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Abstract: Background: Presurgical treatment with an α-adrenergic receptor blocker is recommended
to antagonize the catecholamine-induced α-adrenergic receptor mediated vasoconstriction in patients
with pheochromocytoma or sympathetic paraganglioma (PPGL). There is, however, a considerable
interindividual variation in the dose-response relationship regarding the magnitude of blood pressure
reduction or the occurrence of side effects. We hypothesized that genetically determined differences
in α-adrenergic receptor activity contribute to this variability in dose-response relationship. Methods:
Thirty-one single-nucleotide polymorphisms (SNPs) of the α1A, α1B, α1D adrenoreceptor (ADRA1A,
ADRA1B, ADRA1D) and α2A, α2B adrenoreceptor (ADRA2A, ADRA2B) genes were genotyped in a
group of 116 participants of the PRESCRIPT study. Haplotypes were constructed after determining
linkage disequilibrium blocks. Results: The ADRA1B SNP rs10515807 and the ADRA2A SNPs
rs553668/rs521674 were associated with higher dosages of α-adrenergic receptor blocker (p < 0.05)
and with a higher occurrence of side effects (rs10515807) (p = 0.005). Similar associations were found
for haplotype block 6, which is predominantly defined by rs10515807. Conclusions: This study
suggests that genetic variability of α-adrenergic receptor genes might be associated with the clinically
observed variation in beneficial and adverse therapeutic drug responses to α-adrenergic receptor
blockers. Further studies in larger cohorts are needed to confirm our observations.

Biomedicines 2022, 10, 896. https://doi.org/10.3390/biomedicines10040896 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10040896
https://doi.org/10.3390/biomedicines10040896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-5047-4077
https://orcid.org/0000-0001-5399-676X
https://orcid.org/0000-0001-7385-9359
https://doi.org/10.3390/biomedicines10040896
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10040896?type=check_update&version=1


Biomedicines 2022, 10, 896 2 of 15

Keywords: pheochromocytoma; paraganglioma; single nucleotide polymorphism; adrenergic receptor;
alpha-adrenergic receptor blocker; pharmacogenetics; personalized medicine

1. Introduction

Pheochromocytomas and sympathetic paragangliomas (PPGL) are rare neuroen-
docrine tumors localized in adrenal medulla and extra-adrenal sympathetic paraganglia,
respectively [1]. The production and secretion of excessive amounts of catecholamines
are cardinal features of PPGL and responsible for the associated increased cardiovascular
risk [2–5]. Surgical resection of a PPGL is the only option for a cure, but it is known to be a
high-risk procedure due the uncontrolled release of catecholamines [6]. In order to mini-
mize the hyperadrenergic hemodynamic effects and prevent cardiovascular complications,
pretreatment with an α-adrenergic receptor blocker is usually recommended to antagonize
the catecholamine-induced α-adrenergic receptor mediated vasoconstriction [7].

The magnitude of blood pressure reduction or the development of side effects in
response to a certain dose of an α-adrenergic receptor blocker displays a considerable
interindividual variability. Moreover, serious intra-operative hemodynamic instability
might still occur despite presurgical treatment with high doses of an α-adrenergic recep-
tor blocker [8]. Variables explaining these interindividual differences in dose-response
relationship are largely unknown at the moment.

It is conceivable that genetically determined differences in α-adrenergic receptor activ-
ity contribute to the observed variation in the dose–response relationship. α-Adrenergic
receptors (α-ARs) are G protein-coupled receptors (GPCRs) and can be classified accord-
ing to their pharmacological specificity as alpha 1 (α1-AR) or alpha 2 (α2-AR) adrenergic
receptors. Each comprises three subtypes encoded by genes on different chromosomes,
denoted as α1a-AR (ADRA1A; chromosome 8), α1b-AR (ADRA1B; chromosome 5), α1d-AR
(ADRA1D; chromosome 20), α2a-AR (ADRA2A; chromosome 10), α2b-AR (ADRA2B; chro-
mosome 2), and α2c-AR (ADRA2C; chromosome 4). These subtypes are expressed in a wide
range of tissues, including the central nervous system (predominantly ADRA1C, ADRA2A,
ADRA2C), blood vessels (predominantly ADRA1, ADRA2B), and the heart (predominantly
ADRA1C) [9–14]. The α-ARs in blood vessels play an important role in blood pressure
regulation, as their activation results in vasoconstriction with increase of the peripheral
vascular resistance [13,15,16]. Besides tissue-specific differences in distribution and expres-
sion levels of AR subtypes, naturally-occurring human single-nucleotide polymorphisms
(SNPs) of the α-ARs can also contribute to the variability in α-AR-mediated physiological
responses [17,18]. For instance, certain α-AR genes and polymorphisms have been associ-
ated with high blood pressure and increased cardiovascular risk [19–22]. The influence of
genetic variants of the α1-AR or α2-AR on the response to an α-adrenergic receptor blocker
or hemodynamic parameters, however, is largely unknown (Supplementary Table S1) [23].

We hypothesized that the response to the α-adrenergic receptor blockers in patients
with PPGL is modulated by certain SNPs of the α-ARs gene. To this end, we evaluated
in patients scheduled for PPGL resection the relationship between polymorphisms of the
α-AR and the degree of perioperative hemodynamic control as well as the occurrence of
side effects.

2. Materials and Methods
2.1. Study Population and Design

Study subjects participated in the PRESCRIPT study, a randomized controlled trial
comparing presurgical treatment with either phenoxybenzamine, a nonselective and non-
competitive α1- and α2- adrenergic receptor blocker, or doxazosin, a selective and com-
petitive α1-adrenergic receptor blocker, in patients with PPGL (ClinicalTrials, number
NCT01379898). The study was approved by the institutional review board of the University
Medical Center Groningen, University Groningen, The Netherlands, in compliance with
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the Dutch Medical Research Involving Human Subjects Act and the Declaration of Helsinki.
Written informed consent was provided by all participants. This study has been described
in detail elsewhere [8]. In brief, the study population consisted of patients aged 18 years
or older with non-metastatic PPGL. Past medical history of cardiovascular disease was
recorded. All patients were randomized to either pretreatment with phenoxybenzamine or
doxazosin. Pretreatment was started 2–3 weeks before surgery using blood pressure guided
dose titration (Supplementary Table S2). Target values were blood pressure <130/80 mmHg
in the supine position and a systolic blood pressure between 90–110 mmHg in the upright
position. A calcium channel blocker was added when these targets were not reached despite
maximum dosage of the α-adrenergic receptor blocker. A β-adrenergic receptor blocker was
added in the case of heart rates >80 bpm or >100 bpm in the supine and upright position,
respectively. In addition, a high-salt diet was advised and an infusion of 0.9% saline was
administered within 24 h prior to surgery. Resection was postponed if the supine blood
pressure was >160/100 mmHg on the day before surgery. The majority of patients were
operated by minimal invasive surgical techniques (Table 1). Hemodynamic management
during and after surgery was performed using a standardized operating procedure. Blood
pressure and heart rate during surgery were monitored by continuous intra-arterial mea-
surement. Intraoperative hemodynamic targets were systolic blood pressure <160 mmHg,
mean arterial pressure (MAP) >60 mmHg, and heart rate <100 bpm. After surgery, patients
were monitored at the post-anesthesia or intensive care unit.

Table 1. Baseline characteristics of the study population.

All Subjects (n = 116)

Demographics
Male sex—number (%) 51 (44)
Ethnicity

European (%) 108 (93)
Asian (%) 3 (3)
African (%) 2 (1.5)
Latin American (%) 2 (1.5)
Arab (%) 1 (1)

Age (years) 55 ± 15.1
BMI (kg/m2) 25.9 ± 4.8
Serum creatinine (µmol/L) 76.1 ± 21.7

Tumor characteristics
Pheochromocytoma—number (%) 109 (94.0)
sPGL—number (%) 7 (6.0)
Germline mutations—number (%) 23 (19.8)
Tumor size (mm) 53.63 (17.50–160.00)
Total plasma catecholamines (n < 5.28 nmol/L) 6.01 (3.53–17.26)

Surgical approach
Laparoscopy—number (%) 82 (70.7)
Laparotomy—number (%) 20 (17.2)
Posterior retroperitoneoscopic—number (%) 14 (12.1)

Pretreatment
Doxazosin/Phenoxybenzamine—number (%) 59 (51)/57 (49)
4/10 mg 3 (2.6)
8/20 mg 5 (4.3)
12/40 mg 5 (4.3)
16/60 mg 9 (7.8)
20/70 mg 2 (1.7)
24/80 mg 6 (5.2)
28/90 mg 1 (0.9)
32/100 mg 19 (16.4)
36/110 mg 2 (1.7)
40/120 mg 14 (12.1)
48/140 mg 50 (43.1)
Total number of side effects 2.0 (1.0–3.0)

Presurgical hemodynamics
Supine SBP preoperative (mmHg) * 127.7 ± 19.1
Upright SBP preoperative (mmHg) * 118.2 ± 19.3
Heart rate baseline (bpm) 73.0 ± 12.0

Intraoperative hemodynamics
Hemodynamic instability score 43.5 (30.3–59.0)
Time outside BP range (%) 10.0 (4.3–19.8)

Data are presented as number of patients (%), as mean with standard deviation, or as median with interquartile
range. * With α-adrenergic receptor blockade. Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood
pressure; sPGL, sympathetic paraganglioma; bpm, beats per minute; BMI, body mass index.
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2.2. Data Recording and Analysis

All data on blood pressure, heart rate, and medication was extracted from the elec-
tronic patient data monitoring system starting at first visit and ending at discharge from the
post-anesthesia care unit or intensive care unit. Treatment follow-up was performed using
a strict and standardized pretreatment protocol. During the whole pretreatment period,
blood pressure and heart rate were measured twice daily with a certified automated elec-
tronic blood pressure monitor just before ingestion of the study drugs. Each measurement
consisted of a single recording after 5 min of supine rest and subsequently after 3 min in
upright posture. Side-effects of α-adrenergic receptor blockers were self-recorded by using
a structured patient diary. Furthermore, both duration and amplitude of hemodynamic
variables outside the target range were assessed, and cumulative dosage of vasoactive
medication was calculated. The degree of intraoperative hemodynamic instability was
assessed by using the hemodynamic instability score [24], which consists of three compo-
nents: hemodynamic variables (i.e., blood pressure and heart rate), cumulative dosage
of vasoactive medication, and volume therapy. A higher hemodynamic instability score
represents a higher degree of overall hemodynamic instability.

2.3. DNA Collection and Genetic Analyses

DNA was extracted and samples were diluted with a Tris-EDTA (TE) buffer to a
volume of 50 µL with a minimum concentration of 10 ng/m. Samples were stored in a
half-deep well plate (Thermo Scientific, Waltham, MA, USA, 0.8 mL 96 well storage plate,
art.nr. AB-0765) protected with a removable heat seal and kept at −80 ◦C until analysis.

All DNA samples were analyzed at the Department of Clinical Chemistry at the
Erasmus Medical Center (Rotterdam, the Netherlands). All known single nucleotide poly-
morphisms (SNPs) of α-AR 1A (ADRA1A), 1B (ADRA1B), 1D (ADRA1D), 2A (ADRA2A),
2B (ADRA2B), and 2C (ADRA2C) were selected for analysis, resulting in a final list of
31 SNPs (Supplementary Table S1). For rs1048101, rs1383914, rs13278849 (ADRA1A),
rs1800544, and rs1800545 (ADRA2A), genotyping was performed on the Life Technologies
Taqman® 7500 system (Applied Biosystems, Life Technologies Europe BV, Bleiswijk, The
Netherlands). For the other 26 SNPs (see Supplementary Table S1), the Quantstudio 12K
Flex (Thermo Fisher) was used. With this method, two probes, one for the wildtype and
one for the variant sequence, are coupled with FAM or VIC reporter dyes, of which the
fluorescent signal is measured at, respectively, 530 nm and 554 nm to distinguish between
wild-type, heterozygote, or homozygote. Genotyping was carried out according to the
manufacturer’s instructions.

2.4. Statistical Analyses

Continuous variables are described by their mean and standard deviation, when they
are normally distributed, or by median and interquartile range, if their distributions were
skewed. For categorical variables, counts and frequencies are presented.

Firstly, the four outcome variables—dose of α-adrenergic receptor blockers, total
number of side effects, hemodynamic instability score, and the cumulative time outside
the blood pressure target range during surgery—were analyzed univariably with the
potential confounders age, sex, body mass index, systolic blood pressure at baseline in
supine position, total number of antihypertensive comedications at baseline, tumor size,
plasma levels of catecholamines, serum creatinine, and randomization arm of the trial
(i.e., treatment with either doxazosin or phenoxybenzamine). The latter two outcomes
were analyzed using linear regression, for which the cumulative time outside the blood
pressure target range during surgery was square root transformed to render a normal
distribution. The outcomes dose of α-adrenergic receptor blockers and total number of
side effects were categorical variables, and therefore ordinal regression was used for their
association analysis. The various incremental dosages of each α-adrenergic receptor blocker
were arbitrarily transformed into three incremental dosage steps (i.e., low, consisting of
doxazosin 0–8 mg or phenoxybenzamine 0–20 mg; moderate, consisting of doxasozin
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12–28 mg or phenoxybenzamine 40–90 mg; and high, consisting of doxasozin 32–48 mg
or phenoxybenzamine 100–140 mg) to meet with the assumption of proportional odds
(Supplementary Table S2). Total number of side effects were categorized in 0, 1, 2, 3, or
≥4 side effects. Covariables with a p-value below 0.2 were considered as confounders and
included in subsequent analyses.

Secondly, the SNPs were associated with the outcomes using an additive model,
which is that the effect of the homozygotes was modeled as being double the effect of
heterozygotes, while adjusting for confounders. SNPs were excluded from the analyses if
the quality of the SNP was regarded insufficient, based on the following criteria: a call rate
(i.e., number of samples with a non-missing genotype) <80%, a minor allele frequency < 5%,
or a deviation of the Hardy-Weinberg equilibrium (p-value < 0.05/31). The call rate per
sample was calculated to determine the quality of the samples. For the SNP analyses, none
of the samples was excluded.

In addition, haplotype analyses were performed. Haplotype blocks were constructed
using the confidence intervals method in Haploview [25,26]. Within each block, haplotypes
were constructed using the haplo.em() function from the haplo.stats package [27]. Only
samples with a call rate ≥0.5 were included in this analysis (n = 110). The most likely
haplotype combination was assigned to each individual, provided that the haplotype
probability was >0.7. Otherwise, it was set to missing. Next, for each haplotype that
occurred at least 10 times in the dataset, an association analysis was carried out using an
additive model adjusting for covariables.

Two sensitivity analyses were performed: one using only the samples with a call rate
>50% and one using only the European samples, to test if the quality of the samples or the
ethnicity of the samples influenced the results.

Because we tested 24 SNPs, a multiple testing correction for statistical significance was
required. Because SNPs were not all independent, linkage disequilibrium was calculated.
SNPs in at least moderate linkage disequilibrium (r2 > 0.5) were considered to be dependent.
This yielded 14 independent tests, so the p-value threshold for statistical significance was
0.05/14 = 0.0036. All analyses were performed using R version 3.6 [28].

3. Results

Of the 134 patients who had participated in the PRESCRIPT trial, samples of 16 patients
were not retrievable from the biobank. In addition, samples of two patients contained too
little DNA for genotyping. Thus, SNP analysis was performed in 116 patients with either a
pheochromocytoma (94%) or a sympathetic paraganglioma (6%). Baseline characteristics
are shown in Table 1. Mean age of the study population was 55 ± 15.1 years, and the
majority (93%) were of European ancestry. Side-effects of α-adrenergic receptor blockers
were recorded as dizziness (n = 64), dry mouth (n = 12), dry eyes (n = 3), nasal congestion
(n = 30), fatigue (n = 30), headache (n = 20), palpitations (n = 16), abdominal distension
(n = 23), obstipation (n = 5), dyspnea (n = 7), urinary incontinence (n = 4), or peripheral
edema (n = 8).

Age, female sex, body mass index, systolic blood pressure at baseline in supine posi-
tion, and total number of antihypertensive comedications were all nominally significantly
associated with the dose of α-adrenergic receptor blockers (Table 2). No significant effect
on the dose was observed for tumor size, plasma levels of total catecholamines, serum
creatinine, or randomization arm. Only body mass index was significantly associated with
the number of side effects in the multivariable model. The randomization arm of the trial
was significantly associated with the hemodynamic instability score in the multivariable
model, while body mass index, baseline systolic blood pressure in supine position, and
plasma levels of total catecholamines showed a suggestive association. Total plasma levels
of catecholamines were the only variable demonstrating a significant association with the
cumulative intraoperative time outside the blood pressure target range.
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Table 2. Associations of covariates with dose of α-adrenergic receptor blockers, number of side
effects, hemodynamic instability score, and cumulative intraoperative time outside the blood pressure
target range.

Outcome Covariate Beta SE Univariate
p-Value

Multivariate
p-Value

Dose of
α-adrenergic
receptor blockers

Age 0.046 0.013 0.00092 0.094
Sex (female) −0.77 0.38 0.044 0.025
BMI 0.19 0.053 0.00059 0.011
SBP baseline (supine) 0.047 0.0106 0.000029 0.0013
Number of
antihypertensive
comedication day -1
(baseline)

0.92 0.28 0.0014 0.069

Serum creatinine 0.0057 0.0086 0.50 n.a.
Tumor size −0.00024 0.00063 0.70 n.a.
Catecholamines 0.0087 0.0109 0.43 n.a.
Randomization −0.089 0.36 0.80 n.a.

Number of side
effects

Age −0.003 0.011 0.78 n.a.
Sex (female) 0.33 0.33 0.32 n.a.
BMI −0.066 0.034 0.06 0.045
SBP baseline (supine) 0.004 0.007 0.55 n.a.
Number of
antihypertensive
comedication day -1
(baseline)

0.39 0.22 0.07 0.16

Serum creatinine −0.003 0.008 0.74 n.a.
Tumor size −0.0003 0.0006 0.61 n.a.
Catecholamines 0.012 0.009 0.17 0.38
Randomization −0.43 0.33 0.20 0.29
Dose of α-adrenergic
receptor blockers 0.15 0.24 0.53 n.a.

Hemodynamic
instability score

Age 0.23 0.14 0.11 0.22
Sex (female) −1.39 4.32 0.75 n.a.
BMI −0.69 0.45 0.13 0.15
SBP baseline (supine) 0.21 0.09 0.018 0.11
Number of
antihypertensive
comedication day -1
(baseline)

1.76 2.70 0.52 n.a.

Serum creatinine −0.10 0.10 0.30 n.a.
Tumor size 0.011 0.007 0.11 0.40
Catecholamines 0.36 0.12 0.0032 0.15
Randomization 9.63 4.20 0.024 0.026

Cumulative
intraoperative
time outside the
blood pressure
target range

Age −0.013 0.62 0.25 n.a.
Sex (female) −0.28 0.33 0.40 n.a.
BMI −0.038 0.035 0.28 n.a.
SBP baseline (supine) 0.003 0.007 0.67 n.a.
Number of
antihypertensive
comedication day -1
(baseline)

0.23 0.21 0.28 n.a.

Serum creatinine −0.0027 0.0076 0.73 n.a.
Tumor size 0.00054 0.00056 0.34 n.a.
Catecholamines 0.02 0.0093 0.031 0.031
Randomization 0.063 4.12 0.33 n.a.

SE, standard error; n.a., not applicable.

Quality control of the SNP genotyping showed that three SNPs had an insufficient call
rate. For four SNPs, the minor allele frequency was below 5%. All SNPs were in Hardy–
Weinberg equilibrium, resulting in 24 SNPs left for analysis. The SNP association analyses
adjusted for confounders revealed three SNPs that were nominally significantly associated
with dose of α-adrenergic receptor blockers (rs10515807 (p = 0.047), rs521674 (p = 0.014), and
rs553668 (p = 0.024)) (Table 3). The G alleles of rs10515807 in the ADRA1B gene and rs553668
in the ADRA2A gene both caused a three times lower risk of being in a higher dosage step
than allele A (odds ratio (OR) = 0.31 and 0.26, respectively), while the T allele of rs521674
in ADRA2A was associated with a three times higher risk than the A allele (OR = 3.30). The
associations remained unchanged when low quality samples were excluded but became
less significant when only European samples were analyzed (Supplementary Table S3).
SNP rs10515807 was also nominally associated with the number of side effects in the
multivariable model (p = 0.005), and this association did not change when low-quality
or non-European samples were removed (Table 3; Supplementary Table S4). However,
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none of these significances survived the multiple testing correction. No SNP associations
were observed for the hemodynamic instability score or the cumulative intraoperative time
outside the blood pressure target range in the cohort as a whole (Table 3).

Table 3. Association of the SNPs with dose of α-adrenergic receptor blockers, number of side effects,
the hemodynamic instability score, and the cumulative intraoperative time outside the blood pressure
target range.

Dose of α-Adrenergic
Receptor Blockers Number of Side Effects Hemodynamic Instability

Score

Cumulative Intraoperative
Time Outside the Blood
Pressure Target Range

SNP-Allele AF OR (SE) p-Value OR (SE) p-Value Beta (SE) p-Value Beta (SE) p-Value

rs2229169-T 0.328 0.73 (0.37) 0.39 0.98 (0.27) 0.95 0.36 (3.31) 0.91 −0.04 (0.26) 0.87
rs2030373-C 0.778 0.52 (0.46) 0.17 0.58 (0.37) 0.14 0.58 (4.17) 0.89 0.02 (0.33) 0.96
rs6884105-G 0.644 0.67 (0.40) 0.31 0.95 (0.28) 0.85 0.49 (3.29) 0.88 0.06 (0.26) 0.82
rs756275-T 0.073 0.70 (0.67) 0.59 1.01 (0.54) 0.98 3.18 (5.97) 0.60 −0.13 (0.46) 0.78

rs6892282-T 0.440 1.35 (0.35) 0.39 1.58 (0.27) 0.10 −3.53 (3.39) 0.30 −0.50 (0.25) 0.05
rs10515807-G 0.862 0.31 (0.58) 0.047 * 0.27 (0.46) 0.005 * −2.18 (5.09) 0.67 0.26 (0.38) 0.50
rs6888306-T 0.248 0.89 (0.38) 0.77 1.23 (0.32) 0.52 −4.67 (3.77) 0.22 −0.28 (0.28) 0.32

rs13162302-G 0.196 1.03 (0.40) 0.94 1.27 (0.33) 0.47 −6.79 (4.02) 0.10 −0.43 (0.30) 0.15
rs11750092-T 0.192 1.20 (0.40) 0.66 1.36 (0.33) 0.36 −7.56 (4.02) 0.06 −0.46 (0.30) 0.15
rs3802241-G 0.545 1.28 (0.35) 0.48 1.19 (0.26) 0.51 −0.33 (3.31) 0.92 0.08 (0.23) 0.72
rs1048101-T 0.539 1.43 (0.31) 0.26 0.99 (0.24) 0.96 −2.16 (3.00) 0.47 −0.16 (0.23) 0.48

rs13278849-G 0.263 0.92 (0.34) 0.80 1.12 (0.28) 0.68 −0.08 (3.38) 0.98 −0.18 (0.27) 0.51
rs17426222-T 0.286 2.04 (0.45) 0.12 1.16 (0.32) 0.64 −1.72 (4.00) 0.67 0.18 (0.30) 0.56
rs4732957-C 0.784 1.50 (0.42) 0.34 1.06 (0.34) 0.87 1.17 (4.19) 0.78 0.31 (0.32) 0.35
rs4732682-T 0.458 0.78 (0.37) 0.50 0.95 (0.27) 0.86 1.27 (3.33) 0.71 0.03 (0.26) 0.91
rs573514-G 0.446 1.92 (0.37) 0.09 1.04 (0.28) 0.90 −2.77 (3.30) 0.40 0.16 (0.25) 0.52
rs1383914-T 0.530 1.41 (0.32) 0.29 1.21 (0.24) 0.43 −2.64 (3.00) 0.38 −0.02 (0.23) 0.95
rs3808585-T 0.250 0.74 (0.40) 0.46 1.31 (0.29) 0.36 2.34 (3.59) 0.52 −0.04 (0.29) 0.89
rs521674-T 0.260 3.30 (0.48) 0.014 * 1.04 (0.32) 0.91 1.41 (4.04) 0.73 −0.08 (0.31) 0.80

rs1800544-G 0.254 2.01 (0.38) 0.07 1.23 (0.29) 0.48 −0.11 (3.57) 0.98 −0.02 (0.28) 0.95
rs1800545-A 0.103 1.34 (0.56) 0.60 0.87 (0.43) 0.75 4.92 (5.43) 0.37 0.40 (0.41) 0.34
rs553668-G 0.859 0.26 (0.59) 0.024 * 0.72 (0.38) 0.39 1.12 (4.66) 0.81 0.27 (0.35) 0.44
rs2236554-T 0.643 0.85 (0.40) 0.69 1.11 (0.31) 0.73 −5.24 (4.06) 0.20 −0.34 (0.30) 0.27
rs1556832-T 0.505 0.63 (0.36) 0.20 0.87 (0.25) 0.58 −4.75 (3.15) 0.14 −0.18 (0.24) 0.46

AF, allele frequency; OR, odds ratio; SE, standard error, *, nominal significant.

Linkage disequilibrium analyses showed that, within the ADRA1A gene, three hap-
lotype blocks could be determined: one block within the ADRA2A gene and two blocks
within the ADRA1B gene (Figure 1). The haplotype analyses revealed nominally significant
associations of haplotype A-C-A-C in block 6, consisting of SNPs rs10515807, rs6888306,
rs13162302, and rs11750092 in the ADRA1B gene with both a higher dose of α-adrenergic
receptor blockers (OR = 3.30; p = 0.044) and a higher number of side effects (OR = 3.51;
p = 0.007) (Table 4). Another haplotype in the same block (G-C-A-C), that differs only in
the first position (i.e., rs10515807), was associated with a lower number of side effects
(OR = 0.55; p = 0.049) (Table 4). These associations did, however, not survive multiple
testing correction. No haplotype associations were observed with the hemodynamic insta-
bility score and the cumulative intraoperative time outside the blood pressure target range
(Table 4).

Table 4. Haplotype analyses.

Dose of α-Adrenergic
Receptor Blockers Number of Side Effects Hemodynamic Instability

Score

Cumulative
Intraoperative Time

Outside Blood Pressure
Target Range

Gene Block # Haplotype OR (SE) p-Value OR (SE) p-Value Bèta (SE) p-Value Bèta (SE) p-Value

ADRA1A
1 A-C 0.70 (0.34) 0.30 0.93 (0.27) 0.78 0.79 (3.31) 0.81 −0.04

(0.25) 0.87

1 G-T 1.58 (0.32) 0.15 1.12 (0.24) 0.63 −1.19
(2.94) 0.69 0.07 (0.23) 0.76

ADRA1A

2 A-C-C 0.62 (0.37) 0.20 0.85 (0.27) 0.56 1.49 (3.38) 0.66 −0.04
(0.26) 0.88

2 A-T-C 1.95 (0.45) 0.14 1.13 (0.32) 0.71 −1.55
(4.06) 0.70 0.17 (0.30) 0.56

2 G-C-A 0.81 (0.43) 0.63 1.31 (0.33) 0.42 −0.89
(3.91) 0.83 −0.22

(0.31) 0.48
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Table 4. Cont.

Dose of α-Adrenergic
Receptor Blockers Number of Side Effects Hemodynamic Instability

Score

Cumulative
Intraoperative Time

Outside Blood Pressure
Target Range

Gene Block # Haplotype OR (SE) p-Value OR (SE) p-Value Bèta (SE) p-Value Bèta (SE) p-Value

ADRA1A

3 C-A-T-C 0.72 (0.58) 0.57 1.42 (0.51) 0.49 3.68 (5.64) 0.52 −0.54
(0.44) 0.22

3 C-G-T-C 1.74 (0.36) 0.13 1.06 (0.28) 0.84 −2.46
(3.28) 0.46 0.18 (0.25) 0.48

3 T-A-C-C 0.78 (0.37) 0.51 0.62 (0.31) 0.13 −1.95
(3.90) 0.62 −0.01

(0.29) 0.97

3 T-A-C-T 0.87 (0.41) 0.74 1.18 (0.30) 0.58 2.81 (3.63) 0.44 0.00 (0.29) 0.99

ADRA1B

5 A-A-C-T 1.93 (0.46) 0.16 1.86 (0.37) 0.10 −1.45
(4.12) 0.73 −0.08

(0.33) 0.80

5 C-A-T-T 1.58 (0.86) 0.60 0.58 (0.55) 0.33 6.49 (6.50) 0.32 −0.19
(0.49) 0.70

5 C-G-C-G 0.71 (0.36) 0.34 0.66 (0.28) 0.15 3.65 (3.29) 0.27 0.35 (0.26) 0.19

5 C-G-C-T 1.71 (0.71) 0.45 1.85 (0.50) 0.22 −5.56
(6.22) 0.37 −0.69

(0.46) 0.14

ADRA1B

6 A-C-A-C 3.30 (0.58) 0.044 * 3.51 (0.46) 0.007 * 2.54 (5.06) 0.62 −0.30
(0.38) 0.43

6 G-C-A-C 0.72 (0.38) 0.38 0.55 (0.30) 0.05 3.04 (3.76) 0.42 0.38 (0.28) 0.18
6 G-T-A-C 0.49 (0.85) 0.40 0.83 (0.67) 0.78 4.66 (7.84) 0.55 0.42 (0.56) 0.46

6 G-T-G-T 1.02 (0.42) 0.96 1.16 (0.34) 0.67 −7.82
(4.17) 0.07 −0.38

(0.31) 0.23

ADRA2A

4 A-C-G-G 0.47 (0.39) 0.056 0.94 (0.30) 0.83 −0.36
(3.65) 0.92 0.11 (0.28) 0.69

4 T-G-G-A 2.71 (0.51) 0.055 1.33 (0.37) 0.44 −3.60
(4.53) 0.43 −0.34

(0.35) 0.33

4 T-G-A-G 1.55 (0.57) 0.44 0.81 (0.44) 0.62 5.79 (5.46) 0.29 0.19 (0.41) 0.65

# Block 1, rs3802241-rs1048101; block 2, rs13278849-rs17426222-rs4732957; block 3, rs4732682-rs573514-rs1383914-
rs3808585; block 4, rs521674-rs1800544-rs1800545-rs553668; block 5, rs2030373-rs6884105-rs756275-rs6892282;
block 6, rs10515807-rs6888306-rs13162302-rs11750092. OR, odds ratio; SE, Standard error; * nominal-significant
(p < 0.05).
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Figure 1. Haplotype blocks within the candidate genes. Linkage disequilibrium plot of the SNPs
that were genotyped in ADRA2D (SNPs 1–2), ADRA1A (SNPs 3–14), ADRA2B (SNP 15), ADRA2A
(SNPs 19–23), and ADRA1B (SNPs 24–31). The color scheme is a reflection of D′ (white meaning
no linkage disequilibrium (D′ = 0) and red complete linkage disequilibrium (D′ = 1)). Haplotype
blocks have been calculated using the confidence intervals method (Gabriel 2002). Numbers inside
the squares refer to values of D′, with no number indicating complete linkage disequilibrium.
SNP = single nucleotide polymorphism.

4. Discussion

In this study, we investigated, in a well-defined group of patients undergoing resection
of a PPGL, whether polymorphisms of the α-ARs genes affect the clinical response to
presurgical administration of α-adrenergic receptor blockers. Our findings showed that
patients carrying minor alleles for a SNP in the intron region (rs10515807-A) of the ADRA1B
gene or for SNPs in the three prime untranslated region (rs553668-A) or the 2kb upstream
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region (rs521674-T) of the ADRA2A gene needed a higher dosage of an α-adrenergic
receptor blocker. In addition, it was found that patients with the A allele of the rs10515807
SNP seemed to be more prone to developing α-adrenergic receptor blocker-related side-
effects, independently of the prescribed dosage. Haplotype analysis produced additional
evidence for this relationship, with predominantly a role for the ADRA1B gene. However,
none of these associations remained significant after correction for multiple testing.

AR genes are highly polymorphic and demonstrate genetic variations in both coding
and non-coding regions. Adrenoreceptors are the target for several frequently prescribed
drugs, especially in cardiovascular medicine, and represent pharmacodynamic candidate
genes [12]. To date, only a few small-sized studies have addressed the potential clinical
consequences of polymorphisms of the genes encoding adrenergic receptors [29]. Most
available studies were focused on beta adrenergic receptors (β-ARs) and to a lesser extent
on α2–AR (ADRA2A, ADRA2B, ADRA2C) (Supplementary Table S1) [14,16,17,30].

The human ADRA1B gene consists of two exons separated by a single large intron
of 20 kb that interrupts the coding region at the end of the putative sixth transmembrane
domain [31]. Thus far, data on the potential relationship between polymorphisms of the
ADRA1B gene and the efficacy of α-adrenergic receptor blockers are very limited. It has
been shown that prazosin, an α1-adrenergic receptor blocker, binds with equal affinity
to both ADRA1B and ADRA1A, the latter being the principal mediator of vasoconstric-
tion [13,32]. In a study among normotensive and hypertensive subjects, no relationship
was found between four exonic ADRA1B polymorphisms and the blood pressure response
to intravenous administration of the ADRA1B agonist phenylephrine [31]. In contrast, an
intronic variant (rs10070745) of ADRA1B present in African Americans was associated
with an enhanced vasoconstrictor response to phenylephrine [33]. The present study is
the first to suggest a decreased efficacy of α-adrenergic receptor blockers as well as an
increased susceptibility to adverse effects to these antihypertensive agents in carriers of
the intronic G > A variant in rs10515807. It could be postulated that this polymorphism
results in a decreased affinity of the ADRA1B, which would explain the need of a higher
drug dose. Such a change in receptor affinity, however, would not provide an explanation
for the observed association between this polymorphism and the enhanced susceptibility
to adverse effects, which was also independent of the dose. Possible explanations could
include, e.g., modulation of crosstalk between certain SNPs or cosegregation with other
SNPs affecting pathways involved in the development of adverse effects, but these sug-
gestions remain quite speculative. Additional studies are needed to further elucidate the
functional consequences of these SNPs.

The human ADRA2A gene is intronless and consists of one single 3650-base pair
(bp) exon, which contains a 1353-bp open reading frame encoding a receptor protein of
450 amino acid residues [34]. Activation of the presynaptic ADRA2A results in a decrease
of blood pressure and heart rate through negative feedback inhibition of the catecholamine
secretion. ADRA2A knock-out mice were found to demonstrate a hyperadrenergic pheno-
type with elevated blood pressure and diminished hypotensive response to administration
of clonidine [35]. We found that two ADRA2A SNPs, i.e., rs553668, formerly described
as the DraI restriction fragment length polymorphism (RFLP), and rs521674, were associ-
ated with a higher requirement of α-adrenergic receptor blockers, suggesting that these
polymorphisms result in a decreased inhibition of the presynaptic catecholamine release.
This is more or less in agreement with a previous study demonstrating that carriers of
the variant allele of rs553668 experienced a less pronounced blood pressure drop during
exercise [36]. Of interest, in vitro experiments with human neuronal cells demonstrated that
transfection with the rs553668 variant was associated with a decreased protein expression
in subjects from European ancestry [37]. Thus, the higher requirement of α-adrenergic
receptor blockers in patients with pheochromocytoma harboring the rs553668 polymor-
phisms of the ADRA2A gene could be due to a lower presynaptic receptor density. The
relationship between blood pressure or antihypertensive drug response and the rs521674
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polymorphism of the ADRA2A gene has not been described before and requires further
investigations for determining the possible underlying mechanism.

We were unable to find an association between α-AR variants and the hemodynamic
profile during surgical resection of the PPGL. This might be explained by the fact that
the primary endpoint of the PRESCRIPT study, defined as the cumulative intraoperative
time of blood pressure outside the target range, also did not reach significance [8]. In-
traoperative blood pressure during PPGL resection is affected by many different factors,
including general health status, catecholamine secretion, and vaso-active drugs adminis-
tration. Consequently, to identify the influence of a genetic polymorphism amidst these
complex and interacting factors would require a substantial effect size of such a variant in
order to be demonstrated.

Our study had several strengths and limitations. A major strength of the current
study is that we used a comprehensive prospective data collection derived from the only
randomized controlled trial examining the efficacy of α-adrenergic receptor blockers in
a large group of patients with a PPGL. In addition, this is the first study evaluating the
relationship between the therapeutic response of α-adrenergic receptor blockers in patients
who underwent a PPGL resection. Moreover, we used haplotype analysis, which can
identify susceptibility loci that are not captured by single genetic variation test alone [25,38].

There are, however, also limitations that need to be addressed. As indicated earlier, we
found nominally significant associations for three variants, but none of these associations
remained significant after correction for multiple testing. This could be due to a lack of
statistical power, despite the fact that the study population is one of the largest of its kind.
As a result, our findings should be mainly considered as hypothesis generating and require
validation in larger clinical cohorts. We did not investigate SNPs of the ADRA2C gene,
but most study participants were white subjects, and polymorphisms of this gene are
infrequent in a white population [12,29]. Moreover, we focused on SNPs concerning genes
of the receptor itself, assuming these are the major contributors. One disadvantage of such
an approach is that the complex system of the biology of drug actions in vivo probably
may not be fully addressed. Additionally, there could be physiological relevant signaling
pathways for this α-AR subtypes that have not been elucidated yet, and polymorphisms in
genes contributing to the signal transduction of these GPCRs could also be of interest.

In conclusion, this study indicates that genetic variants in ADRA1B and ADRA2A
could modify α-adrenergic receptor blocker efficacy and the risk of developing side effects
in PPGL patients pretreated with α-adrenergic receptor blockers. Future studies in larger
cohorts are required to confirm our observations, which could open the way to personalized
medicine based on pharmacogenetics in the management of patients with a PPGL.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines10040896/s1, Table S1: Overview of the single nucleotide polymorphisms of the
alpha 1 and alpha 2 adrenergic receptor evaluated in the present study and the associated clinical con-
ditions that have been reported in the literature, Table S2: Standardized incremental dosage steps for
doxasozin and phenoxybenzamine, Table S3: Sensitivity analyses for dose of alpha adrenergic receptor
blockers, Table S4: Sensitivity analyses for number of side effects. References [17,22,23,25,30,39–89]
are cited in the Supplementary Materials.
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