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ABSTRACT: Machine learning is increasingly applied in proteomics and
metabolomics to predict molecular structure, function, and physicochemical
properties, including behavior in chromatography, ion mobility, and tandem
mass spectrometry. These must be described in sufficient detail to apply or
evaluate the performance of trained models. Here we look at and interpret
the recently published and general DOME (Data, Optimization, Model,
Evaluation) recommendations for conducting and reporting on machine
learning in the specific context of proteomics and metabolomics.

The recently published DOME (Data, Optimization,
Model, Evaluation) recommendations1,2 for reporting

supervised machine learning (ML) research in biology aim to
guide journal editors, reviewers, authors, and readers in
understanding and comparing supervised ML methods and
results in the biological sciences. The recommendations are
designed to be general and therefore applicable to supervised
ML in any biological discipline. This means that specific
interpretations are needed to provide specific recommenda-
tions, examples, and guidance in fields where ML is seeing
rapidly increased application. Proteomics and metabolomics
are two such fields (Figure 1). Here we briefly summarize our
interpretation of the DOME recommendations for the use and
reporting of ML in proteomics and metabolomics with a few
specific examples. Because they require different consider-
ations, we will not cover clinical applications of ML. These are
instead being addressed by other reporting standards and
checklists such as MINIMAR,3 CONSORT-AI,4 SPIRIT-AI,5

and TRIPOD-ML.6

ML efforts in proteomics and metabolomics share many
challenges and considerations because the data are derived
from similar methods of chromatography, ion mobility, and
mass spectrometry. Although no meta-analysis of ML method
descriptions in either domain has been published, there is no
reason to assume the results would be much better than those
in other domains. It was recently reported for metagenomics,
for example, that only 12% of published papers use a proper
test set for area under the receiver operating curve (AUC)
reporting.7

In interpreting the DOME recommendations, we follow the
same structure as that in the DOME publication, with
acronymized broad topics Data, Optimization, Model, and
Evaluation, including general things to “be on the lookout for”
(or “BOLOs” for those familiar with law enforcement jargon)
and specific recommendations for the application and
description of ML in proteomics or metabolomics (Table 1).
A few of the recommendations may be elaborated upon. For

example, how do we know if the complexity of the modeled
molecular class is sufficiently represented? For small molecules,
this can be checked by comparing the coverage of compound
classes according to ClassyFire13 or ChEBI14 with that of the
intended application of the model. For peptides, a typical
BOLO would be a model claimed to be applicable to all
peptides trained exclusively on tryptic peptides. What
constitutes a sufficient representation generally depends on
both the model and its intended application.
How does one evaluate the presence of false-positives in the

training data, for example, falsely identified tandem mass
spectra or incorrectly assigned peaks? On one hand, such
erroneously assigned spectra may confuse the model and
should therefore be minimized. On the other hand, we should

Received: November 25, 2021
Published: February 4, 2022

Letterpubs.acs.org/jpr

© 2022 The Authors. Published by
American Chemical Society

1204
https://doi.org/10.1021/acs.jproteome.1c00900

J. Proteome Res. 2022, 21, 1204−1207

D
ow

nl
oa

de
d 

vi
a 

L
E

ID
E

N
 U

N
IV

 o
n 

Ju
ne

 8
, 2

02
3 

at
 1

1:
52

:0
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Magnus+Palmblad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Bo%CC%88cker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sven+Degroeve"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oliver+Kohlbacher"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lukas+Ka%CC%88ll"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+Stafford+Noble"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+Stafford+Noble"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mathias+Wilhelm"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jproteome.1c00900&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00900?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00900?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00900?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00900?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jprobs/21/4?ref=pdf
https://pubs.acs.org/toc/jprobs/21/4?ref=pdf
https://pubs.acs.org/toc/jprobs/21/4?ref=pdf
https://pubs.acs.org/toc/jprobs/21/4?ref=pdf
pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00900?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org/jpr?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


Figure 1. Number of publications on machine learning in proteomics or metabolomics has increased rapidly in the last 5 years, as revealed by a
Web of Science literature search. The results also suggest an early ML hype in these domains around 2009−2011 and a shallow but noticeable
“trough of disillusionment” from 2012 to 2013. The DOME query was the same as in the original paper [TS = “machine learning” AND ALL =
(“biolog*” OR “medicine” OR “genom*” OR “prote*” OR “cell*” OR “post translational” OR “metabolic” OR “clinical”)]. The modified proteomics or
metabolomics query was TS = “machine learning” AND ALL = (“biolog*” OR “medicine” OR “genom*” OR “prote*” OR “cell*” OR “post translational”
OR “metabolic” OR “clinical”) AND ALL = (“proteome” OR “proteomics” OR “metabolome” OR “metabolomics” OR “metabonome” OR
“metabonomics”). The searches were done on 2022-01-22.

Table 1. Specific Recommendations under the Broad Topics and BOLOs as in the DOME Recommendations1

broad topic be on the lookout for specific recommendations

Data Data size and quality Training data sufficiently represents the complexity of the modeled molecular class (e.g., tryptic peptides,
lipids, all metabolites).

Be clear if data used for training and testing are acquired on similar instruments (e.g., with the same mass
analyzer) using similar settings (e.g., collision energy) or on a range of instruments or conditions.

Beware of chimeric spectra and their possibly contaminating effects.

Appropriate partitioning,
dependence between
train and test data

Training and test data should be disjoint on not only the spectrum level but also the molecular structure
(e.g., peptide) level. Stereoisomers fragment highly similarly, and hence stereoisomers must not be
present in the training and test sets to avoid biased statistics. Structural similarity or homology between
training and test data should be kept to a minimum or should be controlled to mimic realistic test
conditions.8

No access to data Training and test data are available in a public repository9 (e.g., the ProteomeXchange consortium10).

If filtering or partitioning spectra in the same data sets, provide lists of Universal Spectrum Identifiers11

defining data used to train and test the model when available.a

Other Beware of redundancy in training or test data (e.g., multiple spectra of the same or similar molecular
structures).

Beware of false-positives and -negatives in training data and possible bias when selecting strict thresholds
for compound identification.

Beware of events affecting instrument performance over time, as those can artificially decrease or increase
the apparent performance on an independent test set (e.g., instrument maintenance and calibration
events).

Optimization Overfitting, underfitting,
and illegal parameter
tuning

Compare with experimental variability. Is the claimed performance better than the expected experimental
variability (e.g., in peak intensities or retention times)?

Report any hyperparameter tuning (e.g., of deep neural network architectures).

Imprecise parameters and
protocols given

Define the optimization target (e.g., spectrum-, peptide-, or protein-level statistics).

Provide the metric for comparing chromatograms or spectra (e.g., spectral angle, cosine score, or dot
product) and a detailed description on how to apply it (e.g., if specific peaks for cosine score calculation
were discarded, tolerances used for matching peaks, or strategies to resolve ambiguities).

Model Unclear if black box
(opaque) or interpretable
(transparent) model

If the model is interpretable, describe how the trained model can be interpreted and what can be learned
from it.

No access to resulting
source code and trained
models

Specify which model, software, and version were used.

Make documented source code publicly available.

Execution time is
impractical

Execution time for the training or application of a model should not be a bottleneck in its intended
pipeline. As a rule of thumb, applying the model should not take longer than data acquisition. Execution
time is even more critical in real-time applications such as continuous retention time alignment.
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avoid overly stringent criteria that exclude compounds that
intrinsically produce low-scoring compound−spectrum matches
through poor or unusual fragmentation penalized in the initial
scoring of the match. Ideally, practitioners should both provide a
good estimate of the false-positive rate in the training data and
show that the expected number of false-positives or mislabeled
test data is not detrimental to the model.
As a final comment and following the recommendation to

compare complex models with simple ones, we suggest that if a
simple model reaches almost the same performance as a complex
one, then one should always prefer the simple model, as it almost
certainly has better generalizability (Occam’s razor).
Echoing suggestions by Walsh et al.15 and Jones16 and the

efforts of the ELIXIR Machine Learning Focus Group17 and the
AIMe registry,18 we believe the domain-specific interpretation of
these guidelines will be helpful to authors, reviewers, and editors
in preparing and evaluating manuscripts describing work
involving ML in proteomics and metabolomics in this and
other journals. These recommendations should not be inter-
preted as absolute requirements or minimum information
about an ML application in these domains but rather as a
helpful first checklist. As ML is seeing rapidly expanding
application in proteomics and metabolomics, best practices
and reporting standards will have to be revisited in coming
years. It is our hope that these recommendations will serve as a
good starting point for such discussions.
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