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The impact of estimated tumour purity on 
gene expression-based drug repositioning of 
Clear Cell Renal Cell Carcinoma samples
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To find new potentially therapeutic drugs against clear cell Renal Cell Carcinoma (ccRCC), within 
drugs currently prescribed for other diseases (drug repositioning), we previously searched for 
drugs which are expected to bring the gene expression of 500+ ccRCC samples from The Cancer 
Genome Atlas closer to that of healthy kidney tissue samples. An inherent limitation of this bulk 
RNA-seq data is that tumour samples consist of a varying mixture of cancerous and non-cancerous 
cells, which influences differential gene expression analyses. Here, we investigate whether the 
drug repositioning candidates are expected to target the genes dysregulated in ccRCC cells by 
studying the association with tumour purity. When all ccRCC samples are analysed together, the 
drug repositioning potential of identified drugs start decreasing above 80% estimated tumour 
purity. Because ccRCC is a highly vascular tumour, attributed to frequent loss of VHL function and 
subsequent activation of Hypoxia-Inducible Factor (HIF), we stratified the samples by observed 
activation of the HIF-pathway. After stratification, the association between estimated tumour 
purity and drug repositioning potential disappears for HIF-activated samples. This result suggests 
that the identified drug repositioning candidates specifically target the genes expressed by HIF-
activated ccRCC tumour cells, instead of genes expressed by other cell types part of the tumour 
micro-environment.
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Introduction

Tumours of metastatic clear cell renal carcinoma (ccRCC) patients typically become resistant to available 
treatments within 1.5 years.1 To discover new potentially therapeutic drugs against ccRCC within drugs 
already prescribed for diseases (drug repositioning), we previously developed an individualised drug 
repositioning approach based on the gene expression profiles of over 500 ccRCC tumours generated 
using bulk RNA-seq by The Cancer Genome Atlas (TCGA).2  

With bulk RNA-seq the gene expression of all cell types present in the sample is measured simultane-
ously.3 The presence of non-cancerous cells might be an especially big concern for ccRCC samples, as 
ccRCC estimated tumour purity was ranked the third most impure tumour type out of the total 21 solid 
tumours analysed, despite the lower mutational burden typical for other highly impure cancers.4 The 
relatively low content of cancerous cells in ccRCC tumours is likely due to the high degree of vascularity 
often observed in ccRCC tumours.5,6 This hypervascularity is attributed to the frequent inactivation of 
the Von Hippel-Lindau gene, which leads to activation of the Hypoxia Inducible Factor (HIF) pathway 
and the subsequent release of vascularizing growth factors: Vascular Endothelial Growth Factor (VEGF), 
platelet-derived growth factor beta (PDGFβ), and transforming growth factor alpha (TGFα).7 

Aran et al. reported in their systematic pan-cancer analysis of TCGA tumour sample purity that variation 
in estimated tumour purity can significantly influence the results of differential gene expression 
analyses.4 After adjusting for estimated tumour purity, on average 14% of differentially expressed 
genes lost statistical significance and 11% of expressed genes were now shown to be statistically dif-
ferentially expressed when they were not before adjustment.4 Depending on whether tumour purity is 
seen as a factor that needs to be corrected, such as in the case when only tumour cells are of interest, 
the differential gene expression profile can therefore change drastically.

Computational drug repositioning methods which rely on transcriptomic data commonly use this data 
type without accounting for the potential influence of tumour sample composition. The drug reposition-
ing method we used, gene expression signature reversal, functions by searching for drugs which can 
normalize the genes which are differentially expressed in the tumour tissue (i.e. up- or downregulated 
compared to the surrounding normal tissue). specifically, drugs which can get tumour gene expression 
closer to that to normal tissue are considered potentially therapeutic drugs for this tumour. However, 
if genes are incorrectly classified as differentially expressed due to the confounding presence of non-
cancerous cells present in the sample, it naturally follows that this can reduce the predictive validity of 
the procedure if the intention is to target the tumour cells with the drug. Excluding these drugs early on 
would therefore save vital time and money spent on laboratory validation experiments to determine 
whether the drug is likely to be safe and effective at clinically tolerated dosing regimens. Furthermore, 
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while we considered all differentially expressed genes to be of interest in our initial drug repositioning 
analysis, the same issue comes up when only genes of a specific biological pathway are of interest if 
these genes are sufficiently expressed in the surrounding non-cancerous cells. 

The goal of the current study is to investigate whether the previously identified drug repositioning 
candidates are indeed expected to target the dysregulated genes expressed by ccRCC tumour cells and 
are not systematically influenced by variation in tumour purity between the ccRCC samples.  

Results

Connectivity scores versus estimated tumour purity
Tumour purity estimations and connectivity scores (requiring ≥ 10 differentially expressed genes) were 
available for 529 tumour sample gene expression profiles, of which 521 also passed the independent 
Toil quality control.8 

The distribution of tumour purity estimations of all ccRCC samples (with estimated tumour purity and gene 
expression results available) has a mode of 70% and an interquartile range of 57%–75% (Figure 4.1).

Figure 4.1: Distribution of estimated tumour purity of clear cell, papillary and chromophobe RCC samples for which 
estimated tumour purity was available and for samples which passed Toil quality control.
1/3 of the ccRCC samples have an estimated tumour purity < 60% and 1/3 have an estimated tumour purity > 72%. ccRCC have 
a far lower median estimated tumour purity than papillary and chromophobe RCC samples (both P < 10-16, Wilcoxon rank-sum 
test). Clear cell RCC samples are still statistically significantly less pure than papillary and chromophobe RCC (P < 1 x 10-11) even 
after correcting for batch ID (supplementary Table s4.1) and tissue source site (supplementary Table s4.2) using linear mixed 
model analysis.
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This figure further illustrates that compared to papillary and chromophobe renal cell carcinomas 
(RCC) from TCGA selected using the same criteria, ccRCC samples have both lower median estimated 
tumour purity and higher inter-sample variability in estimated tumour purity. Figure 4.2 displays the 
connectivity scores of each sample plotted against its estimated tumour purity. When the estimated 

Figure 4.2: Connectivity scores of the top 8 drugs from previous analysis plotted against the estimated tumour 
purity.
The blue line is a LOEss smoother. The spearman rank correlation coefficients and P-values are displayed in the top left of each 
plot. With increasing estimated tumour purity, the connectivity scores start trending towards neutral (i.e. it suggests the drugs are 
expected to target the genes expressed by the non-cancerous cells present at lower tumour purity). When the correlation is tested 
using normal (i.e. Pearson) linear regression, or the samples < 80% estimated tumour purity are compared to the samples > 80% 
estimated tumour purity using the Wilcoxon rank-sum test, all resulting P-values are below 0.001 (supplementary Table s4.3).
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tumour purity increases above 80%, the connectivity scores of 7 out of the top 8 drugs suddenly start 
trending towards neutral connectivity scores (P < 0.05, spearman rank correlation). This result suggests 
the drugs are targeting the non-cancerous cells rather than ccRCC cells at lower tumour purity. Alter-
natively, excluding genes which become less differentially expressed with increasing tumour purity 
from the tumour sample signatures before calculating the connectivity scores would have led to the 
same conclusion, with the negative enrichment rate dropping from 25.6–47.4% to 0.4–16.4% (P < 
10-13 for all 8 drugs, supplementary Figures s4.1-s4.4).

It is striking that all eight drugs (Figure 4.2) show exactly the same trend towards neutrality with increas-
ing tumour purity, including one of the current 2nd line treatments (the mTOR inhibitor temsirolimus). 
Therefore, we investigated whether the same increase in connectivity scores occurred for inhibitors of 
the HIF-pathway, as activation of the HIF-pathway within the cancerous cells is a frequently observed 

Figure 4.3: Relationship between connectivity score and estimated tumour purity for 3 drugs previously developed 
and/or identified as HIF-inhibitors.
A) Average connectivity score (LOEss smoother) versus estimated tumour purity. At < 80% estimated tumour purity the connectivity 
scores for CAY-10585 and PX-12 remain consistently negative, whereas YC-1 remains neutral across the range. B) The same data for 
CAY-10585 and PX-12 but plotted separately for each drug across each estimated tumour purity tertile. The increase in negative 
connectivity from < 60% tumour purity to 60–72% tumour purity is positive but statistically non-significant for CAY-10585 (P = 0.2) 
and statistically significant for PX-12 (P < 0.001). However, the decrease in negative connectivity from 60–72% tumour purity to 
>72% tumour purity is highly statistically significant for both (P < 0.001). Associations were tested with Wilcoxon rank-sum test on 
the connectivity scores. C) Connectivity scores of PX-12 plotted against the connectivity scores of CAY-10585. The connectivity scores 
of CAY-10585 and PX-12 correlate well (spearman Rho = 0.56, P < 10-16). D) Distribution of tumour purity for 2 groups with different 
probabilities of HIF-activation. samples were put into the “More likely” group if it produced negative connectivity scores with both 
CAY-10585 and PX-12 (i.e. in the bottom left of Figure 4.3C), and into the “Less likely” group if otherwise. samples in the “Less likely” 
HIF-activation group have a higher estimated tumour purity on average (P = 0.006, Wilcoxon rank-sum test). From this figure it is 
easy to see that at higher tumour purity (i.e. > 80%) samples are relatively are increasingly less likely to show HIF-activation.
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hallmark of ccRCC7 (Figure 4.3). Indeed, this proved to be the case for 2 of the 3 HIF-inhibitors (PX-12 
and CAY-10585). This led to the idea to stratify the samples by probability of HIF-activation, which 
was deemed high if the tumour sample produced a negative connectivity score with both PX-12 
and CAY-10585 and low if otherwise. Figure 4.4 illustrates that after stratification, the association 

Figure 4.4: Same data, statistical tests and plots as Figure 4.2, but now the samples have been colored according 
to the probability of HIF-activation.
The red points correspond to the 307 samples in the “More likely” group, whereas the green points correspond to the 214 samples 
in the “Less likely” group. For samples with the higher probability of HIF-activation (red), the connectivity scores do not show a 
trend towards neutral with increasing tumour purity and even show the reverse trend for elvitegravir and trimidox. For samples 
with lower probability of HIF-activation, the trend of connectivity scores being neutralized with increasing estimated tumour 
purity is instead intensified.



Chapter 4

60

between connectivity scores neutralizing with tumour purity completely disappeared and the global 
trend even reversed for elvitegravir and trimidox (P < 0.05, spearman rank correlation). This finding 
suggests that HIF-activation is associated with both decreased tumour purity and (de)activation of 
pathways targeted by the drugs. The latter point is further illustrated by Figure 4.5, in which samples 
with a higher probability of HIF-activation have doubled the rate of statistically significant negative 
connectivity scores (P < 1 x 10-6 for all 8 drugs except for quinine).

Figure 4.5: Frequency of statistically negative enrichment within samples more likely to show HIF-activation 
versus samples less likely to show HIF-activation.
The difference was tested with a Chi-square test on the raw counts. All frequency changes are highly statistically significant (P < 
1 x 10-6) except for quinine (P = 0.02).

Predictors of inter-sample variability in HIF-activation and estimated tumour purity
To determine which variables predict HIF-activation and/or the variation in estimated tumour purity, 
two separate linear regression analyses combined with backward elimination were performed. The 
input for these analyses were: VHL mutation/methylation status, tumour stage, mRNA subtype (as 
identified in the original TCGA analysis using hierarchical clustering analysis9), and the 3 most frequent 
chromosomal alterations: loss of chromosome 3p (i.a. containing the 4 most commonly mutated 
genes, i.e. VHL, PBRM1, BAP1 and sETD29), gain of chromosome 5q (i.a. containing the sQsTM1 gene, 
increasing resistance to redox stress10) and loss of chromosome 14q (i.a. containing the HIF1A gene 
and the AsPP1 gene, a recently identified regulator of p53 activity11). Furthermore, the total number 
of chromosomal alterations (deletions of negative regulators and gains of positive regulators) in the 
pathway of genes that regulate p53 and the G1/s cell cycle transition were tested as potential predictors, 
as genes in this pathway are frequently chromosomally altered in ccRCC.12 Batch ID, plate ID, ship date 
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and tissue source site were included as random variables as these were considered potential sources 
of batch effects. The distribution of all included variables is listed in Table 4.1.

Table 4.1: Available data of included samples. 510 out of the 521 samples (98%) with estimated tumour purity and 
gene expression data available were included in the linear regression analyses.

Variable name subcategories samples % of total

VHL mutation/methylation status No VHL mutation/methylation△ 136 26.1
VHL methylation 29 5.6
Moderate impact VHL mutation 58 11.1
High impact VHL mutation 102 19.6
Missing* 196 37.6

Tumour stage stage I△ 259 49.7
stage II 57 10.9
stage III 123 23.6
stage IV 79 15.2
Missing† 3 0.6

mRNA subtype m1△ 143 27.4
m2 88 16.9
m3 93 17.9
m4 85 16.3
Missing* 112 21.5

Loss of chromosome 3p No△ 58 11.1
Yes 455 87.3
Missing† 8 1.5

Gain of chromosome 5q No△ 207 39.7
Yes 306 58.7
Missing† 8 1.5

Loss of chromosome 14q No△ 299 57.4
Yes 214 41.1
Missing† 8 1.5

Number of chromosomally altered 
genes which regulate p53 and the 
G1/s cell cycle transition 

No subcategories (parameterized as a linear covariate) 513 98.5

Missing† 8 1.5

Batch ID 15 unique batch ID's 521 100%

Tissue source site 20 unique tissue source sites 521 100%

Plate ID★ 18 unique plate ID's 521 100%

ship date★ 15 unique ship dates 521 100%

△ Reference category. * Missing value coded as separate category to avoid excluding samples. † samples with missing value 
excluded from subsequent analyses. ★ Only used to predict the mean connectivity score of PX-12 and CAY-10585, as these batch 
variables are platform (i.e. RNA-seq, copy number, methylation) specific and tumour purity was estimated using the data from 
these 3 different platforms.
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Given that missing mRNA subtype (N = 112) and missing VHL mutation/methylation data (N = 196) 
occurred frequently, missingness was used as a separate category. Otherwise, a complete case analysis 
was performed (Numbers missing: copy number data N = 8; tumour stage N = 3). The variable selection 
and estimation therefore took place on 510 out of the total 521 remaining ccRCC samples. The results 
of the regression analyses are presented in Table 4.2 (with the mean connectivity score of PX-12 and 
CAY-10585 as the dependent variable) and Table 4.3 (with estimated tumour purity as the dependent 
variable). For both linear regression analyses the random variables representing batch effects were 
statistically insignificant after Bonferroni correction (supplementary Tables s4.4 and s4.5) and the 
final output presented in Tables 4.2 and 4.3 was therefore produced using normal linear regression.

Loss of chromosome 3p most strongly explains variability in the mean connectivity score of PX-12/
CAY-10585: samples which lose this chromosome have a 0.14 points lower mean connectivity score 
on average (P = 3 x 10-9). Gain of chromosome 5q further decreases the mean connectivity score by 
an average of 0.05 points (P = 2.6 x 10-4). samples with a missing mRNA subtype had on average 
0.1 points higher connectivity scores (P = 5 x 10-6). In addition, each chromosomal alteration in p53 
associated genes increases the mean connectivity score by an average of 0.014 points per alteration 
(P = 1.9 x 10-11). This is likely caused by the fact that the number of chromosomal alterations in p53 
associated genes is strongly positively associated with the number of genes in the tumour sample 
signature (Figure 4.6). These extra p53 associated genes effectively ‘dilute’ the HIF-associated genes 
in the tumour sample signature. Furthermore, note that although VHL mutation/methylation was 
not predictive when all samples were analysed together, it was predictive in the subset of 36 samples 
which did not lose chromosome 3p and which had mutation/methylation data available (Figure 4.7). 

With respect to tumour purity, the by far the strongest predictor of estimated tumour purity was mRNA 
subtype, with samples belonging to the m3 subtype being estimated to have an average 12% decrease 
compared to the m1 subtype (P = 3.4 x 10-13). The 2nd strongest predictor of estimated tumour purity 
was loss of chromosome 3p, estimated to decrease the estimated tumour purity by an average of 5.2% 
(P = 0.004). Loss of chromosome 14q (-3.6%, P = 0.002) further contributes to an estimated decrease 
in estimated tumour purity.

Comparison with discordant methylation-clusters
24 of the 25 ccRCC samples which Winter et al.13 assigned to a discordant, i.e. chromophobe RCC or 
papillary RCC methylation cluster, were also included in our combined estimated tumour purity and 
gene expression analysis (Table 4.4). samples are only compared to other samples for which Illumina 
HumanMethylation 450 BeadChip results are available (as other samples were not clustered in the 
methylation analysis). Of the samples > 80% estimated tumour purity, 15/45 (33%) were assigned 
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to a discordant methylation cluster. Furthermore, of discordant samples the median estimated tumour 
purity is 17% higher (P = 2 x 10-10, Wilcoxon rank-sum test) and far more samples (15 out of 21, 71%) 
show no loss of chromosome 3p compared to the other samples (18/284, 6%) with methylation and 

Table 4.2: Coefficients final reduced linear model (R2 = 0.24) to explain the inter-sample variability in mean 
connectivity score of PX-12 and CAY-10585. The coefficients of the full model are presented in Supplementary 
Table S4.4.

Coefficient Estimate standard error P-value†

Fixed effects
Intercept -0.1775 0.0260 2.6 x 10-11 ***
mRNA subtype 1.4 x 10-4 ***

mRNA subtype m2 0.0347 0.0214 0.11
mRNA subtype m3 0.0208 0.0218 0.34
mRNA subtype m4 0.0458 0.0218 0.04 *
mRNA subtype missing 0.0975 0.0211 5 x 10-6 ***

Loss of chromosome 3p -0.1388 0.0230 3.0 x 10-9 ***
Gain of chromosome 5q -0.0544 0.0148 2.6 x 10-4 ***
Number of chromosomal alterations in p53 and the G1/s cell cycle 
transition pathway (ranging from 0-15)

0.0140 0.0020 1.9 x 10-11 ***

Random effects
Residual (sD) 0.1555 - -

† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. model with and without mRNA 
subtype), and using T statistics for categories within variable (e.g. mRNA subtype m2). 
* P < 0.05; ** P < 0.01; *** P < 0.001.

Table 4.3: Coefficients final reduced linear model (R2 = 0.17) to explain the inter-sample variability in estimated 
tumour purity. The coefficients of the full model are presented in Supplementary Table S4.5.

Coefficient Estimate standard error P-value†

Fixed effects -
Intercept 75.18 1.98 < 2 x 10-16 ***
mRNA subtype 1.4 x 10-13 ***

mRNA subtype m2 -3.62 1.67 0.03 *
mRNA subtype m3 -12.43 1.66 3.4 x 10-13 ***
mRNA subtype m4 -3.90 1.71 0.02 *
mRNA subtype missing 0.44 1.62 0.78

Loss of chromosome 3p -5.19 1.79 0.004 **
Loss of chromosome 14q -3.55 1.14 0.002 **

Random effects
Residual (sD) 12.15 - -

† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. model with and without mRNA 
subtype), and using T statistics for categories within variable (e.g. mRNA subtype m2). 
* P < 0.05; ** P < 0.01; *** P < 0.001.



Chapter 4

64

Figure 4.6: Density plot of the number of overlapping genes between tumour sample signatures and LINCS drug 
signatures, for the 3 tertiles of the number of genes chromosomally altered in genes that regulate p53 and the 
G1/S cell cycle transition.
The number of genes increases from 0 alterations to 1–3 alterations (P = 9 x 10-5), from 1–3 alterations to 4–15 alterations (P = 
6 x 10-4) and from 0 alterations to 4–15 alterations is even more significant (P = 1 x 10-11, all tested using the Wilcoxon rank-sum 
test).

Figure 4.7: Mean connectivity score of PX-12 and CAY-10585 plotted against VHL status for the 37 samples which 
have not lost chromosome 3p and for which both mutation and methylation data is available.
sometimes points with connectivity score 0 are plotted over each other and given the number of samples to the right (i.e. x 2, x 8). 
VHL mutated or methylated samples (when the 3 types are grouped together) have statistically significantly lower connectivity 
scores than non-VHL mutated/methylated samples (P = 0.03, Wilcoxon rank-sum test).
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chromosomal alteration data available (P < 1 x 10-16, Chi-squared test). Lastly, the 12 samples which 
upon histopathological re-evaluation were still considered ccRCC or unconventional ccRCC had lower 
median connectivity scores with PX-12 and CAY-10585 than the 12 samples deemed non-ccRCC (P = 
0.03, Wilcoxon rank-sum test).

Discussion 

We found that HIF-activation likely acts as a confounder between estimated tumour purity and 
estimated drug repositioning potential of the previously reported top 8 drugs for ccRCC (Figure 4.4). 
If instead of stratifying samples by likelihood of HIF-activation we had used the method of Aran et 
al.,4 which automatically eliminates genes which are more strongly differentially expressed at lower 
estimated tumour purity, we would have incorrectly excluded genes representing a real biological signal. 

To classify samples by probability of HIF-activation, we used the same assumptions underlying the 
computational drug repositioning method we used in the original analysis, namely that of gene expres-
sion signature reversal. This method predicts that drugs which downregulate genes upregulated by 
HIF-activation, and vice versa, are expected to produce negative connectivity scores with HIF-activated 
samples. This worked well for 2 out of 3 HIF-inhibitors (PX-12 and CAY-10585): the connectivity 
scores of tumour samples with these drugs produced concordant negative connectivity scores for the 
majority (58%) of samples. The third HIF-inhibitor (YC-1) did not correlate well with the other two or 
even produced more negative connectivity scores than expected by chance. This discrepancy is as of 
yet unexplained: YC-1 was tested in 13/14 of the same cell lines as CAY-10585 and in concentrations 
above the IC50.14 

By studying predictors of the probability of HIF-activation in samples (with the mean connectivity 
score of PX-12 and CAY-10585 as the dependent variable), we learned that it can be attributed to two 
main underlying causes: 

Firstly, observing HIF-activation depends on inactivation of the VHL gene due to loss of chromo-
some 3p (Table 4.2) or, in samples with an intact chromosome 3p, mutation or methylation of the 
VHL gene (Figure 4.7). This result is in agreement with what is expected based on well-established 
pathophysiology.7

secondly, observing HIF-activation can be interfered with by other factors, the most biologically 
plausible factor being deletions of negative regulators and gains of positive regulators in the genes 
that regulate p53 and the G1/s cell cycle transition. These copy number alterations result in many more 
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genes differentially expressed in the tumour samples (Figure 4.6), which subsequently decrease the 
likelihood of observing HIF-activation (Table 4.2). This can be explained by the way connectivity scores 
are calculated.15 When genes which are not associated with HIF expression are added to the tumour 
sample signature, on average the genes rank closer to the middle when they are compared to the genes 
ordered by changes in expression after administration of HIF-inhibitors. statistical procedures which 
only look at the overlap of genes differentially expressed between the tumour sample signature and 
drug signature may be less sensitive to this effect.16 Missing mRNA subtype was also found to be an 
important negative predictor of HIF-activation, for which we have not found a good explanation yet.    

When we explored possible predictors of estimated tumour purity, we found that mRNA subtype 
(as identified in the original TCGA analysis9) produced the largest contribution. Compared to the m1 
subtype, samples belonging to the m3 subtype have on average a 12.4% lower estimated tumour purity 
(Table 4.3). Perhaps not coincidentally, patients with the m3 subtype also experience the worst overall 
survival.9 After mRNA subtype, loss of chromosome 3p, associated with increased HIF-activation, had 
the strongest single effect of any variable (5.2% reduction in estimated tumour purity). 

When we compared our gene expression-based results to the methylome clustering results produced 
by Winter et al.,13 we found that the 24 samples with papillary-like and chromophobe-like methylomes, 
similar to samples with lower probability of HIF-activation, had a higher median estimated tumour 
purity as well as a lower rate of chromosome 3p loss. This therefore offers a complementary/alternative 
explanation for the outlying results observed at the high (> 80%) estimated tumour purity of the scale. 
However, as the 12 samples which were independently histopathologically reclassified as conventional 
ccRCC (N = 2) or unconventional ccRCC (N = 10) had lower median connectivity scores with the HIF-
inhibitors than the 12 samples reclassified as chromophobe or papillary RCC, observed HIF-activation 
(as a correlate of ccRCC-likeness) does seem to correlate better with independent histopathological 
review than methylation clustering alone. 

For both models presented in Tables 4.2 and 4.3 it seems plausible that the inter-sample variation can 
be explained by real biology, rather than by random technical variation (e.g. variation in sampling or 
processing of the tissue) as including all possible sources of batch effects (the full linear mixed model 
outputs presented in the supplementary Tables s4.4 and s4.5) does not affect the main conclusion of 
either models. It is of course possible that any hidden batch effects are still in the data, but principal 
component analysis of the gene expression data did not show any clustering to suggest any hidden 
batch effects this.2,9 

It is biologically plausible that the cancer cells behave differently (and thus gene expression within 
tumor cells changes) if the tumor microenvironment becomes purer or less pure (e.g. as a reaction to the 
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invasion of immune cells or infiltration of blood vessels). However, the bulk RNA-seq data from TCGA do 
not allow us to distinguish directly which mRNA is produced by cancer cells and which is produced by 
non-cancerous cells. We therefore heavily relied on previously established knowledge to interpret our 
findings (i.e. HIF-activation causes lower tumor purity due to increased vascularity, instead of decreased 
tumor purity causing HIF-activation). To conclusively answer this question and explore new hypotheses, 
it would require a large single cell RNA-seq dataset of the ccRCC tumor micro-environment from many 
different patients, so that the impact of variation in cancer cell genetic identity (i.e. mutations, copy 
number alterations, methylation) can be distinguished from variation in cell type composition of the 
micro-environment. However, because of the expense and newness of single cell RNA-seq no such 
dataset exists yet (to our knowledge), and only the TCGA dataset contains enough samples (500+ ccRCC 
and 10,000+ of all tumor types combined) to really quantify the impact of inter-sample variation in 
gene expression and relate this to other genomic determinants.

In conclusion, we demonstrated using the example of HIF-activation that confounding between tumor 
purity and gene expression can occur. Therefore, we recommend correcting for tumor purity in bulk 
RNA-seq differential expression analyses only after any other possible biological causes are included 
in the model.

Materials and methods

All data was processed with R version 3.4.0 and R/Bioconductor packages. All tests produced two-sided 
P-values and were considered statistically significant at P < 0.05.

Connectivity scores versus estimated tumour purity 
The tumour sample and drug signatures were calculated as described previously.2 Briefly, the tumour 
sample signatures were generated by comparing 538 individual tumour gene expression profiles to 72 
normal kidney tissue gene expression profiles, both generated by TCGA.9 After filtering out genes with 
low expression (counts per million < 0.5) and applying the Benjamini-Hochberg procedure to calculate 
the False Discovery Rate (FDR), genes with an FDR < 1% were included in the tumour sample signatures. 
As an additional quality control filter, only samples which passed the independent quality control check 
of the Toil recompute effort (a recent project to reanalyze all gene expression results in an updated and 
uniform way) were included.8 Drug signatures, based on data generated by The Library of Integrated 
Network-Based Cellular signatures (LINCs) Program,17 were calculated with the goal of approximating the 
effect in the average tumour cell line. This was accomplished through the use of a linear model with drug 
concentration as a linear parameter, and cell line, exposure duration, and batch as categorical variables. 
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To estimate tumour sample purity, we used the previously published consensus measurements of 
tumour purity estimations (CPE).4 In summary, CPE is based on 4 different data types and algorithms: 
copy number data (ABsOLUTE), methylation data (LUMP), transcriptomic data (EsTIMATE) and imaging 
data (IHC). For simplicity and clarity’s sake, CPE is hereafter simply referred to as “Estimated tumour 
purity”. TCGA batch information (Batch ID’s, Plate ID’s, ship dates and Tissue source sites) were down-
loaded using the TCGA Batch Effects Tool18 (version 2.0). 

Connectivity scores (the method used to compare the drug and tumour signatures) were calculated 
using the PharmacoGx package16 (version 1.8.3). A negative connectivity score implies that the drug is 
expected to (partially) reverse the tumour signature. The correlation between the connectivity scores 
and estimated tumour purity was tested non-parametrically using the spearman rank correlation test. 
A positive association (i.e. more positive connectivity scores at higher tumour purity %) suggests that 
the gene expression reversal occurs mainly in non-cancerous cells. Conversely, a negative association 
implies the opposite, namely that as the % of tumour material in a sample increases so does the drug 
repositioning potential, which suggests that the drug is targeting the tumour cells.  

Genes were classified as more differentially expressed with increasing tumour purity if upregulated 
and downregulated genes showed a statistically significant (P < 0.05) positive, respectively negative 
spearman rank correlation with increasing tumour purity. If it showed the opposite relationship, the 
gene was classified as becoming less differentially expressed with increasing tumour purity. Lastly, if 
the spearman rank correlation with estimated tumour purity was statistically insignificant (P > 0.05) 
regardless of direction, the gene was classified as insensitive to increasing tumour purity. 

Predictors of inter-sample variability in HIF-activation and estimated tumour purity
Mutation and methylation data of tumour samples were downloaded using the TCGAbiolinks package 
(version 2.6.12).19 Only mutations and methylation of the VHL gene were considered because this gene 
is considered the key trigger in starting the angiogenesis cascade. VHL was considered methylated if 
the beta value for probe cg15267345 exceeded 0.2 (as in previous methylation analyses9,20-22). The copy 
number data processed by GIsTIC (an algorithm used to call chromosomal alterations, i.e. deletions or 
gains) was downloaded using the RTCGAToolbox package (version 2.8.0).23 For tumour samples analysed 
in duplicate, the average value of the variable was used in the analysis. 

To explain inter-sample variability in HIF-activation and estimated tumour purity, linear mixed models 
with all variables included were fitted. The following variables were parameterized as fixed effects: 
Estimated tumour purity, VHL mutation/methylation status, tumour stage, mRNA subtype, loss of 
chromosome 3p, gain of chromosome 5q, loss of chromosome 14q and number of chromosomal 
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alterations in the p53 and the G1/s cell cycle transition pathway. Batch ID, plate ID, tissue source site 
and ship date were parameterized as random effects. Estimated tumour purity, plate ID and ship date 
were only included as a variable to predict inter-sample variability in HIF-activation because estimated 
tumour purity can’t be used to predict itself and plate ID + ship date are specific only to the RNA-seq 
experiments. Variables were sequentially dropped from the model until only variables with P-values 
lower than the Bonferroni corrected critical P-value threshold were left (i.e. P < 0.0042 for the model 
to explain the variability in mean connectivity score of PX-12 and CAY-10585 with 12 initial variables, 
P < 0.0056 for the model to explain the variability in estimated tumour purity with 9 initial variables).  

Comparison with discordant methylation-clusters
In a previously published methylation analysis, Winter et al. analysed 319 TCGA samples for which 
Illumina HumanMethylation 450 BeadChip results were available and concluded that based on the 
methylation patterns, 15 of the ccRCC samples showed closer similarity to chromophobe RCC and 10 
to papillary RCC.13 Additionally, they asked 2 independent pathologists with expertise in renal tumour 
pathology to re-evaluate the ccRCC samples based on publicly available TCGA diagnostic and histological 
slide images. The discordant samples and re-evaluation results were extracted from supplementary 
Table s4.1 and joined with our own gene-expression based results.

Data availability
The R code, additional input files needed and the resulting datasets generated during the current study 
are included in the public GitLab repository (https://gitlab.com/k.k.m.koudijs/personalised_DR_ccRCC).
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Supplementary information

Supplementary Figure S4.1: Each gene shared in common between the LINCS array and the set of genes sufficiently 
expressed in the tumour samples categorized by its association with estimated tumour purity.
Almost half (42%) of genes become less differentially expressed with increasing tumour purity.

Supplementary Figure S4.2: Number of genes included in the tumour sample signatures before and after excluding 
genes classified as becoming less differentially expressed with increasing tumour purity.
The median tumour sample signature contains 54 genes before excluding genes versus 27 genes after excluding genes. 500 
tumour samples have at least 10 genes remaining in both types of tumour signatures and were used to create supplementary 
Figures s4.3–s4.4.
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Supplementary Figure S4.3: Connectivity scores of tumour samples with the previously identified top 8 drugs 
before and after excluding genes which become less differentially expressed with increasing tumour purity.
Except for trimidox, all connectivity scores become significantly more neutral after excluding the genes (P < 0.001 for each drug, 
Wilcoxon rank-sum test).

Supplementary Figure S4.4: Statistically significant negative enrichment rate of tumour samples with the 
previously identified top 8 drugs before and after excluding genes which become less differentially expressed 
with increasing tumour purity.
The negative enrichment rate drops from 25.6–47.4% to 0.4–16.4% (P < 10-13 for each drug, Chi-square test on the counts).
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Supplementary Table S4.1: Coefficients linear mixed model analysis of estimated tumour purity (in %) across the 3 
types of RCC with batch ID included as random effect

Coefficient Estimate standard error P-value†

Fixed effects
Intercept△ 65.7 0.70
Tumour type 1.3 x 10-14 ***

Papillary RCC 14.8 1.12
Chromophobe RCC 22.2 2.29

Random effects
Batch ID (sD) 1.5 0.14
Residual (sD) 12.9 -

△ Intercept should be interpreted as the mean estimated tumour purity of clear cell RCC.
† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. with and without tumour type).
*** P < 0.001.

Supplementary Table S4.2: Coefficients linear mixed model analysis of estimated tumour purity (in %) across the 3 
types RCC with tissue source site included as random effect

Coefficient Estimate standard error P-value†

Fixed effects
Intercept△ 67.1 0.985
Tumour type 3.4 x 10-11 ***

Papillary RCC 13.0 1.362
Chromophobe RCC 20.7 2.278

Random effects
Tissue source site (sD) 2.5 - 0.003 **
Residual (sD) 12.8 - -

△ Intercept should be interpreted as the mean estimated tumour purity of clear cell RCC.
† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. with and without tumour type.
** P < 0.01; *** P < 0.001.
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Supplementary Table S4.3: Alternative methods used to calculate P-values of association between connectivity 
scores of drugs and estimated tumour purity

Drug
P-value of correlation tested using 
normal (i.e. Pearson) linear regression

P-value Wilcoxon rank sum test  
(< 80% vs > 80% purity)

Erlotinib 0.0004 *** 0.0004 ***
Elvitegravir 0.0002 *** 3 x 10-6 ***
Tenofovir 3.3 x 10-8 *** 3 x 10-6 ***
Trimidox 9.9 x 10-5 *** 4 x 10-5 ***
Nicotinamide 4.4 x 10-6 *** 0.0008 ***
Quinine 9.5 x 10-10 *** 1.7 x 10-6 ***
Genistein 4.9 x 10-10 *** 6.4 x 10-7 ***
Temsirolimus 0.0009 *** 0.002 ***

*** P < 0.001.
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Supplementary Table S4.4: Coefficients full linear mixed model (12 tested variables) to explain the variability in 
mean connectivity score of PX-12 and CAY-10585. Counterpart to the reduced model presented in Table 4.2. 

Coefficient Estimate standard error P-value†

Fixed effects
Intercept -0.2875 0.0523 -
Estimated tumour purity 0.0013 0.0006 0.02 *
VHL mutation/methylation status 0.92

VHL methylation 0.0112 0.0322
Moderate impact VHL mutation -0.0079 0.0240
High impact VHL mutation 0.0136 0.0205
Missing 0.0081 0.0205

Tumour stage 0.21
stage II -0.0073 0.0226
stage III -0.0220 0.0180
stage IV 0.0241 0.0215

mRNA subtype 0.0004 ***
mRNA subtype m2 0.0343 0.0215
mRNA subtype m3 0.0414 0.0226
mRNA subtype m4 0.0436 0.0219
mRNA subtype missing 0.0974 0.0215

Loss of chromosome 3p -0.1286 0.0228 3 x 10-8 ***
Gain of chromosome 5q -0.0542 0.0144 2 x 10-4 ***
Loss of chromosome 14q 0.0376 0.0149 0.01 *
Number of chromosomal alterations in p53 and the G1/s cell cycle 
transition pathway (ranging from 0-15)

0.0126 0.0021 3 x 10-9 ***

Random effects
Batch ID (sD) 0.0000 - 1
Plate ID (sD) 0.0000 - 1
Tissue source site (sD) 0.0333 - 0.02 *
ship date (sD) 0.0236 - 0.14
Residual (sD) 0.1477 - -

† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. with and without mRNA subtype).
* P < 0.05; *** P < 0.001.
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Supplementary Table S4.5: Coefficients full linear mixed model (9 tested variables) to explain the variability in 
estimated tumour purity. Counterpart to the reduced model presented in Table 4.3. 

Coefficient Estimate standard error P-value†

Fixed effects -
Intercept 75.98 2.20
VHL mutation/methylation status 0.30

 VHL methylation 0.58 2.54
Moderate impact VHL mutation -2.52 1.89
High impact VHL mutation 1.78 1.60
Missing -0.39 1.45

Tumour stage 0.06
stage II 1.17 1.77
stage III -3.18 1.41
stage IV 0.19 1.67

mRNA subtype 2 x 10-12 ***
mRNA subtype m2 -3.06 1.68
mRNA subtype m3 -12.57 1.69
mRNA subtype m4 -4.14 1.72
mRNA subtype missing -0.72 1.64

Loss of chromosome 3p -3.87 1.79 0.03 *
Gain of chromosome 5q -2.76 1.14 0.02 *
Loss of chromosome 14q -3.42 1.17 0.004 **
Number of chromosomal alterations in p53 and the G1/s cell cycle 
transition pathway (ranging from 0-15)

0.26 0.16 0.11

Random effects
Batch ID (sD) 0.79 - 0.70
Tissue source site (sD) 1.32 - 0.55
Residual (sD) 11.8 - -

† Calculated using the Likelihood Ratio Test between model with versus without variable (e.g. with and without mRNA subtype).
* P < 0.05; ** P < 0.01; *** P < 0.001.




