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Reversal of cancer gene expression is predictive of therapeutic potential and can be used to find 
new indications for existing drugs (drug repositioning). Gene expression reversal potential is 
currently calculated, in almost all studies by pre-aggregating all tumour samples into a single 
group signature or a limited number of molecular subtype signatures. Here, we investigate 
whether drug repositioning based on individual tumour sample gene expression signatures 
outperforms the use of tumour group and subtype signatures. The tumour signatures were 
created using 534 tumour samples and 72 matched normal samples from 530 clear cell renal 
cell carcinoma (ccRCC) patients. More than 20,000 drug signatures were extracted from the 
CMAP and LINCS databases. We show that negative enrichment of individual tumour samples 
correlated (Spearman’s rho = 0.15) much better with the amount of differentially expressed 
genes in drug signatures than with the tumour group signature (Rho = 0.08) and the 4 tumour 
subtype signatures (Rho 0.036–0.11). Targeted drugs used against ccRCC, such as sirolimus and 
temsirolimus, which could not be identified with the pre-aggregated tumour signatures could 
be recovered using individual sample analysis. Thus, drug repositioning can be personalized by 
taking into account the gene expression profile of the individual’s tumour sample.
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Introduction

While targeted therapies such as tyrosine kinase inhibitors (sunitinib, sorafinib, pazopanib, axitinib, 
tivozanib) and mammalian target of rapamycin (mTOR) inhibitors (everolimus, sirolimus, temsiroli-
mus) have greatly improved the prognosis of metastatic Clear Cell Renal Carcinoma (ccRCC) patients, 
the average duration of disease control ranges between 8–9 months in the first-line setting and 5–6 
months in the second-line setting.1 This is caused by intrinsic and/or acquired drug resistance.2 both 
are likely enhanced by the existence of inter- and intra-tumour molecular heterogeneity: a recent 
study demonstrated that different biopsies from the same ccRCC tumour grown in patient-derived 
xenograft (PDX) mouse models can show different drug sensitivity patterns, and each was associated 
with markedly different gene expression profiles.3 

To prevent and overcome drug resistance, model systems and clinical experience have shown that 
combining drugs which target different pathways are superior to single-agent approaches.4 However, 
combining oncological drugs also tends to prohibitively increase the toxicity, as evidenced by the 
use of sunitinib and everolimus simultaneously.5 Therefore, to design better tolerated and effective 
combination regimens it might be productive to widen the search to include non-oncological drugs, 
as they often have a better safety profile. This is not as far-fetched as it may initially seem: aspirin, 
metformin, itraconazole and many other regular drugs are currently being tested in clinical trials for 
efficacy in adult malignancies, usually in combination with regular treatments.6 

The application of already registered drugs and compounds for new indications is called drug reposi-
tioning and it has obvious appeal: knowing the safety, toxicity, pharmacokinetic, pharmacodynamic 
and metabolic properties of a compound significantly reduces the risk and time required to register 
an indication as compared to a new chemical entity.7 This process has been accelerated by the surge 
of freely available “omics” data which has inspired many researchers to develop computational drug 
repositioning methods.8 One popular method, gene expression signature reversal, is based on the 
observation that when the difference in gene expression of cells after perturbation by a compound 
(the drug signature) is negatively correlated to the difference in gene expression between diseased 
and normal cells (the disease signature), the drug often turns out to be therapeutically indicated for 
that disease.9

because of the considerable heterogeneity between and even within ccRCC tumours, it therefore makes 
sense to reposition drugs based on individual gene expression profiles, as each tumour sample may 
have a different set of perturbed pathways.10 If all samples are analyzed collectively, pathways could 
either be masked or be less prominently expressed in proportion to the incidence of the perturbation. 
One way to solve this problem is to divide the tumour gene expression signature into subtypes with 
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a statistical technique such as hierarchical clustering, which groups samples with similar expression 
profiles. If no real biological variability remains within the identified subtypes (i.e. the same pathways 
are similarly perturbed in all samples belonging to that subtype), the probability of finding a valid 
result increases due to increased power as bigger groups are compared. However, if subtypes do 
contain significant biological variability it could interfere with the correct identification of potentially 
therapeutic drugs. Analyzing individual tumour samples does not suffer from this potentially incorrect 
binning problem, and could therefore result in more potentially therapeutic drug hits and simultane-
ously provide information on the proportion of tumour samples which are negatively correlated to each 
drug signature, at the cost of reduced power when samples are homogeneous. Although development 
of a method to target drugs based on the gene expression of single tumour samples may not be suc-
cessful for all tumours due to the existence of inter and intra-tumour heterogeneity, however, such an 
approach would best approximate the situation of intra-tumour heterogeneity and could be extended 
to multiple tumour samples in the future.

The goal of this research is to benchmark the results of the gene expression reversal analysis of the 
tumour subtype and the individual tumour sample signatures against the results of the average 
ccRCC tumour signature, as this could provide support for the development of an individualized drug 
repositioning approach based on gene expression.

Results

Clear Cell Renal Cell Carcinoma expression profiles
In total, 610 expression profiles from 606 different tissue samples (of which 72 matched solid tissue 
normal) were included in the analysis (Table 3.1). The ‘new primary solid tumour tissue sample’ (i.e. 
the metastasis of an earlier ccRCC tumour) was excluded from further analysis, as it could skew the 
results from the far more common 534 original primary solid tumour samples. These tissue samples 
were taken from 530 different patients, 344 male and 186 female. Of 4 patients (3 in stage I & 1 in stage 
II), 2 tumour samples were taken and one of these was analysed twice. The age of the patients ranged 
from a minimum of 26.6 years to a maximum of 90 years with a median age of 61 years.

After filtering out low expressed genes, the genes remaining in the analysis were reduced from 23,247 to 
11,333 (-51%). Varying the CPM cutoff or minimum sample requirement around these values does not 
significantly affect the number of genes remaining in the analysis (Supplementary Figures S3.1–S3.2). 
Furthermore, no substantial batch effects were observed as assessed by Principal Components Analysis 
(Supplementary Figure S3.3), conform the original analysis of the data by TCGA.11 



Personalised drug repositioning for ccRCC using gene expression

35

Ch
ap

te
r 2

Ch
ap

te
r 3

Tumour signatures
Figure 3.1a illustrates that although the signature sizes of the tumour samples are smaller than those 
of the tumour group and subtypes, the signatures sizes of the tumour samples are many times bigger 
than those of the normal samples at any FDR < 100%. This contrast is even clearer to see in Figure 3.1b: 
up to an FDR of 50% the amount of differentially expressed genes compared to the control condition 
(i.e. each individual normal sample versus all the other samples), remains at minimum 20 times higher. 
Figure 3.1c further emphasizes that there’s information in the individual signatures, as the amount of 
DEG increases monotonically with tumour stage. Lastly Figure 3.1d shows that at the more liberal FDR 
cutoff of 50%, sizeable fractions of genes frequently differentially expressed in the individual samples 
are in the opposite direction of the tumour group signature containing genes with a FDR < 1%. 

Drug signatures
Of the 1,309 drugs tested in CMAP and the 19,812 drugs tested in LINCS, 21 (1.6%) and 388 (2.0%) 
could not be processed further because the linear model could not be fitted due to the lack of control 
samples. The genes measured by the CMAP and LINCS arrays shared 6,058 and 502 genes in common 
with the 11,333 genes included in the tumour gene expression analysis, respectively (Supplementary 
Figure S3.4). However, LINCS drug signatures contain on average 6 times more genes with a FDR below 
50% based on the set of 879 genes shared between CMAP and LINCS when tested on the shared set of 
979 drugs (Supplementary Figure S3.5).

Connectivity mapping

The tumour sample signatures show a much higher rate of negative enrichment when connectivity 
mapping to the LINCS drug signatures than with the CMAP drug signatures (P < 10-16, Wilcoxon rank 
sum test). Furthermore, the amount of DEG in a drug signature (a marker of signature quality) shows 

Table 3.1: Tissue samples

Tissue Subgroup Samples

Primary solid tumour Stage I 268
Stage II 58
Stage III 123
Stage IV 82
Unknown 3
Total 534

Matched solid tissue normal Total 72
New primary solid tumour Total 1
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a much stronger correlation with tumour sample negative enrichment rate (Figure 3.2a, Spearman’s 
Rho = 0.15, P < 10-16) than with the amount of negatively enriched drugs calculated with the group 
and subtype signatures (Spearman’s Rho = 0.08 for group signature, between 0.036–0.11 for subtype 
signatures, Figure 3.2b). The mTOR inhibitors sirolimus (P = 0.03) and temsirolimus (P = 0.004) show 
negative enrichment with the individual tumour sample signatures, but not with the tumour group or 
subtype signatures. In contrast, the tyrosine kinase inhibitors approved for use against ccRCC (axitinib, 
pazopanib, sorafenib, sunitinib) do not show statistically negative enrichment with any signature type. 

Figure 3.2: A) Amount of samples showing statistically significant enrichment versus % of DEG in LINCS drug signature across 
the 10 deciles of ± 1,940 compounds. B) Correlation between negative enrichment frequency of signature types versus % DEG 
in drug signature.
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The top 8 results of connectivity mapping the 19,424 LINCS drug signatures to the 530 first tumour 
samples taken from each patient signatures after filtering out drugs not clinically available are presented 
in Table 3.2. Diverse classes of drugs are represented, most of which anti-tumour activity against ccRCC 
was not expected a priori.

Table 3.2: Top 8 LINCS drugs in clinical use which show the most frequent negative enrichment of tumour samples 
and which have > 33% differentially expressed genes, all with a P-value < 0.01 and a false discovery rate (FDR) < 
10%

Drug % of samples Mechanism of action Current indications

erlotinib 45 A tyrosine kinase inhibitor for the EGFR 
receptor

Primarily used in non-small cell lung 
cancer and pancreas carcinoma

elvitegravir 41 An integrase inhibitor HIV infection
tenofovir 39 Nucleotide reverse transcriptase inhibitor Chronic hepatitis b and prevention/

treatment HIV/AIDS
trimidox 
(trimethoprim + 
sulfadoxine)

36 Inhibition of dihydrofolate reductase, 
reduces folic acid

bacterial infections

nicotinamide 30 Part of the vitamin b3 complex. Has anti-
inflammatory properties.

Niacin deficiency, acne

quinine 29 Inhibition of hemozoin biocrystallization 
of parasites

Malaria and babesiosis

genistein 26 Supposedly many, e.g. inhibition of EGFR 
and DNA topoisomerase

None registered, used as a dietary 
supplement

temsirolimus 24 Inhibition of mammalian Target of 
Rapamycin

Clear cell renal cell carcinoma

If the tumour samples are simulated based on the tumour group signature, the expected amount of 
negatively enriched tumour samples in 95% of cases would be at least 2.3 up to 3.2 times lower for 
erlotinib, a drug which is negatively correlated to the group signature at P < 0.01, and 8.7 up to 21 times 
lower for tenofovir, which is only slightly negatively correlated to the group signature with P = 0.15 
(Figure 3.3a). If the samples are simulated from a representative distribution of tumour subtypes, then 
the difference becomes a little smaller: 95% of simulated batches return 1.6 up to 2.1 less negatively 
enriched tumour samples with erlotinib, and 4.1 to 6.7 times less for tenofovir. This same pattern, i.e. 
the samples simulated from the subtype signatures moving closer to the actual individual negative 
sample enrichment rate, was observed for the other 6 drugs (Supplementary Figure S3.6). 

Lastly, Figure 3.3b illustrates the directional consistency of the connectivity scores when the same 4 
samples are analyzed again contrasted with the result of connectivity mapping the tumour sample 
signatures of 4 different samples from the same patients. At P-value intervals between 0.1–0.01, 
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between 0.01–0.001 and below 0.001, there’s a respectively 76%, 87% and 96% probability the 
connectivity score has the same sign upon re-analysis of the same sample. However, when the same 
P-value intervals but different samples from the same patient are used, these probabilities drop to 
respectively 50%, 61% and 78%.

Figure 3.3: A) Density plot of negative enrichment frequency with erlotinib and tenofovir of 10,000 simulated batches of 530 
tumour samples assuming they were sourced from the tumour group signature (solid lines) or subtype signatures (dashed lines). 
B) Connectivity scores of analytical replicates on the same 4 tissue samples (green) and from 4 different tissue samples from the 
same 4 patients (red) plotted against each other, for three P cutoff intervals.
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Discussion

In this study we showed that an individual analysis of tumour samples result in more potentially thera-
peutic drug hits which are negatively correlated to each drug signature. This supports the development 
of an individualized drug repositioning approach based on gene expression. 

Despite the fact that none of the drugs were tested on any ccRCC cell lines, connectivity mapping of the 
tumour sample signatures (but not the group or subtype signatures) does reveal significant negative 
enrichment for 2 out of the 3 mTOR-inhibitors used against ccRCC (sirolimus and temsirolimus). However, 
the other mTOR inhibitor (everolimus) and the 4 tyrosine kinase inhibitors used against ccRCC present in 
the LINCS database (axitinib, pazopanib, sorafenib, sunitinib) did not reveal significant negative enrich-
ment. This could be because were tested in fewer cell lines (N = 13–20) as compared to sirolimus and 
temsirolimus (N = 51–57). Furthermore, these tyrosine kinase inhibitors are believed to work because 
they primarily inhibit the Vascular Endothelial Growth Factor (VEGF) receptor present on non-cancerous 
endothelial cells,1 and therefore reversal of gene expression on the ccRCC cells is not expected to occur. 

Our study also shows that the approach of drug repositioning by gene expression reversal reveals 
interesting potential drugs for treatment of individuals with ccRCC. Indeed, most of the top 8 of drugs 
with the highest negative enrichment of tumour sample signatures are already supported by existing 
evidence. Erlotinib and genistein both inhibit the Endothelial Growth Factor Receptor (EGFR), and the 
EGFR gene expression profile showed overexpression in 38.2% of tumour samples from an independent 
cohort of 63 ccRCC patients.12 The nucleotide reverse transcriptase inhibitor tenofovir is associated with 
nephrotoxicity due to accumulation in the proximal tubules,13 which ccRCC is thought to originate from. 
The similarity in gene expression between ccRCC and proximal tubules cells has been noted before,14 
and therefore it seems plausible they share the same toxicity as well. Quinine has shown some efficacy 
as an add-on in breast cancer patients15 and nicotinamide has been shown to substantially reduce the 
recurrence risk of skin cancer in a RCT.16 Lastly, temsirolimus is already in use against ccRCC. 

Some potential statistical issues/refinements of the described pipeline remain: the current method 
of determining the drug signature equally weighs experimental instances equally with different drug 
concentrations and drug exposure durations, whereas it has been demonstrated that higher drug 
concentrations and exposure durations induce a stronger effect on the differential gene expression 
profiles.17 More sophisticated batch effect correction methods than including a factor in the linear 
model exist, e.g. the use of control genes, could further amplify the signal from the noise.18 Different 
connectivity scoring methods also exist, which could further improve the sensitivity and/or specificity 
of the pipeline.19 Lastly, the selection of tumour sample genes was done by the commonly accepted 
but arbitrary criterion of a FDR below 1%; ideally this cut-off would be determined from the data, or 
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genes more likely to be actually differentially expressed could be given a higher weight. It will be more 
difficult to quantify the false negative rate, which can be increased by biological factors e.g. if drugs 
are tested in cell lines which do not express the drug target(s). However, as the amount of hits that can 
be validated is likely small, perhaps the focus should mainly be on decreasing the false positive rate. 

Despite all these potential issues/refinements however, the simulations already make it very clear that 
it would have been extremely unlikely to have found the same results if all tumour samples came from 
a single uniform tumour expression profile or a representative combination of the 4 previously identi-
fied subtype profiles. Indeed, the power of this approach lies in not having to assume the number of 
subtypes, whether there are none, 4 or more. Repeated RNA-seq analysis of the same tissue sample, 
and to a lesser degree a new tissue sample from the same patient, already shows remarkable consist-
ency in connectivity scores calculated with the current method and increases as the P-value of the 
connectivity score decreases. 

To our knowledge, this is the first paper to convincingly demonstrate that using individual tumour 
sample signatures as the basis for analysis outperforms analyses based on tumour group or subtype 
signatures. Zerbini et al. did publish a similar analysis,10 but as this was the only type of analysis 
they did, it did not demonstrate the superiority to the connectivity mapping of the group or subtype 
tumour signatures. Furthermore, our analysis contains more than 25 times more, and arguably better 
characterized, tumour samples and more than 120 times more drug compounds profiled in far more 
cell lines, resulting in a more comprehensive analysis. 

Whether a pathway is causally involved in the survival of the tumour is impossible to determine from 
the gene expression data alone. Testing the hits on existing ccRCC cell lines is a possibility, but many 
aspects of ccRCC cannot be replicated using cell lines.20 Furthermore, the transcriptomic heterogene-
ity is unlikely to be well represented in existing cell lines. It could be an option to first grow some of 
the patient’s own tumour tissue in an and test the drugs using an ex vivo functional assay. When the 
candidate drugs are marketed drugs which have been tested and approved for clinical use within the 
dose range an effect can be expected, it might therefore be ethically defensible to directly prescribe 
the drug off-label in an N = 1 trial. Possibly both scenarios could even be run in parallel, with the in 
vivo results providing some external validation and validated alternatives in the event the first prescrip-
tion failed to provide any benefit. If a database of the results of these N = 1 trials can be created and 
maintained, it could eventually generate enough evidence to conclude which combinations of gene 
expression profiles and drugs show a consistent therapeutic benefit.
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Materials and methods

All data processing and analyses were performed using R version 3.4.0 using the R/bioconductor 
packages mentioned below. False discovery rate (FDR) was always calculated using the benjamini-
Hochberg method.

Clear Cell Renal Cell Carcinoma expression profiles 
The mRNA-seq v2 read counts produced by The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell 
Carcinoma project were downloaded from the Genomic Data Commons using the TCGAbiolinks package 
(version 2.5.7).21 It is automatically annotated with metadata, such as patient information and the 
molecular subtype as determined by the original TCGA analysis using hierarchical cluster analysis.11 The 
genes were normalized within samples by gene length and between samples to correct for sequenc-
ing depth using the EDAseq package (version 2.10.0).22 Only genes which were expressed above 0.5 
Counts Per Million (CPM) in at least a sixth of all samples were retained, i.e. selection was irrespective 
of tissue type. This cutoff was taken from a bioconductor example workflow, and reduces the high 
noise inherent in measuring lowly expressed genes.23

Tumour signatures
The read counts were modelled using the negative binomial generalized log-linear model available 
from the edgeR package (version 3.18.1),22 and statistical significance was assessed using a likelihood 
ratio test. Three different types of tumour signature were generated:

1. Tumour group signature: All tumour samples versus all normal samples. This is the conven-
tional comparison, and ideal under the assumption of homogenous tumours. 

2. Tumour subtype signatures: All tumour samples belonging to each one of the 4 molecular 
tumour subtypes versus all normal samples. 

3. Tumour sample signatures: Each tumour sample versus all normal samples. This provides 
a unique signature for each tumour sample.  

To estimate the true false positive rate of genes included in the tumour sample signatures, normal 
sample signatures were generated by comparing each normal sample versus all the other normal 
samples. 

Drug signatures
A preprocessed version of the CMAP database was downloaded using the PharmacoGx package (version 
1.6.1) which was corrected for systematic differences caused by the different microarray platforms 
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using the Combat function in the sva package (version 3.10.0).24 The LINCS database was downloaded 
directly from the Gene Expression Omnibus (GSE92742) in the Level 3 format. The Entrez gene identi-
fiers were converted to Ensembl gene identifiers using the bioMart package (version 2.32.1), to make 
them compatible with the tumour expression profiles and the preprocessed CMAP database.25 The 
drug signatures were calculated with a linear model using the limma package (version 3.32.5) with 
drug concentration as a linear parameter (i.e. 0 for controls and > 0 for drugged cells) and cell type, 
perturbation duration (if > 2 perturbation durations), batch as categorical variables.26 

Drug-tumour signature connectivity mapping
Gene Set Enrichment Analysis (GSEA), using the log2 fold difference of the tumour genes which are 
below a 1% FDR in combination with using the landmark genes and tumour cells resulted in the least 
amount of false positive results out of all tested methods and configurations (Supplementary Figures 
S3.7–S3.10). Negative enrichment is defined as a negative connectivity score with an associated P-value 
below 0.05. P-values were calculated using permutations; N = 1,000 for each sample and N = 1,000 * 
the amount of tumour samples for the group and subtype signatures. P-values of cumulative tumour 
sample enrichment were determined by comparing the amount of negatively enriched samples to the 
distribution observed for drug signatures containing less differentially expressed genes (DEG) than the 
amount which would be expected by chance 95% of the time. FDR correction was applied separately 
for each decile of drug signature percentage DEG. Tumour signature genes which were differentially 
expressed at a false discovery rate (FDR) < 1% were used as inputs for Gene Set Enrichment Analysis 
of the drug signatures. 

Simulation study
For the top 8 most frequently negatively enriched drugs, a simulation study was performed to validate 
which drugs show individual differences in connectivity score different from the group and subtype 
signatures. 10,000 batches of individual tumour samples of the same size as the original batch and 
with the same distribution of sequencing depth to the original tumour samples were simulated 
from the tumour group signature to determine the amount of negatively enriched tumour sample 
signatures. Another 10,000 similarly constructed batches were sampled from the subtype signatures 
in the same proportion as found in the original data. Simulation was performed by extracting the mu 
and size parameters for each gene from the negative binomial generalized log-linear model. Tumour 
sample signatures were then calculated to determine the connectivity score and associated P-value 
with each drug.
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Data availability
The R code, drug signatures, tumour signatures and the resulting datasets generated during the 
current study are available in a public GitLab repository (https://gitlab.com/k.k.m.koudijs/personal-
ised_DR_ccRCC).

References
1. Hsieh JJ, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. doi:10.1038/nrdp.2017.9 
2. Groenendijk FH, bernards R. Drug resistance to targeted therapies: déjà vu all over again. Mol Oncol. 

2014;8:1067-83.
3. Hong b, et al. Intra-tumour molecular heterogeneity of clear cell renal cell carcinoma reveals the diversity of 

the response to targeted therapies using patient-derived xenograft models. Oncotarget. 2017. doi:10.18632/
oncotarget.17765 

4. bozic I, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife. 2013;2:e00747. 
doi:10.7554/eLife.00747 

5. Molina AM, et al. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. 
Cancer. 2012;118:1868-76.

6. Würth R, et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known 
compounds. Drug Discov Today. 2016;21:190-9.

7. Ashburn TT, Thor Kb. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug 
Discov. 2004;3:673-83. doi:10.1038/nrd1468

8. Li J, et al. A survey of current trends in computational drug repositioning. brief bioinform. 2016;17:2-12.
9. Sirota M, et al. Discovery and preclinical validation of drug indications using compendia of public gene expres-

sion data. Sci Transl Med. 2011;3.doi:10.1126/scitranslmed.3001318 
10. Zerbini LF, et al. Computational repositioning and preclinical validation of pentamidine for renal cell cancer. 

Mol Cancer Ther. 2014;13:1929-41.
11. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell 

carcinoma. Nature. 2013;499:43-9.
12. Cossu-Rocca P, et al. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma. 

Am J Cancer Res. 2016;6:71-83.
13. Ustianowski A, Arends JE. Tenofovir: What We Have Learnt After 7.5 Million Person-Years of Use. Infect Dis Ther. 

2015;4:145-57.
14. büttner F, et al. Survival Prediction of Clear Cell Renal Cell Carcinoma based on Gene Expression Similarity to 

the Proximal Tubule of the Nephron. Eur Urol. 2015;68:1016-20.
15. Taylor CW, Dalton WS, Mosley K, Dorr RT, Salmon SE. Combination chemotherapy with cyclophosphamide, 

vincristine, adriamycin, and dexamethasone (CVAD) plus oral quinine and verapamil in patients with advanced 
breast cancer. breast Cancer Res Treat. 1997;42:7-14.

16. Chen AC, et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N Engl J Med. 
2015;373:1618-26.

17. Chen b, et al. Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets. 
Nat Commun. 2017;8. doi:10.1038/ncomms16022 



Personalised drug repositioning for ccRCC using gene expression

45

Ch
ap

te
r 2

Ch
ap

te
r 3

18. Gagnon-bartsch JA, Speed TP. Using control genes to correct for unwanted variation in microarray data. 
biostatistics. 2012;13:539-52.

19. Musa A, et al. A review of connectivity map and computational approaches in pharmacogenomics. brief 
bioinform. 2017. doi:10.1093/bib/bbw112 

20. brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell 
cancer research. Mol Cancer. 2016;15. doi:10.1186/s12943-016-0565-8 

21. Colaprico A, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids 
Res. 2016;44. doi:10.1093/nar/gkv1507 

22. Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. bMC bioinformatics. 
2011;12. doi:10.1186/1471-2105-12-480 

23. Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq 
experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 2016;5. doi:10.12688/
f1000research.8987.2 

24. Smirnov P, et al. PharmacoGx: an R package for analysis of large pharmacogenomic datasets. bioinformatics. 
2016;32:1244-6.

25. Durinck S, Spellman PT, birney E, Huber W. Mapping identifiers for the integration of genomic datasets with 
the R/bioconductor package biomaRt. Nat Protoc. 2009;4:1184-91.

26. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43. doi:10.1093/nar/gkv007



Chapter 3

46

Supplementary information

Supplementary Figure S3.1: Impact of varying minimum sample requirement at a static cutoff of 0.5 Counts Per 
Million (CPM).
The red line is the chosen cutoff. The red line is the chosen cutoff resulting in 11,333 genes of the 23,247 remaining in the analysis.
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Supplementary Figure S3.2: Impact of varying minimum Counts Per Million (CPM) requirement at a static cutoff of 
expression in at least 90 samples.
The red line is the chosen cutoff resulting in 11,333 genes of the 23,247 remaining in the analysis.
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Supplementary Figure S3.3: Results of Principal Components Analysis (PCA) of the CPM transformed data.

−200

−100

0

100

−150 −100 −50 0 50 100

PC1 (11.9% explained var.)

P
C

2
 (

9
.4

%
 e

x
p

la
in

e
d

 v
a

r.
)

Primary Solid Tumor Solid Tissue Normal

Supplementary Figure S3.4: Overlap of Ensembl gene identifiers between CMAP, LINCS and TCGA expression data.
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Supplementary Figure S3.5: Percentage of genes with a FDR below 50% for all CMAP genes, only the CMAP genes 
shared with LINCS and the LINCS genes which are also measured by CMAP.
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Supplementary Figure S3.6: Density plot of negative enrichment frequency with other top hits of 10,000 simulated 
batches of 530 tumor samples assuming they were sourced from the tumor group signature (solid lines) or subtype 
signatures (dashed lines).
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Supplementary Figure S3.7: Performance of benchmarked methods stratified across the 3 quantiles of genes with 
a FDR < 50%.
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Supplementary Figure S3.8: Performance of benchmarked methods stratified across 3 cutoffs of critical P-values.
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Supplementary Figure S3.9: Enrichment frequency of CMAP drugs against LINCS signatures of the same drug based 
on Landmark genes (LM), Best inferred genes (BING) and All inferred genes (AIG).
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Supplementary Figure S3.10: Enrichment frequency of 139 CMAP drugs with at least 10 genes with a FDR < 1% and 
at least 3 LINCS samples in normal and tumor cells.
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