;
q.data!a;
q.trig?x }

inline take(q,a) {
q.trig!-1; q.data?a }

Listing 3.2: put and take functions

The action put has two arguments: a port q and a datum a. The function call
put(q, a) atomically fills the data channel of q with the datum a, and blocks on the
trig channel, waiting to synchronize with the component on the output side of q. The
integer x is used to empty the trig channel, but its value does not matter.

The action take has a port q and a variable a as arguments. The function call
take(q, a) atomically notifies, by filling the trig channel, that there is a component
willing to take data, and blocks on the data channel, until a datum can be taken into
the variable a. The integer value of −1 written into the synchronization channel is
arbitrary, as trig is used only for signaling.

We describe two temporal properties that reflect the synchronous behavior of a
port in an asynchronous implementation. We say that a port fires whenever a data is
exchanged between the input party and the output party. If a port does not fire, it is
silent. In the case of an implementation of a port with two buffers, the firing property
occurs whenever a port has both an input and an output request: both buffers are
full. We say the a buffer (or a memory) is full whenever it contains a data, and is
empty otherwise. We define some macros in Listing 3.3 for firing and silent property
of port p, and for full and empty buffer.

Listing 3.3: Macros for firing of ports

#define p_fires (
!(len(p.data) == 0) && !(len(p.trig) == 0) &&

99

Verification of temporal properties on connectors Chapter 3

X((len(p.data) == 0) || (len(p.trig) == 0)))

#define p_silent (! p_fires)

#define m_full (!(len(m)==0))
#define m_empty ((len(m)==0))

Components We call an external component that interacts with the main protocol,
an agent. For each port q in the protocol’s interface, we assume an agent connected
to that port. More precisely, if q is used as an input port by the protocol, the agent
connected to q must use q as an output port, and vice versa. We give in Listing 3.4
an example of a definition of an agent with two ports as its arguments, one input and
one output.

proctype agent(port p1; port p2){
/* p1: input , p2: output */
do

:: /* action */
od }

Listing 3.4: A generic structure for an agent

Each agent is defined as a proctype in Promela, and runs concurrently with the
main protocol. We represent the generic behavior of an agent as an infinite sequence
of non deterministic actions (with the do− od loop), but the definition of the precise
behavior of an agent is left for the user. Since agents and protocol share ports, it is
possible that an agent blocks until a datum is delivered at its port.

We assume a set of agents given by the user. Our compiler generates only the
skeleton of an agent including the set of ports in its interface, with the direction of each
port (either input or output). As an extension, we intend to make the input/output
restriction of ports direction more strict, using the Promela assertion xr and xs to
prevent misuse of port directionality. We later specify some properties of the desired
observable behavior.

Connectors As introduced previously, the main difference between a component and
a connector is the ability for the component to block on some put or get operations on
its port. We showed in the previous section a guarded command transformation for a
connector, where the guard plays the role of a safety check on the state of the input

100

Chapter 3 Verification of temporal properties on connectors

and output ports, and the command gives the values exchanged at the output ports
in terms of the value taken at the input ports.

A connector is a process running concurrently to the components. We define a
connector as a proctype, taking as argument all ports in the interface of the connectors.
The internal operation in the connector proctype are defined based on the definition of
its internal constraint. We call P the set of free port variables used in the connector’s
constraint, and M the set of memory variables.

We first instantiate every variable occurring free in the connector’s internal con-
straint as a channel structure in Promela. For every port variable p ∈ P , we define
a global instance of the port structure defined in previous paragraph, with the same
name as the variable. Since variable have unique names, the structure is also unique for
every ports. The structure for a port is global, and will later be used for checking some
temporal properties. For every memory variable m ∈M , we define a local channel of
size 1. Constant symbols are mapped to their corresponding domain. Promela only
supports few data types, we assume that the constants get an interpretation in one of
those data type (integer, boolean, float, characters). Function symbols are mapped to
inline procedures in Promela. For each function used in Reo, we assume that an inline
procedure with the same name will be provided in Promela. We use, for every port
or memory variables, an additional variable in Promela that will temporary store the
data occurring at a port or memory. This additional variable is typically used when
multiple output variables take the value of a single input variable: in this case, the
value of the input variable is temporary stored, and replicated to every outputs.

Based on the result of Proposition 1 we take the connector in its guarded command
form. We use GC for the set of guarded commands. A guarded command g → c ∈ GC
has a natural interpretation in Promela as a conditional update. The guard g is
translated as a condition on the status of the port and memory channels, while the
command c is an update of the port and memory status. The most common statements
in the guards are full(p.data), full(p.trig) and full(m), which respectively checks
whether a port p has an incoming data request, an outgoing data request, or if the
memory m is full. The negation of those statement are also commonly used in the
guards. In the command, we proceed for the update of ports and memories, which
corresponds to statements of the kind take(p,d), put(p,d), m?d, or m!d, where d is a local
variable.

The generic structure of a Promela program obtained from a deterministic formula
with n guarded commands is shown in Listing 3.5.

101

Verification of temporal properties on connectors Chapter 3

proctype Protocol(port p1 ;...){
/* p1: input , ... */
/* Memory declaration */
chan m = [1] of {int}; ...
/* Initial state */
m!0; ...
/* Local variables */
int _m; int _p1 ; ...
/* Guarded commands */
do
:: (guard_1) -> command_1
:: ...
:: (guard_n) -> command_n
od }

Listing 3.5: a generic structure of a protocol

Note that the statements in the command are executed sequentially. We show in
the next section that we can express some synchronous patterns as an LTL property
on the state of the ports and memories.

LTL properties We give a translation to an LTL property on the Promela transla-
tion, such that the properties of synchrony are preserved. Therefore, we show that if
the LTL property should hold on the Reo circuit, then the corresponding asynchronous
LTL property should hold on the Promela program generated from the Reo circuit.

The property p_silent is defined as the negation of the firing property, and repre-
sents all the non firing states of the port p. The property silent denotes the conjunc-
tion of all silent properties for all ports. Note that internal memory updates are still
allowed.

The two properties p1_before_p2 and p1_then_p2 express some asynchronous firing
for ports p1 and p2. The latter property is stricter, since the silent property requires
that between the firing of ports p1 and p2, no other ports fire: it is true that p1_then_p2

implies p1_before_p2.

We define the synchronous property in Promela as a binary relation between two
ports p1 and p2. We say that the two ports are synchronous if it is always the case
that p1 fires and then p2 fires (or the opposite), and all steps in between the firings
satisfy the silent property. Synchronous property is a stricter form of asynchronous
property: it is true that sync_p1_p2 implies async_p1_p2.

102

Chapter 3 Verification of temporal properties on connectors

Properties Temporal formulas

p_fires
len(p.data) != 0 && len(p.trig)!=0 &&
X(len(p.data)==0 || len(p.trig)==0)

p_silent !(p_fires)

m_full len(m.data)!=0

m_empty len(m.data)==0

m_fires
m_full && X(m_empty)) ||

m_empty && X(m_full)

m_silent !(m_fires)

p1_before_p2 (p1_fires -> <> (p2_fires))

p1_then_p2 (p1_fires -> X(silent U p2_fires))

sync_p1_p2 [] (p1_then_p2 \/ p2_then_p1)

async_p1_p2 [] (p1_before_p2 \/ p2_before_p1)

Arguments for correctness In this section, we show that the sequence of messages
exchanged between the generated Promela processes can be related to the sequence of
data exchanges at a port of a Reo circuit. We first establish, based on the structure
of the generated code resembling the guarded command form of the connector, that
every data exchanged between Promela processes can be related to an assignment that
satisfies the connector. As a consequence, every sequences of data exchanges between
Promela processes can be related to a sequence of assignments in the behavior of a
connector. We then show that there exists, for any sequences in the behavior of a Reo
connector in its ideal environment, a set of processes in Promela such that the message
exchanges between Promela processes correspond to the sequence in the behavior of
the Reo connector. For simplicity and clarity, we consider a binary data domain for
ports. The arguments for a larger domain are similar.

We use the semantic of Promela defined in [88] to show the correctness of our
translation. The operational semantics of a Promela program P composed of processes
Pi is defined as a graph T = (Q,→, q0) where Q is a set of states and → is a binary
relation on states. A state q ∈ Q is a tuple q = (l0, ..., lm, lv1, ..., lvm, gv) where each
li is a location in process Pi, lvi is the vector of local variable values in process Pi, and
gv is the vector of global variables in P . The state q0 ∈ Q denotes the initial state.
We write li

st−→ l′i if and only if there is a statement st from li to l′i. The variables
after executing st are st(lv) and st(gv). In our case, st is an assignment, skip, or

103

Verification of temporal properties on connectors Chapter 3

conditional statement; or it is an asynchronous send (resp. receive) from a non-full
(resp. non-empty) channel. The initial state of a Promela program T = (Q,→, q0)

is q0 = (l0, lvinit, gvinit) and a path of T is a sequence of state q0q1... such that
(qi, qi+1) ∈→.

A Promela program produced by a Reo compiler consists of a set of N processes
running concurrently, whereN−1 processes are agents interacting through the protocol
process. Agents share ports with the protocol, such that they can put values on the
input port of the protocol, and take values from the output ports of the protocol.

By construction, the connector in Promela can only change its internal variables
(memories) and the global vector of variables (boundary ports) if one of its guard is
true and the command is performed. Guards are boolean statements checking whether
the trig and data channels of a port are full (or empty), or if the memories channels
are full (or empty). Given a connector with n ports at its interface, and k internal
memories, there are 22n+k possible states in the graph of the Promela process.

We show soundness of our implementation with the following arguments:

1. In the initial state, the vector gv is set to its initial value, together with all
memory channels.

2. Given a vector gv of global variable, and a vector lv of local variables, the process
for the connector, if scheduled, evaluate its guards. From the set of guards
satisfied, one is selected non-deterministically, and the corresponding command
is performed. The guard ensure that the take and put statements in the command
will not block. The value exchanged at the ports, the current and next values for
the memory constitute an assignment that satisfies a unique guarded command
in the deterministic formula of the connector (Proposition 3).

3. If no guards are satisfied, processes for agents are scheduled, modifying the global
vector of variables gv.

All sequences of assignments allowed by the connector process are included in the
sequences of assignments satisfying the formula of the connector.

Completeness can be derived by showing that every solution of the guarded com-
mand corresponds to an implementation where the set of agents simulate the envi-
ronment of the solution. By taking an implementation that unifies the agents, and
using the non-deterministic properties of Promela, we can simulate any solution of the
formula as a statement and a gv vector in Promela. Elaboration of this part remains
as future work.

104

Chapter 3 Verification of temporal properties on connectors

3.3.2 Case Study

In this section, we present an application of our approach. We show the Promela
specification of a fifo channel, and study its LTL properties in two contexts: ideal and
constrained environment. A second example is available in [63], in which we analyse a
composite connector representing the protocol involved in a railway system. We show
the Promela program compiled from the corresponding Reo circuit, and verify some
properties of interest using SPIN.

We refer to an on-line repository [60] for reproduction of the results presented
in this section. The compiler that generates the Promal code is accessible at [64].
The compiler takes as input a Treo file (Textual Reo [31]) and give an intermediate
representation of the circuit as a guarded command formula described in this section.

Study on the fifo channel We consider the Reo specification of fifo described in
Example 40, where ports a and b are renamed to ports p1 and p2. We connect the
channel with two components: one that produces data at the input port p1 and one
that consumes that at the output port p2.

We study the properties of a fifo channel in two different environments:

• The ideal environment: the two components connected by the fifo channel, pro-
ducer and consumer, behave in the ideal way. The producer is willing to produce
messages infinitely often, and the consumer is willing to consume messages in-
finitely often.

• The constrained environment: the producer is willing to produce messages in-
finitely often, but the consumer consumes a finite number of messages only. We
show in this case that some properties of the fifo channel that were satisfied in
the ideal environment may now be violated due to some non ideal behavior of
boundary components.

Before detailing the verification of LTL properties in these two cases, we present the
Promela implementation of fifo channel, described in Listing 3.6. The Reo protocol is
implemented by the process Protocol, and the producer and consumer are implemented
respectively by the processes Prod and Cons.

proctype Protocol(port p1;port p2){
bit _m = 0 ;
do
:: (empty(m) && full(p1.data)) -> take(p1,_m); m!_m
:: (full(m) && full(p2.trig)) -> m?_m; put(p2,_m)

105

Verification of temporal properties on connectors Chapter 3

od
}

init{
run Prod(p1); run Cons(p2); run Protocol(p1 ,p2); }

Listing 3.6: Promela implementation of a fifo channel

The Promela implementations of the components producer and consumer are de-
scribed in Listing 3.7.

proctype Prod(port a){
do
:: atomic{put(a,1)}
od

}
proctype Cons(port a){
bit y;

do
:: atomic{take(a,y)}
od

}

Listing 3.7: Promela implementation of a consumer and producer

Verification in the ideal environment. We present three properties to verify on
fifo1 connector:

• prop1 ≡ □(p1 =⇒ ♢(p2)), which states that always if the port p1 fires then
eventually the port p2 fires. This property is verified. It is implemented in
Promela as follows:

ltl prop1 {[] (p1_fires -> <> p2_fires) }

• prop2 ≡ □(m ̸= ∗ =⇒ ♢(p2)), which states that always if the buffer m is full
then eventually the port p2 fires. This property is verified. It is implemented in
Promela as follows:

ltl prop2 {[] (m_full -> <> p2_fires) }

• prop3 ≡ □(m ̸= ∗ =⇒ X(p2)), which states that always if m is full then in the
next state p2 fires. This property is not verified because the port p2 becomes
silent in the next state. It is implemented in Promela as follows:

ltl prop3 {[] (m_full -> X p2_fires) }

106

Chapter 3 Related work and future work

• prop4 ≡ □(p1 =⇒ X(¬p1 U p2)), which states that always if p1 fires then in
the next state p1 becomes silent until p2 fires. This property is verified. It is
implemented in Promela as follows:

ltl prop4 {[](p1_fires -> X(p1_silent U p2_fires))}

Remark 11. The result of the property verification, described above, shows that the
implementation of the fifo1 connector is correct. Indeed, based on the behavior of fifo1,
this result is the one we expected.

Verification in the constrained environment: In this case, the producer inter-
acts with a finite consumer, so the number of messages that could be consumed by
the is limited to 5. In Listing 3.8, is presented the Promela implementation of a finite
consumer, specified by the process consF inite().

We verified the properties described above, prop1, prop2, prop3, and prop4, and as
expected, all these properties are not satisfied. Indeed, the properties prop1, prop2,
and prop4 are not satisfied because of the behavior of the component consumer that
prevents firing the port p2 after consuming the first 5 messages. Therefore their
violation is due to the protocol environment. However the property prop3, remains
not satisfied as in the case of the ideal environment.

proctype consFinite(port a){
bit y;
int i = 5;
do
:: i>0; atomic{take(a,y)}; i = i-1
:: break
od
}

Listing 3.8: a generic structure of a protocol

3.4 Related work and future work

We should mention the existing works on Reo semantics [47] and pioneer work on
Reo compiler [46]. Our work expands existing work on the Reo coordination language
by giving a new algebraic semantics for Reo, whose primitive components are not
channels, but ports. Basic Reo channels (such as a sync or fifo channel) can be
described as an algebraic product of their ports, parametrized by the proper interaction

107

Related work and future work Chapter 3

signature. Moreover, the algebraic properties of the interaction signature provides new
ways to reason about equivalent Reo expressions.

Model checker Vereofy [14, 15, 13] is a model checking tool developed at the Univer-
sity of Dresden to analyze and verify Reo connectors. Vereofy has two input languages:
the Reo Scripting Language (RSL), used to specify the coordination protocol, and a
guarded command language called Constraint Automata Reactive Module Language
(CARML), a textual version of constraint automata used to specify the behavior of
components. Vereofy allows the verification of temporal properties expressed in LTL
and CTL-like logics.

Our work differs from Vereofy, since we use the Treo [31] (Textual Reo language)
to describe both the protocol and the boundary components. In Treo, the description
of the behavior of primitive channels and components is parametric: the user has to
define a semantic domain, and the Reo composition operation in that semantics. We
make use of the rule based semantics [32] for channels and give the description of
boundary components directly as Promela processes. Our work extended the set of
backend for the compiler so that the Textual Reo description (i.e., Treo input file)
compiles to a Promela program that can be used by the Spin model checker.

Denotational semantics for Reo In [3], the authors give a co-inductive seman-
tic model for Reo connectors, based on timed-data streams (TDS). We shall briefly
highlight the main differences between such model and ours. First, the TES model for
component behavior explicitly captures atomic set of events in an observation, while
the TDS model implicitly represent atomicity as all firing of ports that occur at the
same time. The time stamp of a TES can therefore be dropped while preserving the
information of atomicity: this construction simplifies reasoning about atomicity.

Another difference between TES and TDS is that TESs are not restricted to com-
munication ports, but can model arbitrary events. Moreover, the implicit semantics in
TDS that a port fires infinitely often (which is used as an argument for fairness in [3])
is no longer assumed in the TES model, but can still be recovered if needed.

Operational semantics for Reo The constraint automata semantics for Reo was
also considered in [17] for defining and verifying bisimulation and language equiva-
lence between Reo connectors. In [6, 7], the authors considered time constraints, and
proposed a timed version of constraint automaton to verify by model checking timed
CTL properties. In [52, 51], the authors use timed constraint automata and present
a SAT-based approach for bounded model checking of real-time component connec-

108

Chapter 3 Related work and future work

tors. The authors proposed a framework for the verification of Reo circuits using the
mCRL2 toolset (developed at the TU of Eindhoven). Their tool automatically gener-
ates mCRL2 specifications from Reo graphical models. The translation from Reo to
mCRL2 uses the constraint automata semantics of Reo.

In [42], the authors provide a semantics for Reo circuits using Büchi automata,
and verify temporal properties of Reo circuit. Our work differs in that our logic
is first order (and not monadic second order as for Büchi automata) and we give an
internal representation (as guarded commands) that minimizes the size of the resulting
composition. The internal representation of a Reo circuit is then translated either to
a model checker for temporal verification, or to an imperative language for execution.
The tool on which this section is based has shown state of the art results [32].

109

Related work and future work Chapter 3

110

Chapter 4

Operational specifications of
components

In Chapter 2, we presented a model of components that captures timed-event sequences
(TESs) as instances of their behavior. An observation is a set of events with a unique
time stamp. A component has an interface that defines which events are observable,
and a behavior that denotes all possible sequences of its observations (i.e., a set of
TESs). Our component model is equipped with a family of operators parametrized
with an interaction signature. Thus, cyber-physical systems are defined modularly,
where the product of two components models the interaction occurring between the
two components. The strength, as well as practical limitation, of our semantic model
is its abstraction: there is no fixed machine specification that generates the behavior of
a component. We give, in this chapter, three operational descriptions of components
each at different level of abstraction.

As a first operational specification, we present a state-based description of a com-
ponent’s behavior using labeled transition systems. A TES transition system has
transitions labeled with observations, and enriches components with states. Different
TES transition systems may denote the same component, as a component is oblivious
to internal non-determinism of the machinery that manifests its behavior. As for com-
ponents, we introduce a family of parametrized algebraic products on TES transition
systems. The parameter here is a composability relation on observations, and each
transition in the product is the result of the composition of a pair of transitions with
composable labels. We show that the TES transition system component semantics is

111

Chapter 4

compositional with respect to such products, i.e., the component resulting from the
product of two TES transition systems is equal to the product of the components re-
sulting from each TES transition system. On components, the composability relation
is co-inductively lifted from observations to TESs, and the composition function is set
union on observations and interleaving on streams.

Because the composability relation on observations is a step-wise operation, it
may lead to deadlock states in the product TES transition system, i.e., states with
no outgoing transitions. We call two TES transition systems compatible with respect
to a composability relation on observations if, for every reachable pair of states, there
is at least one pair of transitions whose pair of labels is composable. We give some
sufficient conditions for TES transition systems to be compatible, and show that if
two TES transition systems are compatible, then their product can be done lazily, i.e.,
step by step at runtime. Note that, however, a TES transition system may not be
executable, e.g., have countably infinite states or transitions.

As a second operational specification, we introduce a finitely representable descrip-
tion of components in a rewriting logic specification. Rewriting logic is a powerful
framework to model concurrent systems [69, 68]. Moreover, implementations, such
as Maude [29], make system specifications both executable and analyzable. Rewrit-
ing logic is suitable for specifying cyber-physical systems, as its underlying equational
theory can represent both discrete and continuous changes. We give an operational
specification for components as rewriting systems, and show its compositionality under
some assumptions.

Our rewriting specification has the following benefits. First, performing lazy com-
position keeps the representation of an interacting system small. Second, step-wise
runtime composition renders our runtime framework modular, where run-time replace-
ment of individual components becomes possible (as long as the update complies with
some rules). Finally, the runtime framework more closely matches the architecture
of a distributed framework, where entities are physically separated and no party may
have access to the whole description of the entire system. A Maude implementation
of our framework is provided in Chapter 5, with a series of detailed examples. The
rewriting specification of components, however, does not offer mechanisms to resolve
non-determinism at the component or the system levels: multiple transitions may be
allowed, and one is selected non-deterministically.

As a third operational specification, we introduce an algebra of weighted automata
whose transition values model an internal strategy for an agent. The preference struc-
ture is compositional, which allows for reasoning about local choices of an agent in

112

Chapter 4 Components as transition systems

a state, or global choices of a system of agents given the product of their respective
transition values.

As an example application, we use a subset of the Reo language as a domain specific
language to graphically specify preference aware agents in interaction.

4.1 Components as transition systems

In Section 2.1, we give a declarative specification of components, and considers infinite
behaviors only. We give, in Section 4.1.1, an operational specification of components
using TES transition systems. We relate the parametrized product of TES transition
systems with the parametrized product on their corresponding components, and show
its correctness. The composition of two TES transition systems may lead to transitions
that are not composable, and ultimately to a deadlock, i.e., a state with no outgoing
transitions.

Notation Given σ : N → Σ, let σ[n] ∈ Σn be the finite prefix of size n of σ and
let ∼ n be an equivalence relation on (N → Σ) × (N → Σ) such that σ ∼n τ if and
only if σ[n] = τ [n]. Let FG(L) be the set of left factors of a set L ⊆ Σω , defined as
FG(L) = {σ[n] | n ∈ N, σ ∈ L}. We write σ(n) for the n-th element of σ.

4.1.1 TES transition systems.

The behavior of a component as in Definition 1 is a set of TESs. We give an operational
definition of such set using a labelled transition system.

Definition 32 (TES transition system). A TES transition system is a triple (Q,E,→
) where Q is a set of state identifiers, E is a set of events, and →⊆ (Q × N) ×
(P(E)×R+)× (Q×N) is a labeled transition relation, where labels on transitions are
observations and a state is a pair of a state identifier and a counter value, such that
[q, c]

(O,t)−−−→ [q′, c′] implies that c′ ≥ c.

Remark 12. The counter value labeling a state of a TES transition system is related
to the number of transitions a TES transition system has taken. The counter value is
therefore not related to the time of the observation labeling the transition. However, it
is possible for some transitions in the TES transition system to keep the same counter
value in the post state. As shown later, we use the counter value to model fairness in
the product of two TES transition systems.

113

Components as transition systems Chapter 4

We present two different ways to give a semantics to a TES transition system:
inductive and co-inductive. Both definitions give the same behavior, as shown in
Theorem 6, and we use interchangeably each definition to simplify the proofs of, e.g.,
Theorem 7.

Example 46 (Strictly progressing TES transition system). We call a TES transition

systems strictly progressing if, for all transitions [q, c]
(O,t)−−−→ [q′, c′], we have that

c′ > c. An example of a TES transition system that is strictly progressing is one for
which the counter label increases by 1 for each transition, i.e., [q, c]

(O,t)−−−→ [q′, c+ 1].

We use the notation θ([q, c]) to refer to the counter value c labeling the state [q, c].

Semantics 1 (runs). A run of a TES transition system is an infinite sequence of
consecutive transitions, such that the sequence of observations labeling the transitions
form a TES, and the counter in the state is always eventually strictly increasing.
Formally, the set of runs Linf(T, s0) of a TES transition system T = (Q,E,→) initially
in state s0 is:

Linf(T, s0) = {τ ∈ TES (E) | ∃χ ∈ (Q× N)ω.χ(0) = s0∧∀i.χ(i)
τ(i)−−→ χ(i+ 1)∧

∃j > 0. θ(χ(i+ j)) > θ(χ(i))}

Note that the domain of quantification for Linf(T, s0) ranges over TESs, therefore the
time labeling observations is, by definition, strictly increasing and non-Zeno. The
component semantics of a TES transition system T = (Q,E,→) initially in state q is
the component C = (E,Linf(T, q)).

Semantics 2 (greatest post fixed point) Alternatively, the semantics of a TES
transition system is the greatest post fixed point of a function over sets of TESs paired
with a state. For a TES transition system T = (Q,E,→), let R ⊆ TES (E)× (Q×N).
We introduce ϕT : P(TES (E)× (Q× N)) → P(TES (E)× (Q× N)) as the function:

ϕT (R) = {(τ, s) | ∃n.∃p ∈ (Q× N), s τ [n]−−→ p ∧ θ(p) > θ(s) ∧ (τ (n), p) ∈ R}

where τ [n] is the prefix of size n of the TES τ .
We can show that ϕT is monotonous, and therefore ϕT has a greatest post fixed

point ΩT =
⋃
{R | R ⊆ ϕT (R)}. We write ΩT (q) = {τ | (τ, s) ∈ ΩT } for any

s ∈ Q× N. Note that the two semantics coincide.

114

Chapter 4 Components as transition systems

Theorem 6 (Equivalence). For all s ∈ Q× N, Linf(T, s) = {τ | (τ, s) ∈ ΩT }.

Proof. Let T = (Q,E →) and ΩT (s) = {τ | (τ, s) ∈ ΩT }.

τ ∈ ΩT (s0) ⇐⇒ (τ, s0) ∈ ΩT

⇐⇒ ∃n.∃s.s0
τ [n]−−→ s ∧ θ(s) > θ(s0) ∧ (τ (n), s) ∈ ΩT ∧ τ ∈ TES (E)

⇐⇒ ∃n.∃χ ∈ (Q× N)ω. χ(0) = s0 ∧ χ(0)
τ [n]−−→ χ(n)∧

θ(χ(n)) > θ(χ(0)) ∧ (τ (n), χ(n)) ∈ ΩT ∧ τ ∈ TES (E)

⇐⇒ ∃χ ∈ (Q× N)ω, χ(0) = s0 ∧ ∀n ∈ N.χ(n) τ(n)−−−→ χ(n+ 1)∧
∃k ∈ N. θ(χ(n+ k)) > θ(χ(n)) ∧ τ ∈ TES (E)

⇐⇒ τ ∈ Linf(T, s0)

In the fourth equivalence, we state that the infinite sequence of transitions with χ ∈
(Q×N)ω as sequence of states, is labeled by the sequence of observations τ . We prove
the step by induction. Let n ∈ N, and let χ ∈ (Q × N)ω be such that, for all k ≤ n,

χ(k)
τ(k)−−−→ χ(k + 1) and (τ (k), χ(k)) ∈ ΩT . Then, given that (τ (n), χ(n)) ∈ ΩT , there

exists an i ∈ N, a sequence of transitions χ(j)
τ(j+1)−−−−→ χ(j + 1) for j ≤ i which proves,

by induction, the implication.
The other direction of the equivalence is simpler. If there exists χ ∈ (Q×N)ω such

that for all n ∈ N, there exists k ∈ N with χ(n)
τ(n)[k]−−−−→ χ(n + k), then we have a

witness, for every n ∈ N, that (τ (n), χ(n)) is an element of ΩT .

The semantics of a TES transition system is defined as the component whose be-
havior contains all the runs. Operationally, however, the (infinite) step-wise generation
of such a sequence does not always return a valid prefix of a run. We introduce fi-
nite sequences of a TES transition system, and define a deadlock of a TES transition
system as a reachable state without outgoing transition.

Let T = (Q,E,→) be a TES transition system. We write q u−→ p for the sequence

of transitions q
u(0)−−−→ q1

u(1)−−−→ q2...
u(n−1)−−−−−→ p, where u = ⟨u(0), ..., u(n− 1)⟩ ∈ (P(E)×

R+)
n. We write |u| for the size of the sequence u. We use Lfin(T, q) to denote the set

of finite sequences of observables labeling a finite path in T starting from state q, such
that

Lfin(T, s) = {u | ∃p.s u−→ p ∧ ∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Let FG(L) be the set of left factors of a set L ⊆ Σω , defined as FG(L) = {σ[n] |
n ∈ N, σ ∈ L}. We write σ(n) for the n-th derivative of σ, i.e., the stream such that
σ(n)(i) = σ(n+ i) for all i ∈ N.

115

Components as transition systems Chapter 4

Remark 13 (Deadlock). Observe that FG(Linf(T, q)) ⊆ Lfin(T, q) which, in the case
of strict inclusion, captures the fact that some states may have no outgoing transitions
and therefore deadlock.

Remark 14 (Abstraction). There may be two different TES transition systems T1
and T2 such that Linf(T1) = Linf(T2), i.e., a set of TESs is not uniquely characterized
by a TES transition system. In that sense, the TES representation of behaviors is
more abstract than TES transition systems.

We use the transition rule q
(O,t)−−−→ q′ where the counter is not written to denote

the set of transitions
[q, c]

(O,t)−−−→ [q′, c′]

for c ∈ N and c′ ∈ N with c′ ≥ c.

Example 47. The behavior of a robot introduced earlier is a TES transition system
TR = ({q0}, ER,→) where q0

({e},t)−−−−→ q0 for abitrary t in R+ and e ∈ ER. Similarly,
the behavior of a grid is a TES transition system TG(I, n,m) = (QG, EG(I, n,m),→)

where:

• QG ⊆ (I → ([0;n]× [0;m])),

• f
(O,t)−−−→ f ′ for abitrary t in R+, such that

– dR ∈ O implies f ′(R) is updated according to the direction d if the resulting
position is within the bounds of the grid;

– (x, y)R ∈ O implies f(R) = (x, y)R and f ′(R) = f(R);

– f ′(R) = f(R), otherwise.

The behavior of a swap protocol S(Ri,Rj) with i < j is a TES transition system
TS(R1, R2) = (Q,E,→) where, for t1, t2, t3 ∈ R+ with t1 < t2 < t3:

• Q = {q1, q2, q3, q4, q6};

• E = ERi
∪ ERj

∪ {lock(Ri, Rj), unlock(Ri, Rj), start(Ri, Rj), end(Ri, Rj)}

• q1
({lock(Ri,Rj)},t1)−−−−−−−−−−−−→ q2;

• q2
({unlock(Ri,Rj)},t1)−−−−−−−−−−−−−→ q1;

• q1
({start(Ri,Rj),(x,y)Ri

,(x+1,y)Rj
},t1)

−−−−−−−−−−−−−−−−−−−−−−−−→ q3;

116

Chapter 4 Components as transition systems

• q3
({NRj

},t1)
−−−−−−−→ q4

({WRj
,ERi

},t2)
−−−−−−−−−−→ q5

({SRj
},t3)

−−−−−−−→ q6;

• q6
({end(Ri,Rj)},t1)−−−−−−−−−−−→ q1;

■

The product of two components is parametrized by a composability relation κ on
observations and syntactically constructs the product of two TES transition systems.

Definition 33 (Product). The product of two TES transition systems T1 = (Q1, E1,→1

) and T2 = (Q2, E2,→2) under the constraint κ is the TES transition system T1×κT2 =

(Q1 ×Q2, E1 ∪ E2,→) such that:

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((O1, t1), (∅, t1)) ∈ κ(E1, E2) t1 < t2

[(q1, q2),min(c1, c2)]
(O1,t1)−−−−→ [(q′1, q2),min(c′1, c2)]

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((∅, t2), (O2, t2)) ∈ κ(E1, E2) t2 < t1

[(q1, q2),min(c1, c2)]
(O2,t2)−−−−→ [(q′1, q2),min(c1, c′2)]

[q1, c1]
(O1,t1)−−−−→1 [q′1, c

′
1] [q2, c2]

(O2,t2)−−−−→2 [q′2, c
′
2] ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t2 = t1

[(q1, q2),min(c1, c2)]
(O1∪O2,t1)−−−−−−−→ [(q′1, q

′
2),min(c′1, c

′
2)]

Observe that the product is defined on pairs of transitions, which implies that if
T1 or T2 has a state without outgoing transition, then the product has no outgoing
transitions from that state. The reciprocal is, however, not true in general. We write
CT1×κT2((s1, s2)) for the component CT1×κT2([(q1, q2),min(c1, c2)]) where s1 = [q1, c1]

and s2 = [q2, c2].
Theorem 7 states that the product of TES transition systems denotes (given a state)

the set of TESs that corresponds to the product of the corresponding components (in
their respective states). Then, the product that we define on TES transition systems
does not add nor remove behaviors with respect to the product on their respective
components.

Example 48. Consider two strictly progressing (as in Example 46) TES transition
systems T1 = (Q1, E1,→1) and T2 = (Q2, E2,→2). Then, consider a transition in the
product T1 ×κ T2 such that

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c]

117

Components as transition systems Chapter 4

we can deduce that T1 made a step while the counter c labelling the state didn’t change.
Therefore, T2 in state q2 has a counter labelling its state that is higher than the counter
labelling the state in q1. Alternatively, if

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c+ 1]

then the counter at q2 may become lower than the counter at which T1 performs the
next transition, which means that eventually T2 has to take a transition.

The composability relation κ in the product of two TES transition systems (see
Definition 33) accepts an independent step from T1 (resp. T2) if the observation
labeling the step relates to the simultaneous silent observation from T2 (resp. T1).
Given two composable TESs σ and τ respectively in the component behavior of T1
and T2, the composability relation [κ] must relate heads of such TESs co-inductively.
As we do not enforce silent observation to be effective from the product rules (1) and
(2), we consider composability relations such that:

• if ((O1, t1), (∅, t1)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any O2 ⊆
P(E2) and t2 > t1; and

• if ((∅, t2), (O2, t2)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any O1 ⊆
P(E1) and t1 > t2

The two rules above encode that an observation from T1 is independent to T2 (i.e.,
((O1, t1), (∅, t1)) ∈ κ(E1, E2) if and only if T1 and T2 can make observations at dif-
ference times (i.e., ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for arbitrary (O2, t2) from T2 with
t2 > t1.

Theorem 7 (Correctness). For two TES transition systems T1 and T2, and for κ
satisfying the constraint above:

CT1×κT2
(s) = CT1

(s1)×([κ],[∪]) CT2
(s2)

with s1 = [q1, c1] ∈ (Q1 × N), s2 = [q2, c2] ∈ (Q2 × N), and s = [(q1, q2),min(c1, c2)].

Proof. We first show that, for all τ ∈ CT1×κT2
((s1, s2)), there is always, eventually, an

observations of τ that is a label of a transition constructed by rule (1) or (3) (and (2)

or (3)) of the product in Definition 33.
We prove by contradiction. Assume that there is an index n for which for all

k > n, the observation τ(k) is generated by the rule (2) of the product. Then, let

118

Chapter 4 Components as transition systems

χ ∈ (Q×N)ω be the sequence of states such that χ(k)
τ(n+k)−−−−−→ χ(k + 1) for k ∈ N, we

can find a step j ≥ 0 such that, for all m ≥ j, θ(χ(m)) = θ(χ(m+1)). This contradicts
the definition of τ , that the counter in the sequence of states must always eventually
increase. Thus, we can conclude that we always eventually take a composite transition
from rule (1) or (3) (resp. (2) and (3)) to construct a TES τ ∈ CT1×κT2

(s1, s2).
We show by induction that we can construct, from a run τ ∈ Linf(T, s0), a run

τ1 ∈ Linf(T1, s1). Let χ ∈ (Q×N)ω such that χ(n)
τ(n)−−−→ χ(n+1) and let τ1 ∈ TES (E1)

be the sequence of observations occurring in τ generated by the product rules (1) or
(3). We show, by induction, that there exists χ1 ∈ (Q1 × N)ω such that, for all n,

χ1(n)
τ1(n)−−−→1 χ1(n+1). Indeed, there exists k ∈ N such that χ(k)

τ(k)−−−→ χ(k+1) with
τ(k) being generated by rule (1) or (3). We can therefore define states χ1(0) and χ1(1)

from χ(k) and χ(k + 1), with a corresponding counter value, and τ(0) from τ(k).

Assuming that χ1(k)
τ1(k)−−−→ χ1(k + 1) for k ≤ n, we know there exists a j ≥ n

such that the transition χ(j)
τ(j)−−→ χ(j +1) is produced by rules (1) or (3). Therefore,

we can construct the next element of the run, namely χ1(n)
τ1(n)−−−→ χ1(n + 1). By

induction, we conclude that τ1 ∈ Linf(T, χ(0)).
Thus, given a run τ ∈ CT1×κT2((s1, s2)), we have two runs τ1 ∈ CT1(q1) and

τ2 ∈ CT2(q2) applying symmetric arguments to construct τ2 such that τ = τ1[∪]τ2.
We prove, by co-induction, that (τ1, τ2) ∈ [κ](E1, E2).

Let ∆τ1,τ2 = {(τ1, τ2)(n) | n ∈ N} be the set of all derivations of (τ1, τ2), where,
in (τ1, τ2)

(n), the n first observations are dropped from the pair of TESs τ1 and τ2.
Then, to prove that ∆ ⊆ [κ](E1, E2), it is sufficient to show that ∆ is a post fix point
of ϕκ, namely that ∆ ⊆ ϕκ(∆). We remind that:

ϕκ(∆) = {(σ, η) | (σ(0), η(0)) ∈ κ(E1, E2) ∧ (σ, η)′ ∈ ∆}

It is therefore sufficient to prove that (σ, η) ∈ ∆τ1,τ2 implies that (σ(0), η(0)) ∈
κ(E1, E2) in order to conclude that ∆τ1,τ2 ⊆ ϕκ(∆τ1,τ2). This is directly implied
by the three rules of the product of T1 and T2 constructing τ , and the conditions
imposed on κ.

Next, we show the reciprocal: for two κ-composable TESs τ1 and τ2, respectively
in CT1

(s1) and CT2
(s2), τ1[∪]τ2 is a run of the product CT1×κT2

((s1, s2)). We consider
the two runs with sequence of states χ1 ∈ (Q1 × N)ω and χ2 ∈ (Q1 × N)ω, for
τ1 and τ2 respectively. Then, we show that there exists a sequence of states χ ∈
((Q1×Q2)×N)ω, whose transitions are labeled by τ , and resulting from the composition
of the two sequences of states. Moreover, since the counter of χ1 and χ2 are always

119

Components as transition systems Chapter 4

eventually increasing, the counter of χ is also always eventually increasing. Thus,
τ ∈ CT1×κT2(χ(0)).

Remark 15 (Fairness). Fairness, in our case is the property that, in a product of two
TESs T1×κ T2, then always, eventually, T1 and T2 each make progress. The definition
of the product of two TES transition systems defines the counter value of the composite
state as the minimal counter value from the two compound states. The semantic
condition that considers runs with a counter value always eventually increasing is
sufficient for having T1 and T2 to always eventually take a step, as shown in Theorem 7.

We give in Example 49 the TES transition systems resulting from the product of
the TES transition systems of two robots and a grid. Example 49 defines operationally
the components in Section 2.2, i.e., their behavior is generated by a TES transition
system.

Example 49. Let TR1
, TR2

be two TES transition systems for robots R1 and R2,
and let TG({1}, n,m) be a grid with robot R1 alone and TG({1, 2}, n,m) be a grid with
robots R1 and R2. We use κsync as defined in Example 11.

The product of TR1
, TR2

, and TG({1, 2}, n,m) under κsync is the TES transition
system TR1

×κsync TR2
×κsync TG({1, 2}, n,m) such that it synchronizes observations of

the two robots with the grid, but does not synchronize events of the two robots directly,
since the two set of events are disjoint. ■

As a consequence of Theorem 1, letting κsync be the composability relation used
in the product ▷◁ and writing T = TR1

×κsync TR2
×κsync TG, CT (s1, s2, s3) is equal to

the component CTR1
(s1) ▷◁ CTR2

(s2) ▷◁ CTG
(s3)

Definition 34. Let T be a TES transition system, and let CT (q) = (E,Linf(T, s)) be
a component whose behavior is defined by T . Then, C is deadlock free if and only if
FG(Linf(T, s)) = Lfin(T, s) ̸= ∅. As a consequence, we also say that (T, s) is deadlock
free when CT (s) is deadlock free.

A class of deadlock free components is that of components that accept arbitrary
insertion of ∅ observables in between two observations. We say that such component
is prefix-closed, as every sequence of finite observations can be continued by an infinite
sequence of empty observables, i.e., C is such that C = C∗ (as defined after Defini-
tion 33). We say that a TES transition system T is prefix-closed in state s if and only
if and only if CT (s) = C∗

T (s). For instance, if T is such that, for any state s and for

any t ∈ R+ there is a transition s
(∅,t)−−−→ s, then T is prefix-closed.

120

Chapter 4 Components as transition systems

Lemma 19. If T1 and T2 are prefix-closed in s1 and s2 respectively, then T1 ×κsync

T2((s1, s2)) is prefix-closed.

Proof. The proof follows from the fact that ∅ is independent with any non-empty
observable O ⊆ E1 ∪ E2. Then, any pair of silent observation is composable, and
therefore the following TES transition system is prefix-closed.

We search for the condition under which deadlock freedom is preserved under a
product. Section 3.3 gives a condition for the product of two deadlock free components
to be deadlock free.

4.1.2 Compatibility of TES transition systems

Informally, the condition of κ-compatibility of two TES transition systems T1 and T2,
respectively in initial state s01 and s02, describes the existence of a relation R on pairs
of states of T1 and T2 such that (s01, s02) ∈ R and for every state (s1, s2) ∈ R, there
exists an outgoing transition from T1 (reciprocally T2) that composes under κ with
an outgoing transition of T1 (respectively T2). The pair of outgoing states is in the
relation R.

Formally, a TES transition system T1 = (Q1, E1,→1) from state s01 is κ-compatible
with a TES transition system T2 = (Q2, E2,→2) from state s02, and we say (T1, s01)

is κ-compatible with (T2, s02) if there exists a relation R ⊆ (Q1 ×N)× (Q2 ×N) such
that (s01, s02) ∈ R and for any (s1, s2) ∈ R,

• there exist s1
(O1,t1)−−−−→1 s′1 and s2

(O2,t2)−−−−→2 s′2 such that ((O1, t1), (O2, t2)) ∈
κ(E1, E2); and

• for all s1
(O1,t1)−−−−→1 s

′
1 and s2

(O2,t2)−−−−→2 s
′
2 if ((O1, t1), (O2, t2)) ∈ κ(E1, E2) then

(u1, u2) ∈ R, where ui = si if ti = min{t1, t2}, and ui = s′i otherwise for
i ∈ {1, 2}.

In other words, if (T1, s1) is κ-compatible with (T2, s2), then there exists a com-
posable pair of transitions in T1 and T2 from each pair of states in R (first item of the
definition), and all pairs of transitions in T1 composable with a transition in T2 from
a state in R end in a pair of states related by R. If (T2, s2) is κ-compatible to (T1, s1)

as well, then we say that (T1, s1) and (T2, s2) are κ-compatible.

Theorem 8 (Deadlock free). Let (T1, s1) and (T2, s2) be κ-compatible. Let CT1
(s1)

and CT2
(s2) be deadlock free, as defined in Definition 34. Then, CT1

(s1) ×([κ],[∪])

CT2
(s2) is deadlock free.

121

Components as transition systems Chapter 4

Proof. We reason by contradiction. If the product CT1(s1) ×([κ],[∪]) CT2(s2) is not
deadlock free, then Lfin(T1 ×κ T2, (s1, s2)) ̸= FG(Linf(T1 ×κ T2, (s1, s2))). Thus, there
exists a state (s′1, s

′
2), reachable from (s1, s2), such that Lfin(T1 ×κ T2, (s

′
1, s

′
2)) = ∅,

i.e., no pairs of compatible transitions from T1 and T2 in states s′1 and s′2 respectively.
Given the fact that both TES transition systems are deadlock free, and given that s′1
(respectively s′2) is reachable from s1 (respectively s2) for T1 (respectively T2), then
Lfin(T2, s1) ̸= ∅ and Lfin(T1, s2) ̸= ∅.

Since (T1, s1) and (T2, s2) are κ-compatible, then there exists R such that for each
pair (s′1, s

′
2) ∈ R, there exists an outgoing transition in T1 and T2 from s′1 and s′2

respectively that is composable under κ. Such property would imply that there is a
transition in T1 ×κ T2 from state (s′1, s

′
2) and therefore Lfin(T1 ×κ T2, (s

′
1, s

′
2)) ̸= ∅. In

other words, the property of compatibility contradicts the presence of deadlock in the
product CT1

(s1)×([κ],[∪]) CT2
(s2).

In general however, κ-compatibility is not preserved over product, demonstrated
by Example 50. For the case of coordinated cyber-physical systems, components are
usually not prefix-closed as there might be some timing constraints or some mandatory
actions to perform in a bounded time frame.

Example 50. Suppose three TES transition systems Ti = ({qi}, {a, b, c, d},→i), with
i ∈ {1, 2, 3}, defined as follow for all n ∈ N:

• q1
({a,b},n)−−−−−−→1 q1 and q1

({a,c},n)−−−−−−→1 q1;

• q2
({a,c},n)−−−−−−→2 q2 and q2

({a,d},n)−−−−−−→2 q2;

• q3
({a,d},n)−−−−−−→3 q3 and q3

({a,b},n)−−−−−−→3 q3.

It is easy to show that T1(q1), T2(q2), and T3(q3) are pairwise κsync-compatible. How-
ever, T1(q1) is not κsync-compatible with T2(q2)×κsync T3(q3). ■

Lemma 20. Let ×κ be commutative and associative, and for arbitrary E1, E2, and
t ∈ R+, then ((∅, t), (∅, t)) ∈ κ(E1, E2). Let S be a set of TES transition systems, such

that for T ∈ S and every state [q, n] in T , then [q, n]
(∅,t)−−−→ [q, n]. For S = S1 ⊎ S2

a partition of S, ×κ{T}T∈S1
and ×κ{T}T∈S2

are κ-compatible and the component
C×κ{T}T∈S

is deadlock free.

Proof.

The consequence of two TES transition systems T1 and T2 to be κ-compatible
on (s1, s2) and deadlock free, is that they can be run step-by-step from (s1, s2) and

122

Chapter 4 Components as transition systems

ensure that we would not generate a sequence of observations that is not a prefix on
an infinite run. However, there is still an obligation for the step-by-step execution to
produce a run that is in the behavior of the product, i.e., to perform a step-by-step
product at runtime. Indeed, the resulting sequence of states must always increase the
counter value, which means that the selection of a step must be fair (as introduced
in Remark 15). We show in Example 51 an example for which an infinite sequence
of transitions in the product (e.g., produced by a step-by-step implementation of the
product) would not give a run, due to fairness violation.

Example 51. Let T1 = ({q1}, {a},→1) and T2 = ({q2}, {b},→2) be two TES tran-

sition systems such that: [q1, c]
({a},t)−−−−→1 [q1, c + 1] and [q2, c]

({b},t)−−−−→2 [q2, c + 1]for
all t ∈ R+ and all c ∈ N. Let κ be such that (({a}, t), (∅, t)) ∈ κ({a}, {b}) and
((∅, t), ({b}, t)) ∈ κ({a}, {b}). Then, the product T1 ×κ T2 has the composite transi-

tions [(q1, q2), c]
({a},t)−−−−→ [(q1, q2), c] and [(q1, q2), c]

({b},t)−−−−→ [(q1, q
′
2), c] for all c ∈ N and

t ∈ R+.

The product, therefore has runs of the kind [(q1, q2), c]
({a},ti)−−−−−→ [(q′1, q2), c] where for

all i ∈ N, ci + 1 = ci+1 and ti < ti+1 (increasing) and there exists j ∈ N with i < tj

(non-Zeno). Thus, this run does only transitions from T1 and none from T2: there is
a step for which the counter c does not increase anymore. One reason is that rule (1)

of the product is always chosen. Instead, by imposing that we always eventually take
rule (3), we ensure that the step-by-step product is fair.

We consider a class of TES transition systems for which a step-by-step implemen-
tation of their product is fair, i.e., always eventually the counter of the composite state
increases. More particularly, we consider TES transition systems that always eventu-
ally require synchronization. Therefore, the product always eventually performs rule
(3), and the runs are consequently fair. Such property is a composite property, that
can be obtained compositionally by imposing a trace property on a TES transition
system, such as: for every trace, there is always eventually a state for which all out-
going transitions must synchronize with an observation from the other TES transition
system.

Remark 16. In the actor model, fairness is usually defined as an individual property:
always eventually an action that is enabled (such as reading a message in a queue)
will be performed. This notion of fairness differs from the one we introduced for
TES transition systems. Here, fairness models a collective property, namely that each
component always eventually makes an observation.

123

Components as rewrite systems Chapter 4

Definition 35 (k-synchronizing). Two TES transition systems T1 and T2 are k-
synchronizing under κ if all sequences of k transitions in the product T1×κ T2 contain
at least one transition constructed from rule (3) of the product in Definition 33.

Lemma 21. Let T1 and T2 be two k-synchronizing TES transition systems. Then,
a step-by-step execution of the product T1 ×κ T2 is fair, namely, all finite sequences
of transitions are prefix of infinite runs in the product behavior, i.e., FG(Linf(T1 ×κ

T2, q)) = Lfin(T1 ×κ T2, q).

Proof. The inclusion FG(Linf(T1 ×κ T2, q)) ⊆ Lfin(T1 ×κ T2, q) is straightforward, as
a finite prefix of a TES labeling an infinite run is, by definition, a finite sequence of
labels of a finite sequence of transitions in Lfin(T1 ×κ T2, q).
The inclusion Lfin(T1 ×κ T2, q) ⊆ FG(Linf(T1 ×κ T2, q)) comes from the assump-
tion that T1 and T2 are k-synchronizing under κ. Then, for any finite sequence in
Lfin(T1 ×κ T2, q), the post state on which the sequence ends has, due to the assump-
tion, a continuation as a run in Linf(T1 ×κ T2, q), which proves the inclusion.

Remark 17. The step-by-step implementation of the product is sound if TES transi-
tion systems always eventually synchronize on a transition. Definition 35 and Lemma 21
show that if two TES transition systems are k-synchronizing, then their product can
be formed lazily, step-by-step, at runtime.

4.2 Components as rewrite systems

We start by giving an illustration of our approach on an intuitive and simple cyber-
physical system consisting of two robots roaming on a shared field. A robot exhibits
some cyber aspects, as it takes discrete actions based on its readings. Every robot
interacts, as well, with a shared physical resource as it moves around. The field
models the continuous response of each action (e.g., read or move) performed by a
robot. A question that will motivate the section is: given a strategy for both robots
(i.e., sequence of moves based on their readings), will both robots, sharing the same
physical resource, achieve their goals? If not, can the two robots, without changing
their policy, be externally coordinated towards their goals?

In this section, we specify components in a rewriting framework in order to sim-
ulate and analyze their behavior. In this framework, an agent, e.g., a robot or a
field, specifies a component as a rewriting theory. A system is a set of agents that
run concurrently. The equational theory of an agent defines how the agent states are

124

Chapter 4 Components as rewrite systems

updated, and may exhibit both continuous and discrete transformations. The dynam-
ics is captured by rewriting rules and an equational theory at the system level that
describes how agents interact. In our example, for instance, each move of a robot is
synchronous with an effect on the field. Each agent therefore specifies how the action
affects its state, and the system specifies which composite actions (i.e., set of simulta-
neous actions) may occur. We give hereafter an intuitive example that abstracts from
the underlying algebra of each agent.

Agent A robot and a field are two examples of an agent that specifies a component
as a rewriting theory. The dynamics of both agents is captured by a rewrite rule of
the form:

(s, ∅) ⇒ (s′, acts)

where s and s′ are state terms, and acts is a set of actions that the field or the robot
proposes as alternatives. Given an action a ∈ acts from the set of possibilities, a
function ϕ updates the state s and returns a new state ϕ(s′, a). The equational theory
that specifies ϕ may capture both discrete and continuous changes. The robot and the
field run concurrently in a system, where their actions may interact.

Example 52 (Battery). A battery is characterized by a set of internal physical laws
that describe the evolution of its energy profile over time under external stimulations.
We consider three external stimuli for the battery as three events: a charge, a discharge,
and a read event. Each of those events may change the profile of the battery, and we
assume that in between two events, the battery energy follows some fixed internal laws.
Formally, we model the energy profile of a battery as a function f : R+ → [0, 100%]

where f(t) = 50% means that the charge of the battery at time t is of 50%. In general,
the co-domain of f may be arbitrarily complex, and captures the response of event
occurrences (e.g., charge, discharge, read) and passage of time coherently with the
underlying laws (e.g., differential equation). For instance, a charge (or discharge)
event at a time t coincides with a change of slope in the function f after time t and
before the next event occurrence.
For simplicity, we consider a battery for which f is piecewise linear in between any two
events. The slope changes according to some internal laws at points where the battery
is used for charge or discharge.
In our model, a battery interacts with its environment only at discrete time points.
Therefore, we model the observables of a battery as a function l : N → [0, 100%]

that intuitively samples the state of the battery at some monotonically increasing and

125

Components as rewrite systems Chapter 4

non-Zeno sequence of timestamp values. We capture, in Definition 1, the continuous
profile of a battery as a component whose behavior contains all of such increasing and
non-Zeno sampling sequences for all continuous functions f .

Example 53 (Robot). A robot’s state contains the previously read values of its sen-
sors. Based on its state, a robot decides to move in some specific direction or read its
sensors.
Similarly to the battery, we assume that a robot acts periodically at some discrete points
in time, such as the sequence move(E) (i.e., moving East) at time 0, read((x, y), l)

(i.e., reading the position (x, y) and the battery level l) at time T , move(W) (i.e.,
moving West) at time 3T while doing nothing at time 2T , etc. The action may have
as effect to change the robot’s state: typically, the action read((x, y), l) updates the
state of the robot with the coordinate (x, y) and the battery value l.

System A system is a set of agents together with a composability constraint κ that
restricts their updates. For instance, take a system that consists of a robot id and a
field F . The concurrent execution of the two agents is given by the following system
rewrite rule:

{(sid, acts id), (sF , actsF)} ⇒S {(ϕid(sid, aid), ∅), (ϕF (sF , aF), ∅)}

where aid ∈ acts id and aF ∈ actsF are two actions related by κ.

Each agent is unaware of the other agent’s decisions. The system rewrite ⇒S filters
actions that do not comply with the composability relation κ. As a result, each agent
updates its state with the (possibly composite) action chosen at runtime, from the list
of its submitted actions. The framework therefore clearly separates the place where
agent’s and system’s choices are handled, which is a source of runtime analysis.

Already, at this stage, we can ask the following question on the system: will robot
id eventually reach the location (x, y) on the field? Note that the agent alone cannot
answer the query, as the answer depends on the characteristics of the field.

Example 54 (Battery-Robot). Typically, a move of the robot synchronizes with a
change of state in the battery, and a read of the robot occurs at the same time as a
sampling of the battery value.
The system behavior therefore consists of sequences of simultaneous events occurring
between the battery and the robot. By composition, the battery exposes the subset of
its behavior that conforms to the specific frequency of read and move actions of the

126

Chapter 4 Components as rewrite systems

robot. The openness of the battery therefore is reflected by its capacity to adapt to any
observation frequency.

Coordination Consider now a system with three agents: two robots and a field.
Each robot has its own objective (i.e., location to reach) and strategy (i.e., sequence
of moves). Since both robots share the same physical field, some exclusion principals
apply, e.g., no two robots can be at the same location on the field at the same time.
It is therefore possible that the system deadlocks if no actions are composable, or
livelocks if the robots enter an infinite sequence of repeated moves.

We add a protocol agent to the system, which imposes some coordination con-
straints on the actions performed by robots id1 and id2. Typically, a protocol coordi-
nates robots by forcing them to do some specific actions. As a result, given a system
configuration {(sid1

, acts id1
), (sid2

, acts id2
), (sF , actsF), (sP , actsP)} the run of robots

id1 and id2 has to agree with the observations of the protocol, and the sequence of
actions for each robot will therefore be conform to a permissible sequence under the
protocol.

In the case where the two robots enter a livelock and eventually run out of energy,
we show in Section 5.4.1 the possibility of using a protocol to remove such behavior.

Example 55 (Safety property). A safety property is typically a set of traces for which
nothing bad happens. In our framework, we consider only observable behaviors, and
a safety property therefore declares that nothing bad is observable. However, it is
not sufficient for a system to satisfy a safety property to conclude that it is safe: an
observation that would make a sequence violate the safety property may be absent, not
because it did not actually happen, but merely because the system missed to detect it.
For example, consider a product of a battery component and a robot with a sampling
period T , as introduced in Example 54. Consider the safety property: the battery
energy is between the energy thresholds e1 and e2. The resulting system may exhibit
observations with energy readings between the two thresholds only, and therefore satisfy
the property. However, had the robot used a smaller sampling period T ′ = T/2, which
adds a reading observation of its battery between every two observations, we may have
been able to detect that the system is not safe because it produces sequences at this finer
granularity sampling rate that violate the safety property. We show how to algebraically
capture the safety of a system constituted of a battery-robot.

127

Components as rewrite systems Chapter 4

4.2.1 System of agents and compositional semantics

Components in Chapter 2 are declarative. Their behavior consists of a set of TESs.
The abstraction of internal states in components makes the specification of observables
and their interaction easier. The downside of such declarative specification lies in
the difficulty of generating an element from the behavior, and ultimately verifying
properties on a product expression.

An operational specification of a component provides a mechanism to construct
elements in its behavior. An agent is the operational specification that produces finite
sequences of observations that, in the limit, determine the behavior of a component.
An agent is stateful, and has transitions between states, each labeled by an observation,
i.e., a set of events with a time-stamp. We consider a finite specification of an agent
as a rewrite theory, where finite applications of the agent’s rewrite rules generate
a sequence of observables that form a prefix of some elements in the behavior of
its corresponding component. We restrict the current work to integer time labeled
observations. While in the cyber-physical world, time is a real quantity, we consider
in our fragment a countable infinite domain for time, i.e., natural numbers. The time
interval between two tics is therefore the same for all agents, and may be interpreted as,
e.g., seconds, milliseconds, femtoseconds, etc. We show how an agent may synchronize
with a local clock that forbids actions at some time values, thus modeling different
execution speeds.

An operational specification of a composite component provides a mechanism to
construct elements in the behavior of a product expression. The product on compo-
nents is parametrized by an interaction signature that tells which TESs can compose,
and how they compose to a new TES. We consider, in the operational fragment of this
section, interaction signatures each of whose composability relation is co-inductively
defined from a relation on observations κ. Intuitively, such restriction enables a step-
by-step operation to check that the head of each sequence is valid, i.e., extends the
sequence to be a prefix of some elements in the composite component. Moreover,
we require κ to be such that the product on component ×([κ],∪) is commutative and
associative (see [62]). By system we mean a set of agents that compose under some in-
teraction signature Σ = ([κ],∪). A system is stateful, where each state is formed from
the states of its component agents, and has transitions between states, each labeled by
an observation, formed from the component agent observations. We consider a finite
specification of a system as the composition of a set of rewriting theories (one for each
agent), and a system rewrite rule that produces a composite observation complying

128

Chapter 4 Components as rewrite systems

with the relation κ. We prove compositionality: the system component is equal to the
product under the interaction signature Σ = ([κ],∪) of every one of its constituent
agent components.

We give the operational counterparts of an observation, a component, and a prod-
uct of components as, respectively, an action, an agent, and a system of agents.

Action Actions are terms of sort Action. An action has a name of sort AName and
some parameters. We distinguish two typical actions, the idle action ⋆ and the ending
action end. A term of sort Action corresponds to an observable, i.e., a set of events.
The idle action ⋆ and the ending action end both map to the empty set of events. An
example of an action is move(R1,d) or read(R1, position, l) that, respectively, moves
agent R1 in direction d or reads the value l from the position sensor of R1. The seman-
tics of action move(R1, d) consists of all singleton events of the form {move(R1, d)}
with d a constant direction value. We use the associative, commutative, and idempo-
tent operation · : Action Action → Action to construct a composite action a1 · a2 out
of two actions a1 and a2.

Agent An agent operationally specifies a component in rewriting logic. We give the
specification of an agent as a rewrite theory, and provide the semantics of an agent
as a component. An agent is a four tuple (Λ,Ω, E ,⇒), each of whose elements we
introduce as follow.

The set of sorts Λ contains the State sort and the Action sort, respectively for state
and action terms. A pair of a state and a set of actions is called a configuration. The
set of function symbols Ω contains ϕ : State × Action → State, that takes a pair of
a state and an action term to produce a new state. The (Λ,Ω)-equational theory E
specifies the update function ϕ. The set of equations that specify the function ϕ can
make ϕ either a continuous or discrete function.

The rule pattern in (4.1) updates a configuration with an empty set to a new
configuration, i.e.,

(s, ∅) ⇒ (s′, acts) (4.1)

with acts a non-empty set of action terms, and s′ a new state. We call an agent
productive if, for any state s : State, there exists a state s′ with (s, ∅) ⇒ (s′, acts) and
acts non empty set.

We give a semantics of an agent as a component by considering the limit application
of the agent rewrite rules. We construct a TES transition system TA = (Q,E,→) as an
intermediate representation for agent A = (Λ,Ω, E ,⇒). The set of states Q = State×N

129

Components as rewrite systems Chapter 4

is the set of pairs of a state of A and a time-stamp natural number. We use the notation
[s, t] for states in Q where t ∈ N. The set of events E is the union of all observables
labeling the transition relation →⊆ Q × (P(E) × N) × Q, defined as the smallest set
such that, for t ∈ N and n ∈ N:

(s, ∅) ⇒ (s′, acts) a ∈ acts ϕ(s′, a) =E s
′′ d ∈ N

[s, n]
(a,t)−−−→ [s′′, n+ 1]

(4.2)

[s, n]
(∅,t)−−−→ [s, n+ 1]

[owise] (4.3)

An agent that performs a rewrite moves the global time from an arbitrary but
finite amount of time units. Note that we can safely consider d ̸= 0, as the case of two
consecuitive observations with the same time stamp is ruled out in the TES behavior
of an agent (see below). All agents share the same time semantically, and we show
some mechanisms at the system level to artificially run some agents faster than others.

Let A = (Λ,Ω, E ,⇒) be an agent initially in state s0 ∈ S at time t0 ∈ N. The com-
ponent semantics of A is the component JA([s0, t0])K = CTA([s0, t0]), with CTA([s0, t0])

defined in Section 4.1.1.

Remark 18. An agent A initially in state s0 at t0 denotes a component JA([s0, t0])K.
Note that, a strategy for agent A would be any mechanism that, given a state for agent
A, filters a subset of possible actions. For instance, an agent may decide to discard
actions that bring it further from its goal. We give in Section 4.3 a Domain Specific
Language to describe agents equipped with a strategy.

System A system gives an operational specification of a product of a set of com-
ponents under Σ = ([κ],∪). The composability relation κ is fixed to be symmetric,
so that the product ×Σ is commutative. We define [κ] co-inductively, as in [62, 61].
Formally, a system consists of a set of agents with additional sorts, operations, and
rewrite rules. A system is a tuple (A,Λ,Ω, E ,⇒S) where A is a set of agents. We use
(Λi,Ωi, Ei,⇒i) to refer to agent Ai ∈ A.

The set of sorts Λ contains a sort Action ∈ Λ which is a super sort of each sort
Actioni for Ai ∈ A. The set Ω contains the function symbol comp : P(Action) → Bool,
which says which set of actions are composable. We call a set actions of actions for
which comp(actions) holds, a clique. The conditions for a set of actions to form a
clique models the fact that each action in the clique is independent from agent Ai with

130

Chapter 4 Components as rewrite systems

no action in that clique (see Chapter 5 for an instance of comp). The relation comp
can be graphically modelled as an undirected graph relating actions, where a clique is
a connected component.

The rewrite rule pattern in (4.4) selects a set of actions, at most one from each
agent, checks that the set of actions forms a clique with respect to comp, and applies
the update accordingly. For {k1, ..., kj} ⊆ {1, ..., n}:

{(sk1 , actsk1), ..., (skj , actskj)} ⇒S {(ϕk1(sk1 , ak1), ∅), ..., (ϕkj (skj , akj), ∅)} (4.4)

if comp(
⋃

i∈[1,j]{aki
})) and aki

∈ actski
. As we show later, a system does not neces-

sarily update all agents in lock steps, and an agent not doing an action may stay in
the configuration (s, ∅). As multiple cliques may be possible, there is non-determinism
at the system level. Different strategies may therefore choose different cliques as, for
instance, taking the largest clique.

We define the transition system for S = (A,Λ,Ω, E ,⇒S) as the TES transition
system TS = (Q,E,→) with Q = StateSet × N the set of states, E the union of all
observables labeling the transition relation →⊆ Q × (P(E) × N) × Q, which is the
smallest transition relation such that, for {k1, ..., kj} ⊆ {1, ..., n}:

{(ski
, actski

)}i∈[1,j] ⇒S {(ϕki
(ski

, aki
), ∅)}i∈[1,j]

∧
i∈[1,j] ϕki

(ski
, aki

) =Ei
s′′ki

[{si}i∈[1,n], n]
(
⋃

i∈[1,j] aki
,t)

−−−−−−−−−→ [{s1, ..., s′′k1
, ..., s′′kj

, ..., sn}, n+ 1]

(4.5)

[s, n]
(∅,t)−−−→ [s, n+ 1]

[owise] (4.6)

for t ∈ N and where we use the notation {xi}i∈[1,n] for the set {x1, ..., xn}.

Remark 19. The top left part of the rule is a rewrite transition at the system level.
As defined earlier, the condition for such rewrite to apply is the formation of a clique
by all of the actions in the update. The states and labels of the TES transition system
(bottom of the rule) are sets of states and sets of labels from the TES transition system
of every agent in the system.

Let A = {A1, ...,An} be a set of agents, and let S = (A,Λ,Ω, E ,⇒S) be a system
initially in state {(s0i, ∅)}i∈[1,n] at time t0 such that, for all i ∈ [1, n], Ai is initially
in state s0i at time t0. The infinite semantics of initialized system S([s0, t0]) is the
component JS([s0, t0])K = CTS ([s0, t0]), with CTS ([s0, t0]) defined as in Section 4.1.1.

The composability relation comp is an n-ary relation on sets of actions, while the

131

Components as rewrite systems Chapter 4

interaction signature Σ = ([κcomp],∪) contains a binary composability relation κcomp

on pair of actions. We define κcomp from comp to be such that, for O a set of actions
if comp(O), then, for all n ∈ N, we have:

1. ((O ∩E1, n), (O ∩E2, n)) ∈ κcomp(E1, E2) with E1 and E2 interfaces of different
agents, i.e., two composable (sets of) actions occur at the same time;

2. κcomp satisfies the axiom for associativity:

((O1, n), (O2, n)) ∈ κ(I1, I2) ∧ ((O1 ∪O2, n), (O3, n)) ∈ κ(I1 ∪ I2, I3)

⇐⇒ ((O2, n), (O3, n)) ∈ κ(I2, I3) ∧ ((O1, n), (O2 ∪O3, n)) ∈ κ(I1, I2 ∪ I3)

for arbitrary I1, I2, I3

Note that the cases where E1 ∩ O = ∅ (or E2 ∩ O = ∅) model independent progress
from agents with interface in E1 (or E2). Then, if κcomp relates empty observations,
the composability relation allows independent progress when used in the product of
TES transition systems (see rules (1) and (2) in Section 4.1.1).

Lemma 22 (Composability). If Actioni ∩ Actionj = ∅ for all disjoint agents i and
j, then the product ×([κcomp],∪) is commutative and associative.

Proof. By definition of comp and item (1) in definition of κcomp, we have that κcomp

is symmetric, and therefore ×([κcomp],∪) is commutative. By item (2) in definition of
κcomp, the asumptions of Lemma 10 are satisfied and ×([κcomp],∪) is associative.

Theorem 9 (Compositional semantics). Let S = (A,Λ,Ω, E ,⇒S) be a system of
n agents with disjoint actions and [{s01, ..., s0n}, t0] as initial state. We fix Σ =

([κcomp],∪). Then, JS([s0, t0])K = ×Σ{JAi([s0i, t0])K}i∈[1,n].

Proof. The proof uses the result of Lemma 22 that ×([κcomp],∪) is associative and com-
mutative. Then, we give an inductive proof that JS([s0, t0])K = ×Σ{JAi([s0i, t0])K}i∈[1,n].
We fix S = ({A1, ...,An},Λ,Ω, E ,⇒S) and An+1 = (Λn+1,Ωn+1, En+1,⇒n+1), such
that comp in Ω relates actions of agents in {A1, ...,An+1}.
Let S ′ = ({A1, ...,An,An+1},Λ,Ω,⇒S). We show that TS ×κ TAn+1

= (Q,E,→)

and TS′ = (Q′, E′,→′) have the same component semantics, namely that a run is in
TS ×κ TAn+1

if and only if it is in TS′ .
By construction of the system S ′, every run in TS′ is also a run in TS ×κ TAn+1

.
Indeed, for a set of composable actions O with comp(O) that the system performs, we
know that all agents that have an action in O will take a transition labeled with that

132

Chapter 4 DSL for agents with preferences

action, and all agents that have no action in O will do a silent transition. Thus, there
is a run in TS ×κ TAn+1 that has the same sequence of observations as runs in S ′.

Alternatively, every run in TS ×κ TAn+1
also corresponds to a run in TS′ , with the

counter increasing at each step.
As a result, by associativity and commutativity of ×Σ, we conclude that JS([s0, t0])K =

×Σ{JAi([s0i, t0])K}i∈[1,n].

Remark 20. A sufficient criteria for a sound step-by-step implementation of a system
of interacting agents is to prove that the agents always eventually synchronize within
a bounded number of transitions. This way, using the result of Lemma 21, we can find
k as the largest of such steps, and prove that the agents are k-synchronizing. In this
case, we can show that the agents are 1-synchronizing, as every agent either takes a
silent transition in its TES transition system, or performs an action.

4.3 DSL for agents with preferences

Agents introduced in Section 4.2 specifiy sequence of possible actions. Due to the
interaction taking place among agents, an agent’s action may discard some of other
agent’s actions. For instance, an action may need to synchronize with another agent’s
action, and is therefore disabled if the required action is unavailable. As a result, an
agent may add to its set of actions an order that reflects its internal preference. After
composition with other agents, the set of actions is ranked to select an action with
the highest preference. An agent can therefore adapt, at runtime, to an open set of
agents.

In [50], we propose an automata-based paradigm based on soft constraint automata
[9, 49], called soft component automata (SCAs). An SCA is a state-transition system
where transitions are labeled with actions and preferences. Higher-preference transi-
tions typically contribute more towards the goal of the component; if a component is
in a state where it wants the system to move north, a transition with action north
has a higher preference than a transition with action south. At run-time, preferences
provide a natural fallback mechanism for an agent: in ideal circumstances, the agent
would perform only actions with the highest preferences, but if the most-preferred
actions fail, the agent may be permitted to choose a transition of lower preference.
At design-time, preferences can be used to reason about the behavior of the SCA in
suboptimal conditions, by allowing all actions whose preference is bounded from be-
low by a threshold. In particular, this is useful if the designer wants to determine the

133

DSL for agents with preferences Chapter 4

circumstances where a property is no longer verified by the system.
The algebraic structure for preferences is called a constraint semiring and was

proposed in [22]. A c-semiring is a tuple (A,+,×, 0, 1) such that

1. A is a carrier set that contains two element 0, 1 ∈ A;

2. + is a commutative associative idempotent binary operator, with unit element
0 and absorbing element 1;

3. × is a commutative associative binary operator that distributes over +, with
unit element 1, and absorbing element 0.

Well-known instances of c-semirings are the

• boolean c-semiring B = ({0, 1},min,max, 0, 1);

• fuzzy c-semiring F = ([0, 1],min,max, 0, 1) ;

• bottleneck c-semiring K = (R≥ ∪ {∞},max,min, 0,∞);

• probabilistic or Viterbi c-semiring V = ([0, 1],max,×, 0, 1);

• weighted c-semiring W = (R≥ ∪ {∞},min,+,∞, 0).

Every c-semiring admits an order ≤ defined by r ≤ s iff r + s = s. It is shown in
[22] that ≤ satisfies the following properties:

1. ≤ is a partial order, with minimum 0 and maximum 1;

2. x+ y is the least upper bound of x and y;

3. x× y is a lower bound of x and y;

4. (S,≤) is a complete lattice (i.e., the greatest lower bound exists);

5. + and × are monotone on ≤.

6. if × is idempotent, then + distributes over ×, x× y is the greatest lower bound
of x and y, and (S,≤) is a distributive lattice.

The composability of actions and their resulting composition is defined in [50] with
a Component Action System (CAS). A CAS can be lifted to an interaction signature
on TESs by using, for instance, the synchronous composability relation defined in
Chapter 2.

134

Chapter 4 DSL for agents with preferences

Definition 36 (Component action system). A component action system (CAS) is a
tuple ⟨Σ,⊙,�⟩, such that Σ is a finite set of actions, ⊙ ⊆ Σ × Σ is a reflexive and
symmetric relation and � : ⊙ → Σ is an idempotent, commutative and associative ⊙-
operator on Σ. We call ⊙ the composability relation, and � the composition operator.

A Soft Component Automaton (SCA) is a finite characterization of an agent be-
havior, equipped with a strategy. The csemiring value labeling each transition induces
a partial order, for each state, on the set of outgoing transitions. An agent may there-
fore filter its behavior by allowing only the k best actions from the partially ordered
set of outgoing transitions.

Definition 37 (Soft component automaton). A soft component automaton (SCA) is a
tuple ⟨Q,Σ,E,→, q0, t⟩ where Q is a finite set of states, with q0 ∈ Q the initial state, Σ
is a CAS, and E is a c-semiring, with t ∈ E the threshold. Lastly, → ⊆ Q×Σ×E×Q is
a finite relation called the transition relation. We write q a, e−−→ q′ when ⟨q, a, e, q′⟩ ∈ →.

The threshold determines which actions have sufficient preference for inclusion in
the behavior. Intuitively, the threshold is an indication of the amount of flexibility
allowed. In the context of composition, lowering the threshold of a component is a form
of compromise: the component potentially gains behavior available for composition.
Setting a lower threshold makes a component more permissive, but may also make it
harder (or impossible) to achieve its goal.

Definition 38 (Behavior of an SCA). Let A = ⟨Q,Σ,E,→, q0, t⟩ be an SCA. We say
that a stream σ ∈ Σω is a behavior of A if there exist streams µ ∈ Qω and ν ∈ Eω

such that µ(0) = q0, and for all n ∈ N, we have t ≤ ν(n) and µ(n)
σ(n), ν(n)−−−−−−−→ µ(n+1).

The set of behaviors of A, denoted by L(A), is called the language of A.

To discuss an example of SCA, we introduce the SCA As in Figure 4.1, which
models the crop surveillance drone’s objective to take a snapshot of every location
before moving to the next. The CAS of As includes the pairwise incomposable actions
pass, move and snapshot , and its c-semiring is the weighted c-semiring W. We leave
the threshold value ts undefined for now. The purpose of As is reflected in its states:
qY (resp. qN) represents that a snapshot of the current location was (resp. was not)
taken since moving there. If the drone moves to a new location, the component moves
to qN , while qY is reached by taking a snapshot. If the drone has not yet taken a
snapshot, it prefers to do so over moving to the next spot (missing the opportunity).

Another example of an SCA is Ae, drawn in Figure 4.2; its CAS contains the incom-
posable actions charge, discharge1 and discharge2, and its c-semiring is the weighted

135

DSL for agents with preferences Chapter 4

qY qN

move, 0

snapshot , 0

move, 2
pass, 1

pass, 1

Figure 4.1: A component modeling the desire to take a snapshot at every location, As.

q0 q1 q2 q3 q4

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

discharge2, 5 discharge2, 5 discharge2, 5

Figure 4.2: A component modeling energy management, Ae.

c-semiring W. This particular SCA can model the component of the crop surveillance
drone responsible for keeping track of the amount of remaining energy in the system;
in state qn (for n ∈ {0, 1, . . . , 4}), the drone has n units of energy left, meaning that in
states q1 to q4, the component can spend one unit of energy through discharge1, and
in states q2 to q4, the drone can consume two units of energy through discharge2. In
states q0 to q3, the drone can try to recharge through charge. Recall that, in W, higher
values reflect a lower preference (a higher weight or cost); thus, charge is preferred
over discharge1.

Here, Ae is meant to describe the possible behavior of the energy management
component only. Availability of the actions within the total model of the drone (i.e.,
the composition of all components) is subject to how actions compose with those of
other components; for example, the availability of charge may depend on the state of
the component modeling position. Similarly, preferences attached to actions concern
energy management only. In states q0 to q3, the component prefers to top up its
energy level through charge, but the preferences of this component under composition
with some other component may cause the composed preferences of actions composed
with charge to be different. For instance, the total model may prefer executing an
action that captures discharge2 over one that captures charge when the former entails
movement and the latter does not, especially when survival necessitates movement.

Nevertheless, the preferences of Ae affect the total behavior. For instance, the
weight of spending one unit of energy (through discharge1) is lower than the weight
of spending two units (through discharge2). This means that the energy component
prefers to spend a small amount of energy in a single step. This reflects a level of care:

136

Chapter 4 DSL for agents with preferences

by preferring small steps, the component hopes to avoid situations where too little
energy is left to avoid disaster.

Reo as a DSL We define a domain specification language for finite state preference
aware agents as a subset of Reo. One reason for using Reo is its graphical syntax,
which gives an intuitive encoding of soft component automata in terms of graphical
connectors and interaction primitives. Moreover, Reo reflects the modular and compo-
sitional aspects that make SCAs suitable for specifying complex behaviors: connectors
compose into more complex connectors, just like how SCAs compose into more com-
plex SCAs. We take advantage of this feature and, after defining an encoding of SCAs
into Reo connectors, we represent the composition of SCAs as the composition of their
corresponding connectors. Another reason is the existence of a compilation chain that
makes it possible to compile the same Reo model to an execution language (such as
Java or C) or to a language that supports verification (such as the rewriting logic
language Maude [13]). Effective optimizations implemented in the current Reo com-
piler help to keep the size of resulting composed models manageable, yielding similarly
manageable models in Maude, Java, etc.

Some existing research has considered the question of synthesizing Reo circuits
for constraint automata [16]. In our work, similar channels are used for encoding
the structure of the automaton (syncfifo, xrouter, and merger), but a new channel,
the bfilter, is introduced to encode the soft part of the action labeling transitions of
SCAs. Moreover, we provide, along with the description, the representation of the
Reo connector in a textual language, used as input for the compiler developed in [64].

We propose a general approach to represent SCAs and their composition as Reo
circuits. Recall that, by Definition 37, an SCA is formally defined as a tuple ⟨Q,Σ,E,→
, q0, t⟩ where Q is the set of states, Σ a component action system, E a c-semiring, →
a transition relation, q0 ∈ Q the initial state, and t ∈ E is the threshold value of the
SCA. In the sequel, we give a procedure to write an SCA as a Reo circuit. The set of
connectors defined hereafter constitutes a domain specific fragment of Reo for building
SCA. We conclude this section with an example of composition of two SCAs obtained
through composition of their respective Reo representations.

Actions and c-semirings Given Σ a CAS of an SCA, we map each action a ∈ Σ

into a Reo port with the same name. We consider the SCA “doing action a” equivalent
to “firing of port a”. Given the threshold t ∈ E, we associate each c-semiring value
e ∈ E with a predicate Pt(e) whose semantics reflects the truth value of t ≤ e in the

137

DSL for agents with preferences Chapter 4

i1

in

q

o1

om

. ≡ . . .
q

. . .

i1

in

o1

om

•

Figure 4.3: Graphical abbreviation for a state.

c-semiring. In order to mirror the semantics defined previously for composition of
SCA, the c-semiring value and the threshold value of a predicate may change during
composition. We consider the c-semiring to be fixed and shared by all SCAs.

States We define a state of an SCA as a Reo circuit, which we then graphically
abbreviate as a user-defined node. Essentially, a state is mapped into a syncfifo channel,
the empty/full status of whose buffer reflects whether or not the SCA is currently in
that state. As depicted in the circuit below, we identify the source end of the syncfifo
with the name of the state. Thus, to be in state q of the SCA corresponds to the syncfifo
whose source end is q being full. The initial state q0 starts with a full syncfifo buffer;
the syncfifo buffers of all other states start empty. Intuitively, all incoming (i1, . . . , in)
transitions into a state q, merge at the source end of the syncfifo, and all outgoing
transitions (o1, . . . , om) out of q synchronize via mutual exclusion with one another on
the sink end of the syncfifo. The reason for using the syncfifo instead of the standard
fifo primitive is that an outgoing transition can also be an incoming transition into
the same state, i.e., allow get and put operations on its ends to synchronously empty
and fill its buffer. We use an n-ary exclusive router to express that only one outgoing
transition is taken from a state with n outgoing transitions. The n-ary xrouter can be
constructed out of a ternary xrouter.

We call our constructed circuit a state, and use to represent a state of an
SCA as a graphical abbreviation and present it as a user-defined node in Reo with n

inputs and m outputs. We use as graphical abbreviation for the Reo circuit that
corresponds to the initial (and current) state of an SCA.

Besides the graphical construct for a state, we introduce a State connector in the
textual language of Reo shown in Listing 4.1. We adopt a convention, and prefix the
input and output ports of a state with the name of the state. For instance, the compo-
nent State(q0i[1..n], q0o[1..m]) represents the state q0 with n incoming transitions and

138

Chapter 4 DSL for agents with preferences

State(qi[1..n],qo[1..m]) {
{ sync(qi[k],x) | k:<1..n> }
syncfifo1 <"0">(x,y)
xrouter(y,qo[1..m])

}
Listing 4.1: Component defining a state q in textual Reo.

q0 q1

a1

Pt(e)

Figure 4.4: Reo circuit for a transition of a soft component automaton.

m outgoing transitions. We refer to the k-th incoming, resp. k-th outgoing, transition
to state q0 with the port q0i[k], respectively q0o[k].

Listing 4.1 shows an example of a component defined using conditional set notation.
The number of input ports in the interface of the State component influences how its
body is instantiated. The variable k ranges over the list [1, .., n], and thus creates a
set of sync channels.

Transitions A transition in an SCA involves an action, a c-semiring value, a pre-
state and a post-state. When the transition is enabled (i.e., its c-semiring value is
above the threshold), the transition synchronously fires the action port, and moves
the SCA from its pre-state to its post-state. We model this behavior in Reo as the
circuit in Figure 4.4, which represents the conditional activation of a transition using
a blocking-filter channel that compares the c-semiring value of the transition with the
threshold of the SCA. Given a c-semiring value e, the predicate Pt(e) of the blocking-
filter channel is true if and only if the c-semiring value e is greater than or equal to
the threshold value t.

The circuit in Figure 4.4 moves the token from node q0 to node q1 and fires port
a1, only if Pt(e) is true. If Pt(e) is not satisfied, the circuit in Figure 4.4 blocks the
transfer of the token from q0 to q1, mirroring the fact that its corresponding SCA
transition cannot be taken.

The transition primitive in textual Reo is written in Listing 4.2. The transition
component takes three ports in its interface, q0 and q1, being respectively the pre-state
and post-state, and a1 being the action. Two values are provided as parameters to a

139

DSL for agents with preferences Chapter 4

Transition <e,t>(q0,q1,a1) {
sync(q0,x)
bfilter <e,t>(x,a)
sync(x,q1)

}
Listing 4.2: Component defining a transition in textual Reo.

qY

qN

amove

asnapshot

apass

amove

apass

Pt(e1)

Pt(e2)

Pt(e3)

Pt(e4)

Pt(e5)

As
amove

apass

asnapshot

Figure 4.5: Reo circuit for the Snapshot SCA.

transition component: the c-semiring value e, and the threshold value t. Internally, the
transition component connects the pre-state to the post-state through synchronization
with the bfilter. The bfilter takes a c-semiring value of a given type as parameter, and
performs internal comparison with the threshold value.

Soft component automata Given the constructs for states and transitions, we
can build a Reo circuit for every SCA. For instance, the circuit for the automaton in
Figure 4.1 is shown in Figure 4.5. The two states qY and qN are represented as two
state-nodes, with qN initially full (designating it as the initial state).

To avoid visual clutter, we repeat the names of ports in the circuit (e.g., amove

appears twice in Figure 6), but all occurrences of the same port name correspond to a
single, unique port. Each of the five transitions of As is an instance of the transition
component in Reo. For example, the move transition from qY to qN is represented by
the transition connector with input from the state qY , output from the state qN , block-
ing filter with predicate Pt(e1), and action port amove. The corresponding component
view of the automaton is represented by a box that abstracts away the details of its
Reo circuit, exposing as its interface the boundary ports on which other components
can synchronize.

140

Chapter 4 DSL for agents with preferences

As <t>(move ,pass ,snap) {
Transition <1,t>(qYo[1],qYi[1],pass)
Transition <0,t>(qYo[2],qNi[1],move)
Transition <0,t>(qNo[1],qYi[2],snap)
Transition <2,t>(qNo[2],qNi[2],move)
Transition <1,t>(qNo[3],qNi[3],pass)

State(qYi [1..2] , qYo [1..2]) //State qY
State(qNi [1..3] , qNo [1..3]) // State qN

}
Listing 4.3: Component defining the snapshot SCA in textual Reo.

The snapshot SCA Ae is built out of the State and Transition connectors in Reo
defined in Listings 4.1 and 4.2. We show the instance of the Snapshot SCA As in
Listing 4.3, and adopt the convention defined previously to denote ports of incoming
and outgoing transitions.

Component action system The composition of two SCAs can also be written as
a Reo circuit, by encoding the composed SCA. However, such an approach uses the
SCA composition and disregards the compositional nature of Reo. Instead, we propose
to encode each individual SCA as a Reo circuit, and then compose those encodings
on the level of Reo, to obtain a Reo circuit equivalent to their composed automaton.
This approach allows for a transparent and incremental translation.

Since composition on the level of SCAs is mediated by their (common) CAS, com-
position at the level of Reo should also take the CAS into account. To do this, we
encode the CAS as a Reo circuit of its own; composition of two automata at the level
of Reo is then given by the (Reo) composition of their individual encodings, together
with the circuit obtained from their CAS. Furthermore, we hide all ports that are not
output ports of the CAS after the composition, so that the only actions observable
in the resulting Reo circuit are the actions that are brokered between the operand
circuits by the CAS.

There are three “sides” (collections of ports) to a CAS component: one for each
of the two operands in the composition, respectively called the left and the right
(operand) side, and a composite side for the result of the composition. For each action
α, we add three ports to the circuit, one in each side, labeled αℓ, αr and αc for the
left, right and composite sides respectively. The ports on the operand sides are input
ports, and the ports on the composite side are output ports.

141

DSL for agents with preferences Chapter 4

moveℓ

passℓ

snapshotℓ

discharge2r

charger

discharge1r

move2c snapshot1c chargec

Figure 4.6: Partial encoding of a CAS.

The intention of the circuit structure is as follows. If the operand circuits are
ready to perform actions α and β respectively, then ports αℓ and βr will be enabled
for writing. If α⊙β, then the CAS circuit brokers their composition, by allowing
αℓ and βr to fire simultaneously, synchronously firing the port that represents their
composition in the composite side, i.e., (α�β)c, as well. Moreover, the circuit ensures
that firing two ports in the left and right sides (when permitted) gives rise to exactly
one port firing in the composite side.

More formally, the circuit is built as follows. On the operand sides, each port
αo (where o ∈ {ℓ, r}) is connected to an exclusive router labeled αR

o . For each pair
of actions in the left and right operand sides that are compatible, i.e., all α, β ∈ Σ

such that α⊙β, we draw a synchronous drain from αR
ℓ and βR

r to an internal node
labeled αβ. Each of these nodes is then connected through a syncspout channel to the
composite side node labeled (α�β)c.

The CAS defined for the SCAs Ae and As is depicted in Figure 4.6. In this example,
the exclusive router has a single output, and is not strictly necessary. In general, the
CAS could define multiple composite actions out of the same side action. For instance,
suppose that the drone in our example is equipped with solar panels, and that the net
result of charging using the solar panels while moving is that the energy level does
not change. As a result, the energy component’s action pass is compatible with the
action move, and their composition is the action solar, which means “move with energy
from the solar panels”. Note how in this scenario, the firing of moveℓ can occur only
in conjunction with firing discharge2r or passr, but not both; in the first case, the
composite interface port move2c fires, while in the second case the port solarc fires.

142

Chapter 4 DSL for agents with preferences

cas(move ,pass ,snap ,dchge1 ,dchge2 ,
chge ,move2 ,charge ,snapshot1){

syncdrain(move ,x) syncspout(x,move2)
syncdrain(dchge2 ,x)
syncdrain(pass ,y) syncspout(y,charge)
syncdrain(chge ,y)
syncdrain(snap ,z) syncspout(z,snapshot1)
syncdrain(dchge1 ,z)

}
Listing 4.4: Component defining the CAS for the composition of Ae and As in textual Reo

moves

passs

snapshots

moveℓ

passℓ

snapshotℓ

discharge1r

charger

discharge2r

move2c snapshot1c chargec

discharge1e

chargee

discharge2e

As CAS Ae

Figure 4.7: Composition of two component automata with their component action system.

We give in Listing 4.4 the corresponding Reo component for the CAS described in
Figure 4.6 for the composition of the snapshot SCA and the energy SCA. We omitted
the exclusive routers, since, in this case, they are not necessary.

Composition The Reo circuit corresponding to a composition of two soft compo-
nent automata can now be defined as the composition of the Reo circuits for the
individual soft component automata, together with the Reo circuit for the relevant
component action system. Following the method above, we translate each of As and
Ae, respectively representing the snapshot component and the energy management
component, into its respective Reo connector.

Based on the steps described above, it is now possible to define a Reo circuit for
both Ae and As, that we name respectively Ae and As in textual Reo. The resulting
composition, shown in Listing 4.5, consists of a set containing the connector for each
SCA together with the connector for the component action system. The two thresholds
values are provided as parameter.

143

Related work and future work Chapter 4

composite(move2 ,charge ,snapshot1) {
Ae <t1 >(move ,pass ,snap)
cas(move ,pass ,snap ,dchge1 ,dchge2 ,

chge ,move2 ,charge ,snapshot1)
As <t2 >(dchge1 ,dchge2 ,chge)

|
t1 = 5,
t2 = 3

}
Listing 4.5: Component in textual Reo defining the composition between Ae and As.

4.4 Related work and future work

Real-time Maude Real-Time Maude is implemented in Maude as an extension of
Full Maude [74], and is used in applications such as in [58]. There are two ways to
interpret a real-time rewrite theory, called the pointwise semantics and the continuous
semantics. Our approach to model time is similar to the pointwise semantics for real-
time Maude, as we fix a global time stamp interval before execution. The addition of
a composability relation, that may discard actions to occur within the same rewrite
step, differs from the real-time Maude framework.

Models based on rewriting logic In [91], the modeling of cyber-physical systems
from an actor perspective is discussed. The notion of event comes as a central concept
to model interaction between agents. Softagents [84] is a framework for specifying
and analyzing adaptive cyber-physical systems implemented in Maude. It has been
used to analyze systems such as vehicle platooning [30] and drone surveillance [66]. In
Softagents agents interact by sharing knowledge and resources implemented as part of
the system timestep rule.

Softagents only considers compatibility in the sense of reachability of desired or
undesired states. Our approach provides more structure enabling static analysis. Our
framework allows, for instance, to consider compatibility of a robot with a battery
(i.e., changing the battery specification without altering other agents in the system),
and coordination of two robots with an exogenous protocol, itself specified as an agent.

Hybrid programs Other models for cyber-physical systems exist, such as hybrid
systems (e.g., Hybrid Programs [75], Hybrid automata [40, 65, 79]), and our semantic
model differs and complements existing work in, at least two main points. First,

144

Chapter 4 Related work and future work

we model interaction externally, as constraints that apply on the behavior of each
component. Interaction is not limited to input/outputs as in most hybrid descriptions,
and the difference between cyber and physical aspects is abstracted in the general
concept of a component. The generality of the semantic model enables to give a
specification of a component as a hybrid program, or as an I/O hybrid automata,
and define suitable composition operators in the algebra to compositionally define
cyber-physical systems. Second, we choose to model the interaction occurring between
components in a discrete way, as sequences of observations: we choose to model the
continuity of physical systems within their description as a set of discrete sequences
of observations. This description closely represents runtime observable behaviors of
cyber-physical systems, and highlights new challenges such as proving that a cyber-
physical system is safe when considering safety of runtime observables only.

Timed Automaton Several operations on Timed Automata have been defined to
model different aspects of concurrency. The UPPAAL modeling language allows such
concurrent operations, and the UPPAAL tool computes the product automaton on
the fly during verification.

It is shown that reachability is decidable, and it is proven that the infinite state-
space of timed automata can be finitely partitioned into symbolic states using clock
constraints known as zones.

UPPAAL is a tool in which network of timed automata are considered. Similarly
to the case of a single timed automata, two types of transitions are considered: delay
transitions, and action transitions. The difference is that action transitions decline
into two kinds: single action transitions, and synchronous action transitions.

UPPAAL makes use of CTL formulas, that are dynamically verified on the tree
unfolding of the transition system, making use of the zone optimization. UPPAAL
is well-suited for timed automata but has some limitations in the support of hybrid
automata, e.g. restricting their continuous parts to simple dynamics or applying the
Euler integration method.

145

Related work and future work Chapter 4

146

Chapter 5

Experimental framework

The component framework introduced in Chapter 2 and its operational fragments
defined in Chapter 4 lay the foundation for the verification of properties of cyber-
physical systems.

In this chapter, we detail and evaluate an implementation in Maude of the cyber-
physical agent framework introduced in Section 4.2 of Chapter 4. This implementation
extends the operational formal model with three additional features. First, an agent is
equipped with an internal strategy, similar to the one introduced in Section 4.3. Thus,
the Maude implementation enables two levels to make a preference aware system
more specific: by selecting a subset of best actions either at the agent level, or at
the system level. Second, an agent may perform a composite action atomically, i.e.,
a sequence of actions within the same clique. As a result, the value assigned to
action parameters may depend on the effects of actions earlier in the sequence. The
Maude implementation enables agents to reevaluate the parameters of their actions at
runtime. Third and last, we give some constraints on how a set of atomic actions, called
macrostep, is serialized into a sequence of microsteps, i.e., a sequence of agent actions.
More precisely, we impose that such serialization is a function given as parameter for
simulation or analysis. The runtime may still be non-deterministic, as several different
cliques may be enabled at the same time. The above three features are detailed in
Section 5.1.

We use our implementation to simulate and analyze a series of applications. More
precisely, we use the Maude runtime to verify trace properties of concurrent systems.
Recall that, as defined in Chapter 2, a trace property is a set of TESs, and a component
C satisfies a property P , denotes as C |= P , if and only if the behavior of C is a subset

147

Chapter 5

of the property P . In Section 2.2.2, we introduced the notion of conformance, which
states that a component C is conformable to a component C ′ if there exists a non
empty protocol P such that C ×Σ P ⊑ C ′.

In the agent framework, a system is a set of interacting agents for which we gave
in Section 4.2 a compositional semantics as components. Therefore, given a set of
n agents A1(s01, t0), ...,An(s0n, t0) interacting under the interaction signature Σ, we
say that the system S = A1(s01, t0) ×Σ ... ×Σ An(s0n, t0) satisfies property P if the
component semantics does so, i.e., if JSK |= P (see Theorem 9 for soundness). In the
case where JSK ̸|= P , we then identify two mechanisms to make JSK satisfy P .

The most obvious way is to substitute each of a subset of the agents Ai with a
more specific agent A′

i such that the resulting system satisfies P . Such agent A′
i is

more specific than agent Ai due to its smaller state space and behavior (where all
TESs that violate property P have been removed). Finding the largest of such A′

i is
therefore of primary importance to keep as much as possible the non-violating TESs
from the behavior of agent Ai.

An alternative way is to synthesize a coordinator agent D such that JS×ΣDK |= P .
While similar to the first method, as it generates a system C′ = S×ΣD, the coordinator
D is a separate entity that can therefore be modified. In the case of a system A1×ΣA2,
composite of agents A1 and A2, that does not satisfy a property P , a coordinator may
filter actions from A1 and A2 contextually, i.e., imposing a relation between actions
occurring in A1 and A2.

We instantiate the framework to model diverse applications:

• cyber agents interacting via Reo coordination protocols. We give an implemen-
tation of a Reo nodes, primitive channels, and show how to compose protocols.

• N reservoirs, a valve, and a controller. We explore how the controller can control
the valve to maintain a safety property, such as that the N reservoirs always have
a water level within some thresholds.

• two robot agents, each interacting with a (shared) field and a (private) battery
agent. We explore how safety, liveness, and coordination properties are enforced
by a system of agents. For instance, such system is energy safe if the battery
levels always stay above some thresholds. The system is alive if the agents keep
patrolling between two locations on the field. Finally, coordination properties are
such that agents eventually sort themselves on the grid by correctly exchanging
their locations.

148

Chapter 5 Maude framework for cyber-physical agents

We run some analysis on the system using the Maude reachability search engine.

5.1 Maude framework for cyber-physical agents

The Maude framework is an instance of the general agent framework introduced in
Chapter 4. We therefore introduce the Maude implementation for actions, agents,
system of agents, and composability relation. The implementation is accessible at [59].

Actions An action is a pair that contains the name of the action, and the set of
agent identifiers on which the action applies. An agent action is identified by the
source agent identifier, and is a triple (id, (a; ids)) where id is the agent doing
the action with name a onto the set of agents ids, that we call resources of agent id
for action named a.

fmod ACTION is
inc STRING . inc BOOL . inc SET{Id}
sort AName Action AgentAction .
op (_;_) : AName Set{Id} -> Action [ctor] .
op (_,_) : Id Action -> AgentAction [ctor] .
op mta : -> AgentAction .

endfm

Agent The AGENT module in Listing 5.1 defines the theories on which an agent relies,
the Agent sort, and operations that an agent instance must implement. The module
is parametrized with a CSEMIRING theory, that is used to rank actions of an agent.
Additionally, the AGENT includes modules that define state and action terms. A term
of sort IdStates is a pair of an identifier and a map of sort MapKD.

A term of sort Agent is a tuple [id: C| state; ready?; softaction]. The
identifier id is unique for each agent of the same class C. The state state of an agent
is a map from keys to values. For instance, the state of a robot has three keys,
position, energy, and lastAction, with values in Location, Status, and Bool.
The flag ready? is of sort Bool and is True when the agent has submitted a possibly
empty list of actions, and False otherwise. The pending actions softaction is a set
of actions valued in the parametrized CSEMIRING. The use of a constraint semiring as
a structure for action valuations enables various kinds of reasoning about preferences
at the agent and system levels. We use the two operations of the csemiring, sum
+ and product ×, as respectively modeling the choice and the compromise of two
alternatives. See [91, 84, 50] for more details.

149

Maude framework for cyber-physical agents Chapter 5

As shown in Listing 5.1, an agent instance implements four operations: computeActions,
resolve, getOutput, getPostState, and internalUpdate. Note that the four op-
erations are an implementation of the abstract ϕ of Section 4.2.1. The operation
computeActions, given a state:MapKD of agent id of class C, returns a set of val-
ued actions in the parametrized CSEMIRING. The operation internalUpdate, given a
state:MapKD of agent id of class C, returns a new state state’:MapKD. For instance, an
agent may record in its state, as an internal update, the outcome of computeActions
that returns the set of possible actions for the agent. The getOutput operation, given
an action name a:Name from agent identified by id2 applied to an agent id of class C in
a state state, returns a collection of outputs. The outputs generated by getOutput

are of sort MapKD and therefore structured as a mapping from keys to values. For
instance, the output of the action named read applied on a FIELD agent has a key
pos that maps to the position value of the agent doing the read action. The opera-
tion getPostState, given an action name a:AName with inputs input:IdStates from
agent identified by id2 applied on an agent id1 of class C in a state state, returns a
new state. The input input:IdStates is a collection of key to value mappings that
results from collecting the outputs, i.e., with getOutput, of an action (id, an, ids)

on all its resources in ids. The new state returned by getPostState describes how
the agent reacts to the input action, which could also capture, with an error state,
that the action is not allowed by the agent. The operation resolve, given an action
name a:Name performed by an agent with identifier id with class C in state state,
returns a new action name a’:Name. The resolve operation is called before the input
action name is performed, and may instantiate some parameters of the action given
the state of the agent.

Listing 5.1: Extract from the AGENT Maude module.

fmod AGENT{X :: CSEMIRING} is
inc IDSTATE . inc ACTION .
sort Agent .
op [_:_|_;_;_] : Id Class MapKD Bool X$Elt -> Agent [ctor].
op computeActions : Id Class MapKD -> X$Elt .
op internalUpdate : Id Class MapKD -> MapKD .
op getPostState : Id Class Id AName IdStates MapKD -> MapKD
op getOutput : Id Class Id AName MapKD -> MapKD .
op resolve : AName Identifier Class MapKD -> AName .

endfm

The agent’s dynamics are given by the rewrite rule in Listing 5.2, that updates the
pending action to select one atomic action from the set of valued actions:

150

Chapter 5 Maude framework for cyber-physical agents

Listing 5.2: Conditional rewrite rule applying on agent terms.

crl[agent] : [sys [id : ac | state ; false ; null]] =>
[sys [id : ac | state ’ ; true ; softaction]]

if softaction + sactions := computeActions(id, ac, state)
/\ state ’ := internalUpdate(id, ac, state) .

The rewrite rule in Listing 5.2 implements the abstract rule of Equation 4.2. After
application of the rewrite rule, the ready? flag of the agent is set to True. The agent
may, as well, perform an internal update independent of the success of the selected
action.

Moreover, an agent module comes with the definition of an interface. The interface
for an agent contains the constructors for action names, i.e., move: direction ->

Action and read: sensorName -> Action for a TROLL robot agent. An agent
that interacts with another agent must therefore include the interface module of that
agent, i.e., the set of actions that the agent performs.

System The SYSTEM module in Listing 5.3 defines the sorts and operations that
apply on a set of agents. The sort Sys contains set of Agent terms, and the term
Global designates top level terms on which the system rewrite rule applies (as shown
in Listing 5.4). The SYSTEM module includes the Agent theory parametrized with
a fixed semiring ASemiring. The theory ASemiring defines valued actions as pairs
of an action and a semiring value. While we assume that all agents share the same
valuation structure, we can also define systems in which such a preference structure
differs for each agent. The SYSTEM module defines four operations: linearization,
outputFromAction, updateSystemFromAction, and updateSystem. The operation
linearization returns a list of AgentAction given a set of AgentAction. As there
are multiple ways to generate sequences of actions from a set of actions, we as-
sume a total order among actions and a sorted output sequence. As several total
orders may exist, we leave the equational specification of the linearization operation
in each scenario. The operation outputFromAction returns, given an agent action
(id, (an, ids)) applied on a system sys, a collection of identified outputs given by
the union of the results of getOutput produced by all agents in ids. The operation
updatedSystemFromAction returns, given an agent action (id, (an, ids)) applied
on a system sys, an updated system sys’. The updated system may raise an error
if the action is not allowed by some of the resource agents in ids (see the battery-
field-robot example in 5.4). The updated system, otherwise, updates synchronously
all agents with identifiers in ids by using the getPostState operation. The operation

151

Maude framework for cyber-physical agents Chapter 5

updateSystem returns, given a list of agent actions agentActions and a system term
sys, a new system updateSystem(sys, agentActions) that performs a sequential
update of sys with every action in agentActions using updatedSystemFromAction.
The list agentActions ends with a delimiter action end performed on every agent,
which may trigger an error if some expected action does not occur (see PROTOCOL in
Section 5.4).

Listing 5.3: Extract from the SYSTEM Maude module.

fmod SYS is
inc AGENT{ASemiring} . sort Sys Global .
subsort Agent < Sys . op [_] : Sys -> Global [ctor] .
op __ : Sys Sys -> Sys [ctor assoc comm id: mt]
op linearization : Set{AgentAction} -> List{AgentAction} .
op outputFromAction : AgentAction Sys -> IdStates .
op updatedSystemFromAction : AgentAction Sys -> Sys .
op updateSystem : Sys List{AgentAction} -> Sys .

endfm

The rewrite rule in Listing 5.4 applies on terms of sort Global and updates each agent
of the system synchronously, given that their actions are composable. The rewrite
rule in Listing 5.4 implements the abstract rule of Equation 4.5. The rewrite rule
is conditional on essentially two predicates: agentsReady? and kbestActions. The
predicate agentsReady? is True if every agent has its ready? flag set to True, i.e.,
the agent rewrite rule has already been applied. The operation kbestActions returns
a ranked set of cliques (i.e., composable lists of actions), each paired with the updated
system. The element of the ranked set are lists of actions containing at most one
action for each agent, and paired with the system resulting from the application of
updateSystem. If the updated system has reached a notAllowed state, then the list
of actions is not composable and is discarded. The operations getSysSoftActions

and buildComposite form the set of lists of composite actions, from the agent’s set
of ranked actions, by composing actions and joining their preferences.

Listing 5.4: Conditional rewrite rule applying on system terms.

crl[transition] : [sys] => [sys ’]
if agentsReady ?(sys) /\ saAtom := getSysSoftActions(sys) /\
saComp := buildComposite(saAtom , sizeOfSum(saAtom)) /\
p(actseq , sys ’) ; actseqs := kbestActions(saComp , k, sys) .

Composability relation The term saComp defines a set of valued lists of actions.
Each element of saComp possibly defines a clique. The operation kbestActions spec-

152

Chapter 5 Concurrent Reo

ifies which, from the set saComp, are cliques. We describe below the implementation
of kbestActions, given the structure of action terms.
An action is a triple (id, (an, ids)), where id is the identifier of the agent per-
forming the action an on resource agents ids. Each resource agent in ids reacts to
the action (id, (an, ids)) by producing an output (id’, an, O) (i.e., the result of
getOutput). Therefore, comp((id, (an, ids)), ai) holds, with ai : Actioni and i ∈ ids,
only if ai is a list that contains an output (i, an, O), i.e., an output to the action.
If one of the resources outputs the value (i,notAllowed(an)), the set is discarded
as the actions are not pairwise composable. Conceptually, there are as many action
names an as possible outputs from the resources, and the system rule (4.2) selects the
clique for which the action name and the outputs have the same value. In practice,
the list of outputs from the resources get passed to the agent performing the action.

5.2 Concurrent Reo

In Chapter 3, we use our component algebra as a semantic model for Reo. More
particularly, we introduce nodes as primitive components, and channels or connectors
as the composition of ports under some fixed composition operators. In this section,
we use our Maude implementation to provide a concurrent implementation of Reo
connectors, as a set of interacting agents.

5.2.1 Reo primitives as agents

We refer to Section 3.1 for an introduction to Reo. The available implementation [64] of
Reo focuses on compilation of input circuits to an executable. A remaining challenge
was to construct a compositional runtime where each part of a Reo circuit can be
compiled independently and run concurrently. As a consequence of such framework,
one can keep the structure of a Reo circuit at runtime, mix different semantics for
Reo channels (e.g., guarded commands, constraint automata, ...), while allowing for
simulation and verification through reachability queries.

Our framework for concurrent Reo consists therefore of few primitive agents: PORT,
CHANNEL, CONNECTOR.

Port as resource A port is a point of synchronization in Reo, and its typical be-
havior is to forward atomically data from its input connector to its output connector.
We fix a port identifier to be of the form P(i) where i:Float is a rational number.

153

Concurrent Reo Chapter 5

We later use the identifier of a port to define the operation of linearization and
order actions.

A port contains a structure with two buffers that implement the atomic passing
of data from the input to the output connector. One buffer collects the data that the
input connector may put, and the other contains the request from the output connector
to take some data. Only when the two buffers are full, as shown with the error raised
by the end action, should the port allow both put(d) and take actions.

fmod PORT is
inc AGENT{ASemiring} .
inc PROTOCOL -INTERFACE .
inc PORT -INTERFACE .

...
eq computeActions(id, Port , M) = null .

ceq getPostState(r, Port , id , take , mtOutput , M) = M’
if M[k("data")] =/= nodata /\

M’ := insert(k("sync"), bd(true), M) .

ceq getPostState(r, Port , id , put(data), mtOutput , M) = M’
if M[k("data")] == nodata /\

M’ := insert(k("data"), data , M) .

ceq getPostState(id, Port , id, end , inputs , M) = M’
if M[k("data")] =/= nodata /\ M[k("sync")] == bd(true) /\

M’ := insert(k("data"), nodata ,
insert(k("sync"), bd(false), M)) .

ceq getPostState(id, Port , id, end , inputs , M) =
notAllowed(end)

if M[k("data")] =/= nodata or M[k("sync")] == bd(true) .

eq getPostState(r, Port , id, a, inputs , M) = M [owise] .

ceq getOutput(r, Port , id, take , M) =
k("data") |-> M[k("data")] if M[k("data")] =/= nodata .

eq getOutput(r, Port , id ’, a, M) = empty [owise] .

eq internalUpdate(id, Port , M) = M [owise] .

endfm

154

Chapter 5 Concurrent Reo

Connectors as agents We give three instances of primitive Reo connectors: a SYNC,
a FIFO, and a MERGER. Other primitive connectors, such as a replicator, syncdrain, etc,
could be defined similarly. While we do not expand on this point here, some parametric
connectors such as alternator(n) could be defined recursively as well, making use of
the port naming structure.

A SYNC agent has two ports on which it acts synchronously. The action of a SYNC

agent consists of an atomic sequence of two actions: a take on the input port, and a
put on the output port. The composite action succeeds if and only if the two parts
of the action succeeds, and the value put on the output port corresponds to the value
taken on the input port. Note that the value of the datum that a sync puts on its
output port is initially unknown. We use the symbol ? for such unknown value, and
use the operation resolve to instantiate the value at runtime.

fmod SYNC is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .
...
eq getOutput(Sync(p1, p2), Channel , id’, a, M) = empty .

eq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), take , (id, k("data
") |-> d), M) = insert(k("data"), d, M) .

eq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), take , inputs , M) =
notAllowed(take) [owise] .

ceq getPostState(Sync(p1, p2), Channel , Sync(p1, p2), put(d), outputs ,
M) = insert(k("data"), nodata , M)
if M =/= notAllowed(take) .

eq getPostState(Sync(p1, p2), Channel , id, a, outputs , M) = M [owise] .

eq computeActions(Sync(p1 , p2) , Channel , M) = (((Sync(p1 , p2) , (take
; p1)), (Sync(p1, p2) , (put(?) ; p2))), 1) .

eq internalUpdate(Sync(p1 , p2), Channel , M) = M .

ceq resolve(put (?), Sync(p1, p2), Channel , M) = put(d)
if d := M[k("data")] .

endfm

A FIFO agent has two ports on which it acts in sequence. A FIFO agent has two
actions, a take action that stores the data from its input port to a memory, or a put

155

Concurrent Reo Chapter 5

action that outputs the data on the output port. The take action succeeds only if the
current memory cell is empty, and the put action succeeds only if the current memory
cell is full. As a result, the FIFO agent alternates between taking a value from its input
port, and putting that value to its output port.

fmod FIFO is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .
...
eq getOutput(id, Channel , id ’, a, M) = empty .

eq getPostState(Fifo(p1, p2), Channel , Fifo(p1, p2), take , (id, k("data
") |-> d), M) = insert(k("data"), d, insert(k("state"), nd(1), M))
.

eq getPostState(Fifo(p1, p2), Channel , Fifo(p1, p2), put(d), outputs , M
) = insert(k("data"), nodata , insert(k("state"), nd(0), M)) .

eq getPostState(Fifo(p1, p2), Channel , id, a, outputs , M) = M [owise] .
ceq computeActions(Fifo(p1, p2), Channel , M) = (Fifo(p1 , p2) , (take ;

p1), 1) if M[k("state")] == nd(0) .
ceq computeActions(Fifo(p, p’), Channel , M) = (Fifo(p, p’), (put(M[k("

data")]); p’), 1) if M[k("state")] == nd(1) .

eq internalUpdate(Fifo(p1 , p2), Channel , M) = M .
endfm

A MERGER is a ternary connector, that acts, for each of its port input, as a syn-
chronous channel with its output port. Moreover, the MERGER relates its two input
ports with a relation of exclusion, i.e., the two input ports cannot fire at the same
time. A MERGER with the list of ports P(1), P(2), P(3) has two actions: a for-
warding action from port P(1) to port P(3), or a forwarding action from port P(2)

to port P(3). The two actions are exclusive, as they cannot occur at the same time.
Moreover, the merger always enables both actions, which raises some non-determinism
at the system level (i.e., to chose which of the two actions is selected). Similarly to
the SYNC channel, a MERGER agent instantiates the value for the put action at runtime,
once the result of the take action is known. We use the ? symbol to denote a symbolic
value.

fmod MERGER is
inc AGENT{ASemiring} .
inc PORT -INTERFACE .
inc CHANNEL -INTERFACE .

156

Chapter 5 Concurrent Reo

eq getOutput(Merger(p1, p2, p3), Channel , id ’, a, M) = empty .

ceq getPostState(Merger(p1, p2, p3), Channel , Merger(p1 , p2 , p3), take ,
(id , k("data") |-> d), M) =

insert(k("data"), d, M) if M[k("data")] == nodata .
eq getPostState(Merger(p1 , p2 , p3), Channel , Merger(p1, p2, p3), take ,

inputs , M) = notAllowed(take) [owise] .
ceq getPostState(Merger(p1, p2, p3), Channel , Merger(p1 , p2 , p3), put(d

), outputs , M) =
insert(k("data"), nodata , M) if M =/= notAllowed(take) .

eq getPostState(Merger(p1 , p2 , p3), Channel , id, a, outputs , M) = M [
owise] .

eq computeActions(Merger(p1, p2, p3) , Channel , M) =
(((Merger(p1, p2 , p3), (take; p2)), (Merger(p1, p2, p3), (put(?); p3

))), 1) + (((Merger(p1 , p2 , p3), (take; p1)), (Merger(p1 , p2 , p3)
, (put(?); p3))), 1) .

eq internalUpdate(Merger(p1, p2, p3), Channel , M) = M .

ceq resolve(put (?), Merger(p1 , p2, p3), Channel , M) = put(d)
if d := M[k("data")] .

endfm

A PROD and CONS agent respectively implement a producer and consumer. Both
agents have a single port, on which they always perform, respectively, a put and a take

action. The PROD agent puts natural numbers as values on its port, and increments
the value if the put action succeeds. We use such canonical sequences of increasing
natural numbers to verify some firing properties of a Reo circuit. When a put action
succeeds for a PROD agent, its state is updated to contain the message that has been
sent in the k("sent") field. Similarly, when a take action succeeds for a CONS agent,
its state is updated to contain the message that has been received in the k("recv")

field.

fmod PROD is
inc AGENT{ASemiring} .
inc PROD -INTERFACE .
inc PORT -INTERFACE .

ceq getPostState(id , Producer , id ’, put(d) , actionoutput , M) =
insert(k("data"), nd(s(i)), insert(k("sent"), d, M)) if nd(i) := M[
k("data")] .

eq getPostState(id , Producer , id’, a , actionoutput , M) = M [owise] .

157

Concurrent Reo Chapter 5

eq getOutput(id , Producer , id’, a, M) = empty .

eq computeActions(Prod(id) , Producer , M) =
(Prod(id), (put(M[k("data")]); id), 1) .

eq internalUpdate(id, Producer , M) = insert(k("sent"), nodata , M) .
endfm

fmod CONS is
inc AGENT{ASemiring} .
inc CONS -INTERFACE .
inc PORT -INTERFACE .

eq getPostState(Cons(id) , Consumer , Cons(id), take , (id, k("data")
|-> d), M) = insert(k("recv"), d, M) .

eq getPostState(id , Consumer , id’, a , actionoutput , M) = M [owise] .

eq getOutput(id , Consumer , id’, a, M) = empty .

eq computeActions(Cons(id) , Consumer , M) =
(Cons(id), (take ; id), 1) .

eq internalUpdate(id, Consumer , M) = M .

endfm

5.2.2 Execution and analysis

We present in SCENARIO two system terms for which we run some analysis. For the first
scenario, the PROD and CONS are communicating through a sync channel. Therefore,
the only possible composite action is a clique in which the PROD agents puts a value on
port P(1.0), that is forwarded to port P(2.0) by the SYNC agent, and then consumed
by the CONS agent. The second scenario is similar, and models the PROD and CONS

agents communicating through a fifo channel.
Note that the SCENARIO module instantiates the linearization operation as fol-

lows: a take action on a port P(i) happens after a put action a port P(j) if i ≥ j;
and a take action on a port P(i) happens after a take action on a port P(j) if i > j.

Listing 5.5: Scenarios for Producer/Consumer protocols.

mod SCENARIO is
inc PORT .
inc PROD . inc CONS .

158

Chapter 5 Concurrent Reo

inc SYNC . inc FIFO . inc MERGER .
inc RUN . inc CONVERSION .

op init : Nat -> Global .

eq init (1) = [
[P(1.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[P(2.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[Prod(P(1.0)) : Producer |

k("data") |-> nd(1) ; false ; null]
[Cons(P(2.0)) : Consumer |

k("data") |-> nodata ; false ; null]
[Sync(P(1.0) , P(2.0)) : Channel |

k("data") |-> nodata ; false ; null]] .

eq init (2) = [
[P(1.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[P(2.0) : Port | k("data")|-> nodata ,

k("sync") |-> bd(false) ; false ; null]
[Prod(P(1.0)) : Producer |

k("data") |-> nd(1) ; false ; null]
[Cons(P(2.0)) : Consumer |

k("recv") |-> nodata ; false ; null]
[Fifo(P(1.0) , P(2.0)) : Channel | k("state") |-> nd(0),

k("data") |-> nodata ; false ; null]] .

ceq linearization(aSet) = a linearization(aSet ’)
if a , aSet ’ := aSet .

ceq (id, (take ; P(i))) (id ’, (put(d) ; P(j))) aSeq ’ =
(id ’, (put(d); P(j))) (id, (take; P(i))) aSeq ’ if i >= j .

ceq (id1 , (take ; P(i))) (id2 , (take ; P(j))) aSeq ’ =
(id2 , (take ; P(j))) (id1 , (take ; P(i))) aSeq ’ if i > j .

endm

We run the two following queries on the two initial terms of SCENARIO. The first query
returns the first solution for which the same datum has passed from the producer to
the consumer. The solution shows the synchronicity of the SYNC channel.

The second query returns the first solution for which the data received by the
consumer has an offset of 1 with the data sent by the producer. The solution shows
the asynchronicity of the FIFO channel.

search [1] init (1) =>* [sys::Sys

159

Valve-controller Chapter 5

[Prod(P(1.0)) : Producer | M1::MapKD ,
k("sent") |-> nd(i::Nat); false; null]

[Cons(P(2.0)) : Consumer | M2::MapKD ,
k("recv") |-> nd(j::Nat); false; null]

] such that j::Nat == i::Nat .

Solution 1 (state 8) states: 9 rewrites: 1472 in 3ms cpu (0ms real)
(443774 rewrites/second)

...
i::Nat --> 1
j::Nat --> 1
==
search [1] init (2) =>* [sys::Sys
[Prod(P(1.0)) : Producer | M1::MapKD ,

k("sent") |-> nd(i::Nat); false; null]
[Cons(P(2.0)) : Consumer | M2::MapKD ,

k("recv") |-> nd(j::Nat); false; null]
] such that j::Nat =/= i::Nat .

Solution 1 (state 24) states: 25 rewrites: 6390 in 0ms cpu (2ms real) (~
rewrites/second)

...
i::Nat --> 2
j::Nat --> 1

5.3 Valve-controller

5.3.1 N-reservoir problem

Consider n reservoirs, filled with water. Each reservoir connects at the top to a valve
that, if switched on, inputs some water. Each reservoir has a hole at the bottom from
where water goes out. Each reservoir has a sensor measuring its water level. The
measures are accessible by a digital controller. A valve is placed at the top of the n
reservoirs, and fills, continuously, one of the reservoir at a time. The valve moves from
one reservoir to another after reception of a switch command from the controller.

The problem is to design a controller such that none of the reservoirs is observed
with its water level outside of given bounds, noted lk1 for the lower and lk2 for the higher
bounds, for the k-th reservoir. We first introduce some intuitive physical explanations
about the dynamics of the reservoirs, then specify the digital controller that interfaces
the physical components, and finally analyse one instance of the composite cyber-
physical system.

160

Chapter 5 Valve-controller

Physical part In the n-reservoirs problem, the physical part is described by the col-
lection of n reservoirs, and a valve. The water level of a reservoir follows a continuous
evolution: at each time t ∈ R+, there exists a value x(t) that corresponds to the water
level of the reservoir at t.

Along this part, we use t ∈ R+ for continuous time, n ∈ N for the number of
reservoirs, and k ∈ {1, ..., n} to denote the k-th reservoir.

Reservoir The reservoir of radius r captures, as a component, the evolution of the
water level over time. The height of the water at time t in the k-th reservoir, written
xk(t), follows the law xk(t) = xt0k + (

∫ t

t0
ik(u)− ok(u) du)/(πr

2), where xt0k ∈ R is the
initial level of water at t0 ∈ R+, ik(t) is the rate of incoming water and ok(t) is the
rate of outgoing water for t ≥ t0. Note that we use the relation V = πr2L where V
is the volume of a cylindrical reservoir of radius r and height L. The functions xk, ok
and ik are functions from R+ to R+.

The definition of xk(t) involves elements internal to the physical description of the
reservoir (e.g. ok(t), the rate of water going out), and external elements (e.g. ik(t),
the rate of water coming in). In particular, the function ik(t) depends on the valve
component’s specification.

The component for the reservoir of radius r is the pair Res(r, i) = (E,L) where

E = {read(l), inFlow(k) | l, k ∈ [0, 20]}

and L ⊆ TES (E) with σ ∈ L implies there exists a function f : R+ → R+ with

• f(0) = 15 and f ′ = −outFlow , where outFlow is a constant that models how
fast water goes out of the reservoir;

• σ(ti) = {read(l)} implies l = max(f(ti), 0);

• σ(ti) = {inFlow(k)} implies f(t) = f(ti) + (t− ti)× (k− outFlow)/(r2π) for all
t ∈]ti, ti+1], where k is the rate of water going in the reservoir in the interval
]ti, ti+1].

Valve The valve fixes the rate at which the water flows into the reservoir, and moves
its arm from one reservoir to another. The state of the valve is described by a value
s ∈ {0, ..., n} where s = i encodes the fact that the valve is placed above reservoir i
only. Under an input signal switch(k), the valve changes state from s = i to s = k.

161

Valve-controller Chapter 5

The component for the valve is the pair Valve(n) = (E(n), L) where

E(n) = {switch(k), outFlow(k, j) | k ∈ {1, ..., n}, j ∈ [0, 20]}

and L ⊆ TES (E(n)) with σ ∈ L such that every switch event is simultaneous with 0

outFlow in the reservoir that are not recipient of the valve, i.e., for all t, if switch(k) ∈
σ(t) then outFlow(i, 0) ∈ σ(t) for i ∈ {1, ..., n} \ {k} and outFlow(i, j) ∈ σ(t) with
j ̸= 0.

Continuous formulation of the problem The problem can be formulated in the
continuous setting as finding a sequence of states for the valve (or timed input signals
δ(t), equivalently) such that

∀k ∈ {1, .., n}. lk1 ≤ xk(t) ≤ lk2

where lk1 and lk2 are respectively lower and upper bounds for the water level xk of
reservoir k.

The function δ is not built as a physical component, but results from the measures
and the actions of a digital component on the physical system. We show in the next
subsection an instance of a controller, and later provide an instance of the physical
components (reservoir and valve) in order to analyse the resulting interaction with a
controller.

Cyber part The cyber component consists of a controller, reading from the reser-
voirs’ sensors, and acting on the valve. In sequence, this subsection details the mea-
surement device that interface the reservoir and the controller, the action that the
controller performs on the valve, and the controller’s state transition system.

The problem of decision inherent in the n-reservoirs system is dependent on the
water level measured by the controller. If the agent can read precisely the level of
water in each of the reservoir, at a high frequency, the reactivity of the system will be
higher than the case where the agent measures the reservoir’s state at low frequency,
with less accuracy. From a formal point of view, increasing the sensor precision also
increases the possible states in which the system can be observed, and therefore the
complexity of the representation. The trade off is to find a reading frequency that
discriminates the minimal amount of states, while ensuring the agent to be reactive
to achieve its goal.

162

Chapter 5 Valve-controller

As a result of an action, the dynamic of the physical system may change, and lead
to different sequences of measures from the controller.

Controller The controller has two types of events: read and switch. The read(i,l)
event is parametrized by the reservoir i that the controller reads, and displays the
value l that is read at the sensor. The switch(i) event synchronizes with the same
event of the valve and takes as parameter the value of the reservoir to which the valve
should switch.

A controller is a component defined as the pair C(T) = (E,L(T)) with

E = {read(i, l), switch(i) | i ∈ {1, ..., n}, l ∈ [0, 20]}

and L(T) ⊆ TES (E) is such that σ ∈ L(T) implies there exists a function f : R+ →
{1, ..., n} → [0, 20] with

• observations occur at multiple of T , i.e, σ(t) ̸= ∅ implies t = 0 mod T ;

• read(i, l) ∈ σ(t) implies f(t)(i) = l

The controller may change state after performing some measurements or moving
the valve, such as recording the sensor values or the reservoir to which the valve has
switched. In the next subsection, we give an executable specification for the controller,
the valve, and the reservoir. We analyse the strategy of the controller to keep the water
level of the reservoirs within a margin.

5.3.2 Execution and analysis

We present the three main Maude modules, namely the CONTROLLER, the VALVE, and
the RESERVOIR, to model and analyse properties of the N -reservoirs problem.

Controller The CONTROLLER agent has two main actions: read and switch. The
read action returns the value of the water level in all reservoirs. The CONTROLLER agent
stores the value in its state, and implements the function lowestLevel to return the
reservoir with the lowest water level (ordered with the reservoir identifier, in case of
two reservoirs having the smallest water level). The switch action takes a reservoir’s
identifier as argument and acts on the VALVE agent by switching the valve to that
reservoir.

Listing 5.6: A module for the CONTROLLER agent.

163

Valve-controller Chapter 5

fmod CONTROLLER is
inc SET{Nat} .
inc TRACE -INTERFACE .
inc RESERVOIR -INTERFACE .
inc CONTROLLER -INTERFACE .
inc AGENT{ASemiring} .
...
eq getPostState(id, Controller , id, read , output , M) =

getSensorValues(getResources(id, read), output , M) .
eq getPostState(id, Controller , id’, switch(r), actionoutput , M) =

insert(k("state"), d(r), M) .
eq getPostState(id, Controller , id’, a, actionoutput , M) = M [owise]

.

eq computeActions(id , Controller , M) = null [owise] .

*** Upper and lower bound for the reservoir level
ceq computeActions(id , Controller , M) = (id , (switch(r) ;

getResources(id , switch(r))) , 1) if
M =/= empty /\ r := lowestLevel(M) /\
d(r) =/= M[k("state")] /\ fd(j) := M[k("lev", r)] /\
j <= lowbound(r) .

eq computeActions(id, Controller , M) = (id, (read ; getResources(id ,
read)), 1) [owise] .

eq internalUpdate(id, Controller , M) = M .
endfm

Valve The VALVE agent has a fill action for each reservoir. The fill action takes
a flow value as argument, and changes the inflow rate in the RESERVOIR agent. As a
consequence, the state of the RESERVOIR will change its dynamic and the read action
from the CONTROLLER on the RESERVOIR will get updates accordingly. The fill action
of the VALVE is composite of two other actions that turn off the inflow of the other
RESERVOIR agents. In Listing 5.7, we show one of such composite action that fills
reservoir 1 and turns off the two other reservoirs.

Listing 5.7: A module for the VALVE agent.

fmod VALVE is
inc AGENT{ASemiring} .
inc VALVE -INTERFACE .
inc RESERVOIR -INTERFACE .
inc TIME -INTERFACE .
inc CONTROLLER -INTERFACE .

164

Chapter 5 Valve-controller

...
*** Passive agent:
ceq computeActions(id , Valve , M) = (((valve , (fill(k) ; res (1))), (

valve , (off ; res(2))), (valve , (off ; res(3)))), 1) if nd(1) := M[
k("state")] /\ fd(k) := M[k("inFlow")] .

...
ceq getPostState(r, Valve , id, switch(res(i)), output , M) = M’ if M’

:= insert(k("state") , nd(i) , M) .
eq getPostState(r, Valve , id , switch(r), output , M) = notAllowed(switch

(r)) [owise] .
eq getPostState(r, Valve , id , an , output , M) = M [owise] .

eq internalUpdate(id, Valve , M) = M .
endfm

Reservoir For simplicity, we set the radius of the RESERVOIR to be equal to
√
π,

and the inflow and outflow corresponds to the change of level in the reservoir. The
RESERVOIR agent has no actions, but reacts to the fill and off actions of the VALVE

agent, and the read action of the CONTROLLER agent. The read action generates an
output that contains the current level of the reservoir. The fill action changes the
vin state variable to take the value given by the VALVE agent. The off action sets
the vin state variable to 0.0. A RESERVOIR agent defines a function f that computes
the water level given the current level, the inflow and outflow models by vin and vout

respectively. At the end of every round, the RESERVOIR updates its state with the
value computed by f.

Listing 5.8: A module for the RESERVOIR agent.

fmod RESERVOIR is
inc AGENT{ASemiring} .
inc RESERVOIR -INTERFACE .
inc TIME -INTERFACE .
inc CONTROLLER -INTERFACE .
inc VALVE -INTERFACE .
...
*** Passive agent:
eq computeActions(id , Reservoir , M) = null .
*** Compute the level of the reservoir
op f : Float Float Float -> Float .
eq f(cl, vin , vout) = max(min(cl + (vin - vout) , 20.0) , 0.0) .

eq getOutput(id, Reservoir , id’, read , M) = k("lev") |-> M[k("lev")] .

165

Valve-controller Chapter 5

eq getPostState(id , Reservoir , id ’, read , output , M) = M .
ceq getPostState(id, Reservoir , id’, end , output , M) = insert(k("lev"),

fd(f(cl, vin , vout)), M)
if k("inFlow") |-> fd(vin) , k("outFlow") |-> fd(vout), k("lev")

|-> fd(cl), M’ := M .
eq getPostState(res(j), Reservoir , id ’, fill(vin), output , M) = insert(

k("inFlow"), fd(vin), M) .
eq getPostState(id , Reservoir , id ’, off , output , M) = insert(k("inFlow

"), fd(0.0) , M) .
eq getPostState(r, Reservoir , id , an , output , M) = M [owise] .

eq internalUpdate(id, Reservoir , M) = M .
endfm

Scenarios We present in Listing 5.9 a scenario for which a controller periodically
reads the value of the water level in the reservoirs, and switches the valve accordingly.
We set the maximum capacity for each reservoir to be 20.0, the outflow rate to be 2.0

and the inflow rate from the valve to be 5.0. Initially, the valve is above res(2).
We also define the linearization operation to order actions as follows. The read

action occurs first in the sequence, followed by the switch action, and the other actions
occur freely. The value taken by read action therefore takes the value of the water
level at the end of the previous round, i.e., after update of each RESERVOIR agent.

Listing 5.9: A module for the SCENARIO agent.

mod SCENARIO is
inc RESERVOIR . inc VALVE .
inc CONTROLLER . inc RUN .
...
*** Resources for controller agent.
eq getResources(id , read) = res(1), res(2), res(3) .
eq getResources(id , switch(id ’)) = valve .
eq getResources(id , off) = res(1), res(2), res(3) .

eq lowbound(res(i)) = 15.0 . eq upbound(res(i)) = 18.0 .

eq init = [[res(1) : Reservoir | k("lev") |-> fd (20.0) , k("state") |->
nd(0), k("inFlow") |-> fd(0.0) , k("outFlow") |-> fd(2.0) ; false

; null]
[res (2) : Reservoir | k("lev") |-> fd (20.0) , k("state") |-> nd(1), k(

"inFlow") |-> fd (5.0) , k("outFlow") |-> fd (2.0) ; false ; null]
[res (3) : Reservoir | k("lev") |-> fd (20.0) , k("state") |-> nd(0), k(

"inFlow") |-> fd (0.0) , k("outFlow") |-> fd (2.0) ; false ; null]

166

Chapter 5 Valve-controller

[valve : Valve | k("state") |-> nd(2), k("inFlow") |-> fd(5.0) ;
false ; null]

[controller : Controller | k("state") |-> d(nil) ; false ; null]] .
...
ceq linearization(aSet) = a linearization(aSet ’)
if a , aSet ’ := aSet .

eq a (id , (read ; res)) = (id , (read ; res)) a .
ceq a (id , (switch(id ’); res)) = (id, (switch(id ’); res)) a
if (id’, (an ; res ’)) := a /\ an =/= read .

endm

Search queries We run two queries on the scenario of Listing 5.9. The first query
searches for a state for which all the controller has read a value for the water level
which is below 8.0. We can see that one of such solution exists as the result of the
query.

The second query searches for a state for which the controller read one of the
reservoir’s water level to be 0.0. As shown in the output, a solution exists, and res(2)

may reach a water level of 0.0.

Listing 5.10: Two search queries for some safety properties.

search [1] in SCENARIO : init =>* [sys:Sys
[controller : Controller | M::MapKD , k("lev",res(1)) |-> fd(j:: Float), k(

"lev",res (2)) |-> fd(i:: Float), k("lev",res (3)) |-> fd(k::Float) ;
false ; null]

] such that (j:: Float < 8.0 and k::Float < 8.0) and i::Float < 8.0 = true
.

Solution 1 (state 180)
states: 181 rewrites: 27201 in 13ms cpu (12ms real) (2041963 rewrites/

second)
...
j::Float --> 3.0 i:: Float --> 7.0 k::Float --> 7.0

search [1] init =>*
[sys:Sys

[controller : Controller | k("lev", res(1)) |-> fd(j::Float), k("lev
", res(2)) |-> fd(i::Float), k("lev", res(3)) |-> fd(k::Float), M
::MapKD ; false ; null]

] such that i:: Float == 0.0 or j::Float == 0.0 or k::Float == 0.0 .

Solution 1 (state 96)

167

Robot-Battery-Field system Chapter 5

states: 97 rewrites: 14927 in 6ms cpu (6ms real) (2240618 rewrites/
second)

...
j::Float --> 1.4e+1 i::Float --> 0.0 k::Float --> 9.0

However, after changing the rate of the valve from 5.0 to 7.0, the same queries
as in Listing 5.10 return no solutions. As a consequence, the strategy implemented
in the CONTROLLER agent therefore successfully keeps the water level above 8.0 for all
reservoirs, and prevent any reservoir to reach 0.0.

5.4 Robot-Battery-Field system

We propose to study three properties:

1. Safety property: In the first scenario, we model two TROLL agents, moving on
a shared FIELD, with private BATTERY agents; we study the cases for which the
two robots can exchange their position without running out of energy.

2. Liveness property: In the second scenario, the field is equipped with a station,
where the TROLL agent can recharge its battery. We want to prevent the agent
from running out of energy while oscillating between the two locations, i.e., if
the station can always supply energy, we want a sequence of actions such that
the agent never runs out of energy.

3. Self-sorting property: In the third scenario, we place three TROLL agents on a
grid, each with a unique natural number identifier. We study some self-sorting
property of the system by global coordination (e.g., use of an external protocol)
or local strategies (e.g., ranking of each agent’s actions).

We consider the battery, robot, and grid components introduced in Section 1.3 and
formalized in Section 2.1.6 and Section 2.2.3 as the expression

Sys(n, T1, ..., Tn) = ▷◁i∈{1,...,n} (R(i, Ti)×ΣRiBi
Bi)×ΣRF

Gµ({1, ..., n}, n, 2)

made of n robots R(i, Ti), each interacting with a private battery Bi under the inter-
action signatures ΣRiBi

, and in product with a grid G under the interaction signature
ΣRG. We use ▷◁ for the product with the free interaction signature (i.e., every pair
of TESs is composable), and the notation ▷◁i∈{1,...,n} {Ci} for C1 ▷◁ ... ▷◁ Cn as ▷◁ is
commutative and associative.

168

Chapter 5 Robot-Battery-Field system

R5 R4 R3 R2 R1
⇒∗ R1 R2 R3 R4 R5

Figure 5.1: Initial state of the unsorted robots (left), and final state of the sorted robots
(right).

R1 R2 R3 R4 R5

t1 N - - - -
t2 W - - - -
t3 (3; 1) - - - -
...

R1 R2 R3 R4 R5

t1 N - - - -
t2 W E N - -
t3 S (4; 0) E - -
...

R1 R2 R3 R4 R5

t1 N - - - N
t2 W E - W E
t3 S - - - S
...

Table 5.1: Each table displays the three first observables at times t1, t2, and t3 for three
TESs in the behavior of the product of components R1, R2, R3, R4, and R5 on the grid of
Figure 5.1. We omit the subscript and use the column to identify the events. The symbol -
represents the absence of observation in the TES.

We fix n = 5 and the same period T for each robots. We write E for the set of
events of the composite system Sys(2, T). We also reuse the grid component introduced
in Section 2.2.3 where µ is the initial position of the robots on the grid, and the
parameters n and 2 a refers to the x and y length of the grid. For simplicity, use Ri

to denote the composite component (R(i, T)×ΣRiBi
Bi) with fixed period T .

Self-sorting robots Figure 5.1 shows five robot instances, each of which has a
unique and distinct natural number assigned, positioned at an initial location on a
grid. The goal of the robots in this example is to move around on the grid such that
they end up in a final state where they line-up in the sorted order according to their
assigned numbers.

Three first observations for three behaviors are displayed in Table 5.1. Each be-
havior exposes different degrees of concurrency, where in the left behavior, only robot
R1 moves, while in the middle behavior, robots R1 and R2 swap their positions, and in
the right behavior both R1 and R4 swap their positions with R2 and R5, respectively.

We consider the following property: eventually, the position of each robot Ri is
(i, 0)Ri

, i.e., every robot successfully reaches its place. This property is a trace prop-
erty, which we call Psorted and consists of every behavior σ ∈ TES (E) such that there

169

Robot-Battery-Field system Chapter 5

R5 R4 R3 R2 R1
⇒

R1

R5 R4 R3 R2
⇒

R3

R2

R4R5

R1

Figure 5.2: Initial state of the unsorted robot (left) leading to a possible deadlock (right)
if each robot follows its strategy.

exists an n ∈ N with σ(n) = (On, tn) and (i, 0)Ri
∈ On for all robots Ri. As shown

in Table 5.1, the set of behaviors for the product of robots is large, and the property
Psorted does not (necessarily) hold a priori : there exists a composite behavior τ for
the component R1 ▷◁ R2 ▷◁ R3 ▷◁ R4 ▷◁ R5 ▷◁ F ({1, 2, 3, 4, 5}) such that τ ̸∈ Psorted .

Robots may beforehand decide on some strategies to swap and move on the grid
such that their composition satisfies the property Psorted . For instance, consider the
following strategy for each robot Rn:

• swapping : if the last read (x, y) of its location is such that x < n, then move
North, then West, then South.

• pursuing : otherwise, move East.

Remember that the grid prevents two robots from moving to the same cell, which
is therefore removed from the observable behavior. We emphasize that some sequences
of moves for each robot may deadlock, and therefore are not part of the component
behavior of the system of robots, but may occur operationally by taking a composable
action step by step (see Section 4.1.2). Consider Figure 5.2, for which each robot
follows its internal strategy. Because of non-determinism introduced by the timing of
each observations, one may consider the following sequence of observations: first, R1

move North, then West; in the meantime, R2 moves West, followed by R3, R4, and
R5. By a similar sequence of moves, the set of robots ends in the configuration on the
right of Figure 5.2. In this position and for each robot, the next move dictated by its
internal strategy is disallowed, which corresponds to a deadlock. While behaviors do
not contain finite sequences of observations, which makes the scenario of Figure 5.2
not expressible as a TES, such scenario may occur in practice. We give in next Section
some analysis to prevent such behavior to happen.

Alternatively, the collection of robots may be coordinated by an external protocol
that guides their moves. Besides considering the robot and the grid components,
we add a third kind of component that acts as a coordinator. In other words, we
make the protocol used by robots to interact explicit and external to them and the
grid; i.e., we assume exogenous coordination. Exogenous coordination allows robots

170

Chapter 5 Robot-Battery-Field system

to decide a priori on some strategies to swap and move on the grid, in which case their
external coordinator component merely unconditionally facilitates their interactions.
Alternatively, the external coordinator component may implement a protocol that
guides the moves of a set of clueless robots into their destined final locations. The
most intuitive of such coordinator is the property itself as a component. Indeed,
let Csorted = (E,L) be such that E =

⋃
i∈I ERi

with I = {1, 2, 3, 4, 5} and L =

Psorted . Then, and as shown in [62], the coordinated component R1 ▷◁ R2 ▷◁ R3 ▷◁

R4 ▷◁ R5 ▷◁ G({1, 2, 3, 4, 5}, 5, 2) ▷◁ Csorted trivially satisfies the property Psorted .
While easily specified, such coordination component is non-deterministic and not easily
implementable. We provide an example of a deterministic coordinators.

As discussed, we want to implement the property Psorted as a collection of small co-
ordinators that swap the position of unsorted robots. Intuitively, this protocol mimics
the behavior of bubble sort, but for physical devices. Given two robot identifiers R1

and R2, we introduce the swap component S(R1, R2) that coordinates the two robots
R1 and R2 to swap their positions. Its interface ES(R1, R2) contains the following
events:

• start(S(R1,R2)) and end(S(R1, R2)) that respectively notify the beginning and
the end of an interaction with R1 and R2. Those events are observed when the
swap protocol is starting or ending an interaction with either R1 or with R2.

• (x, y)R1
and (x, y)R2

that occur when the protocol reads, respectively, the posi-
tion of robot R1 and robot R2,

• dR1 and dR2 for all d ∈ {N,W,E, S} that occur when the robots R1 and R2

move;

• locked(S(R1,R2)) and unlocked(S(R1,R2)) that occur, respectively, when another
protocol begin and end an interaction with either R1 and R2.

The behavior of a swapping protocol S(R1, R2) is such that, it starts its protocol
sequence by an observable start(S(R1, R2)), then it moves R1 North, then R2 East,
then R1 West and South. The protocol starts the sequence only if it reads a position
for R1 and R2 such that R1 is on the cell next to R2 on the x-axis. Once the sequence
of moves is complete, the protocol outputs the observable end(S(R1, R2)). If the
protocol is not swapping two robots, or is not locked, then robots can freely read their
positions.

Swapping protocols interact with each others by locking other protocols that share
the same robot identifiers. Therefore, if S(R1,R2) starts its protocol sequence, then

171

Robot-Battery-Field system Chapter 5

S(R2, Ri) synchronizes with a locked event locked(S(R2,Ri)), for 2 < i. Then, R2

cannot swap with other robots unless S(R1,R2) completes its sequence, in which case
end(S(R1, R2)) synchronizes with unlocked(S(R2,Ri)) for 2 < i. We extend the un-
derlying composability relation κ on observations such that, for i < j, simultaneous
observations (O1, t) and (O2, t) are composable, i.e., ((O1, t), (O2, t)) ∈ κ, if:

start(S(Ri,Rj)) ∈ O1 =⇒ ∃k.k < i.locked(S(Rk, Ri)) ∈ O2∨

∃k.j < k.locked(S(Rj , Rk)) ∈ O2

and

end(S(Ri,Rj)) ∈ O1 =⇒ ∃k < i.unlocked(S(Rk, Ri)) ∈ O2∨

∃j < k.unlocked(S(Rj , Rk)) ∈ O2

For each pair of robots Ri, Rj such that i < j, we introduce a swapping protocol
S(Ri, Rj). As a result, the coordinated system is given by the following composition:

R1 ▷◁ R2 ▷◁ R3 ▷◁ R4 ▷◁ R5 ▷◁ G({1, 2, 3, 4, 5}, 5, 2) ▷◁i<j S(Ri, Rj)

Note that the definition of ▷◁ imposes that, if one protocol starts its sequence, then
all protocols that share some robot identifiers synchronize with a lock event. Similar
behavior occurs at the end of the sequence.

5.4.1 Execution and analysis

Main agents To illustrate the use of our framework to simulate and verify cyber-
physical systems, we present an agent specification for three components: a FIELD, a
TROLL, and a BATTERY. A FIELD component interacts with the TROLL component by
reacting to its move action, and its sensor reading. As shown in Listing 5.11 the FIELD
agent has no actions, but reacts to the move action of the TROLL agent by updating its
state and changing the agent’s location. Currently, the update is discrete, but more
sophisticated updates can be defined (e.g., changing the mode of a function recording
the trajectory of the TROLL agent). In the case where the state of the FIELD agent
forbids the TROLL agent’s move, the FIELD agent enters in a disallowed state marked
as notAllowed(an), with an as the action name. The FIELD responds to the read
sensor action by returning the current location of the TROLL agent as an output.

Listing 5.11: Extract from the FIELD Maude module.

172

Chapter 5 Robot-Battery-Field system

fmod FIELD is
inc TROLL -INTERFACE .
inc FIELD -INTERFACE .
inc PROTOCOL -INTERFACE .
inc AGENT{ASemiring} .
...
*** Passive agent:
eq computeActions(id , Field , M) = null .

eq internalUpdate(id , Field , M) = M .

ceq getPostState(r, Field , id, a, mtOutput , M) = M’
if isMove ?(a) /\

k(loc) |-> d(id) , M1 ’ := M /\
loc ’ := next(loc , a) /\
loc ’ =/= loc /\
M[k(loc ’)] == undefined /\
M’ := k(loc ’) |-> d(id), M1’ .

ceq getPostState(r, Field , id, a, mtOutput , M) = notAllowed(a)
if isMove ?(a) /\ k(loc) |-> d(id) , M1’ := M /\

loc ’ := next(loc , a) /\ ((loc ’ =/= loc and M[k(loc ’)] =/=
undefined) or loc ’ == loc) .

ceq getOutput(r, Field , id, readSensors(position sn), M)
= (k("pos") |-> loc , M’)

if k(loc) |-> d(id) , M1’ := M /\
M’ := (k("obstacles") |-> obstacle(1, id , loc , M)) .

endfm

A TROLL agent reacts to no other agent actions, and therefore does not include
any agent interface. A TROLL agent uses the function getSoftActions to return a
ranked set of actions given its state, and implements the computeActions operation
by returning the ranked set of actions. The operation getSoftAction implements a
strategy for the agent which, for instance, ranks higher the move action that moves
the robot closer to its target location. The expression may contain more than one
action, with different weights. The weights of the action may depend on the internal
goal that the agent set to itself, as for instance reaching a location on the field. The
TROLL agent specifies how it reacts to, e.g., the sensor value input from the field, by
updating the corresponding key in its state with getSensorValues.

Listing 5.12: Extract from the TROLL Maude module.

fmod TROLL is

173

Robot-Battery-Field system Chapter 5

inc AGENT{ASemiring} .
inc LOCATION .
inc TROLL -INTERFACE .

eq computeActions(id , Troll , M) = getSoftActions(id , M ,
trollActions(id , M)) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(1), M) if M[k("
read")] == nd(0) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(0), M) if M[k("
read")] == nd(1) .

ceq getPostState(id, Troll , id, readSensors(sn), sensorvalues , M) = M’
if M’ := getSensorValues(getResources(id , readSensors(sn)) ,

sensorvalues), k("goal") |-> M[k("goal")], k("read") |-> nd(1)
.

endfm

A BATTERY agent does not act on any other agent, as the FIELD, but reacts to
the TROLL agent actions. Each move action triggers in the BATTERY agent a change of
state that decreases its energy level. As well, each charge action changes the BATTERY
agent state to increase its energy level. Similarly to the field, in the case where the
state of the battery agent has 0 energy, the battery enters a disallowed state marked
as notAllowed(an), with an as the action name. A sensor reading by the TROLL agent
triggers an output from the BATTERY agent with the current energy level.

Listing 5.13: Extract from the BATTERY Maude module.

fmod BATTERY is
inc AGENT{ASemiring} .
inc BATTERY -INTERFACE .
inc TROLL -INTERFACE .

*** Passive agent:
eq computeActions(id, Battery , M) = null .
eq internalUpdate(id, Battery , M) = M .

ceq getOutput(r, Battery , id , readSensors(energy sn), M)
= k("bat") |-> M[k("bat")]

if r := getBattery(id) .

*** Next state.
ceq getPostState(r, Battery , id, an , mtOutput , M) = M’

174

Chapter 5 Robot-Battery-Field system

if isMove ?(an) /\
k("bat") |-> nd(s i) , M1 ’ := M /\
M’ := insert(k("bat") , nd(i) , M) .

ceq getPostState(r, Battery , id, charge(j), mtOutput , M) = M1
if nd(i) := M[k("bat")] /\

i < capacity /\
M1 := insert(k("bat") , nd(min (i + j, capacity)) , M) .

ceq getPostState(r, Battery , id, an , mtOutput , M) = notAllowed(an)
if isMove ?(an) /\ M[k("bat")] == nd(0) .

endfm

A PROTOCOL agent swap(id1,id2) acts on the TROLL agents id1 and id2, and is
used as a resource by the two TROLL agent move actions. A PROTOCOL internally has a
finite state machine T(id):Fsa that accepts or rejects a sequence of actions. Each move

action of a TROLL is accepted only if there is a transition in the PROTOCOL agent state
transition system. A PROTOCOL agent swap(id1, id2) always tries to swap agents
with ids id1 and id2. Thus, if id2 is on the direct East position of id1 on the field,
then action start succeeds, and the protocol enters in the sequence move(N) for id2,
move(W) for id2, move(E) for id1, and then move(S) for id2. Eventually the sequence
ends with finish action. The PROTOCOL agent may also have some transitions labeled
with a set of actions, one for each of the agent id1 and id2. In which case, the
transition succeeds if the clique contains, for each agent involved in the protocol, an
action that is composable with the action labeling the protocol transition. We use the
end action to mark the end of the sequence of actions forming a clique. The PROTOCOL
may reject such end action if the clique does not cover the set of actions labeling the
transition, which therefore discard the set of actions as not composable.

Listing 5.14: Extract from the SWAP protocol Maude module.

fmod SWAP is
inc AGENT{ASemiring} .
inc TROLL -INTERFACE .
inc PROCESS -INTERFACE .
inc FIELD -INTERFACE .
inc PROTOCOL -INTERFACE .

op T : Identifier -> Fsa .
*** Update of state from external move or its own swapping actions
ceq getPostState(id, Protocol , id’, move(d), sysState , M) = M’

if {q(i)} := getState(M) /\

175

Robot-Battery-Field system Chapter 5

M’ := insert(k("recv") , recv(union(getLabel(M), {l(id’,
move(d))})) , M) .

*** Ending transition correctly
ceq getPostState(id , Protocol , id , end , sysState , M) = M’

if state := getState(M) /\
label := getLabel(M) /\
tr := getTransitions(T(id)) /\
(state , label , state ’), tr ’ := tr /\
M’ := insert(k("recv") , recv ({}), insert(k("state") , ds(

state ’) , M)) .

*** Not allowed states
eq getPostState(id, Protocol , id ’, end , sysState , M) = notAllowed(

end) [owise] .
eq getPostState(id, Protocol , id ’, a, sysState , M) = M [owise] .

eq getOutput(id, Protocol , id’, a, M) = empty .
ceq computeActions(swap(id, id ’) , Protocol , M) = ((swap(id, id ’) ,

(start ; getResources(swap(id , id ’), start))), 5)
if {q(0)} := getState(M) .

eq computeActions(swap(id , id ’), Protocol , M) = null [owise] .
eq internalUpdate(swap(id , id ’), Protocol , M) = M .

endfm

Composability relation The TROLL, FIELD, and BATTERY modules specify the state
space and transition functions for, respectively, a TROLL, FIELD, and BATTERY agent.
A system consisting of a set of instances of such agents would need a composability
relation to relate actions from each agent.
More precisely, we give some possible cliques of a system consisting of two TROLL agents
with identifiers id(0), id(1):TROLL, one field:FIELD agent, and two BATTERY agents
bat(0), bat(1):BATTERY.
The actions of agent id(0) compose with outputs of its corresponding battery bat(0)

and of the shared field agent.
For instance, a move action of the id(0) agent is of the form (id(0), (move(d),

{bat(0), field})), where d is a direction for the move, and composes with outputs
of the battery and field, both notifying that the move is possible.
Alternatively, a read action of the id(0) agent is of the form (id(0), (read, {bat(0),

field})) and composes with outputs of the battery and field, each giving the battery
level and the location of agent id(0).

176

Chapter 5 Robot-Battery-Field system

Safety property: not running of energy We consider a system containing two
TROLL agents, with identifiers id(0) and id(1), paired with two BATTERY agents with
identifier bat(0) and bat(1), and sharing the same FIELD resource. The goal for
each agent is to reach the initial location of the other agent. If both agents follow
the shortest path to their goal location, there is an instant for which the two agents
need to swap their positions. The crossing can lead to a livelock, where agents move
symmetrically until the energy of the batteries runs out.

The initial system term, without the protocol, is given by:

eq init = [[id(0): Troll | k("goal") |-> (5 ; 5) ; false ; null]
[bat (0) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[id(1): Troll | k("goal") |-> (0 ; 5) ; false ; null]
[bat (1) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[field : Field | (k((0 ; 5)) |-> d(id(0)) , k((5 ; 5)) |-> d(id(1)))

; false ; null]] .

The initial system term with the protocol is given by:

eq init = [[id(0): Troll | k("goal") |-> (5 ; 5) ; false ; null]
[bat (0) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[id(1): Troll | k("goal") |-> (0 ; 5) ; false ; null]
[bat (1) : Battery | k("bat") |-> nd(capacity) ; false ; null]
[swap(id(0),id(1)) : Protocol | k("state") |-> ds({q(0)}), k("recv") |->

recv ({}) ; false ; null]
[field : Field | (k((0 ; 5)) |-> d(id(0)) , k((5 ; 5)) |-> d(id(1)))

; false ; null]] .

We analyze in Maude two scenarios. In one, each robot has as strategy to take the
shortest path to reach its goal. As a consequence, a robot reads its position, computes
the shortest path, and submits a set of optimal actions. A robot can sense an obstacle
on its direct next location, which then allows for sub-optimal lateral moves (e.g., if the
obstacle is in the direct next position in the West direction, the robot may go either
North or South). In the other scenario, we add a protocol that swaps the two robots if
robot id(0) is on the direct next location on the west of robot id(1). The swapping
is a sequence of moves that ends in an exchange of positions of the two robots.

In the two scenarios, we analyze the behavior of the resulting system with two
queries. The first query asks if the system can reach a state in which the energy level
of the two batteries is 0, which means that its robot can no longer move:

search [1] init =>* [sys::Sys
[bat(1) : Battery | k(level) |-> 0 ; true ; null],
[bat(2) : Battery | k(level) |-> 0 ; true ; null]] .

177

Robot-Battery-Field system Chapter 5

The second query asks if the system can reach a state in which the two robots suc-
cessfully reached their goals, and end in the expected locations:
search [1] init =>* [sys::Sys [field : Field | k((5 ; 5))

|-> d(id(0)), k((0 ; 5)) |-> d(id(1)) ; true ; null]] .

As a result, when the protocol is absent, the two robots can enter in a livelock
behavior and eventually fail with an empty battery:

Solution 1 (state 80)
states: 81 rw: 223566 in 73ms cpu (74ms real) (3053554 rw/s)

Alternatively, when the protocol is used, the livelock is removed using exogenous
coordination. The two robots therefore successfully reach their end locations, and stop
before running out of battery:

No solution. states: 102
rewrites: 720235 in 146ms cpu (145ms real) (4920041 rw/s)

In both cases, the second query succeeds, as there exists a path for both scenarios
where the two robots reach their end goal locations. The results can be reproduced
by downloading the archive at [1].

Liveness property: patrolling trolls A strategy ranks the action of an agent
with respect to some internal measure. For instance, a TROLL agent prefers an action
that moves it closer to its goal.

fmod STRATEGY is
inc TROLL -INTERFACE .
inc AGENT{ASemiring} .
...
*** Valuation of an action based on the state of the agent M, and some

additional measures (current goal ,
*** distance to its goal , obstacles on the next cells).
ceq getValue(id, M, a) = (id, (a; getResources(id, a)), 2)

if isMove ?(a) /\
M[k("read")] == nd(1) /\
M[k("pos")] =/= undefined /\
closest(a, M) /\
enabled ?(a , M) /\
M[k("pos")] =/= M[k("goal")] /\
M[k("charging")] =/= nd(1) .

ceq getValue(id, M, a) = (id, (a; getResources(id, a)), 1)
if isMove ?(a) /\

M[k("read")] == nd(1) /\
M[k("pos")] =/= undefined /\

178

Chapter 5 Robot-Battery-Field system

not closest(a, M) /\
a a’ := neighbors(a, M) /\
enabled ?(a, M) /\
M[k("pos")] =/= M[k("goal")] /\
M[k("charging")] =/= nd(1) .

...
endfm

We verify the property of liveness for the system, i.e., that the two robots can
always eventually swap their positions. Using the Maude search engine, we look for
a state for which the two robots have an empty battery level. We find at least one
solution for such state:

search [1] in SCENARIO : init =>* [sys::Sys
[bat (0) : Battery | k("bat") |-> nd(0) ; true ; null]
[bat (1) : Battery | k("bat") |-> nd(0) ; true ; null]] .

Solution 1 (state 389)
states: 390 rewrites: 1739739 in 299ms cpu (301ms real) (5803637

rewrites/second)
sys::Sys -->
[field : Field | k(2 ; 3) |-> d(id(0)), k(3 ; 3) |-> d(id(1)) ; true ;

null]
[id(0) : Troll | k("bat") |-> nd(1), k("goal") |-> 5 ; 5, k("next") |-> 0

; 5, k("pos") |-> 2 ; 2, k("read") |-> nd(0)
; false ; null]

[id(1) : Troll | k("bat") |-> nd(1), k("goal") |-> 0 ; 5, k("next") |-> 5
; 5, k("pos") |-> 3 ; 2, k("read") |-> nd(0)

; false ; null]

For the liveness property, the TROLL changes its goal while it reaches its first ob-
jective. Additionally, the TROLL agent has an additional charge action that, when
located on the station, charges its corresponding battery.

fmod TROLL -ALT is
inc TROLL .
inc STRATEGY .

var id : Identifier .
var M M’ upds : MapKD .
var a : AName .
var names : ANames .
var actionoutput : IdStates .
var sn : SensorNames .
var sensorvalues : IdStates .
vars d1 d2 : Data .

179

Robot-Battery-Field system Chapter 5

op swapGoal? : MapKD -> MapKD .
ceq swapGoal ?(M) = insert(k("next"), d1, insert(k("goal"), d2 , M))

if d1 := M[k("goal")] /\
d2 := M[k("next")] /\
M[k("pos")] == M[k("goal")] .

eq swapGoal ?(M) = M [owise] .

*** Alternates between read an write actions
ceq getPostState(id, Troll , id, a, actionoutput , M) = insert(k("read"),

nd(0), M) if isMove ?(a) .

ceq getPostState(id, Troll , id, readSensors(sn), sensorvalues , M) = M’
if upds := getSensorValues(getResources(id, readSensors(sn)) ,

sensorvalues) /\
M’ := insert(k("read"), nd(1),

insert(k("bat"), upds[k("bat")],
insert(k("station"), upds[k("station")],
insert(k("pos"), upds[k("pos")], M)))) .

ceq getPostState(id, Troll , id, lock , actionoutput , M) = M’
if M’ := insert(k("charging"), nd(1), M) .

ceq getPostState(id, Troll , id, unlock , actionoutput , M) = M’
if M’ := insert(k("charging"), nd(0), M) .

eq getPostState(id , Troll , id , end , actionoutput , M) = swapGoal ?(M) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(1), M) if M[k("
read")] == nd(0) .

ceq internalUpdate(id , Troll , M) = insert(k("read"), nd(0), M) if M[k("
read")] == nd(1) .

eq computeActions(id , Troll , M) = getSoftActions(id , M ,
trollActions(id , M)) .

ceq getSoftActions(id , M , a names) = getValue(id, M, a) +
getSoftActions(id , M ,names) if a =/= void .

eq getSoftActions(id , M , void) = null .

endfm

We change SCENARIO to now use the new TROLL-ALT module. We search if both
trolls can run out of energy:

search [1] in SCENARIO -STATION : init =>* [sys::Sys
[bat (0) : Battery | k("bat") |-> nd(0) ; true ; null]

180

Chapter 5 Robot-Battery-Field system

[bat (1) : Battery | k("bat") |-> nd(0) ; true ; null]] .

No solution.
states: 280 rewrites: 1155509 in 189ms cpu (189ms real) (6091179

rewrites/second)

The new strategy for the robot changes the overall behavior of the composition, and
makes the liveness property true.

Self-sorting property The property Psorted is a reachability property on the state
of the grid, that states that eventually, all robots are in the sorted position. In Maude,
given a system of 3 robots, we express such reachability property with the following
search command:

search [1] init =>*
[sys::Sys [field : Field |

k((0;0)) |-> d(id(0)),
k((1;0)) |-> d(id(1)),
k((2;0)) |-> d(id(2)) ; true ; null]] .

The initial configuration of the grid is such that robot 0 is on location (2; 0), robot 1 on
(1; 0), and robot 2 on (0; 0). Since the grid is of size 3 by 2, robots need to coordinate
to reach the desired sorted configuration.

Table 5.2 features three variations on the sorting problem. The first system is
composed of robots whose move are free on the grid. The second adds one battery for
each component, whose energy level decreases for each robot move. The third system
adds a swap protocol for every pair of two robots. The last system adds protocol and
batteries to compose with the robots.

We record, for each of those systems, whether the sorted configuration is reachable
(Psorted), and if all three robots can run out of energy (Pbat). Observe that the reach-
ability query returns a solution for both system: the one with and without protocols.
However, the time to reach the first solution increases as the number of states and
transition increases (adding the protocol components). We leave as future work some
optimizations to improve on our results.

181

Robot-Battery-Field system Chapter 5

Table 5.2: Evaluation of different systems for the Psorted and Pbat behavioral properties,
where st. stands for states, rw for rewrites. Note that the Pbat property is not evaluated
when the system does not contain battery components.

System Psorted Pbat

▷◁
0≤i≤2

Ri ▷◁ G 12.103 st., 25s, 31.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G 12.103 st., 25s, 31.106 rw true

▷◁
0≤i≤2

Ri ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 44s, 80.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 71s, 83.106 rw false

182

Chapter 6

Conclusion

Modeling and analysis of cyber-physical systems are still challenging [57]. One reason
is that cyber-physical systems involve many different parts (cyber or physical), of
different nature (discrete or continuous), and in constant interaction via sensing and
actuating. This thesis proposes a semantic framework in which both the behavior of
cyber-physical systems and their interaction can be expressed. Below, we give a short
summary of the contribution for each chapter, and provide a list of points for future
work.

The component based model introduced in Chapter 2 proposes to explicitly model
interactions in cyber-physical systems with parametrized algebraic operators, partic-
ularly for composition and decomposition. In this model, components are terms and
interactions are captured by user defined operations on components. Properties of
operators, such as associativity, commutativity, and idempotency, are expressed in
terms of the properties of their interaction signatures. For instance, an interaction
constraint that is symmetric leads to a commutative product on component. To ease
the specification of interaction constraints, a co-inductive construction of compos-
ability relations is proposed to specify constraints on Timed-Event Streams given a
constraint on observations. Similar algebraic properties for a co-inductively defined
operator on components are deduced given properties of the underlying constraints
on observations. The model not only provides ways to compose components, but also
allows, under certain conditions, for decomposition of components. An operator of
division is introduced that selects, out of a set of candidates, a component that in
product with the divisor give back the dividend. Several such division operators are
possible as each involves a way of choosing a component within a set of candidates.

183

Chapter 6

In the case where a metric is used to order components, the division operator can be
defined as taking the best (defined by the metric) of the candidate components. The
cost of coordination is discussed as such a possible metric.

We instantiate our component model in Chapter 3 on a set of cyber components
whose behaviors are independent of time. We give an algebraic semantics of the Reo
coordination language, where ports are components and circuits are product of ports
under some interaction signatures. The result adds some strength to existing work
on Reo, by providing a suitable algebraic framework to show equivalence of connector
behaviors in Reo. Within the class of order sensitive components, we consider two
meaningful classes: transactional components that have observations with more than
one event, and linear components that have observations with at most one event. The
former class of components is adequate to represent behavior at a design/specifica-
tion level where events within the same set are declared to be atomic; the latter class
of components represents sequential machines that can generate only one event at a
time. We study translation of (product of) transactional components into a (product
of) linear components, which leads to the definition of correctness criteria for imple-
mentation of high-level transactional specifications of concurrent systems into their
behaviorally equivalent implementations on (sets of interacting) sequential machines.
Two instances of correct and compositional translations are defined.

Finally, we study temporal properties of some order sensitive components. Particu-
larly, we consider temporal properties of Reo connectors, specifically to verify data flow
properties of composite connectors. For that purpose, we give a translation to generate
an executable in Promela from a logical specification of Reo connectors, using which
the model checker Spin verifies properties written in Linear Temporal Logic (LTL).
To ease the specification of LTL properties, we introduce a domain specific language
for data flow properties, e.g., the temporal property that specifies the simultaneous or
exclusive firing of a port.

In order to make our component model executable, in Chapter 4 we present several
steps that lead to an operational yet compositional specification of components. First,
we operationally define the specification of a component behavior, i.e., a set of Timed-
Event Stream, as the semantics of a labeled transition system called a TES transition
system. We introduce several operators on TES transition systems, and show them
to semantically correspond to their component products: the behavior of a syntactic
product of TES transition systems is the behavior of the semantic product of their
corresponding two components.

While a TES transition system is not necessarily finitely representable (its sets

184

Chapter 6

of states and transitions may be infinite), it serves as a first step towards a finite
executable model, and gives some results as to when the product of two TES transition
systems can be done lazily at runtime without deadlock.

In order to have a finite executable specification of components, we introduce agents
as rewriting theories for component behaviors. An agent specifies finitely, with a set
of equations and a rewrite rule, a TES transition system, which ultimately denotes a
component. A system of agents runs each agent concurrently, while ensuring that each
agent performs composable actions. As a result, the behavior of a system of agents is
shown to coincide with the product (under the composability relation imposed by the
system) of the behaviors of each agent.

Finally, to reduce the large state space involved in cyber-physical systems, we
introduce a framework to extend agents with preferences. The use of preferences
allows for ordering actions that an agent can perform. Thus, actions that are possible
but less preferred can be discarded and therefore reduce the state space. Notions of
compromise emerge out of the composition of agents with different preferences for
their actions.

To demonstrate the utility of our component model, in Chapter 5 we give an im-
plementation of the rewriting framework in Maude. We define agent as a module that
implements a set of operations for interacting with other agents. A system module
runs all agents concurrently, and ensures composability of their actions. To demon-
strate the usefulness of this framework, we present three main applications. First, we
specify ports and connectors in Reo as agents that run concurrently. As a result, a Reo
circuit can be composed at runtime, and several search queries can be performed to
extract properties of protocols. Next, we consider a system consisting of a controller,
a valve, and N water reservoirs. The controller needs to move the valve in order to
keep the water level in the reservoirs within some thresholds. We contrast the safety
property of the controller not seeing any invalid states with the possibility for the
controller to miss some states. In the latter case, the safety property may still be valid
from the controller’s perspective, while it effectively violates the property as the water
level of the reservoirs may unobservably go out of bound. Finally, we analyse a system
consisting of a set of robots, each equipped with a battery, running on a shared field.
More specifically, we consider liveness and safety properties, such as the possibility
for a robot to patrol through a set of points without running out of battery, or to
coordinate with another robot to swap position and get in a sorted position.

A set of challenges emerge from the work presented in the chapters of this thesis
that we consider as relevant future work. Hereafter is a list of few points, organized

185

Chapter 6

per chapters, that are considered relevant for future investigation.

1.1 Metrics for division.
Our algebra of components introduces a family of operators to compose components

into larger systems. Dually, the operation of decomposition is equally important to
extract some structure from a composite component, and eventually update some
of its parts. For that matter, the operation of division is defined to return one of
the possible quotients. As the division operator assumes a choice function over a
set of components, several metrics can be used to partially order components, and
therefore act as the choice function for the operator of division. One of such metric,
discussed in Section 2.2, is the cost of coordination that orders components with respect
to the amount of interaction required during composition. As future work, other
measures may be considered, as well as their corresponding implication on system’s
decomposition.

1.2 Laws of distribution.
The algebraic properties of operators in the algebra of components in Section 2.1

are mostly studied independently (i.e., commutativity, associativity, idempotency).
However, the law of distribution of one product over another product would allow for
additional reasoning on component expression by showing equivalence between dif-
ferent types of interaction. More precisely, being able to factorize or distribute an
operation may practically reflect the distinction between the cases where a group of
components needs global as opposed to local interaction. Considering for instance
the operation of division, the distribution of division over multiplication may, in some
cases, allow for modular decomposition. Moreover, on the level of components, distri-
bution of a component over a product could capture the fact that such component is
independent of the interaction constraints imposed by that product. As a result, such
distributive law can reveal mechanisms to split a protocol component into subparts,
that get distributed onto the smallest set of components that needs their coordination.

2.1 Extension of Reo with cyber-physical connectors.
In Reo, the main primitive of interaction is a port, which serves as the junction

through which data flow between a component and its environment. By definition, a
port in Reo observes the transport of a finite amount of data within a time interval,
which precludes the possibility of continuous physical data transfer. Instead, a physical
phenomenon must be encapsulated into a component that samples the physics at a fix
rate. Only then can a port transport the value, at such rate, to other Reo components.
Note that the choice of the sampling rate for the component encapsulating a physical

186

Chapter 6

process will influence the overall protocol, as other components may not be able to
see some relevant data, or take action accordingly. Alternatively, introducing a cyber-
physical variant of a port, with sampling as a parameter, leads to the possibility of
having cyber and physical components in Reo. Instead of the standard semantics
where the firing of a port occurs if and only if a data of a port is present, a cyber-
physical port is equipped with a sampler that can only observe a datum within a time
period. Similarly, the composition operator can be extended such that ports tune their
sampling rates for transmission. As a result, such cyber-physical extension of Reo may
enable compositional construction to find the highest frequency (i.e., smallest amount
of observations) for samplers while not missing any important event.

2.2 Temporal properties as Reo connectors.
The definition of components allows both executable specifications and properties

to be denoted as such. As a result, the structure of our algebra can be exploited
to specify temporal properties compositionally. More precisely, as already hinted in
Section 3.3, the use of graphical and compositional primitives of Reo can serve as a
starting point for languages to construct temporal properties. As a result of such mod-
ular specification, ways of distributing the property over components, or decomposing
the property into a set of simpler properties may facilitate modular verification.

3.1 Real time extension of agents.
The current specification of agents uses rewriting logic without real time. Agents

run in steps, and may interact with other agents within each step. The time that
lapses between two steps is a constant that is fixed at the beginning of the execution.
Alternatively, our framework can be extended with real time variables, that account
for the variable time that lapses between two steps. As well, making the time of a step
explicit while having a modular specification of each agent may facilitate certain meta
level reasoning, such as finding the largest sampling rate such that resulting system
satisfies, for instance, a safety property.

3.2 Fusion of agents.
Each composition operator of our algebra captures a constraint of interaction be-

tween two components. Practically, such an interaction constraint may represent
actual physical constraints (e.g., spatial, time, hardware) that enforce the practical
observations to be related. For instance, two components tied with each other by a
synchronous product may be realised by two processes running on the same machine.
Following the result of Section 4.2, agents denote components, and the product of
agents denotes the product of their corresponding components. In some cases, it can

187

Chapter 6

be useful to define a new agent out of the product of two agents, such that the newly
formed agent denotes the same behavior as the product component. For instance,
forming such new agent may reduce the search space, or improve some runtime mea-
sures, while preserving the system behavior. Practically, such transformation acts
on agent theories, and needs to generate a new agent specification out of two agent
specifications.

3.3 Symbolic execution under a class of environments.
The rewriting framework developed in Section 4.2 currently assumes that the col-

lection of agents forming a system is closed. A closed system is such that every agent’s
action is matched with that of its corresponding recipient agent in the set. While this
condition holds for many practical examples, allowing for open system analysis is still
desirable. In an open system, one can analyse the behavior of an agent under a class
of environments, and conclude which of a set of potential interacting agents complies
or conflicts with some system properties.

3.4 Implementability of division.
Our algebra of components introduces several operations on behaviors that are

shown to be useful for design and modular analysis. One such operation is the opera-
tion of division, which enables reasoning about alternative compositions that preserve
the same behavior. The operation of division does not yet enjoy the same operational
specification as the operation of composition. Studying how to implement the opera-
tion of division within our agent framework may enable various important reasoning
schemes for updates and fault diagnosis. Practically, the operator of division may re-
veal some independences within an agent, and factor such agents into two independent
parts. The two specifications may be run in parallel, speeding up the overall execution
time.

188

Bibliography

[1] https://scm.cwi.nl/FM/cp-agent.

[2] Bowen Alpern and Fred B. Schneider. “Defining liveness”. In: Information Pro-
cessing Letters 21.4 (1985), pages 181–185. issn: 0020-0190. doi: https://doi.
org/10.1016/0020-0190(85)90056-0.

[3] F. Arbab and J. J. M. M. Rutten. “A Coinductive Calculus of Component Con-
nectors”. In: Recent Trends in Algebraic Development Techniques. Edited by Mar-
tin Wirsing, Dirk Pattinson, and Rolf Hennicker. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pages 34–55. isbn: 978-3-540-40020-2.

[4] Farhad Arbab. “Proper Protocol”. In: Theory and Practice of Formal Methods
- Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday.
Edited by Erika Ábrahám, Marcello M. Bonsangue, and Einar Broch Johnsen.
Volume 9660. Lecture Notes in Computer Science. Springer, 2016, pages 65–87.
doi: 10.1007/978-3-319-30734-3_7.

[5] Farhad Arbab. “Puff, The Magic Protocol”. In: Formal Modeling: Actors, Open
Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Oc-
casion of Her 70th Birthday. Edited by Gul Agha, Olivier Danvy, and José
Meseguer. Volume 7000. Lecture Notes in Computer Science. Springer, 2011,
pages 169–206. doi: 10.1007/978-3-642-24933-4_9.

[6] Farhad Arbab. “Reo: A Channel-based Coordination Model for Component Com-
position”. In: Mathematical. Structures in Comp. Sci. 14.3 (June 2004), pages 329–
366. issn: 0960-1295. doi: 10.1017/S0960129504004153.

[7] Farhad Arbab, Christel Baier, Frank de Boer, and Jan Rutten. “Models and
temporal logical specifications for timed component connectors”. In: Software &
Systems Modeling 6.1 (Mar. 2007), pages 59–82. issn: 1619-1374. doi: 10.1007/
s10270-006-0009-9.

189

https://scm.cwi.nl/FM/cp-agent
https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-319-30734-3_7
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1007/s10270-006-0009-9
https://doi.org/10.1007/s10270-006-0009-9

Bibliography Chapter 6

[8] Farhad Arbab and Jan J. M. M. Rutten. “A Coinductive Calculus of Component
Connectors”. In: Recent Trends in Algebraic Development Techniques, 16th In-
ternational Workshop, WADT 2002, Frauenchiemsee, Germany, September 24-
27, 2002, Revised Selected Papers. Edited by Martin Wirsing, Dirk Pattinson,
and Rolf Hennicker. Volume 2755. Lecture Notes in Computer Science. Springer,
2002, pages 34–55. doi: 10.1007/978-3-540-40020-2_2.

[9] Farhad Arbab and Francesco Santini. “Preference and Similarity-Based Behav-
ioral Discovery of Services”. In: Web Services and Formal Methods - 9th In-
ternational Workshop, WS-FM 2012, Tallinn, Estonia, September 6-7, 2012,
Revised Selected Papers. Edited by Maurice H. ter Beek and Niels Lohmann.
Volume 7843. Lecture Notes in Computer Science. Springer, 2012, pages 118–
133. doi: 10.1007/978-3-642-38230-7_8.

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things: A
survey”. In: Comput. Networks 54.15 (2010), pages 2787–2805. doi: 10.1016/j.
comnet.2010.05.010.

[11] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process algebra : equational theo-
ries of communicating processes. English. Cambridge tracts in theoretical com-
puter science. United Kingdom: Cambridge University Press, 2010. isbn: 978-0-
521-82049-3. doi: 10.1017/CBO9781139195003.

[12] Jos C. M. Baeten and Cornelis A. Middelburg. “Real time process algebra
with time-dependent conditions”. In: J. Log. Algebraic Methods Program. 48.1-2
(2001), pages 1–38. doi: 10.1016/S1567-8326(01)00004-2.

[13] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz. “A
Uniform Framework for Modeling and Verifying Components and Connectors”.
In: Coordination Models and Languages. Edited by John Field and Vasco T.
Vasconcelos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pages 247–
267. isbn: 978-3-642-02053-7.

[14] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz. “For-
mal Verification for Components and Connectors”. In: Formal Methods for Com-
ponents and Objects. Edited by Frank S. de Boer, Marcello M. Bonsangue, and
Eric Madelaine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pages 82–
101. isbn: 978-3-642-04167-9.

190

https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-642-38230-7_8
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1016/S1567-8326(01)00004-2

Chapter 6 Bibliography

[15] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppelholz, and Wolf-
gang Leister. “Design and Verification of Systems with Exogenous Coordination
Using Vereofy”. In: Leveraging Applications of Formal Methods, Verification, and
Validation. Edited by Tiziana Margaria and Bernhard Steffen. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pages 97–111. isbn: 978-3-642-16561-0.

[16] Christel Baier, Joachim Klein, and Sascha Klüppelholz. “Synthesis of Reo Con-
nectors for Strategies and Controllers”. In: Fundamenta Informaticae 130 (Jan.
2014), pages 1–20. doi: 10.3233/FI-2014-980.

[17] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. “Modeling com-
ponent connectors in Reo by constraint automata”. In: Science of Computer
Programming 61.2 (2006). Second International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA’03), pages 75–
113. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2005.10.008.

[18] L. S. Barbosa. “Components as coalgebras”. PhD thesis. University of Minho,
2001.

[19] Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli. “A Survey on Digital
Twin: Definitions, Characteristics, Applications, and Design Implications”. In:
IEEE Access 7 (2019), pages 167653–167671. doi: 10.1109/ACCESS.2019.

2953499.

[20] J.A. Bergstra and J.W. Klop. “Process algebra for synchronous communication”.
In: Information and Control 60.1 (1984), pages 109–137. issn: 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(84)80025-X.

[21] Gérard Berry. “The foundations of Esterel”. In: Proof, Language, and Interaction,
Essays in Honour of Robin Milner. Edited by Gordon D. Plotkin, Colin Stirling,
and Mads Tofte. The MIT Press, 2000, pages 425–454. isbn: 978-0-262-16188-6.

[22] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. “Semiring-based con-
straint satisfaction and optimization”. In: J. ACM 44.2 (1997), pages 201–236.
doi: 10.1145/256303.256306.

[23] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. “A Theory of Com-
municating Sequential Processes”. In: J. ACM 31.3 (1984), pages 560–599. doi:
10.1145/828.833.

191

https://doi.org/10.3233/FI-2014-980
https://doi.org/https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1145/256303.256306
https://doi.org/10.1145/828.833

Bibliography Chapter 6

[24] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. “Lustre: A
Declarative Language for Programming Synchronous Systems”. In: Conference
Record of the Fourteenth Annual ACM Symposium on Principles of Program-
ming Languages, Munich, Germany, January 21-23, 1987. ACM Press, 1987,
pages 178–188. doi: 10.1145/41625.41641.

[25] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event
Systems, Second Edition. Springer, 2008. isbn: 978-0-387-33332-8. doi: 10.1007/
978-0-387-68612-7.

[26] D. M. Chapiro. “Globally-asynchronous locally-synchronous systems”. PhD the-
sis. Stanford Univ., CA., Oct. 1984.

[27] Taolue Chen, Chris Chilton, Bengt Jonsson, and Marta Z. Kwiatkowska. “A
Compositional Specification Theory for Component Behaviours”. In: Program-
ming Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. Edited by Helmut Seidl. Volume 7211. Lecture Notes in Computer
Science. Springer, 2012, pages 148–168. doi: 10.1007/978-3-642-28869-2_8.

[28] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: J. Comput.
Secur. 18.6 (Sept. 2010), pages 1157–1210. issn: 0926-227X.

[29] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems
in Rewriting Logic. Volume 4350. Lecture Notes in Computer Science. Springer,
2007. isbn: 978-3-540-71940-3. doi: 10.1007/978-3-540-71999-1.

[30] Yuri Gil Dantas, Vivek Nigam, and Carolyn L. Talcott. “A Formal Security As-
sessment Framework for Cooperative Adaptive Cruise Control”. In: IEEE Vehic-
ular Networking Conference. IEEE, 2020, pages 1–8. doi: 10.1109/VNC51378.
2020.9318334.

[31] K. Dokter and F. Arbab. “Treo: Textual Syntax for Reo Connectors”. In: ArXiv
e-prints (June 2018).

[32] Kasper Dokter and Farhad Arbab. “Rule-Based Form for Stream Constraints”.
In: Coordination Models and Languages - 20th IFIP WG 6.1 International Con-
ference, COORDINATION 2018, Held as Part of the 13th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2018, Madrid,

192

https://doi.org/10.1145/41625.41641
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/978-3-642-28869-2_8
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/VNC51378.2020.9318334
https://doi.org/10.1109/VNC51378.2020.9318334

Chapter 6 Bibliography

Spain, June 18-21, 2018. Proceedings. Edited by Giovanna Di Marzo Serugendo
and Michele Loreti. Volume 10852. Lecture Notes in Computer Science. Springer,
2018, pages 142–161. doi: 10.1007/978-3-319-92408-3_6.

[33] Jannik Dreier, Cristian Ene, Pascal Lafourcade, and Yassine Lakhnech. “On the
existence and decidability of unique decompositions of processes in the applied
π-calculus”. In: Theor. Comput. Sci. 612 (2016), pages 102–125. doi: 10.1016/
j.tcs.2015.11.033.

[34] José Fiadeiro, Antònia Lopes, Benoît Delahaye, and Axel Legay. “Dynamic net-
works of heterogeneous timed machines”. In: Mathematical Structures in Com-
puter Science 28.6 (2018), pages 800–855. doi: 10.1017/S0960129517000135.

[35] Marie-Paule Flé. “Serialization of Concurrent Programs”. In: J. Comput. Syst.
Sci. 38.3 (1989), pages 474–493. doi: 10.1016/0022-0000(89)90012-3.

[36] Wan J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2000. isbn: 978-3-540-66579-3. doi: 10.
1007/978-3-662-04293-9.

[37] Paul Gastin. “Infinite Traces”. In: Semantics of Systems of Concurrent Processes,
LITP Spring School on Theoretical Computer Science, La Roche Posay, France,
April 23-27, 1990, Proceedings. Edited by Irène Guessarian. Volume 469. Lecture
Notes in Computer Science. Springer, 1990, pages 277–308. isbn: 3-540-53479-2.
doi: 10.1007/3-540-53479-2_12.

[38] Sergey Goncharov, Renato Neves, and José Proença. “Implementing Hybrid Se-
mantics: From Functional to Imperative”. In: Theoretical Aspects of Computing
- ICTAC 2020 - 17th International Colloquium, Macau, China, November 30 -
December 4, 2020, Proceedings. Edited by Violet Ka I Pun, Volker Stolz, and
Adenilso Simão. Volume 12545. Lecture Notes in Computer Science. Springer,
2020, pages 262–282. doi: 10.1007/978-3-030-64276-1_14.

[39] Heiko Hamann. Swarm Robotics - A Formal Approach. Springer, 2018. isbn:
978-3-319-74526-8. doi: 10.1007/978-3-319-74528-2.

[40] Thomas A. Henzinger. “The Theory of Hybrid Automata”. In: Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pages 278–292.
doi: 10.1109/LICS.1996.561342.

[41] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
First. Addison-Wesley Professional, 2003. isbn: 0-321-22862-6.

193

https://doi.org/10.1007/978-3-319-92408-3_6
https://doi.org/10.1016/j.tcs.2015.11.033
https://doi.org/10.1016/j.tcs.2015.11.033
https://doi.org/10.1017/S0960129517000135
https://doi.org/10.1016/0022-0000(89)90012-3
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/3-540-53479-2_12
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1109/LICS.1996.561342

Bibliography Chapter 6

[42] Mohammad Izadi, Ali Movaghar, and Farhad Arbab. “Model Checking of Com-
ponent Connectors”. In: 31st Annual International Computer Software and Ap-
plications Conference, COMPSAC 2007, Beijing, China, July 24-27, 2007. Vol-
ume 1. IEEE Computer Society, 2007, pages 673–675. doi: 10.1109/COMPSAC.
2007.153.

[43] Ryszard Janicki, Jetty Kleijn, Maciej Koutny, and Lukasz Mikulski. “Step traces”.
In: Acta Informatica 53.1 (2016), pages 35–65. doi: 10.1007/s00236- 015-
0244-z.

[44] Theo M. V. Janssen and Thomas Ede Zimmermann. “Montague Semantics”. In:
The Stanford Encyclopedia of Philosophy. Edited by Edward N. Zalta. Summer
2021. Metaphysics Research Lab, Stanford University, 2021.

[45] S.-S. T. Q. Jongmans. “Automata-theoretic protocol programming”. PhD thesis.
Leiden University, 2016.

[46] Sung-Shik T. Q. Jongmans. “Automata-theoretic protocol programming”. In:
2016.

[47] Sung-Shik T. Q. Jongmans and Farhad Arbab. “Overview of Thirty Semantic
Formalisms for Reo”. In: Sci. Ann. Comput. Sci. 22.1 (2012), pages 201–251.
doi: 10.7561/SACS.2012.1.201.

[48] Sung-Shik T. Q. Jongmans and Farhad Arbab. “Overview of Thirty Semantic
Formalisms for Reo”. In: Sci. Ann. Comp. Sci. 22 (2012), pages 201–251.

[49] Tobias Kappé, Farhad Arbab, and Carolyn L. Talcott. “A Compositional Frame-
work for Preference-Aware Agents”. In: Proceedings of the The First Workshop
on Verification and Validation of Cyber-Physical Systems, V2CPS@IFM 2016,
Reykjavık, Iceland, June 4-5, 2016. Edited by Mehdi Kargahi and Ashutosh
Trivedi. Volume 232. EPTCS. 2016, pages 21–35. doi: 10.4204/EPTCS.232.6.

[50] Tobias Kappé, Benjamin Lion, Farhad Arbab, and Carolyn L. Talcott. “Soft
component automata: Composition, compilation, logic, and verification”. In: Sci.
Comput. Program. 183 (2019). doi: 10.1016/j.scico.2019.08.001.

[51] S. Kemper. “SAT-based verification for timed component connectors”. In: Sci-
ence of Computer Programming 77.7 (2012). (1) FOCLASA’09 (2) FSEN’09,
pages 779–798. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.
2011.02.003.

194

https://doi.org/10.1109/COMPSAC.2007.153
https://doi.org/10.1109/COMPSAC.2007.153
https://doi.org/10.1007/s00236-015-0244-z
https://doi.org/10.1007/s00236-015-0244-z
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.4204/EPTCS.232.6
https://doi.org/10.1016/j.scico.2019.08.001
https://doi.org/https://doi.org/10.1016/j.scico.2011.02.003
https://doi.org/https://doi.org/10.1016/j.scico.2011.02.003

Chapter 6 Bibliography

[52] Stephanie Kemper. “Compositional Construction of Real-Time Dataflow Net-
works”. In: Coordination Models and Languages. Edited by Dave Clarke and Gul
Agha. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pages 92–106. isbn:
978-3-642-13414-2.

[53] Minyoung Kim, Ian A. Mason, and Carolyn Talcott. Soft Agents Diagnosis.
https://github.com/SRI-CSL/SoftAgentsDiagnosis. 2022.

[54] S. C. Kleene. “Representation of Events in Nerve Nets and Finite Automata”.
In: Automata Studies. (AM-34), Volume 34. Edited by C. E. Shannon and J.
McCarthy. Princeton: Princeton University Press, 2016, pages 3–42. doi: doi:
10.1515/9781400882618-002.

[55] Natallia Kokash, Christian Krause, and Erik P. de Vink. “Verification of Context-
Dependent Channel-Based Service Models”. In: Formal Methods for Components
and Objects. Edited by Frank S. de Boer, Marcello M. Bonsangue, Stefan Haller-
stede, and Michael Leuschel. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pages 21–40. isbn: 978-3-642-17071-3.

[56] Stéphane Lafortune. “Discrete Event Systems: Modeling, Observation, and Con-
trol”. In: Annual Review of Control, Robotics, and Autonomous Systems 2.1
(2019), pages 141–159. doi: 10.1146/annurev-control-053018-023659.

[57] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: 11th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2008), 5-7 May 2008, Orlando, Florida, USA. IEEE Computer Society,
2008, pages 363–369. doi: 10.1109/ISORC.2008.25.

[58] Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Ölveczky. “Hy-
bridSynchAADL: Modeling and Formal Analysis of Virtually Synchronous CPSs
in AADL”. In: Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I. Edited by
Alexandra Silva and K. Rustan M. Leino. Volume 12759. Lecture Notes in Com-
puter Science. Springer, 2021, pages 491–504. doi: 10.1007/978-3-030-81685-
8_23.

[59] Benjamin Lion. Cyber-physical agent framework in Maude. May 2022. doi: 10.
5281/zenodo.6592275.

[60] Benjamin Lion. Treo to Promela. Dec. 2022. doi: 10.5281/zenodo.7393621.

195

https://github.com/SRI-CSL/SoftAgentsDiagnosis
https://doi.org/doi:10.1515/9781400882618-002
https://doi.org/doi:10.1515/9781400882618-002
https://doi.org/10.1146/annurev-control-053018-023659
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.5281/zenodo.6592275
https://doi.org/10.5281/zenodo.6592275
https://doi.org/10.5281/zenodo.7393621

Bibliography Chapter 6

[61] Benjamin Lion, Farhad Arbab, and Carolyn Talcott. Runtime Composition Of
Systems of Interacting Cyber-Physical Components. 2022. doi: 10.48550/ARXIV.
2205.13008.

[62] Benjamin Lion, Farhad Arbab, and Carolyn L. Talcott. “A Semantic Model for
Interacting Cyber-Physical Systems”. In: Proceedings 14th Interaction and Con-
currency Experience, ICE 2021, Online, 18th June 2021. Edited by Julien Lange,
Anastasia Mavridou, Larisa Safina, and Alceste Scalas. Volume 347. EPTCS.
2021, pages 77–95. doi: 10.4204/EPTCS.347.5.

[63] Benjamin Lion, Samir Chouali, and Farhad Arbab. “Compiling Protocols to
Promela and Verifying their LTL Properties”. In: Proceedings of MODELS 2018
Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools,
GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo,
AMMoRe, PAINS co-located with ACM/IEEE 21st International Conference on
Model Driven Engineering Languages and Systems (MODELS 2018), Copen-
hagen, Denmark, October, 14, 2018. 2018, pages 31–39.

[64] Benjamin Lion and Kasper Dokter. The Reo Coordination Language. https:
//github.com/ReoLanguage/Reo. 2019.

[65] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. “Hybrid I/O au-
tomata”. In: Inf. Comput. 185.1 (2003), pages 105–157. doi: 10.1016/S0890-
5401(03)00067-1.

[66] Ian A. Mason, Vivek Nigam, Carolyn L. Talcott, and Alisson Vasconcelos De
Brito. “A Framework for Analyzing Adaptive Autonomous Aerial Vehicles”. In:
Software Engineering and Formal Methods Collocated Workshops: DataMod, FAACS,
MSE, CoSim-CPS, and FOCLASA, Revised Selected Papers. Edited by Antonio
Cerone and Marco Roveri. Volume 10729. Lecture Notes in Computer Science.
Springer, 2017, pages 406–422. doi: 10.1007/978-3-319-74781-1_28.

[67] Antoni W. Mazurkiewicz. “Introduction to Trace Theory”. In: The Book of
Traces. 1995.

[68] José Meseguer. “Conditioned Rewriting Logic as a United Model of Concur-
rency”. In: Theor. Comput. Sci. 96.1 (1992), pages 73–155. doi: 10.1016/0304-
3975(92)90182-F.

[69] José Meseguer. “Twenty years of rewriting logic”. In: J. Log. Algebraic Methods
Program. 81.7-8 (2012), pages 721–781. doi: 10.1016/j.jlap.2012.06.003.

196

https://doi.org/10.48550/ARXIV.2205.13008
https://doi.org/10.48550/ARXIV.2205.13008
https://doi.org/10.4204/EPTCS.347.5
https://github.com/ReoLanguage/Reo
https://github.com/ReoLanguage/Reo
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1007/978-3-319-74781-1_28
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/j.jlap.2012.06.003

Chapter 6 Bibliography

[70] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989. isbn: 978-0-13-115007-2.

[71] Robin Milner and Faron Moller. “Unique Decomposition of Processes”. In: Theor.
Comput. Sci. 107.2 (1993), pages 357–363. doi: 10.1016/0304-3975(93)90176-
T.

[72] L. Moormann, J.M. van de Mortel-Fronczak, W.J. Fokkink, P. Maessen, and
J.E. Rooda. “Supervisory control synthesis for large-scale systems with isomor-
phisms”. In: Control Engineering Practice 115 (2021), page 104902. issn: 0967-
0661. doi: https://doi.org/10.1016/j.conengprac.2021.104902.

[73] Maurice Nivat. “Behaviors of Processes and Synchronized Systems of Processes”.
In: Theoretical Foundations of Programming Methodology: Lecture Notes of an
International Summer School, directed by F. L. Bauer, E. W. Dijkstra and C. A.
R. Hoare. Edited by Manfred Broy and Gunther Schmidt. Dordrecht: Springer
Netherlands, 1982, pages 473–551. isbn: 978-94-009-7893-5. doi: 10.1007/978-
94-009-7893-5_14.

[74] Peter Csaba Ölveczky. “Real-Time Maude and Its Applications”. In: Rewriting
Logic and Its Applications - 10th International Workshop, WRLA 2014, Held as
a Satellite Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected
Papers. Edited by Santiago Escobar. Volume 8663. Lecture Notes in Computer
Science. Springer, 2014, pages 42–79. doi: 10.1007/978-3-319-12904-4_3.

[75] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.
isbn: 978-3-319-63587-3. doi: 10.1007/978-3-319-63588-0.

[76] Bahman Pourvatan, Marjan Sirjani, Farhad Arbab, and Marcello M. Bonsangue.
“Decomposition of Constraint Automata”. In: Formal Aspects of Component
Software -7th International Workshop, FACS 2010, Guimarães, Portugal, Oc-
tober 14-16, 2010, Revised Selected Papers. Edited by Luís Soares Barbosa and
Markus Lumpe. Volume 6921. Lecture Notes in Computer Science. Springer,
2010, pages 237–258. doi: 10.1007/978-3-642-27269-1_14.

[77] José Proença. “Synchronous coordination of distributed components”. PhD the-
sis. Leiden University, 2011.

[78] José Proença, Dave Clarke, Erik P. de Vink, and Farhad Arbab. “Dreams:
a framework for distributed synchronous coordination”. In: Proceedings of the
ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March

197

https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1007/978-94-009-7893-5_14
https://doi.org/10.1007/978-94-009-7893-5_14
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-27269-1_14

Bibliography Chapter 6

26-30, 2012. Edited by Sascha Ossowski and Paola Lecca. ACM, 2012, pages 1510–
1515. isbn: 978-1-4503-0857-1. doi: 10.1145/2245276.2232017.

[79] Jean-François Raskin. “An Introduction to Hybrid Automata”. In: Handbook of
Networked and Embedded Control Systems. Edited by Dimitrios Hristu-Varsakelis
and William S. Levine. Birkhäuser, 2005, pages 491–518.

[80] A. W. Roscoe. The Theory and Practice of Concurrency. USA: Prentice Hall
PTR, 1997. isbn: 0136744095.

[81] Meera Sampath, Stéphane Lafortune, and Demosthenis Teneketzis. “Active di-
agnosis of discrete-event systems”. In: IEEE Trans. Autom. Control. 43.7 (1998),
pages 908–929. doi: 10.1109/9.701089.

[82] Harald Schöning. “Industry 4.0”. In: it Inf. Technol. 60.3 (2018), pages 121–123.
doi: 10.1515/itit-2018-0015.

[83] Zoltán Gendler Szabó. “Compositionality”. In: The Stanford Encyclopedia of Phi-
losophy. Edited by Edward N. Zalta and Uri Nodelman. Fall 2022. Metaphysics
Research Lab, Stanford University, 2022.

[84] Carolyn Talcott, Farhad Arbab, and Maneesh Yadav. “Soft Agents: Exploring
Soft Constraints To Model Robust Adaptive Distributed Cyber-Physical Agent
Systems”. In: Software, Services, and Systems - Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of Programming
and Software Engineering. Volume 8950. LNCS. Springer, 2015.

[85] Carolyn L. Talcott, Farhad Arbab, and Maneesh Yadav. “Soft Agents: Exploring
Soft Constraints to Model Robust Adaptive Distributed Cyber-Physical Agent
Systems”. In: Software, Services, and Systems - Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of Programming
and Software Engineering. Edited by Rocco De Nicola and Rolf Hennicker. Vol-
ume 8950. Lecture Notes in Computer Science. Springer, 2015, pages 273–290.
doi: 10.1007/978-3-319-15545-6_18.

[86] The Axiom of Choice. https : / / plato . stanford . edu / entries / axiom -

choice/. 2022.

[87] S. Tripakis, C. Stergiou, C. Shaver, and Edward A. Lee. “A modular formal
semantics for Ptolemy†”. In: Mathematical Structures in Computer Science 23
(2013), pages 834–881.

198

https://doi.org/10.1145/2245276.2232017
https://doi.org/10.1109/9.701089
https://doi.org/10.1515/itit-2018-0015
https://doi.org/10.1007/978-3-319-15545-6_18
https://plato.stanford.edu/entries/axiom-choice/
https://plato.stanford.edu/entries/axiom-choice/

Chapter 6 Bibliography

[88] Stavros Tripakis and Costas Courcoubetis. “Extending promela and spin for real
time”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Edited by Tiziana Margaria and Bernhard Steffen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pages 329–348. isbn: 978-3-540-49874-2.

[89] Norbert Wiener. Cybernetics: or Control and Communication in the Animal and
the Machine. 2nd edition. Cambridge, MA: MIT Press, 1948.

[90] Glynn Winskel. “Synchronization Trees”. In: Theor. Comput. Sci. 34 (1984),
pages 33–82. doi: 10.1016/0304-3975(84)90112-9.

[91] Martin Wirsing, Grit Denker, Carolyn L. Talcott, Andy Poggio, and Linda
Briesemeister. “A Rewriting Logic Framework for Soft Constraints”. In: Electr.
Notes Theor. Comput. Sci. 176.4 (2007), pages 181–197. doi: 10.1016/j.entcs.
2007.06.015.

[92] Xiong Xu, Jean-Pierre Talpin, Shuling Wang, Bohua Zhan, and Naijun Zhan.
“Semantics Foundation for Cyber-Physical Systems Using Higher-Order UTP”.
In: ACM Trans. Softw. Eng. Methodol. (Feb. 2022). Just Accepted. issn: 1049-
331X. doi: 10.1145/3517192.

199

https://doi.org/10.1016/0304-3975(84)90112-9
https://doi.org/10.1016/j.entcs.2007.06.015
https://doi.org/10.1016/j.entcs.2007.06.015
https://doi.org/10.1145/3517192

200

Summary

Modeling and analysis of cyber-physical systems are still challenging. One reason
is that cyber-physical systems involve many different parts (cyber or physical), of
different nature (discrete or continuous), and in constant interaction via sensing and
actuating. For instance, consider a group of robots, each running a program that
takes decision based on the sequence of sensor readings. The sensors that equip a robot
return the current position of the robot and the position of any adjacent obstacle. The
interaction occurring between each robot in the group cannot be derived solely from
the specification of individual robots. If the field on which the robots roam changes
its property, the same group of robots might sense different values, and therefore take
different actions. Also, the time at which a robot acts and senses will affect the decision
of each controller and will change the resulting collective behavior.

This thesis proposes a compositional approach to the design and programming of
interacting cyber-physical components. Chapter 2 presents an algebra for interaction
of cyber-physical components, where interactions in cyber-physical systems are ex-
pressed as parametrized algebraic operators. The model not only provides ways to
compose components, but also allows, under certain conditions, for decomposition of
components.

We instantiate our component model in Chapter 3 with a set of cyber components
whose behaviors are independent of time. Specifically, we give an algebraic semantics
of the Reo coordination language. The result adds some strength to existing work on
Reo, by providing a suitable algebraic framework to show equivalence of connector
behaviors in Reo. We consider temporal properties of Reo connectors, specifically to
verify data flow properties of composite connectors.

In order to make our component model executable, in Chapter 4 we present sev-
eral steps that lead to an operational yet compositional specification of components.
First, we operationally define the specification of a component behavior using labeled

201

transition systems called a TES transition systems. We show that the behavior of a
syntactic product of TES transition systems is the behavior of the semantic product of
their corresponding two components. In order to have a finite executable specification
of components, we give a specification of agents as rewrite theories, and show their
compositional semantics.

To demonstrate the utility of our component model, in Chapter 5 we give an im-
plementation of the rewriting framework in Maude. We define agent as a module that
implements a set of operations for interacting with other agents. A system module runs
all agents concurrently, and ensures composability of their actions. We present three
main applications. First, we apply our model to the Reo coordination language, and
give a simulation and verification framework. Next, we consider a system consisting of
a controller, a valve, and N water reservoirs. The controller needs to move the valve
in order to keep the water level in the reservoirs within some threshold. We contrast
the safety property of the controller not seeing any invalid states with the possibility
for the controller to miss some states. Finally, we analyse a system consisting of a set
of robots, each equipped with a battery, running on a shared field. More specifically,
we consider liveness and safety properties, such as the possibility for a robot to patrol
through a set of points without running out of battery, or to coordinate with another
robot to swap position and get in a sorted position.

202

Samenvatting

Het modelleren en analyseren van cyberfysieke systemen is nog steeds een grote uitdag-
ing. Één van de redenen is dat cyberfysieke systemen veel verschillende (cyber of
fysieke) onderdelen bevatten, elk van verschillende (discrete of continue) aard, die
constant met elkaar interacteren door het doen van waarnemingen en het ondernemen
van acties. Beschouw, bijvoorbeeld, een groep van robots, die elk een programma
uitvoeren dat gedrag vertoont op basis van een rijtje sensorwaarnemingen: de sensors
van de robot geven de huidige locatie van de robot aan en de locatie van nabijgele-
gen obstakels. De interacties die plaatsvinden tussen de robots in de groep kunnen
niet worden afgeleid op basis van alleen de specificaties van de individuele robots.
Als immers het gebied waarop de robots plaatsnemen van vorm verandert dan kun-
nen de robots andere waarden waarnemen met hun sensoren, en daardoor ook andere
gedragingen vertonen. Daarnaast is de tijd waarop een robot actie onderneemt of
waarnemingen doet van belang bij het nemen van besluiten door controllers, en dat
kan ook invloed hebben op het collectieve gedrag.

Dit proefschrift stelt een compositionele aanpak voor in het ontwerp en de pro-
grammering van interacterende componenten van cyberfysieke systemen. Hoofdstuk
2 beschrijft een algebra voor interactie van cyberfysieke componenten, waarbij inter-
acties in cyberfysieke systemen worden beschreven als parametrische algebraïsche op-
eratoren. Het model beschrijft niet alleen hoe componenten kunnen worden samenge-
bracht in een compositie, maar ook hoe, in voorkomende gevallen, de decompositie
van componenten in onderdelen werkt.

We instantiëren ons componentmodel in Hoofdstuk 3 met een verzameling aan cy-
bercomponenten wiens gedragingen onafhankelijk zijn van tijd, of, specifieker gezegd,
we geven hierin een algebraïsche semantiek van de Reo coördinatietaal. Het resul-
taat kan worden gezien als een toevoeging aan eerder werk aan Reo, doordat we een
geschikt algebraïsch raamwerk geven wat gebruikt kan worden voor het aantonen van

203

equivalentie van gedragingen van Reo-connectoren. We beschouwen ook de temporele
eigenschappen van Reo-connectoren, in het bijzonder om data-flow eigenschappen van
composities van connectoren te verifiëren.

Om ons componentmodel executeerbaar te maken wordt in Hoofdstuk 4 een op-
erationele semantiek stapsgewijs beschreven die leidt tot compositionele specificaties
van componenten. Allereerst geven we een operationele definitie van gedragingen van
componenten, waar we gebruik maken van gelabelde transitiesystemen, ook wel TES-
transitiesystemen genoemd. We laten zien dat het gedrag van het syntactisch product
van twee TES-transistiesystemen correspondeert met het gedrag van het semantisch
product van de twee bijbehorende componenten. Met het doel om eindige uitvoer-
bare specificaties van componenten te kunnen geven, laten we zien hoe specificaties
ook als agenten in een herschrijftheorie kunnen worden beschreven en geven we een
bijbehorende compositionele semantiek.

Om het nut van ons componentmodel aan te tonen wordt in Hoofdstuk 5 een
implementatie van de eerdergenoemde herschrijftheorie geïmplementeerd in het her-
schrijfsysteem Maude. Daarin definiëren we agenten als modules die een verzameling
van operaties implementeren voor het interacteren met andere agenten. Een systeem-
module voert alle agenten in parallel uit en zorgt ervoor dat de acties die agenten
ondernemen worden samengebracht. We geven drie belangrijke toepassingen. In de
eerste toepassing passen we ons model toe op de Reo coördinatietaal en geven we
een raamwerk voor simulatie en verificatie. In de twee toepassing beschouwen we een
systeem dat bestaat uit een controller, een kraan op watertoevoer, en N waterreser-
voirs. De controller moet de kraan aansturen om te zorgen dat het waterniveau van
alle reservoirs binnen de perken blijft. We contrasteren de veiligheidseigenschappen
van deze controller, die zich niet in een ongeldige toestanden mag bevinden, met de
mogelijkheid van de controller om sommige toestanden over het hoofd te zien. Ten
slotte, in de derde toepassing analyseren we een systeem dat bestaat uit een verzamel-
ing van robots, elk uitgerust met een batterij, die rondrennen op een gebied. Preciezer
gezegd, we bestuderen veiligheidseigenschappen en levendigheidseigenschappen, zoals
in de mogelijkheid dat een robot patrouilleert over een route zonder dat de batterij
leeg raakt, of in de coördinatie met andere robots om van plek te wisselen en zichzelf
zo te sorteren.

204

Curriculum Vitae

2011-2013: Classe Préparatoires, Toulouse, France

2013-2015: Engineering School, IMT Atlantiques, Brest, France

2015-2016: Master Advanced Communication Networks, École Polytechniques
& Télécom ParisTech, Paris, France

2017-2022: PhD student, Centrum voor Wiskunde & Informatica, Amsterdam,
the Netherlands.

2022-now: Post-Doctoral researcher, INRIA, Rennes, France

205

	Acknowledgements
	Introduction
	Context
	Structure
	Running example

	A semantic model for interacting cyber-physical systems
	Algebra of Components
	Notations
	Components
	Composition
	A co-inductive construction
	Properties of TESs
	Components of the running example

	Division and conformance
	Divisibility and quotients
	Conformance
	Applications of Division
	Discussion

	Linearization
	Dependency and concurrency
	Transactional and linear components
	Problem statement: compositional linearization
	Valid linearizations: lock step and interleaving

	Related work and future work

	Reo as an algebra of order sensitive components
	Reo
	Logical specification of connector components
	Connector as guarded commands: an intermediate form
	Behavior of connectors

	Verification of temporal properties on connectors
	From synchronous protocol to asynchronous implementation
	Case Study

	Related work and future work

	Operational specifications of components
	Components as transition systems
	TES transition systems.
	Compatibility of TES transition systems

	Components as rewrite systems
	System of agents and compositional semantics

	DSL for agents with preferences
	Related work and future work

	Experimental framework
	Maude framework for cyber-physical agents
	Concurrent Reo
	Reo primitives as agents
	Execution and analysis

	Valve-controller
	N-reservoir problem
	Execution and analysis

	Robot-Battery-Field system
	Execution and analysis

	Conclusion
	Summary
	Samenvatting
	Curriculum Vitae

