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Introduction

Transcriptome Signature Reversion (TSR) has been used as a drug repositioning method to find new 
anti-cancer treatments, both before1-4 and after5-7 we started to work on this thesis. Indeed, the 
hypothesis that the potential of drugs to normalize the gene expression profile of a cancer type could 
be predictive of its therapeutic potential in treating that specific cancer type is both plausible and 
appealing. If TSR indeed works as intended, it would significantly improve our ability to reposition 
drugs for cancer treatment, saving a lot of time, money and patient life years. 

To perform TSR, one first needs to create a gene expression signature of the disease for which the new 
drug treatments are to be found. In the context of finding new anti-cancer drugs, this is called the tumor 
gene expression signature. Typically, this list is created by contrasting the average gene expression of 
all tumor tissue samples belonging to specific tumor type (e.g., breast carcinoma) with the average 
gene expression of adjacent normal tissue samples, the so-called differential expression analysis and 
genes which differ in expression level between the two groups based on statistical significance are 
called differentially expressed genes (DEG). The tumor gene expression signature is then created by 
either taking all the DEG or a subset of the DEG after applying cutoff, for example an additional filter for 
the magnitude of the change in expression such as at least a 2-fold increase or decrease in expression. 
The second step is to create the drug gene expression signatures. These are created by performing a 
differential expression analysis of the gene expression of cell lines after drug exposure compared to 
control cell lines without drug exposure. The third and final step then consists of calculating how much 
each drug gene expression signature is expected to reverse the expression of the genes in the tumor 
gene expression signature. This is summarized using the connectivity score, which is normalized from 
-1 (complete expected reversion by the drug gene expression signature of the tumor gene expression 
signature) to +1 (genes of the drug gene expression signature are differentially expressed in the same 
direction as the tumor gene expression signature). 

From clinical practice, it is well known that there exists a high extent of interindividual variability in 
drug response among similar tumor types. We therefore hypothesized that instead of using all tumor 
samples to create a single tumor gene expression signature, it may be a better to create a unique tumor 
gene expression signature for each individual tumor sample (‘individualized drug repurposing’). In 
chapter 3 we tested this approach using 534 tumor samples and 72 matched normal samples from 
530 clear cell renal cell carcinoma (ccRCC) patients from The Cancer Genome Atlas (TCGA). These 3 
different types of tumor gene expression signatures (average, subtype and individual) were used to 
calculate connectivity scores with the over 20,000 drug gene expression signatures created from the 
Connectivity Map (CMAP) database and its successor the Library of Integrated Network-based Cellular 



Chapter 8

170

Signatures (LINCS) database. We found that more drug gene expression signatures were able to show 
expected reversion of the individual tumor gene expression signatures than those of the ‘ccRCC average’ 
and ‘ccRCC subtypes’ tumor gene expression signatures, based on statistical significance. In addition, 
some drugs which are used for ccRCC treatment (sirolimus and temsirolimus) produced statistically 
significant negative enrichment scores for many of the individual tumor gene expression signatures 
(i.e., more than expected by chance as demonstrated by simulations), but produced no statistically 
significant negative enrichment scores for the ‘ccRCC average’ and ‘ccRCC subtypes’ tumor gene expression 
signatures. These drugs were therefore rediscovered by the individual tumor gene expression signature 
TSR approach but not using the average and subtype TSR approach. 

An inherent limitation of the bulk RNA-seq data we used to create the individual tumor gene expression 
signatures is that the tumor samples consist of varying fractions of tumor cells and non-tumor cell types, 
which impacts the chance of genes being included in the tumor gene expression signature. For example, 
if the ccRCC tissue samples contain more immune cells than the adjacent normal tissue samples, a lot of 
genes associated with immune cell activity may end up in the tumor gene expression signatures which 
could significantly impact which drug gene expression signatures are expected to reverse the tumor 
gene expression signature. In chapter 4 we tested whether the top 8 drug repositioning candidates 
we identified in chapter 3 showed more or less negative reversion of the tumor gene expression 
signatures as the estimated fraction of tumor cells in each sample increased. In our initial analysis, we 
observed that as the fraction of tumor cells in a sample increased, the connectivity score with these 
8 drugs trended from negative (i.e., significant reversion of the tumor gene expression signature) to 
neutral (i.e., no significant reversion of the tumor gene expression signature). We eventually found a 
plausible explanation for these surprising results: the dataset not only included ccRCC samples, but 
was contaminated with samples from 2 different tumor types, namely chromophobe and papillary 
RCC. Tissue samples from ccRCC contain a lot more endothelial cells as they are highly permeated by 
blood vessels, and therefore on average contain far lower fractions of tumor cells. After stratification of 
the samples by how much the tumor sample showed negative reversion to two HIF inhibitors (which 
target one of the key gene expression pathways which is specifically dysregulated in ccRCC cells), the 
307 samples which showed negative reversion to the HIF-inhibitors no longer showed a statistically 
significant trend of increasing connectivity scores with increasing fraction of tumor cells for 7 out of the 
8 drugs. In contrast, for the 214 samples with less apparent reversion with the HIF-inhibitors (thus less 
likely to be ccRCC tumors), showed a much stronger positive association between the fraction of tumor 
cells and the connectivity score for all 8 drugs (all P-values < 0.01). From this result we concluded that 
the drugs we identified were indeed more likely to be targeting ccRCC tumor cells in the samples and 
not one of the other cell types. 
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In chapter 5 we decided to perform a systematic validation of TSR for its intended use as a method to 
reposition drugs against specific tumor types. Interestingly, this validation study convincingly showed 
that the reversion of the tumor gene expression signature appears to be only a proxy for the general anti-
proliferative effect of a drug but not for the tumor type specific effects. This finding could be substantiated 
by two crucial analyses. First, when the gene expression signatures of drugs were adjusted to remove the 
effect of the general anti-proliferative downstream effects of drug-induced decreased cell viability, the 
amount of reversion of a tumor gene expression signature by the adjusted drug gene expression signature 
was no longer predictive of the drug’s ability to induce cell death to cell lines belonging to the same tumor 
type. Second, when a much stronger proxy of each drug’s anti-proliferative ability, i.e., the mean fraction of 
cells left after administration of the drug to cell lines not belonging to the same tumor type, was included 
in the regression analysis alongside with the variable which quantified the amount of gene expression 
reversion (the connectivity score), the connectivity score variable explains almost none of the variance and 
is not statistically significant for any of the 18 tumor types after correction for multiple testing. 

While indeed the potential to reverse the gene expression signatures of tumor types does have some 
predictive power for effectiveness, we found a biological explanation for this observation which might 
limits its usefulness as a means to find new anti-cancer drugs for specific cancer types, especially for 
individualized treatment. The key to this explanation is that one of the main well-known hallmarks of 
cancer cells is uncontrolled proliferation.8, 9 Subsequently, when the gene expression of samples consisting 
mostly of tumor cells is compared to samples consisting mostly of non-tumor cells, genes associated with 
cell proliferation will appear to be upregulated in the tumor samples (chapter 5). Conversely, cell lines 
exposed to drugs which limit cell proliferation or kill cells, will show downregulation of genes associated 
with cell proliferation compared to untreated control cell lines.10 These two phenomena are therefore 
diametrically opposing, which causes the apparent reversion of the tumor gene expression signature. 

In conclusion, while there does appear to be a grain of truth behind the use of TSR as a drug reposition-
ing method, it does not appear to be of any clinical use as it is currently implemented. In our opinion, 
there are 3 critical issues with the typical current use of TSR as a drug repositioning method to find 
new anti-cancer drugs which would need to be solved simultaneously for it to become more useful:

1.	 Bulk tissue gene expression analysis measures the combined expression of all cell types 
present in the sample;

2.	 The gene expression impact of driver events and passenger events are treated equally in 
the analysis;

3.	 The focus on finding new anti-proliferative drugs.

Each of these 3 issues and their possible solutions are discussed in more detail below.  
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Issue 1: Bulk tissue gene expression analysis measures the 
combined expression of all cell types present in the sample

To our knowledge, all TSR-based drug repositioning analyses to date use bulk tissue microarray or 
RNA-seq analysis of tumor tissue samples to create the tumor gene expression signature. The problem 
with bulk RNA-seq is that the gene expression of all cell types in the tissue sample (i.e., immune, 
endothelial, stromal and tumor cells) is measured simultaneously. When measuring the bulk tissue 
RNA-seq tumor samples, all cell types present in the tumor-microenvironment would therefore con-
tribute to the signal measured. This complicates the interpretation of the results because it is unknow-
able about how much each cell type contributed to each RNA transcript measured, and therefore the 
perceived up or downregulation of any transcript may be due either due to 1) expression changes in 
the tumor cells, 2) expression changes in one or more of the other cell types or 3) changes in the cell 
type composition of the sample (i.e., higher fractions of some cell types, lower fractions of others). 

Interpreting the differential expression analysis of tumor bulk RNA-seq samples to adjacent ‘normal’ 
bulk RNA-seq tissue samples is even more difficult, as the adjacent normal tissue also consists of 
varying mixtures of different non-cancer cell types, none of which may be of the cell type from which 
the tumor cell originated. For example, in the case of ccRCC the cell-of-origin is highly suspected to 
be a cell type found in the proximal convoluted tubule of a nephron of the kidney.11 It is also known 
that tumor cells retain much of the expression patterns from their cell-of-origin.12 Therefore, if a tumor 
type with on average 60% tumor cells is compared to adjacent normal tissue consisting on average of 
10% of the cell type from which the tumor cells originated, one of the strongest expected signals in 
such a differential expression analysis would actually be in genes associated with the ‘healthy’ cell-of-
origin functioning (i.e., 6-fold upregulation assuming expression stayed constant and the transcript 
is exclusively expressed in tumor cells and their cell-of-origin). Normalizing these genes back to the 
‘normal’ levels would therefore be unlikely to produce any therapeutic benefits and may be even be 
detrimental to the normal functioning of the cell-of-origin.    

A possible solution to this problem would be to somehow correct for the fraction of tumor cells in each 
sample, so that you could extrapolate what would be the gene expression at a sample with 100% tumor 
cells. We did something similar in chapter 4 plotting the connectivity score against the fraction of 
tumor cells as estimated from the ABSOLUTE-algorithm. However, we did not see a strong trend for 
the connectivity score becoming more negative as the estimated fraction of tumor cells increased. We 
suspect this is the case because ABSOLUTE algorithm is based on the DNA-seq data which is performed 
on a different fraction of the physical tissue sample as the RNA-seq. Indeed, as other research has shown, 
there is little concordance between DNA- and mRNA-derived estimates of the fraction of tumor cells in 



General discussion

173

Ch
ap

te
r 2

Ch
ap

te
r 8

each sample.13 From our own experience with comparing the many different mRNA-based algorithms 
to estimate the fraction of tumor cells, we concluded that these algorithms give conflicting results, 
both in the fraction of tumor cells present as well as the fractions of other cell types present. However, 
perhaps in the future one of the mRNA-based algorithms is able to accurately estimate the fraction of 
tumor cells. With accurate estimates of the fraction of tumor cells in each sample, you could theoreti-
cally infer the expression at 100% tumor cells for most genes. However, it would remain difficult to 
accurately infer the expression changes for genes which are expressed at lower levels inside the tumor 
cells as compared to other cells of the tumor-microenvironment. Assume for example that the typical 
tumor sample contains 50% tumor cells and the gene of interest is expressed at twice the rate in the 
non-tumor cells on average. Thus, 1/3 of all transcripts from this gene come from the tumor cells in this 
example. If the mutation of interest halves the expression inside of the tumor cells, the total expression 
would drop only by 1/6 (17%), which is difficult to reliably detect with statistical significance. In fact, 
because the observed effect size would be 3 times lower, you would need 9 times as many samples 
(32) to have the same statistical power to detect the same difference. This example even leaves out 
the additional noise the varying fractions of non-tumor cell types have on the transcript level, which 
increases the standard error and further increases the number of samples needed. 

Therefore, the far superior solution to this problem would be to use single cell RNA-seq data instead. 
Using single cell RNA-seq, it is currently already possible to measure the gene expression of up to 20,000 
individual cells at the same time.14 This would make it possible to compare the expression of the tumor 
cells directly to the expression of the cell-of-origin, assuming any are present in the tissue samples. 
Categorizing all the differentially expressed genes into different groups based on the function each 
gene serves therefore becomes the next crucial step, which leads directly into issue 2.   

Issue 2: The gene expression impact of driver events and 
passenger events are treated equally in the analysis

While using single cell RNA-seq to compare the expression of the tumor cells to those of the cell-of-
origin is already conceptually much better than the much noisier bulk tumor vs. adjacent normal tissue 
contrast, not all gene expression changes between the tumor cells and cell-of-origin cells are likely 
to be beneficial to be a target for reversion. Many of the original functions performed by the cell-of-
origin likely will not have benefitted the survival of the tumor cells and will have been progressively 
‘turned off’ through evolutionary selection to conserve resources for many of the new functions the 
tumor cells have to perform, such as evading the immune system, suppressing cell death signals, 
sustaining angiogenesis, etc. These new functions are developed by acquiring driver events. A driver 
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event is defined as any alteration which causally contributes to tumor evolution and progression (i.e., 
confers a causal selective advantage to the cancer cell) whereas a passenger event confers little to no 
selective advantage15 and can be seen as merely associated with progression. A typical tumor is the 
result of many years of evolution, in which many different driver and passenger events accumulate in 
the increasingly unstable genomes of the dividing cancer cells. 

To illustrate this point, from the paper describing the same dataset we used for chapters 3 and 4,16 it 
is reported that inside the average ccRCC tumor cell, 17% of the genome is altered by amplifications/
deletions of large chromosomal regions and another 0.4% is altered by more limited, focal alterations. 
The number of mutations per sample are relatively low compared to other tumor types, with only a 
median number of detected mutations of around 50. However, a mutation in a single gene (SETD2) 
was associated with widespread DNA hypomethylation, potentially affecting thousands of genes. 
Complicating matters further, various possible fusion genes can occur. The most common genetic 
events in ccRCC are visualized in Figure 8.1.

Figure 8.1: Most common genetic events in ccRCC.
Figure adapted from 16 and altered to reduce the complexity.

Some patterns are easy to see in Figure 8.1. For example, to completely deactivate a gene, both working 
copies of the gene need to be disabled. Therefore, deletion of chromosome 3p, the near-universal 
initiating event in the origin of ccRCC tumors,17 results in only a single working copy of genes located 
on chromosome 3p remaining. Consequently, the genes with the most common ccRCC mutations (i.e., 
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VHL, PBRM1, SETD2, BAP1) are all located on chromosome 3p, because a single mutation is enough 
to deactivate all working copies of these genes. In some cases, the remaining working VHL gene is 
not mutated but deactivated through methylation instead. Alternatively, in the rare cases of ccRCC in 
which chromosome 3p is not deleted, VHL is deactivated by 2 mutations. 

In one way, using gene expression data is convenient because regardless of the way a gene is inacti-
vated, the expected effect on the gene expression phenotype would likely be similar. However, the 
downside of gene expression analysis of clinical samples is that the impact of all events is measured 
at the same time, making it hard to disentangle which events are responsible for which changes in 
the gene expression. This is absolutely critical, because it is likely only to be therapeutically useful to 
reverse the gene expression changes caused by driver events (e.g., those resulting from inactivation 
of VHL, PBRM1, SETD2 and BAP1 genes). 

To perfectly disentangle the impact of a single driver event, the single cell RNA-seq gene expression of 
tumor clone with the driver event should be compared to a tumor clone without the driver event, with 
both tumor clones having the same other driver and passenger events (i.e., the direct ancestor of the 
new clone with the driver event). Unfortunately, encountering such a perfect contrast inside a clinical 
tissue sample would be statistically highly unlikely. The next best solution would be to combine the 
gene expression results from many different tumor clones with different driver and passenger events 
using a statistical model. These different tumor clones can come from the same tumor, but also from 
tumors from many other patients so that the causal impact of the driver event can be estimated more 
robustly across different tumor micro-environments and the effect of different driver and passenger 
events is averaged out. It is also potentially possible to identify driver events statistically, if unknown. 

As experimental confirmation, the driver event could be introduced to cell lines or in implanted 
tumors in animals using e.g., CRISPR/CAS to introduce the driver event inside the tumor cells of the 
experimental group and compare the gene expression to tumor cells without the driver event. The 
disadvantage of this method would be the reduced external validity for the situation inside patients 
due to the lack of a representative human tumor micro-environment, which could have taken years 
to grow in patients. However, there would be some way to check the internal validity of the results 
by observing whether the tumor cells with the driver event indeed ‘outperform’ the control tumor 
cells in the relevant hypothesized metric specific to the driver event (such as e.g., increased tumor cell 
proliferation, resistance to drug treatment or increased metastasis rate). 

Using statistical analysis of the mutation frequency of genes in 33 different tumor types, research-
ers have already identified around 3,400 driver mutations in 299 driver genes, of which in a limited 
sample 60–85% were experimentally confirmed.18 Some of the identified driver genes are considered 
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drivers in many tumor types (e.g., TP53 was an identified driver gene in 27 tumor types) but yet other 
identified driver genes are unique to only a single tumor type, underlining the context dependence 
of each driver event. How beneficial each driver event is to the evolutionary fitness of the tumor cells 
most likely depends on the interaction between active gene expression pathways retained from the 
cell-of-origin, the other cell types present in the early and late tumor micro-environment, preceding 
driver events, the patient’s immune system and past drug treatments.  

While it is unlikely that the effect of any specific driver event can be targeted using any of the drugs 
already on the market, because of the many different driver events, it seems plausible that at least a 
few driver events will be. However, most drugs on the market are non-cancer drugs with very limited 
directly measurable anti-proliferative properties when being used at marketed dosages. For this reason, 
broadening the focus to disrupt other cancer hallmarks might prove to be a more successful strategy. 
This is discussed further in Issue 3. 

Issue 3: The focus on finding new anti-proliferative drugs

Testing the effectiveness of the drugs should be broadened to a larger context outside of in vitro cell 
proliferation assays. While this is the simplest way to measure the effectiveness of a drug, it only 
covers a limited selection of the functions tumor cells are required to perform to grow and spread in 
vivo. Furthermore, if a drug has anti-proliferative properties, it probably would have been identified 
already unless it only works that way in a very specific context: as chapter 5 showed, over 95% of 
the variation in decreased cell viability after drug exposure in cell lines of a specific tumor type could 
already be explained by the average decreased cell viability in other cell lines. 

Part of the reason could be that the current in vitro high-throughput assays only test a single aspect 
(i.e., reduced or increased tumor cell proliferation in a limited timeframe) whereas tumor cells in vivo 
have many more functions to fulfill. To illustrate this point, consider the following 10 cancer hallmarks 
and enabling characteristics which have been described in the literature:9 #1. ‘Evading growth sup-
pressors’, #2. ‘Enabling replicative immortality’, #3. ‘Genome instability and mutation’, #4. ‘Resisting 
cell death’, #5. ‘Deregulating cellular energetics’, #6. ‘Sustaining proliferative signaling’, #7. ‘Avoiding 
immune destruction’, #8. ‘Tumor promoting inflammation’, #9. ‘Activating invasion and metastasis’ 
and #10. ‘Inducing angiogenesis’. The first six hallmarks could arguably be tested in a relatively simple 
in vitro assay, but hallmarks #7-#10 require interaction with a tumor micro-environment to test. The 
effect of many drugs on suppressing these features could be highly context dependent (i.e., based on 
cell-of-origin, combination of driver events and tumor micro-environment), and not only work on the 
tumor cells, but could change the gene expression of other cell types in the tumor micro-environment 
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as well. This would be an extension of the TSR hypothesis: instead of reversing the genes of pathways 
inside tumor cells which are directly dysregulated by driver events, the goal would be to reverse the 
gene expression of non-tumor cells which are indirectly deregulated by the driver events. 

For example, a direct downstream consequence of VHL inactivation in ccRCC is secretion of Vascular 
Endothelial Growth Factor (VEGF) into the tumor micro-environment. VEGF stimulates the growth 
of blood vessels (angiogenesis) throughout the tumor.19 During treatment with drugs which target 
this mechanism (e.g., VEGF receptor inhibitors), the tumor cells likely start to depend more on other 
mechanisms to stimulate angiogenesis, which could be measured by comparing the changes in the 
gene expression of vascular endothelial cells using single cell RNA-seq analysis. A drug which could 
reverse these observed gene expression changes in the endothelial blood vessel cells might prove 
therapeutically useful as an add-on to the original drug treatment or as a follow-up treatment. 

Future research

The potential of TSR for the drug repositioning of new anti-cancer is still alluring. If anyone can success-
fully refine TSR so that it becomes able to predict with reasonable accuracy which drugs are going to 
be effective in treating which tumors, it could literally save billions of dollars in R&D. However, future 
research should take into account the aforementioned 3 main issues with its current use. 

The recommendation would be to use single cell RNA-seq data instead of bulk RNA-seq data of clinical 
samples. This should be combined with single cell DNA-seq so that it is known which driver and 
passenger events each tumor cell has acquired. This data should become the input into a model which 
disentangles the effect of driver events from passenger events on the gene expression of tumor cells 
and other cell types in the tumor micro-environment. Most likely, new statistical and bioinformatics 
models are required. The results of such models (i.e., which genes in which cell types are affected by 
each driver event) should be validated in the appropriate experimental model(s) using single cell 
RNA-seq and the internal validity of the model should be confirmed by proving the tumor cells with 
the driver event indeed have a selective advantage over the tumor cells without the driver event. 
Perhaps this final step of validating the findings in an experimental model is not necessarily needed, 
when it has been validated that the statistical model already provides reliably enough driver event 
gene expression signatures. 

After the successful completion of all steps, the researcher should have a highly reliable gene expres-
sion signature of the impact of the driver event under investigation on the tumor cells and other cell 
types in the tumor micro-environment. If TSR is to be of any use in predicting new drug repositioning 
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candidates with any reliability, the gene signature of the driver event should strongly inversely match 
with the drug gene expression signature of existing targeted therapies intended to treat that driver event 
(e.g., the gene expression signature of an activating EGFR mutation should be strongly reversed by the 
drug gene expression signatures of clinically used EGFR inhibitors). Ideally, the drug gene expression 
signatures should be determined by testing the targeted therapies on the same experimental models 
with and without the driver event in question, to determine how sensitive the determination of the 
drug gene expression signature is to the existence of the driver event in question. If the drug gene 
expression signatures of clinically used targeted drugs do not show strong reversal of the driver event 
gene expression signatures of the driver events they were designed to target, then TSR would not be 
expected to be of any use for drug repositioning in cancer treatment. 

One of the ways TSR could be enhanced is through the development of new computational methods. In 
chapter 6 we developed a new method to normalize the gene expression of RNA-seq tumor samples. 
It could perhaps be used in the single cell RNA-seq analysis of tumor cells to deconvolute the effect 
of driver events from passenger events. It highlights the need to understand and model the many 
influencing factors on gene expression levels, including the measurement process. Unfortunately, 
to date, measuring single cell RNA-seq with all other additional characterizations needed for this 
process are cost-prohibitive to perform in the sample sizes required to deconvolute the effect of all 
the driver events. Hopefully in the nearby future datasets similar in size (i.e., 10,000+ tumor samples) 
to The Cancer Genome Atlas (TCGA) will be recreated using single cell analysis methods and become 
similarly freely available, so that the driver event gene expression signatures can be determined at no 
additional cost. Also, improved statistical models can contribute to reduce the required sample sizes. 
For example, in chapter 7 we explored whether convolutional neural networks (CNNs) can be applied 
to gene expression data.

The simplicity of TSR must mean that on some abstraction level, it must be true. However, this does 
not mean it can be used to make reliable predictions with all the additional preconditions we have 
described here. For example, it is possible that in tumor cells from clinical samples, the gene expression 
changes affected by a specific driver event may not be active at all times and therefore not observable in 
clinical samples. Regardless, with so many different driver genes and the ability to quantify the effects 
on the tumor micro-environment with single cell analysis methods, it does seem very likely that some 
of the interactions which can be measured in clinical tumor tissue samples can potentially be disrupted 
using some of the drugs already on the market. For this reason, we believe that further investigation 
is warranted, when it will become cost-effective to do so. Validating TSR at this new level of resolution 
would then become achievable for single research institutes or a small research consortium.     
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