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Abstract
We describe the infinite interval exchange transforma-
tions, called the rotated odometers, which are obtained
as compositions of finite interval exchange transforma-
tions and the von Neumann–Kakutani map. We show
that with respect to Lebesgue measure on the unit inter-
val, every such transformation ismeasurably isomorphic
to the first return map of a rational parallel flow on a
translation surface of finite area with infinite genus and
a finite number of ends. We describe the dynamics of
rotated odometers bymeans of Bratteli–Vershik systems,
derive several of their topological and ergodic properties,
and investigate in detail a range of specific examples of
rotated odometers.
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1 INTRODUCTION

In this paper, we consider a family of infinite interval exchange transformations (IETs) that arise
as perturbations of the von Neumann–Kakutani map of the unit interval, and as the first return
maps of flows of rational slope on certain flat surfaces of infinite genus. We study the dynamical
and ergodic properties of the maps in this family.
Each map in this family has a unique aperiodic minimal subsystem, and thus, this family

presents a class of naturally arising systems with this property. We show that each aperiodic (not
necessarily minimal) subsystem is measurably isomorphic to a Bratteli–Vershik system on a Can-
tor set, and study its ergodic invariant measures and the spectrum of its Koopman operator. We
construct infinitely many examples, where each minimal set has the dyadic odometer as a factor,
and infinitely many examples where each minimal set does not have the dyadic odometer as a
factor, but it is not weakly mixing.
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under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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1984 BRUIN and LUKINA

F IGURE 1 The finite area Loch Ness monster.

1.1 Rotated odometers

The von Neumann–Kakutani map 𝔞 ∶ 𝐼 → 𝐼, where 𝐼 = [0, 1) is the half-open unit interval, is
given by the formula

𝔞(𝑥) = 𝑥 − (1 − 3 ⋅ 21−𝑛) if 𝑥 ∈ 𝐼𝑛 = [1 − 21−𝑛, 1 − 2−𝑛), 𝑛 ⩾ 1. (1)

In words, it rearranges the interval partition {𝐼𝑛}𝑛⩾1 of 𝐼 in the opposite order, see Figure 3(a). We
divide the interval 𝐼 = [0, 1) into 𝑞 half-open subintervals of length 1

𝑞
, and we let 𝜋 be any permu-

tation of 𝑞 symbols. Let 𝑅𝜋 ∶ 𝐼 → 𝐼 to be the map that permutes these 𝑞 subintervals according to
𝜋. Then

𝐹𝜋 = 𝔞 ◦𝑅𝜋 ∶ 𝐼 → 𝐼 (2)

is an infinite IET called a rotated odometer. The term “rotated odometer” was introduced since for
some permutations 𝜋, the map 𝑅𝜋 ∶ 𝐼 → 𝐼 may be seen as a rotation on the unit circle.

1.2 Infinite genus surfaces

Let 𝑆 be the unit square, and identify its vertical edges by a single translation (as if creating a
cylinder), and its horizontal edges by the von Neumann–Kakutani map 𝔞, to obtain the surface 𝐿,
see Section 2 for details. In order to make the identifications work, we must remove a countable
number of points from the horizontal edges, and as a result, the surface 𝐿 is noncompact. The
removed points are identified into a single point; therefore, the resulting surface has a single end,
that is, a distinct way to go to infinity, see Figure 1. The surface 𝐿 has unit area and infinite genus.
Topological surfaces of this type are called Loch Ness monsters, and they have appeared in the
literature as leaves in foliations by surfaces [19, 30]. Loch Ness monsters also appear as translation
surfaces with infinite angle or wild singularities, such as the Chamanara or the baker’s surface
[7, 10, 32], or the infinite staircase [10]. An interesting family of infinite-type translation surfaces
was constructed in [25]. The constructions of the families of surfaces in [25] and in our paper
are reminiscent of that of the Chamanara surface in [10]. However, in our paper, the Loch Ness
monsters lack certain metric symmetries which are present in [10], and so, the methods used to
study the properties of the latter in [10] are not applicable in our case.
Consider the flow lines on the square 𝑆 that are at the constant angle 𝜃 = tan−1(𝑞∕𝑝) with

the horizontal, where 𝑝, 𝑞 ∈ ℤ ⧵ {0}. When the flow lines traverse the square from the bottom to
the top, they travel through the horizontal distance 𝑝∕𝑞. Therefore, the first return map to the
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ROTATED ODOMETERS 1985

F IGURE 2 The Loch Ness monster with two whiskers.

horizontal section in the surface 𝐿, corresponding to the horizontal edges of 𝑆, is the composition
of a translation by 𝑝∕𝑞 and the von Neumann–Kakutani map 𝔞, that is, a rotated odometer. Then
a natural question is, can any rotated odometer (2), that is, for an arbitrary permutation 𝜋, be
realized as the first return map of a flow on a Loch Ness monster? Our first Theorem 1.1 below
states that the answer is yes, provided that we can make mild modifications to the topology of
the surface.
We denote one-dimensional Lebesgue measure by 𝜆.

Theorem 1.1. Let 𝑞 ⩾ 2 and let 𝜋 be a permutation of 𝑞 symbols, and let 𝑝 ⩾ 𝑞 be an integer. Then
there exists a translation surface 𝐿𝜋,𝑝 obtained by identifying by translations the sides of the unit
square with countable number of boundary points removed, which has the following properties.

(1) The surface 𝐿𝜋,𝑝 has finite area, one non-planar end and atmost a finite number of planar ends.
(2) The metric completion of 𝐿𝜋,𝑝 contains a single wild singularity and at most a finite number of

cone angle singularities.
(3) There exists a section 𝑃 ⊂ 𝐿𝜋,𝑝 parallel to the horizontal edge of the unit square with Poincaré

map 𝐹 ∶ 𝑃 → 𝑃 of the flow of rational slope 𝑞∕𝑝, such that (𝑃, 𝐹, 𝜆) is measurably isomorphic
to the rotated odometer (𝐼, 𝐹𝜋, 𝜆).

The technical notions in the statement of Theorem 1.1 are explained rigorously in Section 2,
where this theorem is proved. Intuitively, singularities in this theorem correspond to the points
wemust remove from 𝑆 when identifying edges in order to obtain a surface where every point has
a Euclidean neighborhood. Distinct removed points may be identified into a single singularity.
Each singularity results in a puncture in the surface 𝐿, and each puncture corresponds to an end
of 𝐿. The notions of a planar or a nonplanar end describe the topology of a neighborhood of an
end, namely, if an end is nonplanar, then every such neighborhood has infinite genus.
A finite area surface with infinite genus, one nonplanar end, and two planar ends is depicted

in Figure 2. We call a Loch Ness monster with additional planar ends a Loch Ness monster with
whiskers. A surface of this type is described in Example 2.3.

1.3 Dynamical properties of rotated odometers

We now study in detail the dynamics of the rotated odometer (𝐼, 𝐹𝜋, 𝜆) for any 𝑞 ⩾ 2 and any
permutation 𝜋 on 𝑞 symbols. Such a map can be considered as a perturbation of the von
Neumann–Kakutani map 𝔞. From this point of view, it is natural to ask, which properties of the
von Neumann–Kakutani map are preserved under such perturbation. We show that even in this
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1986 BRUIN and LUKINA

highly controlled setting, much of the inner structure of the von Neumann–Kakutani system can
be destroyed by a perturbation, although some features are preserved.
The first basic result is that the minimality of 𝔞 may be destroyed, but the minimal subset of

the aperiodic subsystem is always unique. Recall that 𝐼 = [0, 1).

Theorem 1.2. There exists a decomposition 𝐼 = 𝐼𝑝𝑒𝑟 ∪ 𝐼𝑛𝑝 with the following properties.

(1) Every point in 𝐼𝑝𝑒𝑟 is periodic, and the restriction 𝐹𝜋 ∶ 𝐼𝑝𝑒𝑟 → 𝐼𝑝𝑒𝑟 is well defined and invertible.
(2) If 𝐼𝑝𝑒𝑟 is nonempty, then 𝐼𝑝𝑒𝑟 is a (possibly infinite) union of half-open intervals [𝑥, 𝑦).
(3) The set 𝐼𝑛𝑝 contains 0, and 𝐹𝜋 ∶ 𝐼𝑛𝑝 → 𝐼𝑛𝑝 is well defined and invertible at every point except 0.
(4) There is a unique minimal subsystem (𝐼𝑚𝑖𝑛, 𝐹𝜋) of (𝐼𝑛𝑝, 𝐹𝜋), and 0 ∈ 𝐼𝑚𝑖𝑛.

Theorem 1.2 is proved in Section 3. Examples 5.16, 5.20, and 5.21 show that 𝐼𝑝𝑒𝑟 may be an empty
set, or a finite or infinite union of half-open intervals. An infinite IET that contains an infinite
collection of intervals of periodic points was also considered in [21], see Example 3.5.

Remark 1.3. The existence of a unique minimal aperiodic set imposes strong restrictions on the
behavior of the system. For instance, as shown in [17], certain 𝐶∗-algebras associated to systems
with unique minimal sets on zero-dimensional spaces can be exhibited as cross products of an
abelian 𝐶∗-algebra by a single homeomorphism. We refer the reader to [17] for more on 𝐶∗-
algebras and dimension groups in this setting. The rotated odometers considered in this paper
provide a naturally arising family of examples of dynamical systems with unique minimal sets;
systems with this property are not readily found in the literature. This is another motivation to
study rotated odometers.

1.4 Ergodic properties of rotated odometers

The rotated odometer map 𝐹𝜋 acts on 𝐼 by piecewise translations and so preserves Lebesgue
measure 𝜆 on 𝐼. Moreover, in Section 7, we prove the following.

Theorem 1.4. Lebesgue measure is ergodic for (𝐼, 𝐹𝜋) if and only if there are no periodic points.

One implication in Theorem 1.4 is immediate, and the other one requires work. Another nat-
ural property of all rotated odometers is that they have zero topological entropy. The proof of
Theorem 1.5 below can be found in Section 6.

Theorem 1.5. For any 𝑞 ⩾ 1 and any permutation 𝜋 of 𝑞 symbols, the topological entropy
ℎ𝑡𝑜𝑝(𝐹𝜋) = 0.

To further study the dynamics of the aperiodic subsystem (𝐼𝑛𝑝, 𝐹𝜋), we use the standard tech-
nique of doubling points in the orbits of discontinuities to embed (𝐼𝑛𝑝, 𝐹𝜋) into a dynamical system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋) given by a homeomorphism 𝐹∗

𝜋 of a Cantor set 𝐼
∗
𝑛𝑝. The procedure is described in detail

in Section 4, with main results summarized in Theorem 4.1. Since the Cantor set 𝐼∗𝑛𝑝 is obtained
by adding to 𝐼𝑛𝑝 a countable collection of points, there is a correspondence of invariant mea-
sures on the Cantor system and on (𝐼𝑛𝑝, 𝐹𝜋). We show in Section 5.2 that the Cantor system
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ROTATED ODOMETERS 1987

(𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is conjugate to the Bratteli–Vershik system on an eventually stationary Bratteli diagram,

see Theorem 5.10.
Bratteli–Vershik systems are a powerful tool to study the dynamics of maps of Cantor sets,

described in many sources, see, for instance, [2, 3, 17] and references therein. In the rest of the
paper, we use Bratteli–Vershik systems to study the number of ergodic invariant measures on
(𝐼𝑛𝑝, 𝐹𝜋), and the discrete spectrum of the Koopman operator for different ergodic measures.
Since the Bratteli–Vershik diagramconjugate to (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is associated to a preperiodic sequence

of substitutions on 𝑞 letters (see Section 5.2), we have the following result.

Theorem 1.6. For any 𝑞 ⩾ 1 and any permutation 𝜋 of 𝑞 symbols, the aperiodic subsystem
(𝐼𝑛𝑝, 𝐹𝜋) admits at most 𝑞 ergodic invariant measures, and its unique minimal subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋)
is uniquely ergodic.

1.5 Factors of rotated odometers

The next series of results ismotivated by considering rotated odometers as permutations of the von
Neumann–Kakutani map, which is known to be measurably isomorphic to the dyadic odometer.
We know from Theorem 1.2 that the dynamical characteristics of the dyadic odometer, such as,
for instance, minimality, may be destroyed by a perturbation to a rotated odometer. Therefore, it
is natural to ask, whether they are preserved at least at the level of factors, that is, whether the
dyadic odometer is still a measure-theoretical or a topological factor of the rotated odometer. We
ask this question for both the aperiodic system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) and for its unique minimal set (𝐼

∗
min, 𝐹

∗
𝜋).

Theorem 1.7. Let (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) be the minimal subset of (𝐼

∗
𝑛𝑝, 𝐹

∗
𝜋). Then:

(1) There exist infinitelymany 𝑞 ⩾ 3, and permutations𝜋 of 𝑞 symbols, such that theminimal system
(𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) has a dyadic odometer as a factor.

(2) There exist infinitelymany 𝑞 ⩾ 3, and permutations𝜋 of 𝑞 symbols, such that theminimal system
(𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) does not factor to a dyadic odometer, and is not weakly mixing.

Theorem 1.7 is proved in Section 8.5.
Host [22] proved that for substitution shifts, the measure-theoretical and topological rota-

tional factors coincide, and so, in Theorem 1.7 by a factor, we mean either of them. The measure
implicitly used in this theorem is the unique ergodic measure supported on the minimal set.
In both statements of Theorem 1.8 below, Lebesgue measure on 𝐼 is ergodic for the rotated

odometer (𝐼, 𝐹𝜋), and 𝐼𝑛𝑝 = 𝐼. The measure 𝜆 is the pushforward of the Lebesgue measure on 𝐼𝑛𝑝
to 𝐼∗𝑛𝑝 by the embedding map.

Theorem 1.8. Let (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) be the aperiodic subsystem of a rotated odometer. Then:

(1) If 𝑞 = 5 and 𝜋 = (01234), then the rotated odometer (𝐼∗𝑛𝑝, 𝐹
∗
𝜋, 𝜆) has the dyadic odometer as the

maximal equicontinuous factor, and the factor map is continuous.
(2) If 𝑞 = 5 and 𝜋 = (02431), then the rotated odometer (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜆) has the cyclic group of order 4

as the maximal equicontinuous factor, but the factor map is not continuous.

Theorem 1.8 is proved in Section 8.5.
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1988 BRUIN and LUKINA

1.6 Open problems

We show in Theorem 1.1 that rotated odometers can be considered as first return maps of flows of
rational slope, on certain translation surfaces of finite area and infinite genuswith a finite number
of ends. The following question is natural.

Problem 1.9. Find a Bratteli–Vershik system that models the Poincaré map of a flow of irrational
slope on a translation surface of finite area with infinite genus and finite number of ends.

The next open problem stems from Theorem 1.7 whose proof is constructive. At the moment
we are not aware of a general condition that would ensure that a rotated odometer or its minimal
set has, or does not have, the dyadic odometer as a factor. We pose this as an open question.

Problem 1.10. Let 𝐹𝜋 = 𝔞 ◦𝑅𝜋 ∶ 𝐼 → 𝐼 be a rotated odometer. Find necessary and sufficient
conditions under which (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋) has a dyadic odometer as a factor.

In the system described in Statement 1.8 of Theorem 1.8, neither the minimal subsystem with
respect to the unique ergodicmeasure, nor the aperiodic system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋)with respect to Lebesgue

measure, have the dyadic odometer as a factor. Instead, the minimal subsystem has an irrational
eigenvalue, while the full rotated odometer factors onto the cyclic group with four elements.
Therefore, the following question is natural.

Problem 1.11. Are there any examples in our class of rotated odometers for which the minimal
subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋), or the aperiodic system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is weakly mixing?

2 ROTATED ODOMETERS AND FLOWS ON TRANSLATION
SURFACES

In this section,we recall the basic properties of infinite translation surfaces and prove Theorem 1.1.

2.1 Loch Ness monsters

Consider the unit square 𝑆without corner points. The upper and the lower sides of 𝑆 are identified
with the interior (0,1) of 𝐼 = [0, 1). The vertical sides of 𝑆 are identified with 𝐽 = (0, 1). We make
the identification

(𝑥, 1) ∼ℎ (𝔞(𝑥), 0),

see Figure 3(a), where 𝐼𝑘 = [1 − 1
2𝑘−1

, 1 − 1
2𝑘
), 𝑘 ⩾ 1, are the intervals of continuity of 𝔞. We

identify the vertical sides using the equivalence relation (1, 𝑦) ∼𝑣 (0, 𝑦) as in the standard torus.
Consider the set of discontinuity points of 𝔞 in the upper horizontal edge, and of their images

under 𝔞 on the lower horizontal edge, given by

𝐷 = {(1 − 2−𝑘, 1), (𝔞(1 − 2−𝑘), 0) ∶ 𝑘 ⩾ 1}.

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12731 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROTATED ODOMETERS 1989

I1 I2 I3 I4
1

(a) (b)

J1 J1

(I1)(I2)(I3)
a a a a

a

(I4)
0 1

1

0 1

F IGURE 3 (a) Identifications of the horizontal sides of the unit square by the von Neumann–Kakutani map,
and of the vertical sides by translations. Circles and squares represent identifications of limit points in 𝐿. (b)
Nonseparating curves in 𝐿 are represented by dashed lines.

Define the noncompact surface 𝐿 by applying the equivalence relations,

𝐿 = (𝑆 ⧵ 𝐷)∕ ∼ℎ, ∼𝑣 . (3)

The construction of 𝐿 above is similar to that of the Chamanara surface in the literature [7, 10,
32], except that the identification of the vertical sides of the square 𝑆 in the Chamanara surface is
done using the von Neumann–Kakutani map.
Noncompact surfaces are classified up to a homeomorphism by their genus and the space of

ends. Intuitively, an end of a surface is a distinct way to go to infinity in the surface. Adding ends
to a surface can be considered as its compactification [6, 10]. A surface with one end and infinite
genus can be pictured as the Euclidean plane with an infinite number of handles attached, and
this is the reason it was called the Loch Ness monster in [30]. The Euclidean plane has infinite
area. The surface in Figure 1 is homeomorphic to the plane with an infinite number of handles
attached, and it has unit area.
An open neighborhood of an end is a surface in its own right, and so, one can talk about the

genus of this surface. An end 𝑒 is planar if it has a neighborhood of genus zero, and 𝑒 is called
nonplanar otherwise. The single end of the Loch Ness monster in Figure 1 is nonplanar.
Arguments similar to the one for the Chamanara surface in [32] show that 𝐿 is a transla-

tion surface of finite area and infinite genus with one nonplanar end. We sketch the proof in
Proposition 2.1 for completeness.
Let 𝜎 ∈ 𝐿 be a singularity, and let 𝐵𝜖 be an open neighborhood of 𝜎 in 𝐿 of radius 𝜖 > 0. A

singularity 𝜎 is wild, if there is no finite or infinite cyclic translation covering from 𝐵𝜖 ⧵ 𝜎, to a
once-punctured disc 𝐵(0, 𝜖) ⧵ {0} ⊂ ℝ2 for any 𝜖 > 0. Recall that a saddle connection is a geodesic
in 𝐿, which joins two not necessarily distinct singularities in 𝐿, and which does not contain a
singularity in its interior. In particular, 𝜎 is wild if for any 𝜖 > 0, the neighborhood 𝐵𝜖 contains an
infinite number of saddle connections.
A closed curve 𝛾 ∶ 𝕊1 → 𝐿 is nonseparating if 𝐿 ⧵ 𝛾(𝕊1) is connected, where 𝕊1 is the circle of

unit length. A surface 𝐿 has genus g , if the maximum cardinality of a set of disjoint nonseparating
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1990 BRUIN and LUKINA

curves in 𝐿 is g . If 𝐿 admits an infinite number of disjoint nonseparating curves, then it has infinite
genus.

Proposition 2.1. The surface 𝐿 is a translation surface of finite area and infinite genus, and the
metric completion 𝐿 of 𝐿 contains a single wild singularity. Thus, 𝐿 is a Loch Ness monster, that is, 𝐿
is an infinite genus surface with one nonplanar end.

Proof. Recall from [32] that a translation surface is a surface which admits an atlas where the
transition functions are locally translations. The surface 𝐿 in (3) satisfies this definition since 𝔞 is
an IET and so identifications are by translations. The metric completion 𝐿 of 𝐿 is clearly compact,
and we claim that 𝐿 ⧵ 𝐿 is a single point. To see that we use a similar argument to the one in [32,
Example 1.15] for the Chamanara surface. Namely, the identifications of the horizontal edges by
𝔞 induce the identification between the limit points in the metric completion marked by circles
and squares in Figure 3(a), and we conclude that there is no more than two points in 𝐿 ⧵ 𝐿, one
marked by circles and another one by squares. Since the distance between these two points is
not bounded away from zero, they are the same point, and 𝐿 ⧵ 𝐿 consists of a single singularity
denoted by 𝜎. We notice that for every 𝜖 > 0, the part of the neighborhood 𝐵𝜖 of 𝜎 near the corner
points of 𝑆 contains an infinite number of saddle connections (horizontal segments on the upper
and the lower edges of the square). Thus, 𝜎 is a wild singularity.
To see that 𝐿 has infinite genus, for 𝑘 ⩾ 1, let 𝛾𝑘 be a closed curve joining the middle point of

the interval 𝐼2𝑘 to the middle point of the interval 𝐼2𝑘−1 lying below the upper horizontal edge
of 𝐿, and then joining the middle point of 𝔞(𝐼2𝑘−1) with the middle point of 𝔞(𝐼2𝑘) and passing
above the lower horizontal edge of 𝐿, see Figure 3(b). All such curves are disjoint. To see that the
complement of 𝛾𝑘 in 𝐿 is connected, note that every point in 𝐿 ⧵ 𝛾𝑘(𝕊1) is connected to the middle
point of the square by a continuous path. This shows that 𝐿 admits an infinite number of nonsep-
arating curves, and so has infinite genus. To show that 𝐿 has one end we refer to [32, Proposition
3.10], where it is shown that if 𝐿 is a translation surface such that the metric completion 𝐿 is com-
pact, then the space of ends of 𝐿 is finite and it is in one-to-one correspondence with the set of
singularities. Since 𝐿 has a single singularity, it has one end. It is clear from the picture and the
arguments above that every 𝜖-neighborhood of 𝜎 contains an infinite number of nonseparating
curves, which implies that the single end of the surface 𝐿 is nonplanar. □

2.2 Flows on the Loch Ness monster

Every point 𝑥 ∈ 𝐿 is contained in a chart of a maximal atlas whose transition maps are trans-
lations. Thus, the tangent bundle 𝑇𝐿 =

⋃
𝑥∈𝐿 𝑇𝑥𝐿 carries a flat connection. For any 𝑥 ∈ 𝐿, the

exponential map exp𝑥 ∶ 𝑇𝑥𝐿 → 𝐿 is well defined on an open neighborhood of 0 in 𝑇𝑥𝐿 depend-
ing on 𝑥. For any angle 𝜃 ∈ 𝕊1, there is a vector field 𝜃 on 𝐿, whose flow lines are straight lines
which make the angle 𝜃 with the horizontal. Some flow lines of 𝜃 reach the singular point 𝜎 in
finite time, and so they are not defined for all 𝑡 ∈ ℝ. Since themap 𝔞 has a countable discontinuity
set, there is at most a countable number of such flow lines. Let 𝐿𝜃 be the union of flow lines that
are defined for all 𝑡 ∈ ℝ, and denote the flow by 𝜑𝜃 ∶ ℝ × 𝐿𝜃 → 𝐿𝜃.
Let 𝑞 ⩾ 2 and 𝑝 ⩾ 1 be integers, and let 𝜃 = tan−1(𝑞∕𝑝). Let 𝑃 be the image of the lower hori-

zontal edge of the unit square under (3) in 𝐿𝜃. Then 𝑃 is a Poincaré section for the flow lines of
the vector field 𝜃, and we denote the Poincaré map of the flow by 𝐹 ∶ 𝑃 → 𝑃.
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ROTATED ODOMETERS 1991

Consider the lift of the flow to the unit square 𝑆. For any 𝑥 in the lower edge, consider the flow
line through 𝑥. While traveling from the lower edge to the upper edge, the flow line through 𝑥
moves in the horizontal direction by distance 𝑝∕𝑞, possibly traversing 𝑆 a few times. Divide the
unit interval 𝐼 into 𝑞 subintervals of equal length, inducing subdivisions of the lower and upper
edges. Since 𝑝 is an integer, the flowmaps the subintervals of the lower edge onto the subintervals
in the upper edge, inducing a permutation𝜋 of a set of 𝑞 symbols. For example, if 𝑞 = 3 and 𝑝 = 1,
then the corresponding permutation is 𝜋 = (012) and if 𝑝 = 2, then the corresponding permuta-
tion is 𝜋 = (021). It follows that the return map 𝐹 ∶ 𝑃 → 𝑃 can be described as the composition
𝔞 ◦𝑅𝜋 of a permutation of 𝑞 intervals and the von Neumann–Kakutani map. To illustrate this
visually, in Figure 3(a), choose a point on the horizontal edge of the square, apply 𝑅𝜋 obtaining
another point on the lower horizontal edge, and then traverse the square in the vertical direc-
tion. When the vertical flow line reaches the upper horizontal edge of the square, apply the von
Neumann–Kakutani map 𝔞 and return to 𝑃 using the identification (3).
We give the section𝑃 ameasure 𝜆 induced from the Lebesguemeasure on the interval 𝐼 = [0, 1).

Since only a countable number of flow lines reach the singularity 𝜎 in 𝐿, the discussion above
results in the following statement. Denote by 𝑗 ∶ 𝑃 → 𝐼 = [0, 1) the inclusion map.

Proposition 2.2. Let 𝑞 ⩾ 2, 𝑝 ⩾ 1 be integers, and let 𝐹 ∶ 𝑃 → 𝑃 be the Poincarémap of the flow 𝜑𝜃 ,
where 𝜃 = tan−1(𝑞∕𝑝). Then there exists a permutation 𝜋 of 𝑞 symbols, such that 𝑗 ∶ 𝑃 → 𝐼 induces
a measure-theoretical isomorphism of the dynamical systems (𝑃, 𝐹, 𝜆) and (𝐼, 𝐹𝜋, 𝜆), where 𝐹𝜋 =
𝔞 ◦𝑅𝜋 is a rotated odometer and 𝜆 is the Lebesgue measure.

2.3 Rotated odometers and flows

We now prove Theorem 1.1, that is, we show that any rotated odometer is measure-theoretically
isomorphic to a Poincaré map of a flow of rational slope on an infinite-type translation surface
of finite area. The topology of this surface may be slightly more complicated than that of 𝐿, since
in order to obtain the given permutation 𝜋, we may have to apply additional identifications on
the vertical sides. As a result, a finite number of cone angle singularities may arise, which we will
have to remove from 𝐿, creating additional planar ends.
We call the surface with infinite genus and one nonplanar and a finite number of planar ends

the Loch Ness monster with whiskers, see Figure 2.

Proof of Theorem 1.1. To obtain a given permutation of the intervals {𝐼𝑖}
𝑞−1
𝑖=0

, we divide the vertical
sides of the square 𝑆 into subintervals of equal length and permute them. For us to be able to do
that, all flow lines starting at the horizontal edge of 𝑆must intersect the vertical side, so the angle
𝜃 must be less than 𝜋

4
, so tan(𝜃) < 1. Take any 𝑝 = 𝑚𝑞 + 𝑟 with 𝑚 ⩾ 1 and 0 ⩽ 𝑟 ⩽ 𝑞 − 1 and let

𝜃 = tan−1( 𝑞
𝑝
).

Consider 𝑚 + 2 copies of 𝑆 such that for 1 ⩽ 𝑖 ⩽ 𝑚 + 1, the right vertical edge of the 𝑖th copy
is identified with the left vertical edge of the 𝑖 + 1st copy. Let {𝐼𝑘}

𝑞−1
𝑘=0

be the subdivision of the
lower horizontal edge into intervals of length 1

𝑞
, and {𝐽𝑘}

𝑝−1
𝑘=0

and {𝐽′
𝑘
}𝑝−1
𝑘=0

be the subdivisions of,

respectively, the left and the right vertical edges of the first copy of 𝑆 into intervals of length 1
𝑝
.

The numbering of the intervals in the vertical edges increases from bottom to top.
Each flow line of 𝜑𝜃 intersects at least𝑚 + 1 and at most𝑚 + 2 copies of 𝑆 before reaching the

upper horizontal edge. For example, in Figure 4, the flow lines of the points in the intervals 𝐼3 and
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1992 BRUIN and LUKINA
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F IGURE 4 The flow for the rotation by 7

5
, so 𝑞 = 5, 𝑝 = 7, and 𝑟 = 2; if the vertical edges are identified by a

single translation, like in the torus, then the corresponding permutation of {𝐼𝑘}4𝑘=0 is 𝜋 = (02413). Identifications
of the vertical sides using a nontrivial permutation 𝜋′ of {𝐽′

𝑘
}6
𝑘=0

may result in a different 𝜋. When gluing the
vertical edges using a nontrivial 𝜋′, we have to remove the endpoints of the intervals in {𝐽′

𝑘
}6
𝑘=0

from 𝑆, possibly
creating planar ends in the resulting surface.

𝐼4 intersect three copies of 𝑆, while the flow lines of the points in 𝐼0, 𝐼1, 𝐼2 intersect only two copies
of 𝑆. The flow lines intersect only the first 𝑞 elements {𝐽′

𝑘
}𝑝−1
𝑘=0

, and so, the intersection of the flow
lines with the right vertical edge of the first copy of 𝑆 defines a map

𝑠 ∶ {0, 1, … , 𝑞 − 1} → {0, 1, … , 𝑝 − 1}, 𝑖 ↦ 𝑘 = 𝑞 − 1 − 𝑖

with range {0, … , 𝑞 − 1}. There is the partial inverse 𝑠−1 ∶ {0, 1, … , 𝑞 − 1} → {0, 1, … , 𝑞 − 1}. The
intersection of the flow lines with the upper horizontal edge followed by the identification of the
copies of 𝑆 as in the standard torus defines the map

𝑡 ∶ {0, 1, … , 𝑞 − 1} → {0, 1, … , 𝑞 − 1}, 𝑖 ↦ 𝑖 + 𝑟 mod 𝑞.

We set

𝜋′ = 𝑠 ◦ 𝑡−1 ◦𝜋 ◦ 𝑠−1

and define the identifications of the intervals of the partitions {𝐽𝑘}
𝑝−1
𝑘=0

and {𝐽′
𝑘
}𝑝−1
𝑘=0

by

𝐽′𝑘 ∼

{
𝐽𝜋′(𝑘) if 0 ⩽ 𝑘 ⩽ 𝑞 − 1,

𝐽𝑘 if 𝑞 ⩽ 𝑘 ⩽ 𝑝 − 1.
(4)

In words, we permute the lowest 𝑞 intervals in the partition {𝐽𝑘}
𝑝−1
𝑘=0

of the vertical side of 𝑆, and
we keep the top 𝑝 − 𝑞 intervals not permuted.
Build a surface 𝐿𝜋,𝑝 as in Section 2.1, but identify the vertical sides of 𝑆 using (4). Then flowing

from the lower to the upper horizontal edge in 𝑆 produces the permutation𝜋 on the intervals of the
subdivision of the horizontal edge. Indeed, flowing from the horizontal to the vertical edge maps
each 𝐼𝑘, 𝑘 = 0,… 𝑞 − 1, to the set 𝑠(𝐼𝑘) of the partition of the vertical edge, essentially renumbering
the sets in the partition {𝐼𝑘}

𝑞−1
𝑘=0

in the opposite order. We apply 𝜋′, and then the partial inverse

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12731 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROTATED ODOMETERS 1993

𝑠−1, which reverses the renumbering of the sets, and incorporates 𝜋′ into the partition {𝐼𝑘}
𝑞−1
𝑘=0

.
We then apply the map 𝑡, which implements the translation by 𝑝∕𝑞 on a square with identified
vertical edges. Thus,

𝑡 ◦ 𝑠−1 ◦𝜋′ ◦ 𝑠 = 𝑡 ◦ 𝑠−1 ◦ (𝑠 ◦ 𝑡−1 ◦𝜋 ◦ 𝑠−1) ◦ 𝑠 = 𝜋.

It follows that the Poincaré map 𝐹 ∶ 𝑃 → 𝑃 of this flow is measure-theoretically isomorphic to
the rotated odometer (𝐼, 𝐹𝜋).
It remains to check that the surface 𝐿𝜋,𝑝 which is obtained from 𝐿 by applying the identifica-

tions of subintervals on vertical edges is still a translation surface with a wild singularity. Some
of the upper endpoints of the intervals 𝐽0, … , 𝐽𝑝−2 may be identified with the singularity 𝜎, the
remaining ones are identified with each other. Since there is a finite number of them, this results
in at most a finite number of additional cone angle singularities of the surface 𝐿, which are iso-
lated from 𝜎. The number of saddle connections and the number of nonseparating curves that
the surface can admit remains infinite, so the resulting surface is a translation surface with a
wild singularity and of infinite genus. By [32, Proposition 3.10] the number of ends of 𝐿𝜋,𝑝 is in
one-to-one correspondence with the set of singularities of 𝐿𝜋,𝑝, and by [32, Proposition 3.6] every
cone angle singularity corresponds to a planar end. Therefore, 𝐿𝜋,𝑝 is a Loch Ness monster with
“whiskers,” see Figure 2, where the number of whiskers corresponds to the number of cone angle
singularities. □

Example 2.3. Let 𝑞 = 5, and 𝜋 = (0)(1)(23)(4). Let 𝑝 = 𝑞 then 𝜃 = 𝜋∕4, 𝑟 = 0, and so 𝑡 is the
trivial permutation. Applying Theorem 1.1, we obtain 𝜋′ = (0)(12)(3)(4). Considering the identi-
fication of vertical edges of the unit square given by 𝜋′, one obtains that the metric completion
of the surface 𝐿𝜋,𝑝 has one wild singularity, one cone angle singularity of multiplicity 3, and one
removable cone angle singularity (i.e., of multiplicity 1). Thus, 𝐿𝜋,𝑝 has one nonplanar and one
planar end (we are not counting the removable singularity).

3 PERIODIC POINTS AND THE UNIQUEMINIMAL SET

In this section we prove Theorem 1.2 which gives a basic description of the dynamics of periodic
and nonperiodic points of the rotated odometer (𝐼, 𝐹𝜋), where 𝐹𝜋 = 𝔞 ◦𝑅𝜋 is as in (2). Given an
integer 𝑞 ⩾ 2 and a permutation 𝜋 of 𝑞 symbols, 𝑅𝜋 ∶ 𝐼 → 𝐼 is a finite IET of 𝑞 subintervals of 𝐼 of
equal length, determined by 𝜋.

Lemma 3.1. The map 𝐹𝜋 = 𝔞 ◦𝑅𝜋 ∶ 𝐼 → 𝐼 is invertible at every point in 𝐼 except 0.

Proof. The statement follows from the fact that the range of 𝔞 is (0,1), the range of 𝑅𝜋 is [0,1), and
both 𝔞 and 𝑅𝜋 are translations on their intervals of continuity. □

We introduce a few notations which we use throughout the paper.

Definition 3.2. Define

𝑁 = min{𝑛 ∈ ℕ ∶ 2𝑛 > 𝑞} and 𝐿𝑘 = [0, 2−𝑘𝑁).
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1994 BRUIN and LUKINA

For fixed 𝑞 and𝑁, and any 𝑘 ⩾ 0, we denote the partition of 𝐼 into 𝑞2𝑘𝑁 half-open subintervals of
equal length by

𝑘𝑁,𝑞 =

{
𝐼𝑘,𝑖 ∶=

[
𝑖

𝑞2𝑘𝑁
,
𝑖 + 1

𝑞2𝑘𝑁

)
∶ 0 ⩽ 𝑖 ⩽ 𝑞2𝑘𝑁 − 1

}
.

In particular, 0,𝑞 is the partition of 𝐼 into 𝑞 subintervals, and 𝐼0,𝑖 = 𝐼𝑖 , 𝑖 = 0, … , 𝑞 − 1, where 𝐼𝑖
are the subintervals in Section 2.
The discontinuities set of 𝐹𝜋 = 𝔞 ◦𝑅𝜋 is

𝐷0 = {𝑅−1𝜋 (1 − 2−𝑛) ∶ 𝑛 ⩾ 0}. (5)

Denote by 𝐷+ the set of forward orbits of the points in 𝐷0, and by 𝐷−, the set of backward orbits
of 𝐷0 ⧵ {0}. Set 𝐷 = 𝐷0 ∪ 𝐷+ ∪ 𝐷−.

Lemma 3.3. The set 𝐷 is contained in the set { 𝑝
𝑞2𝑛

∶ 𝑛 ∈ ℕ, 0 ⩽ 𝑝 ⩽ 𝑞2𝑛 − 1}.

Proof. Note that the restriction of 𝑅𝜋 to each interval in 0,𝑞 is a translation by a rational number
with denominator 𝑞, and 𝔞 acts by translations by multiples of 2−𝑛, 𝑛 ⩾ 1, with 𝑛 depending on a
point in 𝐼. □

For a point 𝑥 ∈ 𝐼, let orb+(𝑥), orb−(𝑥), and orb(𝑥) be the forward, backward, and two-sided
orbit of 𝑥 under 𝐹𝜋, respectively. Clearly if orb

+(𝑥) is periodic, then 𝐹𝜋 is invertible at every point
of orb+(𝑥) and so 𝑥 has a two-sided periodic orbit.
As in the Introduction, we denote by 𝐼𝑝𝑒𝑟 the set of points in 𝐼 whose orbits under 𝐹𝜋 are

periodic, and by 𝐼𝑛𝑝 the complement of 𝐼𝑝𝑒𝑟 in 𝐼.

Proposition 3.4. Consider the dynamical system (𝐼, 𝐹𝜋). We have the following.

(1) For every 𝑥 ∈ 𝐼, the forward orbit orb+(𝑥) is either periodic or accumulates at 0.
(2) The system (𝐼𝑛𝑝, 𝐹𝜋) has a unique minimal set, denoted by 𝐼𝑚𝑖𝑛.
(3) If nonempty, the set of periodic points 𝐼𝑝𝑒𝑟 is at most a countable union of half-open intervals

with left and right endpoints in 𝐷.

Proof. Let 𝑥 ∈ 𝐼 and suppose orb+(𝑥) ∩ 𝐿𝑘 = ∅ for some 𝑘 ⩾ 1. We show that orb(𝑥) is periodic.
Consider the partition 𝑘𝑁,𝑞 of 𝐼 from Definition 3.2. Let 𝐿′

𝑘
= 𝑅−1𝜋 ([1 − 2−𝑘𝑁, 1)) and note that

orb+(𝑥) visits 𝐿𝑘 if and only if it visits 𝐿′𝑘, since 𝔞maps the interval [1 − 2−𝑘𝑁, 1) into 𝐿𝑘. Therefore,
since by assumption orb+(𝑥) does not visit 𝐿𝑘, then it is contained in 𝐼 ⧵ 𝐿𝑘 ∪ 𝐿′

𝑘
. Note that the

discontinuities of𝐹𝜋 in 𝐼 ⧵ 𝐿𝑘 ∪ 𝐿′
𝑘
can only be at the left endpoints of the sets in𝑘𝑁,𝑞, and denote

by

 ′
𝑘 = {𝐼𝑗 ∈ 𝑘𝑁,𝑞 ∶ 𝐼𝑗 ∩ orb

+(𝑥) ≠ ∅}

the collection of sets in 𝑘𝑁,𝑞 visited by the orbit of 𝑥. Then the restriction 𝐹𝜋|𝐼𝑗 is continuous
for each 𝐼𝑗 ∈  ′

𝑘
. Thus, 𝐹𝜋 permutes the intervals in  ′

𝑘
, and since there are only finitely many of

them and 𝐹𝜋 is injective, the orbit of 𝑥 and so of each 𝐼𝑗 ∈  ′
𝑘
is periodic. It follows that 𝐼𝑝𝑒𝑟 is the

union of half-open intervals.

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12731 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROTATED ODOMETERS 1995

If orb+(𝑥) is not periodic, then it must visit every 𝐿𝑘, 𝑘 ⩾ 1, so orb+(𝑥) accumulates at 0. This
proves parts (1) and (2).
We have seen in the proof above that 𝐼𝑝𝑒𝑟 is the union of a subcollection of intervals in the

partitions 𝑘𝑁,𝑞, for 𝑘 ⩾ 1. We now claim that these intervals can assemble into larger half-open
intervals of periodic points, so that the endpoints of these intervals are in 𝐷. Indeed, suppose an
endpoint 𝑥 is not in𝐷. Then𝐹𝜋 is continuous at every point in orb(𝑥), and since𝐹𝜋 is a translation
on its intervals of continuity, 𝑥 has an open neighborhood which consists of points periodic with
the same period as 𝑥. This proves part (3). □

Examples 5.20 and 5.21 are rotated odometers with, respectively, countable and finite numbers
of nonempty intervals of periodic points.

Proof of Theorem 1.2. Follows from Lemma 3.1 and Proposition 3.4. □

Example 3.5. We note that the property of having an infinite collection of intervals of periodic
points is also exhibited by infinite IETs which are not rotated odometers. For instance, in [21]
half-open subintervals of 𝐼 are rearranged in the manner similar to the von Neumann–Kakutani
map, but the lengths of the subintervals are different from the lengths in (1). Namely, 𝑏 ∶ 𝐼 → 𝐼 is
given by

𝑏(𝑥) = 𝑥 − 1 + 𝑘−1 + (𝑘 + 1)−1 for 1 − 𝑘−1 ⩽ 𝑥 < 1 − (𝑘 + 1)−1, 𝑘 ∈ ℕ.

In this system, 𝐼𝑝𝑒𝑟 is an infinite union of intervals where each point is periodic, and the
complement of 𝐼𝑝𝑒𝑟 is minimal.

4 COMPACTIFICATION TO A CANTOR SYSTEM

In this section, we compactify the rotated odometer (𝐼, 𝐹𝜋) to a dynamical system (𝐼∗, 𝐹∗
𝜋) given by

a homeomorphism 𝐹∗
𝜋 of a Cantor set 𝐼

∗, where 𝐼 = [0, 1) and 𝐹𝜋 is defined by (2). The goal of this
procedure is to get rid of discontinuities, and to do that we employ the well-known procedure of
doubling the discontinuity points. Since 𝐼∗ is obtained by adding to 𝐼 a countable number of points,
(𝐼𝑛𝑝, 𝐹𝜋) and (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) aremeasurably isomorphic.We summarize the results of this section in the

following theorem.

Theorem 4.1. Let 𝜋 be a permutation of 𝑞 ⩾ 2 symbols, and let (𝐼, 𝐹𝜋) be a rotated odometer. Let
𝐼 = 𝐼𝑝𝑒𝑟 ∪ 𝐼𝑛𝑝 be a decomposition of 𝐼 into the sets of periodic and aperiodic points.
Then there exists an inclusion 𝜄 ∶ 𝐼 → 𝐼∗ into a compact space 𝐼∗ = 𝐼∗𝑝𝑒𝑟 ∪ 𝐼∗𝑛𝑝, and a homeomor-

phism 𝐹∗
𝜋 ∶ 𝐼∗ → 𝐼∗ with the following properties.

(1) The complement of 𝐼 in 𝐼∗ is countable, and 𝜄(𝐼𝑝𝑒𝑟) and 𝜄(𝐼𝑛𝑝) are contained in 𝐼∗𝑝𝑒𝑟 and 𝐼∗𝑛𝑝,
respectively.

(2) 𝐹∗
𝜋 ◦ 𝜄 = 𝜄 ◦𝐹𝜋 .

(3) 𝐼∗𝑛𝑝 is a Cantor set, and every point in 𝐼
∗
𝑛𝑝 is aperiodic under 𝐹

∗
𝜋 .

(4) There exists a measure 𝜇 on 𝐼∗ such that (𝐼, 𝐹𝜋, 𝜆), where 𝜆 is Lebesgue measure, and (𝐼∗, 𝐹∗
𝜋, 𝜇)

are measurably isomorphic via the map 𝜄.
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1996 BRUIN and LUKINA

4.1 Doubling the points

Recall from Section 3 that we introduced the set 𝐷 = 𝐷0 ∪ 𝐷− ∪ 𝐷+, where 𝐷0, defined by (5), is
the set of discontinuities of the map 𝐹𝜋, and 𝐷+ and 𝐷− are the sets of forward and backward
orbits of the points in 𝐷0, respectively. For each point in 𝐷, we add its double by setting

𝐷∗ = {𝑥− ∶ 𝑥 ∈ 𝐷 ⧵ {0}} ∪ {1}.

Next, we consider the accumulation point of the discontinuity points. In the von Neumann–
Kakutani map, the discontinuity points accumulate at 1. In the rotated odometer, the
accumulation point is shifted by the inverse of 𝑅𝜋, so we denote

𝑥 ∶= lim
𝑦↗1

𝑅−1𝜋 (𝑦). (6)

The point 𝑥 is either in the interior of 𝐼, or 𝑥 = 1. The latter happens if and only if 𝑅𝜋 fixes the last
interval in the partition 0,𝑞. If 𝑥 is in the interior of 𝐼, then 𝑥 is the double of one of the points in
{𝑅−1𝜋 (1 − 2−𝑛) ∶ 𝑛 ⩾ 0}. In both cases, 𝑥 is in 𝐷∗.
Let 𝐼∗ = 𝐼 ∪ 𝐷∗. To underline that the points in 𝐷 are left endpoints of intervals of continuity,

for all 𝑥 ∈ 𝐷 denote 𝑥+ ∶= 𝑥 ∈ 𝐼∗. The points in𝐷∗ are the added right limit points. If 𝑥 = 1, then
set 𝑥− = 𝑥 = 1, and 𝑥+ = 0.

4.2 Order topology on 𝑰∗

The interval 𝐼 ∪ {1} has order ≤ induced from ℝ. We extend this order to an order on 𝐼∗ = 𝐼 ∪ 𝐷∗

by defining:

(1) 𝑥− ⩽ 𝑥+ for all 𝑥 ∈ 𝐷,
(2) for all 𝑦 ∈ 𝐼 ∪ {1} and all 𝑥 ∈ 𝐷, if 𝑦 ⩽ 𝑥 then 𝑦 ⩽ 𝑥−.

For all 𝑥+ ∈ 𝐷, there are no points between 𝑥− and 𝑥+, so adding 𝑥− to 𝐼 can be thought of as
creating a gap. We equip 𝐼∗ with the order topology with open sets given by

 = {(𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ 𝐼∗}
⨆

{[0, 𝑏) ∶ 𝑏 ∈ 𝐼∗}
⨆

{(𝑎, 1] ∶ 𝑎 ∈ 𝐼∗}.

Lemma 4.2. Let 𝑥+ ∈ 𝐷 and 𝑦− ∈ 𝐷∗ with 𝑥+ < 𝑦−. Then the subset [𝑥+, 𝑦−] of 𝐼∗ is closed
and open.

4.3 Extension to a homeomorphism of 𝑰∗

We define an extension 𝐹∗
𝜋 ∶ 𝐼∗ → 𝐼∗ to coincide with 𝐹𝜋 on the points in 𝐼, and so by definition

𝐹∗
𝜋 ∶ 𝐷 → 𝐷. It remains to define 𝐹∗

𝜋 on 𝐷
∗.

For every 𝑥− ∈ 𝐷∗ ⧵ {1}, there is 𝑥+ ∈ 𝐷, such that 𝑥− = lim𝑦↗𝑥+ 𝑦. If 𝑥− ≠ 𝑥−, that is, if 𝑥−
is not the accumulation point of discontinuities 𝑥−, then 𝑥+ has a half-neighborhood on the left
where 𝐹∗

𝜋 is continuous, and we define

𝐹∗
𝜋(𝑥

−) = lim
𝑦↗𝑥+

𝐹𝜋(𝑦).

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12731 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROTATED ODOMETERS 1997

We also set 𝐹∗
𝜋(𝑥

−) = 0, so we have for the forward orbit of 𝑥−

orb+(𝑥−) = {𝑥−} ∪ orb+(0).

If 𝑥− ≠ 1, then also set

𝐹𝜋(1) = lim
𝑦→1

𝐹𝜋(𝑦).

The above remarks are summarized in the following statement.

Proposition 4.3. For the map 𝐹∗
𝜋 ∶ 𝐼∗ → 𝐼∗, the following holds.

(1) 𝐹∗
𝜋 maps points of 𝐷

∗ ⧵ {𝑥−} to 𝐷∗, and points of 𝐷 to 𝐷.
(2) 𝐹∗

𝜋 is a bijection, and (𝐹
∗
𝜋)

−1(𝐷) ⊂ 𝐷.
(3) 𝑥− is aperiodic under 𝐹∗

𝜋 .

4.4 Periodic and nonperiodic points of the compactified system

ByTheorem 1.2, we have the decomposition 𝐼 = 𝐼𝑝𝑒𝑟 ∪ 𝐼𝑛𝑝 of the unit interval into the𝐹𝜋-invariant
sets of periodic and nonperiodic points, respectively, and 𝐼𝑝𝑒𝑟 is a countable (possibly empty)
union of half-open intervals with endpoints in 𝐷.
Let [𝑥, 𝑦) ⊂ 𝐼𝑝𝑒𝑟 with 𝑥, 𝑦 ∈ 𝐷. Then there is 𝑦− ∈ 𝐷∗ corresponding to 𝑦, and 𝑦− is periodic

under the extension of 𝐹𝜋 to 𝐼∗. Define

𝐼∗𝑝𝑒𝑟 = {[𝑥+, 𝑦−] ⊂ 𝐼∗ ∶ [𝑥, 𝑦) ⊂ 𝐼𝑝𝑒𝑟, 𝑥, 𝑦 ∈ 𝐷}. (7)

The following lemma is a direct consequence of the definitions.

Lemma 4.4. We have the following properties.

(1) 𝐼𝑝𝑒𝑟 is an open subset of 𝐼∗𝑝𝑒𝑟.
(2) 𝐼∗𝑝𝑒𝑟 is an open subset of 𝐼

∗.
(3) 𝐼∗𝑝𝑒𝑟 is invariant under the map 𝐹

∗
𝜋 .

Let 𝐼∗𝑛𝑝 = 𝐼∗ ⧵ 𝐼∗𝑝𝑒𝑟 be the complement, so 𝐼
∗ = 𝐼∗𝑛𝑝 ∪ 𝐼∗𝑝𝑒𝑟. Clearly 𝐼𝑛𝑝 ⊂ 𝐼∗𝑛𝑝.

Proposition 4.5. We have the following properties.

(1) 𝐼∗𝑛𝑝 consists of aperiodic points.
(2) 𝐼∗ is compact, and 𝐼∗𝑛𝑝 is closed in 𝐼

∗. Moreover, 𝐼∗𝑛𝑝 = 𝐼𝑛𝑝, the topological closure of 𝐼𝑛𝑝 in 𝐼∗.
(3) 𝐼∗𝑛𝑝 is invariant under the map 𝐹

∗
𝜋.

Proof. To show (1), note that if 𝑧 ∈ 𝐼∗ ⧵ 𝐼𝑝𝑒𝑟 is periodic, then it must be in 𝐷∗. Then 𝑧 ≠ 𝑥− and
must be the right endpoint of an interval of continuity. Since 𝐹𝜋 is a translation on its intervals of
continuity, 𝑧 is the right endpoint of an interval of periodic points, and so 𝑧 ∈ 𝐼∗𝑝𝑒𝑟, and (1) and (3)
follow. To show (2), we note that 𝐼∗ is a totally ordered set with order topology, so it is compact,
and 𝐼∗𝑛𝑝 is closed since 𝐼

∗
𝑝𝑒𝑟 is open. □
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1998 BRUIN and LUKINA

4.5 Properties of the aperiodic subsystem (𝑰∗𝒏𝒑, 𝑭
∗
𝝅)

Proposition 4.6. We have the following.

(1) The set 𝐷 is dense in 𝐼𝑛𝑝 .
(2) The set 𝐼∗𝑛𝑝 is a Cantor set.
(3) The restriction 𝐹∗

𝜋 ∶ 𝐼∗𝑛𝑝 → 𝐼∗𝑛𝑝 is a homeomorphism.

Proof. We have to show that every nonempty intersection (𝑥, 𝑦) ∩ 𝐼𝑛𝑝 contains a point of 𝐷. If
(𝑥, 𝑦) contains an interval of periodic points, then obviously (𝑥, 𝑦) ∩ 𝐼𝑛𝑝 contains a discontinuity,
so assume that there are no periodic points in (𝑥, 𝑦).
By item (1) of Proposition 3.4, every orbit that is not periodic accumulates at 0. If 𝐹𝑛

𝜋 is contin-
uous on (𝑥, 𝑦) for all 𝑛 ⩾ 1, then the orbit of every point in (𝑥, 𝑦) gets arbitrarily close to 0, which
is impossible since 𝐹𝑛

𝜋 is a translation, and so, it preserves distances between the points in (𝑥, 𝑦).
Therefore, 𝐹𝑛

𝜋(𝑥, 𝑦)must contain a discontinuity for some 𝑛 ⩾ 1, and 𝐷 is dense in 𝐼𝑛𝑝. It follows
by standard arguments that 𝐼∗𝑛𝑝 is a Cantor set and 𝐹𝜋 ∶ 𝐼∗𝑛𝑝 → 𝐼∗𝑛𝑝 is a homeomorphism. □

Define a measure 𝜇 on 𝐼∗ by setting 𝜇([𝑥+, 𝑦−]) = 𝑦 − 𝑥 for every clopen set [𝑥+, 𝑦−] ⊂ 𝐼∗,
𝑥, 𝑦 ∈ 𝐷. Since 𝐷∗ is countable, the following conclusion is straightforward.

Lemma 4.7. The inclusion 𝜄 ∶ 𝐼 → 𝐼∗ induces a measurable isomorphism of dynamical systems
(𝐼, 𝐹𝜋, 𝜆) and (𝐼∗, 𝐹∗

𝜋, 𝜇), where 𝜆 is Lebesgue measure.

Remark 4.8. Since themap𝐹𝜋 ∶ 𝐼 → 𝐼 is not invertible at 0, the set 𝐼𝑛𝑝 contains orb
+(0). A natural

question for whichwe do not know the answer is, if it is possible that the orbits of all discontinuity
points in 𝐷0, except for the orbit of 0, are periodic.

5 BRATTELI–VERSHIK SYSTEMS

In this section, we construct a Bratteli–Vershik system that is conjugate to the aperiodic system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋) defined in Section 4. We start by recalling the background on Bratteli–Vershik systems

in Sections 5.1 and 5.2. The main technical result is stated in Theorem 5.10, which is then proved
in Sections 5.4–5.7.

5.1 Substitutions

We recall some standard constructions in symbolic dynamics, a good reference for which is the
survey by Durand [13].
Let  = {0, … , 𝑞 − 1} be a finite alphabet, let ∗ be the set of all words of finite length in this

alphabet, and let Σ = ℕ be the set of infinite sequences in this alphabet.

Definition 5.1. A substitution 𝜒 ∶  → ∗ is a map which assigns to every 𝑎 ∈  a single word
𝜒(𝑎) ∈ ∗, and which extends to∗ and Σ by concatenation:

𝜒(𝑏1𝑏2 … 𝑏𝑟) = 𝜒(𝑏1)𝜒(𝑏2)…𝜒(𝑏𝑟), 𝑟 ⩾ 1.
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ROTATED ODOMETERS 1999

The 𝑞 × 𝑞matrix𝑀, where the 𝑖, 𝑗th entry is the number of letters 𝑗 in𝜒(𝑖), is called the associated
matrix of 𝜒.

Definition 5.2. We say that a substitution 𝜒 ∶  → ∗ is:

∙ primitive, if there is 𝑟 ⩾ 1 such that for all 𝑖 ∈ , 𝜒𝑟(𝑖) contains every letter in,
∙ proper if there exist two letters 𝑎, 𝑏 ∈ {0, … , 𝑞 − 1} such that for all 𝑖 ∈ {0, … , 𝑞 − 1}, the first
letter of 𝜒(𝑖) is 𝑎 and the last letter of 𝜒(𝑖) is 𝑏.

The substitutions we consider will sometimes be primitive, and they will always be proper.
If 𝜒(𝑎) starts with 𝑎, we get a fixed point of 𝜒 which (unless 𝜒(𝑎) = 𝑎) is an infinite sequence

𝜌 = 𝜌1𝜌2𝜌3⋯ = lim
𝑗→∞

𝜒𝑗(𝑎) ∈ Σ. (8)

For sequences 𝑠 = (𝑠𝑘) ∈ Σ, define the left shift by

𝜎 ∶ Σ → Σ, 𝑠1𝑠2 … ↦ 𝑠2𝑠3 … . (9)

Consider the topological closure𝑋𝜌 = orb𝜎(𝜌), where orb𝜎 is the orbit of𝜌 under𝜎. The dynamical
system (𝑋𝜌, 𝜎) is called a subshift.

Definition 5.3. The subshift (𝑋𝜌, 𝜎) is linearly recurrent if there is 𝐿 ⩾ 1 such that for every
sequence 𝑠 ∈ 𝑋𝜌 and𝑘 ⩾ 1, every finiteword𝑤 = 𝑤1 …𝑤𝑘 in 𝑠 reoccurswithin𝐿|𝑤| entries,where|𝑤| denotes the length of 𝑤.
If the substitution 𝜒 is primitive, then (𝑋𝜌, 𝜎) is linearly recurrent and minimal, see, for

instance, [13]. Then we can use, for instance, the results of [9] to compute eigenvalues and
eigenfunctions of the Koopman operator of this dynamical system.

5.2 Bratteli–Vershik systems

We now define Bratteli diagrams and Bratteli–Vershik systems.

Definition 5.4. A Bratteli diagram (𝑉, 𝐸) is an infinite graphwith the set of vertices𝑉 =
⨆

𝑘⩾0 𝑉𝑘

and the set of edges 𝐸 =
⨆

𝑘⩾0 𝐸𝑘 with the following properties.

∙ 𝑉0 consists of a single vertex 𝑣0, called the root of the Bratteli diagram.
∙ For 𝑘 ⩾ 0, 𝑉𝑘 is a finite set.
∙ For 𝑘 ⩾ 0, each edge 𝑒 ∈ 𝐸𝑘 connects the vertex 𝒔(𝑒) ∈ 𝑉𝑘 to the vertex 𝒕(𝑒) ∈ 𝑉𝑘+1, where 𝒔, 𝒕 ∶
𝐸 → 𝑉 are called the source and the targetmaps, respectively.

In addition, the Bratteli diagram (𝑉, 𝐸, <) is ordered if for each 𝑘 ⩾ 2 and 𝑣 ∈ 𝑉𝑘, there is a total
order < on the incoming edges 𝑒 with 𝒕(𝑒) = 𝑣.

We assume that every 𝑣 ∈ 𝑉1 is connected to the root 𝑣0 by a single edge, so #𝐸0 = #𝑉1. We
assume that for every 𝑣 ∈ 𝑉𝑘, there exists at least one outgoing edge 𝑒 ∈ 𝐸𝑘 with 𝑣 = 𝒔(𝑒), and for
every 𝑣 ∈ 𝑉𝑘+1, there exists at least one incoming edge 𝑒 ∈ 𝐸𝑘 with 𝑣 = 𝒕(𝑒), for 𝑘 ⩾ 1.
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2000 BRUIN and LUKINA

Recall that a square matrix𝑀 is primitive if it has a power with strictly positive entries.

Definition 5.5. Let (𝑉, 𝐸) be a Bratteli diagram. For 𝑘 ⩾ 1, the associated matrix 𝑀𝑘 to 𝐸𝑘 has
𝑖, 𝑗-entries equal to the number of edges from 𝑗 ∈ 𝑉𝑘 to 𝑖 ∈ 𝑉𝑘+1.
A Bratteli diagram (𝑉, 𝐸) is stationary if for all 𝑘 ⩾ 1 the associated matrices satisfy𝑀𝑘 = 𝑀1.

A stationary Bratteli diagram (𝑉, 𝐸) is simple if the associated matrix is primitive.

Here is an example which is fundamental for the rest of the paper.

Example 5.6. Suppose that we are given a substitution𝜒with the alphabet as in Definition 5.1.
We construct a Bratteli diagram (𝑉, 𝐸) by taking 𝑉𝑘 = , and defining 𝐸𝑘 so that there is an edge
from 𝑗 ∈ 𝑉𝑘 to 𝑖 ∈ 𝑉𝑘+1 for each appearance of the letter 𝑗 in 𝜒(𝑖), for 𝑘 ⩾ 1. Then𝑀𝑘 = 𝑀1 for
all 𝑘 ⩾ 1, and (𝑉, 𝐸) is stationary. If the substitution 𝜒 is primitive, then (𝑉, 𝐸) is simple.
We define the order < on the incoming edges to 𝑖 ∈ 𝑉𝑘+1 as the order of the corresponding

letters in the word 𝜒(𝑖).

Bratteli diagrams emerged in the area of𝐶∗-algebras [4], and theywere given a dynamical inter-
pretation, when Vershik equipped them with an order and a successor map, described below and
now called the Vershik map [34]. It was shown in [17] that every minimal homeomorphism on
the Cantor set can be represented as a Bratteli–Vershik system. Later Medynets [27] extended this
to all aperiodic homeomorphisms on the Cantor set. For a general survey, we refer to [13].

Definition 5.7. A finite (respectively, infinite) path in the Bratteli diagram (𝑉, 𝐸) is a finite
(respectively, infinite) sequence of edges (𝑒𝑘)𝑚𝑘=0 (respectively, (𝑒𝑘)𝑘⩾0), such that for all 1 ⩽ 𝑘 ⩽ 𝑚
(respectively, 𝑘 ⩾ 1), we have 𝑒𝑘 ∈ 𝐸𝑘 and 𝒔(𝑒𝑘) = 𝒕(𝑒𝑘−1).

Definition 5.8. Let 𝑣0 ∈ 𝑉0 be the root of the Bratteli diagram. For 𝑘 ⩾ 1, define the height of the
vertex 𝑖 ∈ 𝑉𝑘 as the number of finite paths from 𝑣0 to 𝑖:

ℎ(𝑘)
𝑖

= #{𝑒0 … 𝑒𝑘−1 ∶ 𝒔(𝑒0) = 𝑣0, 𝒕(𝑒𝑘−1) = 𝑖 ∈ 𝑉𝑘}.

Let ℎ(𝑘) be the vector with entries ℎ(𝑘)
𝑖

for 𝑖 ∈ 𝑉𝑘.

We define the space of infinite paths of the Bratteli diagram (𝑉, 𝐸) by

𝑋(𝑉,𝐸) = {(𝑒𝑘)𝑘⩾0 ∶ 𝑒𝑘 ∈ 𝐸𝑘, 𝒕(𝑒𝑘) = 𝒔(𝑒𝑘+1) for all 𝑘 ⩾ 0},

and, to make it a topological space, we give each finite edge set 𝐸𝑘 discrete topology, and equip
the space 𝑋(𝑉,𝐸,<) with the product topology.
For each 𝑣 ∈ 𝑉𝑘+1, 𝑘 ⩾ 1, there is a total order < on the set of edges 𝑒 ∈ 𝐸𝑘 such that 𝒕(𝑒) = 𝑣,

and so, this set has unique minimal and maximal edges. If 𝐸𝑘 contains a single incoming edge to
a vertex 𝑖 in 𝑉𝑘+1, then this edge is both minimal and maximal. We extend < to an order on the
paths space𝑋(𝑉,𝐸), by setting 𝑒 < 𝑒′ if there is a minimal 𝑘 ⩾ 0 such that 𝒕(𝑒𝑘) = 𝒕(𝑒′

𝑘
) and 𝑒𝑘 < 𝑒′

𝑘
.

This turns the path space into a partially ordered space 𝑋(𝑉,𝐸,<), because we only compare 𝑒 and
𝑒′ if 𝒕(𝑒𝑘) = 𝒕(𝑒′

𝑘
) for some 𝑘 ⩾ 0. Let 𝑋min

(𝑉,𝐸,<)
(respectively, 𝑋max

(𝑉,𝐸,<)
) be the subsets of 𝑋(𝑉,𝐸,<)

consisting of paths with only minimal (respectively, only maximal) edges.
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ROTATED ODOMETERS 2001

We now define the Vershikmap 𝜏 ∶ 𝑋(𝑉,𝐸,<) → 𝑋(𝑉,𝐸,<). Given a path 𝑒 = (𝑒𝑘)𝑘⩾0 ∈ 𝑋(𝑉,𝐸,<), let
𝑘 ⩾ 0 be the smallest index such that 𝑒𝑘 ∈ 𝐸𝑘 is not the maximal incoming edge at 𝑣𝑘 ∈ 𝑉𝑘 with
respect to <. Then put

⎧⎪⎨⎪⎩
𝜏(𝑒)𝑗 = 𝑒𝑗 for 𝑗 > 𝑘,

𝜏(𝑒)𝑘 is the successor of 𝑒𝑗 among all incoming edges at 𝑣𝑘,
𝜏(𝑒)0 … 𝜏(𝑒)𝑘−1 is the minimal path connecting 𝑣0 with 𝒔(𝜏(𝑒)𝑘).

If no such 𝑘 exists, then 𝑒 ∈ 𝑋max
(𝑉,𝐸,<)

, and we have to choose 𝑒′ ∈ 𝑋min
(𝑉,𝐸,<)

to define 𝜏(𝑒) = 𝑒′.
For the rest of the paper, we assume that there is a unique minimal sequence 𝑒min and a unique
maximal sequence 𝑒max , so we can define 𝜏(𝑒max) = 𝑒min which makes 𝜏 into a homeomorphism.

Definition 5.9. Let (𝑉, 𝐸, <) be an ordered Bratteli diagram with unique maximal and unique
minimal paths. This diagram together with the Vershik map 𝜏 ∶ 𝑋(𝑉,𝐸,<) → 𝑋(𝑉,𝐸,<), defined as
above, is called the Bratteli–Vershik system.

5.3 Main result of the section

Recall that a sequence (𝜒𝑘)𝑘⩾1 is preperiodic if there exists 𝑘0 ⩾ 1 and 𝑝0 ⩾ 1 such that𝜒𝑘 = 𝜒𝑘+𝑝0
for all 𝑘 ⩾ 𝑘0.

Theorem 5.10. Consider the aperiodic Cantor system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋), and let  = {0, 1, … , 𝑞 − 1} be a

finite alphabet. There exists a sequence (𝜒𝑘)𝑘⩾1 of substitutions

𝜒𝑘 ∶  → ∗, 𝑖 ↦ 𝜒𝑘(𝑖),

and an ordered Bratteli diagram (𝑉, 𝐸, <) with the following properties.

(1) The sequence (𝜒𝑘)𝑘⩾1 is preperiodic.
(2) The set 𝑉0 = {𝑣0} is a singleton, and for 𝑘 ⩾ 1 the vertex set 𝑉𝑘 is identified with a nonempty

subset of.
(3) The edge set 𝐸𝑘 and the order on the subset of incoming edges for 𝑖 ∈ 𝑉𝑘 is determined by the

substitution 𝜒𝑘 .
(4) The path space 𝑋(𝑉,𝐸,<) of the diagram (𝑉, 𝐸, <) has a unique maximal and a unique minimal

path, and the Vershik map 𝜏 ∶ 𝑋(𝑉,𝐸,<) → 𝑋(𝑉,𝐸,<) is a homeomorphism.
(5) There is a homeomorphism 𝜓 ∶ (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) → (𝑋(𝑉,𝐸,<), 𝜏), such that 𝜓 ◦𝐹∗

𝜋 = 𝜏 ◦𝜓.

In the rest of this section, we prove Theorem 5.10.

5.4 First return maps

Given 𝑞 ∈ ℕ, recall that by Definition 3.2

𝑁 = min{𝑛 ∈ ℕ ∶ 2𝑛 ⩾ 𝑞} and 𝐿𝑘 = [0, 2−𝑘𝑁) for 𝑘 ⩾ 1.
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2002 BRUIN and LUKINA

Our analysis of the infinite IET 𝐹𝜋 = 𝔞 ◦𝑅𝜋 is by means of the successive first return maps to the
sections 𝐿𝑘. Denote by

𝑐𝑜𝑑
𝑘𝑁,𝑞 = {𝐼𝑘,𝑖 ∶ 0 ⩽ 𝑖 ⩽ 𝑞 − 1} (10)

the partition of 𝐿𝑘 into 𝑞 intervals of equal lengths of the partition 𝑘𝑁,𝑞 given by Definition 3.2.
Recall from the Introduction that 𝐹𝜋 = 𝔞 ◦𝑅𝜋, where 𝜋 is a permutation of 𝑞 symbols and 𝑅𝜋 ∶

𝐼 → 𝐼 is an IET with finite number of intervals of equal length, induced by 𝜋. We will prove that
for 𝑘 ⩾ 1, the return map 𝐹𝜋,𝑘 has a similar property, as described by the following proposition.

Proposition 5.11. Let𝐹𝜋,𝑘 ∶ 𝐿𝑘 → 𝐿𝑘 , 𝑘 ⩾ 1 be the first returnmaps. Then there exist permutations
𝜋𝑘 of 𝑞 symbols, and finite IETs 𝑅𝜋,𝑘 ∶ 𝐿𝑘 → 𝐿𝑘 of the partitions 𝑐𝑜𝑑

𝑘𝑁,𝑞
, defined by 𝜋𝑘 , such that

(1) 𝐹𝜋,𝑘 = 𝔞𝑘 ◦𝑅𝜋,𝑘 , where 𝔞𝑘 is a scaled copy of the von Neumann–Kakutani map 𝔞, given by

𝔞𝑘(𝑥) =
1

2𝑘𝑁
𝔞
(
2𝑘𝑁(𝑥)

)
.

(2) The sequence (𝜋𝑘)𝑘⩾1 is preperiodic.
(3) If (𝜋𝑘)𝑘⩾1 is strictly preperiodic, and 𝑆 = {𝜋1, … , 𝜋𝑘0−1} is the preperiodic part of the sequence,

then none of the permutations in 𝑆 occurs in the periodic part.

Proof. We argue by induction.
For 𝑘 = 0 we have 𝐹𝜋,0 = 𝐹𝜋, 𝑅𝜋,0 = 𝑅𝜋 and 𝔞0 = 𝔞 by definition.
For the induction step, assume that the statement of the proposition holds for 𝐹𝜋,𝑘−1. We know

that the rotated odometer map 𝐹𝜋 maps the interval 𝐻1 = 𝑅−1𝜋 ([1 − 2−𝑁, 1)) onto 𝐿1 = [0, 2−𝑁)

discontinuously. We now note that 𝐹𝜋,𝑘−1 maps the interval𝐻𝑘 ∶= 𝑅−1
𝜋,𝑘−1

([ 2
𝑁−1
2𝑘𝑁

, 2𝑁

2𝑘𝑁
)) onto 𝐿𝑘 =

[0, 1
2𝑘𝑁

) discontinuously. This follows from the fact that 𝐿𝑘−1 is subdivided into 𝑞2𝑁 intervals of
the partition 𝑘𝑁,𝑞, and the multiplication by 2(𝑘−1)𝑁 maps these intervals onto 𝑞2𝑁 intervals of
the partition 𝑁,𝑞 of 𝐼, in particular, 𝐿𝑘 onto 𝐿1 = [0, 2−𝑁) and𝐻𝑘 onto𝐻1 = 𝑅−1𝜋,1([1 − 2−𝑁, 1)).
For 𝑗 ⩾ 1, denote by 𝐶𝑗 = [1 − 2−(𝑗−1), 1 − 2−𝑗) the half-open intervals on which 𝔞 is continu-

ous.
We note that for 1 ⩽ 𝑗 ⩽ 𝑁, the intervals 𝐶𝑗 are partitioned into the intervals of 𝑁,𝑞, and so 𝔞

is continuous on the intervals of 𝑁,𝑞 contained in 𝐶1 ∪⋯ ∪ 𝐶𝑁 = 𝐼 ⧵ [1 − 2−𝑁, 1). Then 𝐹𝜋,𝑘−1
is continuous on any interval of 𝑘𝑁,𝑞 contained in 𝐿𝑘−1 ⧵ 𝐻𝑘, and maps any such interval onto
another interval of 𝑘𝑁,𝑞. The first return map 𝐹𝜋,𝑘−1 is discontinuous on the intervals of 𝑘𝑁,𝑞

contained in 𝐻𝑘.
Denote by 𝑡𝑘,𝑖 ⩾ 1 the smallest integer such that 𝐹𝑡𝑘,𝑖−1

𝜋,𝑘−1
(𝐼𝑘,𝑖) ⊂ 𝐻𝑘, 𝐼𝑘,𝑖 ∈ 𝑐𝑜𝑑

𝑘𝑁,𝑞
and define

𝑅𝜋,𝑘 ∶ 𝐿𝑘 → 𝐿𝑘, 𝐼𝑘,𝑖 ↦ 𝑅𝜋,𝑘−1 ◦𝐹
𝑡𝑘,𝑖−1

𝜋,𝑘−1
(𝐼𝑘,𝑖) + 2𝑘𝑁 − 1. (11)

Then the first return map 𝐹𝑡𝑘,𝑖
𝜋,𝑘

= 𝔞𝑘 ◦𝑅𝜋,𝑘, which proves (1).
The 𝑞 intervals in the coding partition 𝑐𝑜𝑑

𝑘𝑁,𝑞
of 𝐿𝑘 have a natural order, induced by the order

in which they cover 𝐿𝑘. The map 𝑅𝜋,𝑘 ∶ 𝐿𝑘 → 𝐿𝑘 is a permutation of the sets in 𝑐𝑜𝑑
𝑘𝑁,𝑞

, and so, it
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ROTATED ODOMETERS 2003

defines a permutation 𝜋𝑘 of 𝑞 symbols. This permutation need not be the same permutation as
𝜋; however, since the group of permutations on 𝑞 symbols is finite, either 𝜋𝑘 ≠ 𝜋𝑗 for 𝑗 > 𝑘, or
there exists a smallest index 1 ⩽ 𝑘 < 𝑗 such that 𝜋𝑘 = 𝜋𝑗 , and then 𝜋𝑘 = 𝜋𝑘+𝑠(𝑗−𝑘) for all 𝑠 ⩾ 1.
This finishes the proof of the proposition. □

5.5 Periodic points and the first return maps

Since every interval 𝐼𝑘,𝑖 in 𝑐𝑜𝑑
𝑘𝑁,𝑞

in Proposition 5.11 returns to 𝐿𝑘, and an orbit visits 𝐿𝑘 if and only

if it visits 𝐻𝑘, we have 𝐻𝑘 =
⋃𝑞−1

𝑖=0
𝐹
𝑡𝑘,𝑖−1

𝜋,𝑘−1
(𝐼𝑘,𝑖). However, the orbits of the sets in 𝑐𝑜𝑑

𝑘𝑁,𝑞
may miss

some of the intervals in the partition of 𝐿𝑘−1 into intervals of 𝑘𝑁,𝑞. Such intervals contain points
with periodic orbits.

Definition 5.12. The first return map 𝐹𝜋,𝑘 is covering if the orbits of the sets in 𝑐𝑜𝑑
𝑘𝑁,𝑞

visit every
element of 𝑘𝑁,𝑞 in 𝐿𝑘−1, that is, if

𝑞−1⋃
𝑖=0

𝑡𝑘,𝑖−1⋃
𝑡=0

𝐹𝑡
𝜋,𝑘−1(𝐼𝑘,𝑖) = 𝐿𝑘−1. (12)

The set in (12) is a disjoint union of intervals in 𝑘𝑁,𝑞, and it follows by induction that if the
first return maps 𝐹𝜋,𝑗 are covering for all 1 ⩽ 𝑗 ⩽ 𝑘, then

𝑞−1⋃
𝑖=0

ℎ𝑘,𝑖−1⋃
𝑡=0

𝐹𝑡
𝜋(𝐼𝑘,𝑖) = 𝐼, (13)

where ℎ𝑘,𝑖 is the first return time of 𝐼𝑘,𝑖 to 𝐿𝑘 under iterations of 𝐹𝜋.

Definition 5.13. The rotated odometer 𝐹𝜋 ∶ 𝐼 → 𝐼 is covering if for every 𝑘 ⩾ 1, the first return
map 𝐹𝜋,𝑘 is covering, that is, 𝐹𝜋,𝑘 satisfies (12).

Thus, if a rotated odometer 𝐹𝜋 is not covering, then for some 𝑘 ⩾ 1, the first return map 𝐹𝜋,𝑘
does not satisfy (12). Thismeans that 𝐿𝑘−1 contains subintervals which are not visited by the orbits
of the sets in 𝑐𝑜𝑑

𝑘𝑁,𝑞
under the first return map 𝐹𝜋,𝑘−1. The points contained in these subintervals

must be periodic.
As a consequence of the argument above, we deduce the following general lemma, without the

assumption that all 𝐹𝜋,𝑘 are covering.

Lemma 5.14. The set of nonperiodic points in 𝐼 satisfies

𝐼𝑛𝑝 =
⋂
𝑘⩾1

𝑞−1⋃
𝑖=0

ℎ𝑘,𝑖−1⋃
𝑗=0

𝐹𝑗
𝜋(𝐼𝑘,𝑖).

Wenow use the collection (𝐿𝑘, 𝐹𝜋,𝑘) to build a symbolic representation of the rotated odometer.
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2004 BRUIN and LUKINA

5.6 The construction of the Bratteli–Vershik system

In this section, we build an ordered Bratteli diagram (𝑉′, 𝐸′, <), determined by the sequence
(𝐿𝑘, 𝐹𝜋,𝑘) of first return maps of Section 5.4, for 𝑘 ⩾ 1. Note that (𝐿𝑘, 𝐹𝜋,𝑘) may have periodic
points, so to prove the theorem, we will have to restrict to a subdiagram of (𝑉′, 𝐸′, <), which is
described further in Section 5.7.
Recall that the interval 𝐼 is subdivided into 𝑞2(𝑘−1)𝑁 subintervals of equal length of the partition

(𝑘−1)𝑁,𝑞 of Definition 3.2, and the subinterval 𝐿𝑘−1 of 𝐼 is composed of the 𝑞 first sets of this
partition. This subset of 𝑞 sets is denoted by 𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
, see (10), to underline its special role in the

arguments. The partition 𝑐𝑜𝑑
(𝑘−1)𝑁,𝑞

serves as a coding partition for the orbits in 𝐿𝑘−1 of the sets of
the finer partition𝑐𝑜𝑑

𝑘𝑁,𝑞
, subdividing𝐿𝑘 ⊂ 𝐿𝑘−1. These codings are used to define the substitutions

𝜒𝑘 for 𝑘 ⩾ 1.
The subinterval 𝐿𝑘−1 is partitioned into 𝑞 sets of𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
, and into 𝑞2𝑁 smaller sets of the finer

partition 𝑘𝑁,𝑞. The first return map 𝐹𝜋,𝑘−1 ∶ 𝐿𝑘−1 → 𝐿𝑘−1 maps the intervals from the partition
𝑐𝑜𝑑
𝑘𝑁,𝑞

of the subset 𝐿𝑘 of 𝐿𝑘−1 onto the intervals of 𝑘𝑁,𝑞 in 𝐿𝑘−1. The latter are contained in the
intervals of 𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
which are ordered naturally from 0 to 𝑞 − 1. Thus, 𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
codes the orbits

of sets of the partition 𝑐𝑜𝑑
𝑘𝑁,𝑞

of 𝐿𝑘 in 𝐿𝑘−1. For 𝑘 ⩾ 1, we define a substitution

𝜒𝑘(𝑖) = 𝑒0 … 𝑒𝑡𝑘,𝑖−1, where 𝐹𝑡
𝜋,𝑘−1(𝐼𝑘,𝑖) ⊂ 𝐼𝑘−1,𝑒𝑡 ∈ 𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
, 0 ⩽ 𝑡 < 𝑡𝑘,𝑖 .

The substitution word 𝜒𝑘(𝑖) tracks the order of the sets of the partition 𝑐𝑜𝑑
(𝑘−1)𝑁,𝑞

of 𝐿𝑘−1 visited
by the orbit of 𝐼𝑘,𝑖 under 𝐹𝜋,𝑘−1 before returning to 𝐿𝑘. The associated matrix is given by

𝑀𝑘 = (𝑚𝑖,𝑗)
𝑞−1
𝑖,𝑗=0

𝑚𝑖,𝑗 = #{0 ⩽ 𝑡 < 𝑡𝑘,𝑖 ∶ 𝑒𝑡 = 𝑗}.

This proves item (1) of Theorem 5.10. The properties of (𝜒𝑘)𝑘⩾1 described in Theorem 5.10 follow
from item (2) in Proposition 5.11, and the fact that 𝜒𝑘 is determined by the permutation 𝜋𝑘.
The following property of the sequence (𝜒𝑘)𝑘⩾1 follows from the fact that every set 𝐼𝑘,𝑖 ,

contained in 𝐿𝑘, visits the interval𝐻𝑘 before returning to 𝐿𝑘.

Lemma 5.15. Every substitution in the sequence (𝜒𝑘)𝑘⩾1 is proper, namely, every word 𝜒𝑘(𝑖) starts
with 0, and ends with 𝑏𝑘 , depending only on 𝑘 and not on 𝑖 ∈ {0, … , 𝑞 − 1}.

We now can proceed similarly to the case of a single substitution in Section 5.1. By Lemma 5.15
the sequence

𝜌 = lim
𝑘→∞

𝜒1 ◦ ⋯ ◦𝜒𝑘(0)

is well defined (it is actually the itinerary of 0 in 𝐼). We define the 𝑆-adic subshift (𝑋𝜌, 𝜎) similarly
to Section 5.1, formula (9), and the paragraph below (9).
Since the sequence (𝜒𝑘)𝑘⩾1 is preperiodic, the properties of the corresponding subshift are effec-

tively the same as for the case of a single substitution. Namely, denote by 𝑘0 the length of the
preperiodic part of (𝜒𝑘)𝑘⩾1, and by 𝑝0 the length of one period. Then set

𝐵 = 𝑀𝑘0+𝑝0
⋅⋯⋅𝑀𝑘0+1

, (14)
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ROTATED ODOMETERS 2005

v0

...
...

...

F IGURE 5 The Bratteli diagram of 𝐹(012) with incoming edges ordered left to right.

and

𝑤 = 𝑀𝑘0
⋯𝑀1 ⋅ ℎ

(1), (15)

where ⋅ is the matrix multiplication. The stationary Bratteli diagram with associated matrix (14)
and the vector ℎ(1) = 𝑤 can be obtained from the diagram (𝑉, 𝐸, <) by telescoping.
We now adapt the procedure of Example 5.6 to the case of a sequence of substitutions (𝜒𝑘)𝑘⩾1.
Set 𝑉′

0 = {𝑣0} and 𝑉′
𝑘
= {0, … , 𝑞 − 1} for 𝑘 ⩾ 1, so the vertices in 𝑉′

𝑘
correspond to the sets in

𝑐𝑜𝑑
(𝑘−1)𝑁,𝑞

for 𝑘 ⩾ 1. Define the set 𝐸′
𝑘
of edges from 𝑉′

𝑘
, and the order on the edges, using the

substitution 𝜒𝑘 as in Example 5.6. Then the number of incoming edges to 𝑖 ∈ 𝑉′
𝑘+1

is equal to|𝜒𝑘(𝑖)| = 𝑡𝑘,𝑖 .

Example 5.16. Let 𝑞 = 3 and 𝜋 = (012), then 𝑅𝜋 is the rotation over 1∕3. The first return map
𝐹𝜋,1 corresponds to the following substitution and associated matrix𝑀1:

𝜒1 ∶

⎧⎪⎨⎪⎩
0 → 0221

1 → 0221

2 → 0011

𝑀1 =
⎛⎜⎜⎝
1 1 2
1 1 2
2 2 0

⎞⎟⎟⎠ .
Since 𝐹𝜋,1 is conjugate to 𝐹𝜋, we find that 𝜒𝑘 = 𝜒1 and 𝑀𝑘 = 𝑀1 for all 𝑘 ⩾ 1, generating a
substitution shift (𝑋𝜌, 𝜎), where 𝑋𝜌 is the shift-orbit closure of the fixed point

𝜌 = 0 ⋅ 221 ⋅ 001100110221 ⋅ 0221001100110221…

of the substitution 𝜒1. The corresponding Bratteli diagram is given in Figure 5.

Reinterpreting Definition 5.12, we can say that 𝜒𝑘 is covering if
∑𝑞−1

𝑖=0
|𝜒𝑘(𝑖)| = 𝑞2𝑁 , where|𝜒𝑘(𝑖)| denotes the length of the word 𝜒𝑘(𝑖). We also obtain an alternative expression for the

number of paths from the root 𝑣0 to 𝑖 ∈ 𝑉𝑘, namely, ℎ
(𝑘)
𝑖

= |𝜒1 ◦ … ◦𝜒𝑘−1(𝑖)|.
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2006 BRUIN and LUKINA

Remark 5.17. It is useful to point out that the notions of primitive and covering do not imply each
other. In Example 5.21 below, 𝜒1 is primitive but not covering, whereas in Example 7.1 for every
𝜒𝑘 = 𝜒1, 𝑘 ⩾ 1, the substitution is covering but not primitive.

Lemma 5.18. The ordered Bratteli diagram (𝑉′, 𝐸′, <) constructed above has a unique minimal
and unique maximal path, and so the Vershik map 𝜏′ ∶ 𝑋(𝑉′,𝐸′,<) → 𝑋(𝑉′,𝐸′,<), constructed as in
Section 5.2, is a homeomorphism.

Proof. By Lemma 5.15, 𝑒min = 0∞ is the unique minimal path, and the maximal path is 𝑒max =
𝑏1𝑏2𝑏3 … , where 𝑏𝑘 is the last letter of any word of the substitution 𝜒𝑘. □

5.7 Conjugacy to the rotated odometer

In this section, we show that the aperiodic system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is conjugate to a subsystem of the

Bratteli–Vershik system (𝑋(𝑉′,𝐸′,<), 𝜏
′), constructed in Section 5.6.

Theorem 5.19. Consider the ordered Bratteli diagram (𝑉′, 𝐸′, <) and the Bratteli–Vershik system
(𝑋(𝑉′,𝐸′,<), 𝜏

′), constructed in Section 5.6. There exists a subdiagram (𝑉, 𝐸, <) of (𝑉′, 𝐸′, <)with asso-
ciated Bratteli–Vershik system (𝑋(𝑉,𝐸,<), 𝜏), such that there is a homeomorphism𝜓 ∶ 𝐼∗𝑛𝑝 → 𝑋(𝑉,𝐸,<),
which satisfies 𝜓 ◦𝐹∗

𝜋(𝑥) = 𝜏 ◦𝜓(𝑥) for all 𝑥 ∈ 𝐼∗𝑛𝑝.

Proof. Consider the sequence of first return maps (𝐿𝑘, 𝐹𝜋,𝑘), 𝑘 ⩾ 1. Recall that for 𝑘 ⩾ 1, the
interval 𝐿𝑘 has a partition 𝑐𝑜𝑑

𝑘𝑁,𝑞
= {𝐼𝑘,𝑖 ∶ 0 ⩽ 𝑖 ⩽ 𝑞 − 1} into 𝑞 sets, and |𝑉′

𝑘
| = |𝑐𝑜𝑑

(𝑘−1)𝑁,𝑞
| = 𝑞.

Let 𝑉0 = 𝑉′
0, and for 𝑘 ⩾ 1 let 𝑖 ∈ 𝑉𝑘 if and only if 𝐼𝑘−1,𝑖 ∩ 𝐼𝑛𝑝 ≠ ∅. Let 𝑒 ∈ 𝐸𝑘 if and only if

𝐬(𝑒) ∈ 𝑉𝑘 and 𝐭(𝑒) ∈ 𝑉𝑘+1 for some 𝑘 ⩾ 0. Give the edges in 𝐸 =
⨆

𝑘⩾0 𝐸𝑘 the order which is the
restriction of the order in 𝐸′. Let 𝑋(𝑉,𝐸,<) be the path space of the subdiagram with vertex set
𝑉 =

⨆
𝑘⩾0 𝑉𝑘 and edge set 𝐸. Then the Vershik map 𝜏′ on 𝑋(𝑉′,𝐸′,<) induces the Vershik map 𝜏

on 𝑋(𝑉,𝐸,<). More precisely, for the paths 𝑒, 𝑒′ ∈ 𝑋(𝑉,𝐸,<), we have 𝜏(𝑒) = 𝑒′ if and only if there is
𝑛 ⩾ 1 such that (𝜏′)𝑛(𝑒) = 𝑒′ in 𝑋(𝑉′,𝐸′,<) and (𝜏′)𝑚(𝑒) ∉ 𝑋(𝑉,𝐸,<) for 1 ⩽ 𝑚 < 𝑛.
We now define the map 𝜓 ∶ 𝐼𝑛𝑝 → 𝑋(𝑉,𝐸,<) as follows: For 𝑥 ∈ 𝐼𝑛𝑝 and 𝑘 ⩾ 1, there is a unique

𝑖𝑘(𝑥) ∈ {0, … , 𝑞 − 1} such that 𝐹𝑗
𝜋(𝐼𝑘−1,𝑖𝑘(𝑥)) ∋ 𝑥 for some 0 ⩽ 𝑗 < ℎ𝑘,𝑖𝑘(𝑥). Then 𝑖(𝑥) ∶= (𝑖𝑘(𝑥))𝑘⩾0

is the sequence of vertices in the Bratteli–Vershik diagram corresponding to 𝜓(𝑥), where 𝑖0(𝑥) is
the root of the diagram.
We determine the sequence of edges (𝑒𝑘(𝑥))𝑘⩾0 inductively. There is a single edge to

each 𝑖1(𝑥) ∈ 𝑉1 from 𝑣0, so 𝑒0(𝑥) is determined. Next, there is a unique 0 ⩽ 𝑗1 < |𝜒1(𝑖2(𝑥))|
such that 𝑥 ∈ 𝐹

𝑗1
𝜋 (𝐼1,𝑖2(𝑥)), so we take 𝑒1(𝑥) to be the 𝑗1th incoming edge to 𝑖2(𝑥) ∈ 𝑉2. If

𝑒0(𝑥), … , 𝑒𝑘−1(𝑥), and so 𝑗1, … , 𝑗𝑘−1, are determined, there is a unique 0 ⩽ 𝑗𝑘 < |𝜒𝑘(𝑖𝑘+1(𝑥))|
such that 𝐹𝑗1

𝜋,1 ◦𝐹
𝑗2
𝜋,2 ◦ … ◦𝐹𝑗𝑘

𝜋,𝑘
(𝐼𝑘,𝑖𝑘+1(𝑥)) ∋ 𝑥, and we take 𝑒𝑘 to be the 𝑗𝑘th incoming edge to

𝑖𝑘+1(𝑥) ∈ 𝑉𝑘+1. This defines 𝜓(𝑥) = (𝑒𝑘)𝑘⩾0. We then extend 𝜓 from 𝐼𝑛𝑝 to 𝐼∗𝑛𝑝 by setting 𝜓(𝑥) =
lim𝑛→∞ 𝜓(𝑥𝑛), whenever (𝑥𝑛)𝑛∈ℕ is a sequence in 𝐼𝑛𝑝 converging from the left to 𝑥 ∈ 𝐼∗𝑛𝑝 ⧵ 𝐼𝑛𝑝.
Then 𝜓 is a continuous surjective map. Injectivity follows from the fact that the lengths of the sets
in the partitions 𝑘𝑁,𝑞 tend to zero with 𝑘, and so, the orbits of any two distinct points eventually
visit distinct sets of the coding partitions 𝑐𝑜𝑑

𝑘𝑁,𝑞
.

By construction 𝜓(𝑥−), where 𝑥− is defined in (6), is the maximal path of both 𝑋(𝑉,𝐸,<) and
𝑋(𝑉′,𝐸′,<), while 𝜓(0) is the minimal path in both diagrams. We have 𝐹∗

𝜋(𝑥
−) = 0, and, since edges
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ROTATED ODOMETERS 2007

in 𝐸 are ordered according to the order of symbols in the substitutions (𝜒𝑘)𝑘⩾1, it follows that
𝜓 ◦𝐹∗

𝜋 = 𝜏 ◦𝜓. □

We now give examples which illustrate that the set of periodic points 𝐼𝑝𝑒𝑟 may be nonempty,
and so restricting to a subdiagram in Theorem 5.19 may be necessary.

Example 5.20. Let 𝑞 = 7 and 𝜋 = (0654321). Then:

𝜋 → 𝜋1 Substitution𝜒1 Associated Matrix

(0654321) → (0654321)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 → 01461360
∑6

𝑖=0 |𝜒1(𝑖)| = 14

1 → 0

2 → 0

3 → 0

4 → 0

5 → 0

6 → 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0 1 1 0 2

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The substitution 𝜒1 is not covering, because

∑6
𝑖=0 |𝜒1(𝑖)| = 14 while 𝑞2𝑁 = 7 ∗ 23 = 56. Since

𝜋 = 𝜋1 = 𝜋𝑘 for 𝑘 ⩾ 1, every section 𝐿𝑘 contains a subinterval of periodic points, and 𝐼𝑝𝑒𝑟 is a
countable union of intervals.
Since the symbols 2 and 5 do not appear in any of the words 𝜒1(𝑖), 𝑖 = 0, … , 6, in the Bratteli

diagram (𝑉′, 𝐸′, <), constructed in Section 5.6, the vertices 2 and 5 do not have outgoing edges.
Following the construction in Theorem 5.19, we remove the vertices 2 and 5 and the corresponding
rows and columns in the associatedmatrix. The Vershikmap on the path space of the subdiagram
(𝑉, 𝐸, <)we obtain is conjugate to the aperiodic subsystem (𝐼∗𝑛𝑝, 𝐹

∗
𝜋), and the subdiagram satisfies

all the assumptions listed in the paragraph after Definition 5.4.

Example 5.21. Let 𝑞 = 5 and 𝜋 = (02413). Then:

𝜋 → 𝜋1 Substitution𝜒1 Associated Matrix

(02413) → (01234)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 → 044332
∑4

𝑖=0 |𝜒1(𝑖)| = 30

1 → 044332

2 → 044332

3 → 044332

4 → 012012

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 2 2

1 0 1 2 2

1 0 1 2 2

1 0 1 2 2

2 2 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
The substitution 𝜒1 is not covering, because

∑4
𝑖=0 |𝜒1(𝑖)| = 30 while 𝑞2𝑁 = 5 ∗ 23 = 40. How-

ever, for the first return system (𝐿1, 𝐹𝜋,1), the map 𝐹𝜋,1 = 𝐹𝜋1 is determined by the substitution
𝜋1 = (01234), which is studied in detail in Example 7.1 and Proposition 8.5. The associated
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2008 BRUIN and LUKINA

substitution 𝜒2 is covering, and we have 𝜒𝑘 = 𝜒2 for 𝑘 ⩾ 2. Therefore, for 𝑘 ⩾ 2 the first return
systems (𝐿𝑘, 𝐹𝜋,𝑘) have no periodic points, and 𝐼𝑝𝑒𝑟 is a finite union of intervals. Although we do
not need to reduce to a subdiagram in this example, the system still has periodic points.

Since by Theorem 1.2, the system (𝐼𝑛𝑝, 𝐹𝜋) has a unique minimal subsystem, then (𝐼∗𝑛𝑝, 𝐹
∗
𝜋)

also has a uniqueminimal set (𝐼∗min, 𝐹
∗
𝜋). The set 𝐼

∗
min corresponds to a simple subdiagram (𝑉, 𝐸) of

(𝑉, 𝐸)with associated Bratteli–Vershik system (𝑋(𝑉,𝐸,<), 𝜏̂), where 𝜏̂ is a restriction of 𝜏 to𝑋(𝑉,𝐸,<).
We now can prove Theorem 1.6 as a consequence of Theorem 5.10.

Proof of Theorem 1.6. Since the number of vertices at each level of the subdiagram (𝑉, 𝐸, <) is
bounded by 𝑞, by [2, Theorem 4.3] (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) has at most 𝑞 ergodic measures. The minimal system

(𝐼∗min, 𝐹
∗
𝜋) corresponds to a primitive eventually stationary subdiagram of (𝑉, 𝐸, <), and according

to [14, Theorem 1 and Proposition 16], it is isomorphic to a primitive substitution shift (see the
example of Proposition 8.6) or to an adding machine (e.g., most other examples in this paper),
depending on whether it is expansive or not. It is well known that both of these are minimal and
uniquely ergodic; see, for example, [29] and [28] (or [12] for a proof via linear recurrence). □

6 ENTROPY OF ROTATED ODOMETERS

In this section, we prove Theorem 1.5. For this we use the formula for the upper bound for entropy
of an infinite IET from [10], as well as the conjugacy of the aperiodic system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) to a Bratteli–

Vershik system obtained in Theorem 5.10.
Let ℎ(𝐼, 𝑆, 𝜆) denote the entropy of the dynamical system (𝐼, 𝑆) on an interval 𝐼 = [0, 1) with

respect to Lebesgue measure 𝜆.

Theorem 6.1 [10]. Let 𝑆 ∶ 𝐼 → 𝐼 be any infinite IET, and let 𝓁1 ⩾ 𝓁2 ⩾ 𝓁3 ⩾ … be the lengths of the
subintervals on which 𝑆 is continuous. For𝑚 ⩾ 1 define Λ𝑚 =

∑∞
𝑖=1 𝓁𝑚+𝑖 . Then

ℎ(𝐼, 𝑆, 𝜆) ⩽ lim inf
𝑚→∞

Λ𝑚 ⋅ log𝑚.

Proposition 6.2. Let 𝜋 be a permutation on 𝑞 ⩾ 2 symbols, and let (𝐼, 𝐹𝜋, 𝜆) be a rotated odometer.
Then ℎ(𝐼, 𝐹𝜋, 𝜆) = 0.

Proof. Recall that 𝑁 = min{𝑛 ∈ ℕ ∶ 2𝑛 ⩾ 𝑞} and consider the partitions 𝑘𝑁,𝑞 of 𝐼 given by Def-
inition 3.2. Define 𝐽𝑘 = 𝑅−1𝜋 ([1 − 2−𝑘𝑁, 1)), and consider the complement of 𝐽𝑘 in 𝐽𝑘−1, 𝑘 ⩾ 1,
with 𝐽0 = 𝐼. The complement 𝐽𝑘−1 ⧵ 𝐽𝑘 is the union of (2𝑁 − 1)𝑞 intervals of 𝑘𝑁,𝑞, and we set
𝑚𝑘 = 𝑘(2𝑁 − 1)𝑞. The sum of the lengths of the intervals on which 𝐹𝜋 is continuous, starting
from the𝑚𝑘 + 1st interval, is equal to the length of 𝐽𝑘, so Λ𝑚𝑘

= 2−𝑘𝑁 . Then

Λ𝑚𝑘
log𝑚𝑘 = 2−𝑘𝑁 log

(
𝑘(2𝑁 − 1)𝑞

)
=

log 𝑘 + log((2𝑁 − 1)𝑞)

2𝑘𝑁
.

As 𝑞 and 𝑁 are fixed, Λ𝑚𝑘
log𝑚𝑘 → 0 as 𝑘 → ∞, and the statement follows. □
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ROTATED ODOMETERS 2009

Proof of Theorem 1.5. By Theorem 5.10, the aperiodic system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) of the rotated odometer

is conjugate to a Bratteli–Vershik system representing an eventually periodic 𝑆-adic transforma-
tion. Every ergodic invariantmeasure of such 𝑆-adic transformations, just like for any substitution
shift, has zero entropy. Since by Proposition 6.2, Lebesgue measure also has zero entropy (and
naturally all equidistributions on periodic orbits, if there are any, have zero entropy), then every
measure has zero entropy. By the variational principle, (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) and hence (𝐼∗, 𝐹∗

𝜋) has zero
topological entropy, and because (𝐼, 𝐹𝜋) is a factor of (𝐼∗, 𝐹∗

𝜋), it has zero topological entropy
too. □

7 ERGODICITY OF LEBESGUEMEASURE

In this section we prove Theorem 1.4, that is, we show that Lebesgue measure 𝜆 on 𝐼 = [0, 1) is
ergodic if and only if the rotated odometer (𝐼, 𝐹𝜋) has no periodic points.
Our argument is based on the discussion of the covering property of the rotated odometer,

defined in Definition 5.13. To recall, let (𝐼, 𝐹𝜋) be a rotated odometer, and (𝜒𝑘)𝑘⩾1 be the sequence
of substitutions given by Theorem 5.10. The integer𝑁, the sections 𝐿𝑘, and the partitions 𝑘𝑁,𝑞 of
𝐼 into 𝑞2𝑘𝑁 subintervals, for 𝑘 ⩾ 1, used in the arguments below, were defined in Definition 3.2.
Recall from Definition 5.13 that 𝐹𝜋 is covering if for all 𝑘 ⩾ 1, we have

∑𝑞−1
𝑖=0

|𝜒𝑘(𝑖)| = 𝑞2𝑁 and
so, as in (12),

𝑞−1⋃
𝑖=0

|𝜒𝑘(𝑖)|−1⋃
𝑗=0

𝐹𝑗
𝜋,𝑘−1

([
𝑖

𝑞2𝑘𝑁
,
𝑖 + 1

𝑞2𝑘𝑁

))
=

[
0,

1

2(𝑘−1)𝑁

)
= 𝐿𝑘−1. (16)

We will see below that if the rotated odometer is covering, then Lebesgue measure is ergodic, and
therefore a.e. orbit (although not necessarily every) is dense in 𝐼.
On the other hand, if (16) fails for some 𝑘, then there is a half-open subinterval of 𝐼 that is not

visited by the orbit of any𝑥 ∈ [0, 1
2𝑘𝑁

), for 𝑘 sufficiently large. Since all aperiodic orbits accumulate
at 0, this shows that no orbit is dense in 𝐼.Wehave seen in Theorem 1.5 that theminimal subsystem
(𝐼∗min, 𝐹

∗
𝜋) is strictly ergodic, and therefore, every orbit is dense in 𝐼∗min, but this does not need to

hold for 𝐼∗𝑛𝑝.

Example 7.1. Let 𝑞 = 5 and 𝜋 = (01234). Applying the algorithm of Section 5.6, we obtain:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix

(01234) → (01234)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 → 03
∑4

𝑖=0 |𝜒1(𝑖)| = 𝑞2𝑁 = 40

1 → 03

2 → 03

3 → 03

4 → 04222111431431430420420422211143

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

4 8 8 4 8

⎞⎟⎟⎟⎟⎟⎟⎠
The sequence (𝜒𝑘)𝑘⩾1 is constant with 𝜒𝑘 = 𝜒1 for 𝑘 ⩾ 1, see also Proposition 8.5 for further

properties of this example. The substitution 𝜒1 is not primitive because 4 does not occur in 𝜒1(𝑖),
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2010 BRUIN and LUKINA

𝑖 = 0, … , 3, and the minimal system (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) is easily seen to be the dyadic odometer. Note also

that since 𝜒1 is covering, there is a dense orbit by Theorem 1.4, and also 𝑋(𝑉,𝐸,<) = 𝑋(𝑉′,𝐸′,<).
However, not every orbit is forward recurrent. Indeed, consider the path𝑥 ∈ 𝑋(𝑉,𝐸,<)which passes
through vertices labeled (4, 4, 4, … ), and where each edge is the maximal incoming edge from 4
to 4. The orbit of the path 𝑥 is not recurrent under the forward iterations of the Vershik map 𝜏.
Indeed, as soon as the orbit of 𝑥 moves away from the maximal edge 𝑒1 from 4 to 4 at level 𝑘 to
an edge 𝑒2 joining 3 and 4, it never returns to 𝑒1, and therefore, to the cylinder set corresponding
to the part of the path 𝑥 from the root 𝑣0 to the vertex labeled by 4 at level 𝑘. Hence, the orbit of
𝑥 converges to the minimal Cantor subset of 𝑋(𝑉,𝐸,<) corresponding to 𝐼∗𝑚𝑖𝑛

in forward time; its
backward orbit, however, is dense in 𝑋(𝑉,𝐸,<).

A stationary Bratteli–Vershik system (𝑋(𝑉,𝐸,<), 𝜏) with primitive associated matrix is minimal,
see, for instance, [31]. The statement below concerns the rotated odometer (𝐼, 𝐹𝜋) which may
have periodic points, and for which the sequence of substitutions (𝜒𝑘)𝑘⩾1 is preperiodic, but not
necessarily stationary.

Lemma 7.2. Let 𝜋 be a permutation of 𝑞 ⩾ 2 symbols, and let (𝐼, 𝐹𝜋) be a rotated odometer. Let
(𝜒𝑘)𝑘⩾1 be the associated sequence of substitutions given by Theorem 5.10. If the matrix associated to
the periodic part of (𝜒𝑘)𝑘⩾1 is primitive, then every point in [0,1) is recurrent under 𝐹𝜋 .

Proof. Consider the partitions 𝑘𝑁,𝑞, given by Definition 3.2, and the sets 𝐼𝑘,𝑖 = [ 𝑖
𝑞2𝑘𝑁

, 𝑖+1
𝑞2𝑘𝑁

) for
0 ⩽ 𝑖 < 𝑞 − 1, of these partitions, which subdivide the sections 𝐿𝑘, 𝑘 ⩾ 1. Applying (16), for each
𝑘 and 𝑖, there is a positive integer ℎ𝑘,𝑖 ∈ ℕ such that 𝐹ℎ𝑘,𝑖

𝜋 (𝐼𝑘,𝑖) ⊂ [0, 1
2𝑘𝑁

), and ℎ𝑘,𝑖 is the smallest
positive integer with this property. These numbers are, in fact, the heights of the Bratteli diagram,
introduced in Definition 5.8, see Section 5.6. Define

𝑈𝑘 ∶=
𝑞−1⋃
𝑖=0

ℎ𝑘,𝑖−1⋃
𝑗=0

𝐹𝑗
𝜋(𝐼𝑘,𝑖), 𝑈 =

⋂
𝑘⩾1

𝑈𝑘.

If the substitution 𝜒𝑘 is not covering for some 𝑘 ⩾ 1, then there are intervals [ 𝑙
𝑞2𝑘𝑁

, 𝑙+1
𝑞2𝑘𝑁

) disjoint
from 𝑈𝑘, for some 0 ⩽ 𝑙 ⩽ 𝑞2𝑘𝑁 − 1. Points in such intervals have orbits not accumulating on 0,
and therefore by Proposition 3.4, they are periodic, and in particular recurrent. Hence it remains
to consider points in 𝑈.
By construction𝑈 contains only nonperiodic orbits, and so, there is an embedding 𝜄 ∶ 𝑈 → 𝐼∗𝑛𝑝.

Let 𝑥 ∈ 𝑈. Since 0 is recurrent, we only have to consider 𝑥 > 0.
Let 𝜀 ∈ (0, 𝑥) be arbitrary and take 𝑘0 so large that 1∕(𝑞2𝑘0𝑁) < 𝜀. Because 𝑥 ∈ 𝑈𝑘0

, there is
𝑚 ⩾ 1 and 𝑖 ∈ {0, … , 𝑞 − 1} such that𝐹𝑚

𝜋 maps 𝐼𝑘0,𝑖 onto an interval of length 1∕(𝑞2
𝑘0𝑁) containing

𝑥.
Due to primitivity, we can find 𝑘1 > 𝑘0 such that for each 𝑗 ∈ {0, … , 𝑞 − 1}, the word

𝜒𝑘0+1
◦ ⋯ ◦𝜒𝑘1

(𝑗) contains 𝑖. Hence, there is 𝑛𝑗 ⩾ 0 such that 𝐹𝑛𝑗 (𝐼𝑘1,𝑗) ⊂ 𝐼𝑘0,𝑖 . Now by Proposi-
tion 3.4, orb(𝑥) accumulates on 0, so there is 𝑚′ ⩾ 1 such that 𝐹𝑚′

𝜋 (𝑥) ∈ 𝐿𝑘1 , and in particular,
𝐹𝑚′

𝜋 (𝑥) ∈ 𝐼𝑘1,𝑗 for some 𝑗 ∈ {0, … , 𝑞 − 1}. Thus, 𝑥 returns to an 𝜀-neighborhood of itself after
𝑚′ + 𝑛𝑗 + 𝑚 iterates. □
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ROTATED ODOMETERS 2011

Proof of Theorem 1.4. We note that the system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) has no periodic points if and only if it

is covering in the sense of Definition 5.13. If there are periodic points, then Lebesgue measure is
not ergodic.
Assume that (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is covering. Let 𝐵 be the transition matrix associated to the periodic part

of the sequence (𝜒𝑘)𝑘⩾1, that is, 𝐵 is the product of the matrices associated to the substitutions 𝜒𝑘

in one period of the sequence, see (14). Recall that (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) has a unique minimal set. Then by

renaming the symbols {0, … , 𝑞 − 1} and telescoping, we can put 𝐵 into the standard block-matrix
(Frobenius) form used in [2, 3]:

𝐵 =

⎛⎜⎜⎜⎜⎜⎝

𝐹1 0 … 0

𝑋2,1 𝐹2 … 0

⋮ ⋱ ⋮

𝑋𝑡,1 𝑋𝑡,2 … 𝐹𝑡

⎞⎟⎟⎟⎟⎟⎠
, (17)

where every nonzero submatrix 𝐹𝑖 is primitive, and for every 2 ⩽ 𝑖 ⩽ 𝑡, at least one of 𝑋𝑖,𝑗 is a
nonzero matrix.
For each of nonzero diagonal blocks 𝐹𝑖 (say of size 𝑑𝑖 × 𝑑𝑖), there is one ergodic measure

𝜇𝑖 , namely, provided that the leading eigenvalue of 𝐹𝑖 is greater than 1, and the associated left
eigenvector of 𝐵 can be chosen to be nonnegative, see [3, Section 3]. There are no other ergodic
measures. Note that 𝐹𝑡 is nonzero, since otherwise the symbol 𝑞 − 1 does not occur in any
substitution words, which contradicts the fact that (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is covering. Thus, 𝜇𝑡 is nonzero.

Denote also by 𝜇𝑖 the ergodic measures lifted along the inclusion 𝜄 ∶ 𝐼 → 𝐼∗ to (𝐼, 𝐹𝜋). By the
ergodic decomposition, Lebesgue measure 𝜆 =

∑𝑡
𝑖=1 𝑎𝑖 𝜇𝑖 for some choice of 𝑎𝑖 ∈ [0, 1]. But for

all 𝑖 < 𝑡, the substitution associated to the first 𝐷 =
∑

𝑗⩽𝑖 𝑑𝑗 symbols leaves out the remaining
symbols, and hence cannot be covering. This means that 𝜇𝑖 is supported on a Cantor set of Haus-
dorff dimension 0 ⩽

log𝐷
log 𝑞

< 1, and hence, 𝜇𝑖 is not absolutely continuouswith respect to Lebesgue
measure. This, in turn, means that 𝑎𝑖 = 0 for 𝑖 < 𝑡, so 𝜆 = 𝜇𝑡 is ergodic. □

Example 7.3. Consider again the rotated odometerwith 𝑞 = 5 and𝜋 = (01234) fromExample 7.1.
The system of substitutions (𝜒𝑘)𝑘⩾1 is constant. Interchanging the labels for the symbols 1 and 3,
we obtain the matrix 𝐵 in the form (17), namely,

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

4 4 8 8 8

⎞⎟⎟⎟⎟⎟⎟⎠
with three blocks 𝐹1 =

(
1 1
1 1

)
, 𝐹2 =

(
0 0
0 0

)
, 𝐹3 = (8),

so we expect two ergodicmeasures. Following the algorithm in [3] and computing the eigenvalues
and the left eigenvectors of 𝐵, we obtain an eigenvalue 𝜆1 = 2with nonnegative eigenvector 𝑣𝓁1 =
(1, 1, 0, 0, 0), and 𝜆2 = 8 with eigenvector 𝑣𝓁2 = (1, 1, 1, 1, 1). The first eigenvalue corresponds to
the ergodic measure 𝜇1 supported on theminimal set 𝐼∗𝑚𝑖𝑛

, and the second to the ergodic measure
𝜇2 supported on 𝐼∗𝑛𝑝 = 𝐼∗. By Theorem 1.4, 𝜇2 lifts to Lebesgue measure on 𝐼 and, in particular,
(𝐼, 𝐹𝜋) has dense orbits.
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2012 BRUIN and LUKINA

The question whether the aperiodic part (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) of the rotated odometer always has a dense

forward orbit, without the assumption that the Bratteli–Vershik system is simple, remains open.
The following sample substitutions illustrate why it is hard to answer this question.

𝜒 ∶

⎧⎪⎨⎪⎩
0 → 01

1 → 01

2 → 021

with 𝐵 =

⎛⎜⎜⎜⎝
1 1 0

1 1 0

1 1 1

⎞⎟⎟⎟⎠ or 𝜒 ∶

⎧⎪⎪⎨⎪⎪⎩

0 → 01

1 → 01

2 → 0221

3 → 0331

with 𝐵 =

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0

1 1 0 0

1 1 2 0

1 1 0 2

⎞⎟⎟⎟⎟⎟⎠
.

Both substitutions are not primitive, and the first gives an isolated path passing through the ver-
tices (2, 2, 2, … ) in the Bratteli–Vershik diagram. Since for the rotated odometer systems, 𝐼∗𝑛𝑝 is a
Cantor set, this substitution cannot occur in rotated odometers. However, for the second substi-
tution, the path space is a Cantor set and every path in the Bratteli diagram is recurrent under the
Vershik map, but since symbols 2 and 3 do not communicate, there is no dense orbit.

8 EQUICONTINUOUS FACTORS OF ROTATED ODOMETERS

In this section, we prove Theorems 1.7 and 1.8. More precisely, with the aim of classifying the
dynamical systems (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) and more specifically (𝐼

∗
min, 𝐹

∗
𝜋) up to isomorphism, we consider the

spectrum of the Koopman operator 𝑈𝐹𝜋
g = g ◦𝐹𝜋, where g ∶ 𝐼 → ℝ is a measurable function.

The theory of eigenvalues of the Koopman operator of Bratteli–Vershik systems was developed in
multiple papers, see, for instance, [3, 9, 15, 16, 33].

8.1 Stationary diagrams

First let us assume that the sequence (𝜒𝑘)𝑘⩾1 is constant, that is, for all 𝑘 ⩾ 1, we have 𝜒𝑘 = 𝜒1.
Then the corresponding Bratteli–Vershik system is stationary with associated matrix 𝐵. Denote
ℎ(1) = (1, 1, … , 1)𝑇 , and consider the sequence of integer vectors

ℎ(𝑛+1) = 𝐵𝑛 ⋅ ℎ(1). (18)

Then the component ℎ(𝑛)
𝑗
, 0 ⩽ 𝑗 ⩽ 𝑞 − 1, is equal to the number of paths in the Bratteli diagram

from 𝑣0 to the 𝑗th vertex of 𝑉𝑛, or, equivalently, to the height of the 𝑗th stack at level 𝑛 in the
cutting-and-stacking representation of the system.
Consider the Bratteli–Vershik system (𝑋(𝑉,𝐸,<), 𝜏̂), which corresponds to a simple subdiagram

of the diagram (𝑉, 𝐸, <), and which is conjugate to (𝐼∗min, 𝐹
∗
𝜋). For simplicity, assume that 𝐵 is

in the Frobenius form. Then the submatrix 𝐹1 of 𝐵 is primitive. Since all our Bratteli diagrams
are eventually stationary, we can use Host’s results [22] (see also [33]) on substitution shifts to
obtain a condition for the eigenvalues of the Koopman operator, expressed in the language of the
Bratteli–Vershik systems in Theorem 8.1 below.
We say that 𝜁 is ameasurable (respectively, continuous) eigenvalue of the Koopman operator, if

the corresponding eigenfunction is measurable (respectively, continuous).
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ROTATED ODOMETERS 2013

Theorem 8.1. The number 𝜁 = 𝑒2𝜋𝑖𝛼 is an eigenvalue of the simple Bratteli–Vershik system
(𝑋(𝑉,𝐸,<), 𝜏̂) if and only if

lim
𝑛→∞

𝜁ℎ
(𝑛)
𝑖 = 1, for 𝑖 = 0, … , 𝑞 − 1, (19)

where 𝑞 = #𝑉𝑘 , 𝑘 ⩾ 1, and the corresponding eigenfunction is continuous.

For the rational eigenvalues of the Koopman operator, we have the following.

Lemma 8.2 [15, Proposition 2]. Let 𝑘∕𝑑 ∈ ℚ. Then 𝑒2𝜋𝑖𝑘∕𝑑 is a continuous eigenvalue of the sim-
ple Bratteli–Vershik system (𝑋(𝑉,𝐸,<), 𝜏̂) if and only if 𝑑 divides ℎ(𝑛)

𝑖
for all 0 ⩽ 𝑖 ⩽ 𝑞 − 1 and all

sufficiently large 𝑛.

Thus, the rational spectrumof theKoopman operator of a Bratteli diagram consists of two parts:
the eigenvalues 𝜁 = 𝑒2𝜋𝑖𝛼, where 𝛼 is a common divisor of the eigenvalues of the matrix 𝐵, and so
determined by the matrix 𝐵, and the combinatorial eigenvalues which depend on the decompo-
sition of ℎ(1) over the basis of right eigenvectors of 𝐵. We present examples of both types in this
section.

Example 8.3. Consider a Bratteli diagram where for 𝑘 ⩾ 0, the vertex set 𝑉𝑘 consists of a single
vertex, and the edge set 𝐸𝑘 consists of two edges, ordered from 0 to 1. The space path of this
diagram can be identified with the space of infinite sequences Ω = {0, 1}ℕ, and there are unique
minimal and maximal paths, consisting only of 0’s and 1’s, respectively. It is well known that
the von Neumann–Kakutani map (𝐼, 𝔞) is measurably isomorphic to the dynamical system on Ω
induced by the Vershik map of the diagram, so we denote the induced map on Ω also by 𝔞. The
system (Ω, 𝔞) is called the dyadic odometer.
The matrix associated to this Bratteli diagram is the matrix

𝐵 =

(
1 1
1 1

)
with eigenvalues 0 and 2. (20)

Thus the rational spectrum of the Koopman operator for (Ω, 𝔞) consists of continuous eigenvalues
{𝑒2𝜋𝑖𝑝∕2

𝑛
∣ 𝑝, 𝑛 ⩾ 1}.

It is also well known that every (not necessarily minimal) dynamical systems has an equicon-
tinuous factor, see, for instance, [1, Chapter 9]. Recall, for instance, from [16] that if 𝜓 ∶ (𝑌, g) →
(𝑋, 𝑓) is a factormap of dynamical systems, then (continuous) eigenvalues of the Koopman opera-
tor of (𝑋, 𝑓)must be contained in the set of (continuous) eigenvalues of (𝑌, g). Thus, the aperiodic
system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) (respectively, its minimal subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋)) of the rotated odometer factors
onto the dyadic odometer (Ω, 𝔞) if and only if the rational spectrum of the Koopman operator of
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋) (respectively, of its minimal subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋)) contains the set {𝑒
2𝜋𝑖𝑝∕2𝑛 ∣ 𝑝, 𝑛 ⩾ 1},

see [16, Lemma 1.6.1].

8.2 Eventually stationary diagrams

Recall that the sequence of substitutions (𝜒𝑘)𝑘⩾1, associated to the first return maps (𝐿𝑘, 𝐹𝜋,𝑘) in
Theorem 5.10, is preperiodic. For preperiodic systems with nontrivial preperiodic part, the theory
described in Section 8.1 holds with 𝐵 and ℎ(1) in (14) and (15).
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2014 BRUIN and LUKINA

The preperiodic part represented by 𝑀𝑘0
⋯𝑀1 in (15) corresponds to the first return map of

𝐹𝜋,𝑘0 to 𝐿𝑘0 , and the entire system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is Kakutani equivalent but not necessarily measur-

ably isomorphic to the first return map (𝐿𝑘0 , 𝐹𝜋,𝑘0). In general, the spectrum of a system and its
first return map can be very different (as the example from [29, Section 4.5] shows rather spec-
tacularly). The part of the rational spectrum determined by the common divisors of eigenvalues
of the matrix 𝐵 is independent of 𝑤, but the combinatorial part may depend on it. In fact, the
system can have extra rational eigenvalues 𝑒2𝜋𝑖𝑘∕𝑑 if the entries in the matrix product𝑀𝑘0

⋯𝑀1

are multiples of 𝑑.

8.3 Rotated odometers with dyadic odometer factors

When 𝑞 = 2𝑛, then the aperiodic subsystem (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is always conjugate to the dyadic odometer,

and we study this case in detail in paper [5]. In this section, we concentrate on the case when
𝑞 ⩾ 3 and 𝑞 ≠ 2𝑛, for any 𝑛 ⩾ 1.
A detailed study of examples for 𝑞 = 3, 5, 7 shows that the minimal subsystem (𝐼∗min, 𝐹

∗
𝜋) of

the aperiodic subsystem (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) may have the dyadic odometer as a factor. In some cases, the

dyadic eigenvalues of (𝐼∗min, 𝐹
∗
𝜋) are determined by the matrix 𝐵, and in some cases, they arise in

the combinatorial part of the spectrum. In order to prove Theorems 1.7 and 1.8, we first describe
several such examples, and then build on them to prove the theorems.

Proposition 8.4. Let 𝑞 = 3 and let𝜋 = (012) or𝜋 = (021). Then (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) is conjugate to the dyadic

odometer, and 𝑒2𝜋𝑖𝑘∕2𝑛 are continuous eigenvalues for all 𝑘, 𝑛 ∈ ℕ.

Proof. Applying the algorithm of Section 5.6 to the systems in question, we obtain:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix char. polynomial

(012) → (012)

⎧⎪⎪⎨⎪⎪⎩
0 → 0221

1 → 0221

2 → 0011

⎛⎜⎜⎜⎝
1 1 2

1 1 2

2 2 0

⎞⎟⎟⎟⎠
𝑥3 − 2𝑥2 − 8𝑥

with eigenvalues
4, −2, 0

(021) → (021)

⎧⎪⎪⎨⎪⎪⎩
0 → 0112211220

1 → 0

2 → 0

⎛⎜⎜⎜⎝
2 4 4

1 0 0

1 0 0

⎞⎟⎟⎟⎠
𝑥3 − 2𝑥2 − 8𝑥

with eigenvalues
4, −2, 0

In both cases, the associated matrices are primitive, so the system is minimal. Since in both
cases, 4 and −2 are eigenvalues of the matrices, for any 𝑝, 𝑛 ⩾ 1 the number 𝑒2𝜋𝑖𝑝∕2𝑛 is a con-
tinuous eigenvalue of the Koopman operator. Consequently, the dyadic odometer is a factor of
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

In both cases, the Bratteli diagram has the equal incoming edge property, so it is Toeplitz [20],
and invertible Toeplitz shifts are odometers [11, below Theorem 5.1]. Thus, (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is conjugate

to the dyadic odometer. □
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ROTATED ODOMETERS 2015

Proposition 8.5. Let 𝑞 = 5 and let 𝜋 = (01234). Then the following is true for the aperiodic system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

(1) The substitutions 𝜒𝑘 = 𝜒1 for all 𝑘 ⩾ 1.
(2) The minimal set 𝐼∗

𝑚𝑖𝑛
is a proper subset of 𝐼∗𝑛𝑝.

(3) For any 𝑝, 𝑛 ⩾ 1, the number 𝑒2𝜋𝑖𝑝∕2𝑛 is a continuous eigenvalue of (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋), and (𝐼

∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) is

conjugate to the dyadic odometer.
(4) The dyadic odometer is the maximal equicontinuous factor of (𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

Proof. Applying the algorithm of Section 5.6 to the systems in question, we obtain:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix

(01234) → (01234)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 → 03
∑4

𝑖=0 |𝜒1(𝑖)| = 40

1 → 03

2 → 03

3 → 03

4 → 04222111431431430420420422211143

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

4 8 8 4 8

⎞⎟⎟⎟⎟⎟⎟⎠
The system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is not minimal, since 𝜒1(𝑖) = 03 for 𝑖 = 0, 1, 2, 3, and so, the associated

matrix of the substitution is not primitive. The minimal subdiagram has vertices 0 and 3 at each
level, and the associated matrix is (20) with eigenvalues 0 and 2. It follows that every 𝑒2𝜋𝑖𝑝∕2𝑚 ,
𝑝,𝑚 ⩾ 1 is a continuous eigenvalue of the Koopman operator of the minimal subsystem, and
by [16, Lemma 1.6.7], the dyadic odometer (Ω, 𝔞) is a continuous factor of (𝐼∗min, 𝐹

∗
𝜋), say with

factor map 𝜓. Since the minimal subsystem has no other eigenvalues, by [16, Theorem 1.5.6], the
restriction 𝜓|𝐼∗min to the minimal subsystem is a conjugacy to the dyadic odometer. This proves
items (1)–(3).
By Example 7.3, (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) has a measure 𝜇2 which lifts to the ergodic measure on 𝐼, and the

eigenvalues of𝐵 are 2 and 8. By the algorithms in [3] for𝑚 ⩾ 1, the number 𝑒2𝜋𝑖∕2𝑚 is ameasurable
eigenvalue of (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2), and so (𝐼

∗
𝑛𝑝, 𝐹

∗
𝜋, 𝜇2) factors on the dyadic odometer. By [3, Remark 6.6]

the factor map is continuous.
Nextwe show that the dyadic odometer (Ω, 𝔞) is themaximal equicontinuous factor of (𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

Note that (𝐼∗, 𝐹∗
𝜋) has no periodic orbits, so 𝐼

∗
𝑛𝑝 = 𝐼∗ and 𝑋(𝑉′,𝐸,′<) = 𝑋(𝑉,𝐸,<) in the notation of

Section 5.7. The minimal subsystem (𝑋(𝑉,𝐸,<), 𝜏̂) of (𝑋(𝑉,𝐸,<), 𝜏) is conjugate via 𝜓 to (Ω, 𝔞), in
particular, every point in (Ω, 𝔞) has a preimage in (𝑋(𝑉,𝐸,<), 𝜏̂) and possibly more preimages in
𝑋(𝑉,𝐸,<) ⧵ 𝑋(𝑉,𝐸,<). Recall from Example 7.1 that the forward orbit of the path 𝑧 ∈ 𝑋(𝑉,𝐸,<), which
consists of onlymaximal edges 𝑒𝑖 ∈ 𝐸𝑖 from 4 ∈ 𝑉𝑖 to 4 ∈ 𝑉𝑖+1, is nonrecurrent under the Vershik
map 𝜏, and its forward orbit orb𝜏(𝑧) converges on the minimal subset 𝑋(𝑉,𝐸,<).
Now take any path 𝑥 = (𝑥𝑖) ∈ 𝑋(𝑉,𝐸,<) and any 𝐾 ∈ ℕ, and find another path 𝑥′𝐾 = (𝑥′

𝐾,𝑖
) ∈

𝑋(𝑉,𝐸,<) such that 𝑥′𝐾,𝑖 = 𝑥𝑖 for 1 ⩽ 𝑖 ⩽ 𝐾 and 𝑥′
𝐾,𝑖

= 𝑧𝑖 = 𝑒𝑖 for all sufficiently large 𝑖. Such a path
always exists since 𝜒1(4) contains all symbols in . Hence, orb𝜏(𝑥′𝐾) accumulates on the mini-
mal subset 𝑋(𝑉,𝐸,<). Let 𝑦, 𝑦

′
𝐾 ∈ 𝑋(𝑉,𝐸,<) be paths such that 𝜓(𝑦) = 𝜓(𝑥) and 𝜓(𝑦′𝐾) = 𝜓(𝑥′𝐾). By

continuity of 𝜓, 𝑦′𝐾 → 𝑦 and of course also 𝑥′𝐾 → 𝑥 as 𝐾 → ∞. Since 𝜏𝑘(𝑥′) accumulates on the
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2016 BRUIN and LUKINA

minimal set𝑋(𝑉,𝐸,<) as 𝑘 → ∞, and 𝜓(𝜏𝑘(𝑥′)) = 𝜓(𝜏𝑘(𝑦′)) for all 𝑘, uniform continuity of 𝜓 shows
that 𝑑(𝜏𝑘(𝑥′𝐾), 𝜏

𝑘(𝑦′𝐾)) → 0 as 𝑘 → ∞.
But since 𝐾 is arbitrary, 𝑥 and 𝑦 are regionally proximal. Regionally proximal points must have

the same image under the factor map 𝜓𝑀𝐸𝐹 onto the maximal equicontinuous factor, see [24,
Proposition 2.47]. It follows that since the dyadic odometer is an equicontinuous factor, it has
to be the maximal one. Indeed, suppose that (𝑋(𝑉,𝐸,<), 𝜏) has a larger equicontinuous factor, with
factormap𝜓𝑀𝐸𝐹 . If 𝑥 ∈ 𝑋(𝑉,𝐸,<) ⧵ 𝑋(𝑉,𝐸,<) and 𝑦 ∈ 𝑋(𝑉,𝐸,<) are points such that𝜓(𝑥) = 𝜓(𝑦), then
they are regionally proximal. But then 𝜓𝑀𝐸𝐹(𝑥) and 𝜓𝑀𝐸𝐹(𝑦) are also regionally proximal. Since
equicontinuous systems cannot have distinct regionally proximal points, 𝜓𝑀𝐸𝐹 = 𝜓 and (Ω, 𝔞) is
indeed the maximal equicontinuous factor. □

Proposition 8.6. Let 𝑞 = 7 and 𝜋 = (0516234). Then the following is true for the aperiodic system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

(1) The substitutions 𝜒𝑘 = 𝜒1 for all 𝑘 ⩾ 1.
(2) The aperiodic system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is minimal, that is, (𝐼

∗
𝑛𝑝, 𝐹

∗
𝜋) = (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋).
(3) For any 𝑝,𝑚 ⩾ 1, the number 𝑒2𝜋𝑖𝑝∕2

𝑚 is a continuous eigenvalue of (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋), and so

(𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) has the dyadic odometer as a factor. Every rational eigenvalue 𝑒

2𝜋𝑖𝑝∕2𝑚 belongs to
the combinatorial part of the spectrum of (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋).
(4) The minimal subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋) has no eigenvalues 𝑒
2𝜋𝑖𝛼 for irrational 𝛼.

(5) The system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) = (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋) has a single ergodic invariant measure 𝜇1.

Proof. Applying the algorithm of Section 5.6, we obtain:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix char. polynomial

(0516234)

→ (0516234)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 → 0321
∑6

𝑖=0 |𝜒1(𝑖)|
1 → 0321 = 20

2 → 001

3 → 011

4 → 01

5 → 01

6 → 01

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0

1 1 1 1 0 0 0

2 1 0 0 0 0 0

1 2 0 0 0 0 0

1 1 0 0 0 0 0

1 1 0 0 0 0 0

1 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥7 − 2𝑥6 − 6𝑥5

with eigenvalues

1 ±
√
7 and

0 (multiplicity 5)

Symbols 4–6 do not occur in the substitution words 𝜒1(𝑖), 𝑖 = 0, … , 6, so by Theorem 5.19, we
remove them and restrict to a subdiagram with the matrix

𝐵 =

⎛⎜⎜⎜⎜⎝
1 1 1 1
1 1 1 1
2 1 0 0
1 2 0 0

⎞⎟⎟⎟⎟⎠
.

This matrix is primitive, so the aperiodic subsystem is minimal, that is, (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) = (𝐼∗min, 𝐹

∗
𝜋). The

associated matrix 𝐵 has eigenvalues 0 (with multiplicity 2) and 1 ±
√
7.
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ROTATED ODOMETERS 2017

Although 𝐵 does not have eigenvalues that are multiples of 2, the dyadic odometer is still a
factor of the minimal subsystem by the following argument.

Lemma 8.7. For any𝑚 ⩾ 1, there exists 𝑛𝑚 ⩾ 1 such that 2𝑚 divides every component in ℎ(𝑛) for all
𝑛 ⩾ 𝑛𝑚.

Proof. Note that since the components of ℎ(1) are equal, we have ℎ(𝑛) = (𝑎𝑛, 𝑎𝑛, 𝑏𝑛, 𝑏𝑛), for 𝑎𝑛 =
2(𝑎𝑛−1 + 𝑏𝑛−1), 𝑏𝑛 = 3𝑎𝑛−1. In particular, 𝑎𝑛 is even for 𝑛 ⩾ 2 and 𝑏𝑛 is even for 𝑛 ⩾ 3, so the
lemma holds for 𝑚 = 1 with 𝑛1 = 3. Suppose that there is 𝑛𝑚 such that 2𝑚 divides 𝑎𝑛 and 𝑏𝑛 for
𝑛 ⩾ 𝑛𝑚. Then 2𝑚+1 divides 𝑎𝑛𝑚+1, and 𝑏𝑛𝑚+2. Also, 2

𝑚+1 divides 𝑎𝑛𝑚+2. The statement follows by
induction, and we obtain 𝑛𝑚+1 = 𝑛𝑚 + 2. □

Wenow look for eigenvalues 𝑒2𝜋𝑖𝛼 with 𝛼 irrational. Both irrational eigenvalues of𝐵 are outside
of the unit circle, and they are algebraic conjugates withminimal polynomial 𝑥2 − 7. According to
[15, Corollary 1], if 𝑒2𝜋𝑖𝛼 is an eigenvalue, then for each algebraic conjugacy class of the eigenvalues
of 𝐵, there is a polynomial g(𝑥) ∈ ℚ[𝑥] such that g(𝑥) takes the value 𝛼 on each element in the
conjugacy class which is outside of the unit circle, and such that the vector ℎ(1) has nontrivial
projection on the eigenspace corresponding to this element.
In our case, since 1 ±

√
7 are the only nonzero eigenvalues of 𝐵 and ℎ(𝑛), 𝑛 ⩾ 1, are vectors with

integer components, ℎ(1) must have nonzero projection on both eigenspaces. Therefore, if 𝑒2𝜋𝑖𝛼 is
a continuous eigenvalue, then there is a polynomial g(𝑥) with rational coefficients such that

g(1 +
√
7) = g(1 −

√
7) = 𝛼 ∉ ℚ.

Then also the polynomial g̃(𝑥) = g(𝑥 + 1) has rational coefficients g̃𝑖 , and

𝛼 = g(1 ±
√
7) = g̃(±

√
7) =

∑
𝑖

g̃𝑖(±
√
7)𝑖 = 𝑎 ± 𝑏

√
7

for 𝑎 =
∑

𝑖 even g̃𝑖7𝑖∕2 ∈ ℚ and 𝑏 =
∑

𝑖 odd g̃𝑖7(𝑖−1)∕2 ∈ ℚ. It follows that 𝑏 = 0, and so 𝛼 = 𝑎 must
be rational, which is a contradiction. Therefore, such polynomial g(𝑥) does not exist, and there
are no eigenvalues of the form 𝑒2𝜋𝑖𝛼 with 𝛼 irrational.
Finally, since the associatedmatrix of the substitution is primitive, (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) has a single ergodic

measure. □

A similar set of arguments gives the following.

Proposition 8.8. Let 𝑞 = 7 and 𝜋 = (0361425). Then the following is true for the aperiodic system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

(1) The sequence (𝜒𝑘)𝑘⩾1 is constant, that is, 𝜒𝑘 = 𝜒1 for all 𝑘 ⩾ 1.
(2) The aperiodic system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) is minimal, that is, (𝐼

∗
𝑛𝑝, 𝐹

∗
𝜋) = (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋).
(3) For any 𝑝,𝑚 ⩾ 1, the number 𝑒2𝜋𝑖𝑝∕2

𝑚 is a continuous eigenvalue of (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋), and so

(𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) has the dyadic odometer as a factor. Every rational eigenvalue 𝑒

2𝜋𝑖𝑝∕2𝑚 belongs to
the combinatorial part of the spectrum of (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋).
(4) The minimal subsystem (𝐼∗

𝑚𝑖𝑛
, 𝐹∗

𝜋) has no eigenvalues of the form 𝑒2𝜋𝑖𝛼 , where 𝛼 is irrational.
(5) The system (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) has a single ergodic invariant measure 𝜇1.
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2018 BRUIN and LUKINA

Proof. Applying the algorithm of Section 5.6, we obtain:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix char. polynomial

(0361425)

→ (0361425)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 → 0653
∑6

𝑖=0 |𝜒1(𝑖)| = 40

1 → 0653

2 → 0653

3 → 0653

4 → 013121212121212023

5 → 013

6 → 023

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

2 7 7 2 0 0 0

1 1 0 1 0 0 0

1 0 1 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥7 − 2𝑥6 − 6𝑥5

with eigenvalues

1 ±
√
7 and

0 (multiplicity 5)

The symbol 4 does not occur in the substitution words 𝜒1(𝑖), 𝑖 = 0, … , 6, so by Theorem 5.19, we
remove this symbol and restrict to a subdiagram with the matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1
1 1 0 1 0 0
1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
with eigenvalues 1 ±

√
7, 0 (multiplicity 4).

This matrix is primitive, so the the aperiodic subsystem is minimal, that is, (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) = (𝐼∗min, 𝐹

∗
𝜋).

By a similar argument as in Proposition 8.6 the system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋) has no irrational eigenvalues.

Next note that, since the initial values ℎ(1) = (1, 1, 1, 1, 1, 1)𝑇 are all equal, for 𝑛 ⩾ 1

ℎ(𝑛) = (𝑎𝑛, 𝑎𝑛, 𝑎𝑛, 𝑎𝑛, 𝑏𝑛, 𝑏𝑛), for 𝑎𝑛 = 2(𝑎𝑛−1 + 𝑏𝑛−1), 𝑏𝑛 = 3𝑎𝑛−1.

The argument proceeds as in Lemma 8.7 to show that for every 𝑝,𝑚 ⩾ 1, the number 𝑒2𝜋𝑖𝑝∕2𝑚 is
a (continuous) eigenvalue of the Koopman operator. □

8.4 A rotated odometer without the dyadic odometer factor

In this section, we exhibit an example of a rotated odometer which does not have the dyadic
odometer as a factor.

Proposition 8.9. Let 𝑞 = 5 and let 𝜋 = (02431). Then the following is true for the aperiodic system
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋).

(1) The sequence (𝜒𝑘)𝑘⩾1 is constant, that is, 𝜒𝑘 = 𝜒1 for all 𝑘 ⩾ 1.
(2) The minimal set 𝐼∗

𝑚𝑖𝑛
is a proper subset of 𝐼∗𝑛𝑝.

(3) For all integers 𝑚 ⩾ 1 and 1 ⩽ 𝑝 < 2𝑚, the number 𝑒2𝜋𝑖𝑝∕2𝑚 is not an eigenvalue of (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋).

So, the dyadic odometer is not a factor of (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋).
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ROTATED ODOMETERS 2019

(4) For any 𝑎, 𝑏 ∈ ℚ and 𝛼 = 𝑎 + 𝑏
√
5, there exists 𝑠 ∈ ℤ such that the number 𝑒2𝜋𝑖𝑠𝛼 is an

eigenvalue of the minimal subsystem (𝐼∗
𝑚𝑖𝑛

, 𝐹∗
𝜋), so (𝐼

∗
𝑚𝑖𝑛

, 𝐹∗
𝜋) is not weakly mixing.

(5) The aperiodic system (𝐼∗𝑛𝑝, 𝐹
∗
𝜋)with Lebesgue measure has the cyclic group with four elements as

the maximal equicontinuous factor, but the factor map is not continuous.

Proof. Applying the algorithm of Section 5.6, we obtain item (1) of the proposition:

𝜋 → 𝜋1 Substitution𝜒1 Associated matrix char. polynomial

(02431)

→ (02431)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 → 04212
∑4

𝑖=0 |𝜒1(𝑖)| = 40

1 → 042

2 → 04012

3 → 040133413342013341334212

4 → 012

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 2 0 1

1 0 1 0 1

2 1 1 0 1

3 5 3 8 5

1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

𝑥5 − 10𝑥4 + 18𝑥3

+58𝑥2 + 47𝑥 + 8

with eigenvalues

8, 2 ±
√
5, −1, −1

The system is covering, so (𝑋(𝑉′,𝐸′,<), 𝜏
′) = (𝑋(𝑉,𝐸,<), 𝜏). The associated matrix has

two eigenvalues of absolute value greater than 1, 𝜆1 = 2 +
√
5 with left eigenvector

𝑣𝓁1 = (1, 1
2
(
√
5 − 1), 1, 0, 1

2
(
√
5 − 1)) and 𝜆2 = 8 with left eigenvector 𝑣𝓁2 = (1, 1, 1, 1, 1). Thus,

there are two invariant measures, 𝜇1 supported on 𝐼∗min and 𝜇2 supported on 𝐼
∗
𝑛𝑝.

Restricting to the minimal subset 𝐼∗min, we obtain the symmetric matrix

𝐵 =

⎛⎜⎜⎜⎜⎝
1 1 2 1
1 0 1 1
2 1 1 1
1 1 1 0

⎞⎟⎟⎟⎟⎠
with eigenvalues 2 ±

√
5, −1, −1.

Computing the decomposition of the vector ℎ(1) over the basis of right eigenvectors, we obtain that
ℎ(1) is a linear combination of the eigenvectors corresponding to 2 ±

√
5. The eigenvalue 2 −

√
5 is

inside the unit circle. Take g𝑎,𝑏(𝑥) = 𝑎(𝑥 − 2) + 𝑏 = 𝛼 with 𝑎, 𝑏 ∈ ℚ, then g(2 +
√
5) = 𝑎

√
5 + 𝑏

is irrational. Then by [15, Corollary 1], there exists 𝑠 ∈ ℤ such that 𝑒2𝜋𝑖𝑠(𝑎
√
5+𝑏) is an eigenvalue of

the Koopman operator of (𝐼∗min, 𝐹
∗
𝜋, 𝜇1). We showed item (4) of the proposition.

Let ℎ(𝑛) = (𝑎𝑛, 𝑏𝑛, 𝑎𝑛, 𝑏𝑛, 𝑐𝑛), and ℎ̂(𝑛) = (𝑎𝑛, 𝑏𝑛, 𝑎𝑛, 𝑏𝑛), so ℎ̂(𝑛) is the vector of heights for the
minimal subdiagram. Then

⎛⎜⎜⎝
𝑎𝑛+1
𝑏𝑛+1
𝑐𝑛+1

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝
3 2 0

2 1 0

6 10 8

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝑎𝑛
𝑏𝑛
𝑐𝑛

⎞⎟⎟⎠ , (21)

where the 2 × 2 first block corresponds to the minimal subsystem. If 𝑒2𝜋𝑖∕2𝑚 is an eigenvalue of
the Koopman operator of the minimal subsystem, then by Lemma 8.2, 2𝑚 must divide ℎ̂(𝑛)

𝑖
for
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2020 BRUIN and LUKINA

0 ⩽ 𝑖 ⩽ 3, and 𝑛 large enough. Inverting the first block of the matrix in (21), we find(
𝑎𝑛
𝑏𝑛

)
=

(
−1 2
2 −3

)(
𝑎𝑛+1
𝑏𝑛+1

)
,

so g𝑐𝑑(𝑎𝑛+1, 𝑏𝑛+1) = g𝑐𝑑(𝑎𝑛, 𝑏𝑛) = ⋯ = g𝑐𝑑(𝑎0, 𝑏0) = 1. This shows that there cannot be a com-
binatorial rational eigenvalue 𝑒2𝜋𝑖𝛼 other than 𝛼 = 0, and the minimal subsystem (𝐼∗min, 𝐹

∗
𝜋) has

no rational eigenvalues. This shows item (3).
Now consider (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2) with Lebesgue measure 𝜇2. We show that 𝑒2𝜋𝑖∕2𝑚 is an eigenvalue

of (𝐼∗𝑛𝑝, 𝐹
∗
𝜋, 𝜇2) if and only if 𝑚 ∈ {1, 2}. It follows that the cyclic group with four elements is a

measurable factor of (𝐼∗𝑛𝑝, 𝐹
∗
𝜋, 𝜇2). We show also that for any other rational or irrational 𝛼, the

number 𝑒2𝜋𝑖𝛼 is not an eigenvalue of (𝐼∗𝑛𝑝, 𝐹
∗
𝜋, 𝜇2).

By [3, Theorem 6.3] to determine eigenvalues of (𝐼∗𝑛𝑝, 𝐹
∗
𝜋, 𝜇2), we have to consider so-called

“diamonds,” which for our situation are pairs of paths in (𝑋(𝑉,𝐸,<), 𝜏) of the same finite length
𝑟 ⩾ 1which start at the vertex marked by 3 in 𝑉1 and end at the vertex marked by 3 in 𝑉𝑟+1. Since
3 does not occur in any 𝜒1(𝑖) for 𝑖 ≠ 3, every edge in such a path joins vertices marked by 3 at
consecutive levels, and it is sufficient to consider paths of length 1 which are just pairs of edges
(𝑗, 𝑗′) between the vertices marked by 3 in 𝑉1 and 𝑉2. Let 𝜅 and 𝜅′ be the orders of 𝑗 and 𝑗′ in
the set of edges incoming to 3 in 𝑉2. Then by [3, Lemma 6.4] if 2𝑚 divides (𝜅 − 𝜅′)ℎ(𝑛)3 for all
sufficiently large 𝑛 ⩾ 1 and for all diamonds (𝑗, 𝑗′), then 𝑒2𝜋𝑖2−𝑚 is an eigenvalue for (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2),

where ℎ(𝑛)3 is the height of the third stack in 𝑉𝑛. Since the word 𝜒1(3) contains a subword of two
consecutive 3’s, we conclude that 𝑒2𝜋𝑖2−𝑚 is an eigenvalue if and only if 2𝑚 divides ℎ(𝑛)3 = 𝑐𝑛 for all
sufficiently large 𝑛.
Since 𝑎𝑛 and 𝑏𝑛 are always odd, we can write 𝑎𝑛 = 2𝑢𝑛 + 1 and 𝑏𝑛 = 2𝑣𝑛 + 1. Then

𝑐𝑛+1 = 6𝑎𝑛 + 10𝑏𝑛 + 8𝑐𝑛 = 2(6𝑢𝑛 + 3 + 10𝑣𝑛 + 5 + 4𝑐𝑛) = 4(3𝑢𝑛 + 5𝑣𝑛 + 2𝑐𝑛 + 4),

which shows that 𝑒2𝜋𝑖∕2 and 𝑒2𝜋𝑖∕4 are measurable eigenvalues of the Koopman operator for
(𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2); they are not continuous because (𝐼

∗
min, 𝐹

∗
𝜋) does not have these eigenvalues. We note

that 𝑐𝑛+1 is divisible by 8 if and only if the expression in the parenthesis in the formula for 𝑐𝑛+1 is
even. This can happen only if 𝑢𝑛 and 𝑣𝑛 are both odd, or they are both even.
We have that

𝑎𝑛+1 = 3𝑎𝑛 + 2𝑏𝑛 = 3(2𝑢𝑛 + 1) + 2(2𝑣𝑛 + 1) = 6𝑢𝑛 + 3 + 4𝑣𝑛 + 2,

so 𝑢𝑛+1 = 3𝑢𝑛 + 2𝑣𝑛 + 2, which shows that 𝑢𝑛+1 is even if and only if 𝑢𝑛 is even. Since 𝑎1 = 1 and
so 𝑢1 = 0 is even, we conclude that 𝑢𝑛 is always even. Similarly,

𝑏𝑛+1 = 2𝑎𝑛 + 𝑏𝑛 = 2(2𝑢𝑛 + 1) + 2𝑣𝑛 + 1 = 4𝑢𝑛 + 2 + 2𝑣𝑛 + 1,

so 𝑣𝑛+1 = 2𝑢𝑛 + 1 + 𝑣𝑛, which shows that 𝑣𝑛+1 is even if 𝑣𝑛 is odd, and 𝑣𝑛+1 is odd if 𝑣𝑛 is even.
Since 𝑣1 = 0 is even, it follows that for 𝑘 ⩾ 1, the height 𝑐2𝑘 is not divisible by 8, and so 𝑒2𝜋𝑖∕2

𝑚 for
𝑚 ⩾ 3 is not an eigenvalue of (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2).

To show that there are no other rational eigenvalues, let 𝑝 ⩾ 3 be a prime. Suppose by
contradiction that 𝑒2𝜋𝑖∕𝑝 → 1, so 𝑝|𝑐𝑛 for 𝑛 sufficiently large.
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ROTATED ODOMETERS 2021

Now note that for 𝑛 ⩾ 1we have 𝑎𝑛 = 𝐹3𝑛 and 𝑏𝑛 = 𝐹3𝑛−1, where 𝐹𝑛 is the 𝑛th Fibonacci num-
ber. The sequence of Fibonacci numbers (𝐹𝑛 mod 𝑝)𝑛 is periodic; therefore, (6𝑎𝑛 + 10𝑏𝑛) mod 𝑝
is also periodic, and there are infinitely many 𝑛’s such that

(6𝑎𝑛 + 10𝑏𝑛) mod 𝑝 ≡ (6𝑎0 + 10𝑏0) mod 𝑝 = 16 mod 𝑝 ≢ 0 mod 𝑝.

Recalling that 𝑐𝑛+1 = 6𝑎𝑛 + 10𝑏𝑛 + 8𝑐𝑛, we find that 𝑐𝑛 and 𝑐𝑛+1 cannot be simultaneously
divisible by 𝑝, so 𝑒2𝜋𝑖∕𝑝 cannot be an eigenvalue.
To show that 𝛼 = 𝑢 + 𝑣

√
5, 𝑢 ∈ ℤ, 𝑣 ∈ ℕ, is not an eigenvalue of (𝐼∗𝑛𝑝, 𝐹

∗
𝜋, 𝜇2), first note that

by subtracting 𝑢 − 2𝑣, it suffices to verify 𝛼 = 𝑣(2 +
√
5). The first block in formula (21) is a Pisot

matrix. In fact, it is the third power of
(1 1
1 0

)
, with eigenvalues 𝛿+ = 2 +

√
5 and 𝛿− = 2 −

√
5 ∈

(−1
2
, 0).

By standard computation, we find

𝑎𝑛 =
5 + 3

√
5

10
𝛿𝑛+ +

5 − 3
√
5

10
𝛿𝑛−,

𝑏𝑛 =
5 +

√
5

10
𝛿𝑛+ +

5 −
√
5

10
𝛿𝑛−, (22)

𝑐𝑛 = 5 ⋅ 8𝑛 −
10 + 4

√
5

5
𝛿𝑛+ −

10 − 4
√
5

5
𝛿𝑛−.

Therefore,

𝛼𝑐𝑛 = 𝑣𝛿+

(
5 ⋅ 8𝑛 −

10 + 4
√
5

5
𝛿𝑛+ −

10 − 4
√
5

5
𝛿𝑛−

)

= 𝑣

(
5 ⋅ 8𝑛(𝛿+ − 8) + 5 ⋅ 8𝑛+1 −

10 + 4
√
5

5
𝛿𝑛+1+ −

10 − 4
√
5

5
𝛿𝑛+1− −

10 − 4
√
5

5
(𝛿+ − 𝛿−)𝛿

𝑛
−

)

= 𝑣
(
5 ⋅ 8𝑛(

√
5 − 6) + 𝑐𝑛+1 + 4(2 −

√
5)𝛿𝑛−

)
.

Thus, the distance to the nearest integer is

‖𝛼𝑐𝑛‖ = ‖5 ⋅ 8𝑛𝑣√5 + 4𝑣(2 −
√
5)𝛿𝑛−‖ ⩾ ‖5𝑣 ⋅ 8𝑛√5‖ − ‖4𝑣𝛿𝑛+1− ‖.

Let 𝜀𝑛 ∈ (−1
2
, 1
2
) be the fractional part of 5𝑣 ⋅ 8𝑛

√
5. Then for |𝜀𝑛| ⩽ 1

16
, we have 𝜀𝑛+1 = 8𝜀𝑛, so |𝜀𝑛|

increases in 𝑛 until |𝜀𝑛| > 1
16
. Therefore, ‖5𝑣 ⋅ 8𝑛√5‖↛ 0 and hence neither does ‖𝛼𝑐𝑛‖→ 0, so

𝑒2𝜋𝑖𝛼 is not an eigenvalue of the global system.
Finally, we show that there is no other eigenvalue for 𝜇2. Say 𝑒2𝜋𝑖𝛼 for 𝛼 ∉ ℚ[

√
5] is an

eigenvalue. Then,

‖𝛼(6𝑎𝑛 + 10𝑏𝑛)‖2 = ‖𝛼𝑐𝑛+1 − 8𝛼𝑐𝑛‖2 ⩽ 81max{‖𝛼𝑐𝑛+1‖2, ‖𝛼𝑐𝑛‖2}
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2022 BRUIN and LUKINA

is summable in 𝑛. Using 𝑎𝑛 = 𝐹3𝑛 and 𝑏𝑛 = 𝐹3𝑛−1, where 𝐹𝑛 are the Fibonacci numbers,

𝛼(6𝑎𝑛 + 10𝑏𝑛) = 2𝛼𝑎𝑛(3 + 5
𝑏𝑛
𝑎𝑛

))

= 2𝛼𝑎𝑛(3 + 5(
√
5 − 1)) + 5𝛼

√
5(2 −

√
5)𝑛

= 𝛽𝑎𝑛 + 𝑜(2−𝑛) for 𝛽 = 2𝛼(5
√
5 − 2).

Therefore ‖𝛽(𝑎𝑛+1 + 𝑎𝑛)‖ is summable. By (22) we have
𝛽(𝑎𝑛+1 + 𝑎𝑛) = 𝛽(3 +

√
5)𝑎𝑛 + 𝑜(2−𝑛) =∶ 𝛾𝑎𝑛 + 𝑜(2−𝑛),

and we know (by (19) and since 𝑎𝑛 = 𝐹3𝑛 for the Fibonacci numbers 𝐹𝑛) that ‖𝛾𝑎𝑛‖ is only square
summable if 𝛾 ∈ ℚ[

√
5]. Hence (𝐼∗𝑛𝑝, 𝐹

∗
𝜋) has no irrational eigenvalues. This shows item (5). □

8.5 Proofs of Theorems 1.7 and 1.8

Proof of Theorem 1.7. The minimal subsystems in Propositions 8.5 and 8.9 provide examples for
items (1.7) and (1.7) of Theorem 1.7. From one example, it is always possible to construct infinitely
many examples by doubling 𝑞 and changing the permutation 𝜋 to

𝜋′ ∶ {0, … , 2𝑞 − 1} → {0, … , 2𝑞 − 1}, 𝜋′(𝑖) =

{
𝜋(𝑖 − 𝑞) if 𝑖 ⩾ 𝑞

𝑖 + 𝑞 if 𝑖 < 𝑞

because then the first return map of 𝐹𝜋′ to [0, 1∕2) is conjugate to 𝐹𝜋 on [0,1) via the scaling
ℎ(𝑥) = 2𝑥. This proves the theorem. □

Proof of Theorem 1.8. Item (1) is proved in (4) of Proposition 8.5, and item (2) of the theorem is
proved (5) of Proposition 8.9. □
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