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Transcriptome signature reversion (TSR) has been hypothesized as a promising method for 
discovery and use of existing non-cancer drugs as potential drugs in the treatment of cancer 
(i.e. drug repositioning, drug repurposing). TSR assumes that drugs with the ability to revert 
the gene expression associated with a diseased state back to its healthy state are potentially 
therapeutic candidates for that disease. This paper review methodology of TSR and critically 
discusses key TSR studies. In addition, potential conceptual and computational improvements 
of this novel methodology are discussed as well as its current and possible future application in 
precision oncology trials.
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Introduction

In 2018 an estimated 9.6 million patients died from cancer worldwide and this number is projected to 
reach over 13 million in 2030.1,2 This has led to a huge investment into the development of methods 
to characterize individual cancers at the molecular level (i.e. precision oncology), which has revealed 
that cancer is a very heterogeneous disease. As a consequence, the treatment of cancer has moved 
from standard treatments regimens based upon the organ affected to precision medicine based upon 
the genetic makeup (i.e. somatic mutations) of the tumor.3 Indeed, most of the novel anti-cancer drugs 
were developed for treatment of patients with a tumor with a specific somatic mutation such as ALK 
or BRAF mutations. However, the development of new drugs is not only very costly (> 2 billion4) but 
also takes many years before it reaches the market (> 10 years5) and thus is available for patients. In 
addition, since precision medicine by definition leads to segregation of the drug market, it may prove 
economically unviable to develop and market new drugs for the increasingly rarer subtypes of cancer. 

A potentially cheaper and faster method for discovery of novel drugs in precision medicine of cancer 
therefore might be to explore whether drugs already on the market for other diseases are effective 
against specific tumors (i.e. drug repositioning/repurposing). Obviously, the approach of drug reposi-
tioning provides the benefit of an established safety and pharmacokinetic drug profile. 

The most direct method to discover and pre-clinically validate the anti-cancer activity of drugs would 
be high-throughput screening to identify associations between characteristics of in vitro/vivo models 
(e.g. a certain mutation) and the sensitivity to certain drugs. However, the ultimate stand-alone 
effectiveness of this approach depends both on the internal validity (i.e. technical reproducibility) and 
external validity (i.e. how well the in vitro model represents the drug sensitivity of tumors in patients), 
both of which have been called into question.6,7 

Computational drug repositioning approaches may therefore offer a complementary approach to 
discover new indications of existing drugs. Various computational ‘guilt-by-association’ approaches 
exist, which predicts new drug repositioning candidates based on its similarity to an established anti-
cancer drug, e.g. through shared side-effects, similarity in chemical structure, similarity in induced 
gene expression changes upon incubation with the drugs.8 The benefit of this approach is that the dys-
regulated pathway being targeted by the original drug has already demonstrated clinical significance. 
However, drugs identified through a ‘guilt-by-association’ approach would target the same dysregulated 
molecular pathway as the original drug and would therefore expected to be of limited additional 
therapeutic use, unless the new drug is somehow not affected by the same resistance mechanism as the  
originator. 



Chapter 2

20

Transcriptome signature reversion (TSR) is instead ideally suited to discover drugs which are expected 
to act against dysregulated cancer pathways which are not yet being targeted by established anti-
cancer drugs (Figure 2.1).9,10

The first step in TSR is to establish which genes are differently expressed (i.e. up- or downregulated) in 
the cancer cells as compared to healthy cells of the same tissue. The aim is then to find drugs that are 
able to reverse this expression profile to the expression profile of the healthy control cells. From public 
databases including over 1,000 different registered drugs, information is available on how these drugs 
affect the gene expression of cell lines after incubation. The extent of reversal of the tumor expression 
profile towards the expression of control cells is typically expressed in a score, referred to hereafter 
as the Reverse Gene Expression Score (RGES). Drugs with the highest RGES are expected to normalize 
the expression of a large number of genes and are considered potential drug candidates for treating 
the malignancy.  

Figure 2.1: Graphical illustration of transcriptome signature reversion (TSR).
A) In the first step, a disease signature is created by determining which genes are upregulated (green) and downregulated (red) in 
diseased cells compared to the healthy cells. B) In the second step, a database is virtually screened to find drugs with the opposite 
effect on gene expression. This is determined by comparing the gene expression of drug-treated cell lines with untreated cell 
lines. C) Drugs with an opposite gene expression signature are considered to be potentially effective drugs to treat the disease 
because they are expected to revert the gene expression in the diseased cells back to the gene expression levels observed in the 
healthy cells.

Studies utilizing TSR to find potentially effective anti-cancer 
drugs

TSR has been used for repositioning drugs against a variety of conditions, such as epilepsy,11 skeletal 
muscle atrophy,12 inflammatory bowel disease13 and cancer.14-22 Here, we discuss a selection of studies 
applying TSR to find new potentially effective anti-cancer drugs. 

One of the first and currently most cited (> 450) study to apply was published by Sirota et al. in 2011.15 
First, they integrated the gene expression measurements from 100 diseases and 164 drug compounds. 
Disease and healthy control tissue gene expression measurements for each disease were downloaded 
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from the Gene Expression Omnibus (GEO), which is a freely accessible repository for experimentally 
generated high-throughput gene expression data used by researchers to share their data.23 The gene 
expression profiles of drug treated and non-drug treated cancer cell lines were extracted from the 2006 
release of the Connectivity Map (CMAP).24 An integrated analysis of these datasets showed that TSR 
was able to recover known drug and disease relationships, by clustering drugs and diseases by their 
predicted therapeutic scores.  

Furthermore, to prove that TSR has the ability to predict previously unknown therapeutic relation-
ships, they experimentally validated topiramate as a candidate therapy for Crohn’s disease/ulcerative 
colitis in a rat model of inflammatory bowel disease (IBD) and cimetidine as a candidate therapy for 
lung adenocarcinoma using cell lines and tumor xenografts implanted in immunodeficient mice. To 
our knowledge, topiramate and cimetidine have yet to be clinically investigated for these indications. 
However, cimetidine has been extensively pre-clinically and clinically investigated in other cancer 
types (even before publication of this study) with encouraging but as of yet inconclusive results.25 
Topiramate as a treatment of IBD may suffer from the critical drawback that is known to induce diarrhea 
at clinically used doses, which would worsen one of the prominent symptoms of IBD.26 This case study 
therefore emphasizes that efficacy at any dose is not enough for clinical application and other factors 
should always be considered. 

In the study by Sirota et al.,15 both disease and drug signatures were derived from experiments using 
RNA microarray technology. However, microarrays have recently been surpassed by RNA-sequencing 
(RNA-seq) as the most preferred method of measuring gene expression.27 In addition, a new database 
called the LINCS L1000 (the successor of CMAP) has since become publicly available.28 The LINCS L1000 
contains the gene expression profiles of many more small molecule compounds (currently 19,811) which 
are tested on a larger panel of cell lines (up to 71) compared to CMAP (N = 3). The only downside of the 
LINCS L1000 database is that a special microarray platform was used which only measures the gene 
expression of 978 key genes. Although only the expression of a small subset of ± 20,000 protein coding 
genes are measured, these genes were preselected based on how well it is possible to computationally 
infer 81% of the remaining of non-measured transcripts.

Capitalizing on these new developments, Chen et al. published one of the first studies utilizing both 
RNA-seq data and the LINCS L1000 database in 2017.21 RNA-seq data of breast invasive carcinoma (BIC), 
liver hepatocellular carcinoma (HC), colon adenocarcinoma (COAD) and their respective adjacent normal 
healthy control tissue from The Cancer Genome Atlas (TCGA) was used to generate 3 tumor signatures. 
By comparing the tumor signatures with the gene expression profiles induced by drugs on cell lines of 
the same lineage as the tumor tissue, they showed that RGES depended more on the identity of the cell 
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line than on variations between replicate conditions (e.g. concentration and incubation duration). Which 
cell line(s) the drugs are tested on may therefore significantly influence the drug signature. Nonetheless, 
while less important than cell line identity, higher concentrations and longer incubation duration were 
predictive of higher RGES which emphasizes that testing conditions are important considerations as 
well. Another key result is that the RGES calculated using the gene expression changes measured in 
individual cell lines showed a strong positive correlation with experimental data available in ChEMBL 
on the half-maximal inhibitory concentration (IC50) measured in the same cell line (Spearman Rho 
0.33–0.58, P < 0.003 for all 3 cell line collections). The summarized RGES (sRGES) was developed 
to summarize and standardize (at 24 h and 10 μM) the RGES of a tumor signature-drug signature 
combination across the average cell line and incubation conditions. In addition, sRGES was validated 
on drug efficacy data from cell lines of all 3 tumor lineages present in Cancer Therapeutic Response 
Portal (CTRP v2) and growth rate inhibition metrics measured on BIC cell lines. Lastly, 4 compounds 
with distinct molecular structures not previously studied for efficacy in LIHC and predicted using sRGES 
to have a low IC50 with LIHC cell lines were experimentally validated in a panel of five LIHC cell lines. 
The resulting median IC50s ranged between 3.18 μM (CGK-733) to 0.07 μM (pyrvinium pamoate). As 
pyrvinium pamoate (an FDA-approved drug indicated for the treatment of pinworms) had the lowest 
IC50, it was subsequently further validated using more specific and advanced in vitro and in vivo assays.  

Three important additional findings were reported in the study of Chen et al. The first is that calculat-
ing the sRGES without cell lines of the same lineage as the tumor signature decreased the correlation 
between sRGES and IC50, although it remains positively correlated. This suggests that cell lines from 
the researcher’s tumor type of interest do not necessarily need to be present in LINCS to make valid 
predictions. The second finding is that targeted drugs (N = 69) show more variation in RGES between 
cell lines than cytotoxic drugs (N = 9). This confirms the biological intuition that in order to accurately 
capture the targeted effect of a drug, the target should be sufficiently present in the cell line. The 
third finding is that although RGES was predictive of efficacy in aggregate, there are some effective 
compounds (e.g. microtubule inhibitors) which showed no potency to reverse gene expression. A 
possible explanation is that the mechanism of action of microtubule inhibitors is not being captured 
by the 978 genes on the LINCS microarray.

Potential conceptual improvements 

One limitation of the two aforementioned key studies is that genes which were differentially expressed 
between the average tumor sample and the average adjacent normal tissue sample were included in the 
disease signature. This is of course a simplification, as there exists considerable heterogeneity in genetic 
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identity and treatment response of tumor cells of the same tissue origin between tumors of different 
patients, within patients and even within tumors.29 One of the possible improvements is therefore to 
reposition drugs based on which genes are differentially expressed in individual tumor samples instead 
of the average tumor sample of a particular tumor type. We showed by using a systematic approach 
based on clear cell renal cell carcinoma (ccRCC) RNA-seq data from TCGA, that repositioning drugs based 
on individual ccRCC samples outperformed TSR based on the average tumor signature or the 4 tumor 
subtypes previously identified using hierarchical clustering.22 

Another limitation inherent in using gene expression measurements from patient tissues is that most 
cancer and healthy control tissue gene expression data published in the public domain (e.g. from 
The Cancer Genome Atlas) used for drug repositioning studies have been analyzed using either bulk 
microarray or RNA-seq methods.21,22 Bulk methods do not separate the cell types present in the sample 
before the analysis and therefore observed differences in gene expression might be confounded by 
differences in cell type compositions:30 for example, the tumor tissue may contain relatively more 
blood vessel cells, different or more immune cells, etc. than adjacent normal tissue. When such data 
is used to generate the disease signature, and a candidate drug is unintentionally selected because 
it reverses genes expressed primarily in e.g. the immune cells present in the tumor, the patient is 
unlikely to experience any therapeutic benefit from the drug. Certainly, in some cases (e.g. angiogen-
esis inhibitors, immunotherapy) the most clinically relevant target of the drug may be in the tumor 
micro-environment, but an agnostic approach combined with bulk tissue samples would be unlikely 
to prioritize drugs which target these specific cell types.

Fortunately, it has become technically feasible to analyze the expression of individual cells with single 
cell RNA-seq.31 This completely circumvents the potential issue of sample cell type composition. However, 
even with the use of single cell RNA-seq data two potential issues remain. The first arises from the fact 
that it has long been established that many driver events in different pathways are needed to gather 
all the functionality to become a fully functional malignant cell,32 whereas most candidate drugs 
probably only target one dysregulated pathway. And given that typically many different pathways are 
dysregulated, each additional dysregulated pathway increases the size of the haystack (total number of 
genes to be potentially reversed) while the number of needles (genes targeted by potentially effective 
drugs) stays the same. Although overall one would still expect a net reversion for a drug, attempting to 
revert all genes makes it statistically harder to find potentially effective drugs, and lowers the predic-
tive value of the procedure by increasing the ratio of false positive to true positive findings. While this 
issue may seem most important when comparing tumor cells to normal cells, the same issue can arise 
with other contrasts. For example, it is likely that even within the same patient and tumor, metastatic/
drug resistant tumor clones differ genetically (e.g. different mutations, amplifications, deletions, 
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etc.) in more than 1 way from drug sensitive/non-metastatic tumor clones. The second potential 
issue concerns the acquisition of “non-functional” collateral damage sustained by tumor cells along 
the evolutionary path to become malignant. If this is only caused by random mutations/deletions/
amplifications occurring in between acquiring the driver events, it would average out given enough 
tumor tissue samples are analyzed. However, systematic causes of collateral damage do exist such as a 
commonly observed mechanism used to deactivate a tumor-suppressor gene: on one chromosome of 
a pair the allele might be mutated whereas on the other chromosome, the entire chromosomal region 
might be deleted. Because supposedly the only reason the entire chromosomal region was deleted is 
to inactivate both copies of a single gene, it is implausible that reversing all the genes on the 1) the 
deleted chromosomal region; and 2) the genes on other chromosomes affected by the chromosomal 
deletion back to the normal expression levels will lead to reversion of the undesirable phenotype. 

These 2 potential issues might be addressed in the following way. If enough tissue samples are taken 
from the same tumor and analyzed using single cell RNA-seq, it may be possible to identify pairs 
of tumor clones which are genetically identical (i.e. same mutations, chromosomal amplifications/
deletions, etc.) except for the existence of a key driver event. Alternatively, if such a clean comparison 
is not possible and the driver event of interest is not completely confounded with other genetic events, 
it might be reasonable to approximate such a contrast using a regression model containing all genetic 
events as parameters. Otherwise, the best possible approach might be to take the overlap between 1) 
all genes dysregulated compared to healthy cells and 2) genes dysregulated after the driver event is 
edited in using laboratory techniques such as CRISP-CAS. 

Potential computational improvements 

Batch effect correction
Because of the enormous volume, the data available in CMAP and LINCS was generated and analyzed 
in a batch wise manner. The basic unit of each batch is the plate, with CMAP using a combination of 
6 and 96 well plates and LINCS using 384 well plates. Because of similar handling and environmental 
conditions, samples within each batch are influenced by the same unwanted technical variation which 
can affect the statistical power to detect differentially expressed genes and the external validity of 
generated gene expression signatures.33 It is therefore recommended to use one of the many different 
methods available which were developed to reduce this unwanted variation.34
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More advanced methods to calculate reversal potency
The theoretical advantages and disadvantages of a representative sample of earlier methods have all 
recently been reviewed by Musa et al.35 In this section we would therefore like to highlight two newer 
methods because they claim to represent important recent advancements.

The first is EMUDRA (Ensemble of Multiple Drug Repositioning Approaches).36 EMUDRA combines the 
output of a newly developed algorithm (EWCos) with 3 state-of-the-art methods (Cosine, XCor and 
XSpe). Zhou et al. showed that EMUDRA outperformed all other single and combined approaches on 
1) Simulated datasets, 2) Retrieval of drugs from LINCS using drug signatures constructed using CMAP 
and 3) Predicting which drug pairs share the same fourth level ATC code (i.e. drug pairs with similar 
chemical, therapeutic and pharmacological properties). 

However, one important limitation which all previously published methods (including EMUDRA) 
have in common is that the researcher still has to choose a cutoff for including genes in the disease 
signature. Which cutoff is used at what level is not standardized with a result that these cutoffs vary 
wildly between different studies. To illustrate, in the 14 studies referenced by Musa et al. the following 
variety of cutoffs were used:37

•	 Only genes which are differentially expressed below a statistical significance cutoff, such 
as P < 0.05, 0.001, 0.0001 or a False Discovery Rate (FDR) below 1%, 5%, 25%;

•	 Sometimes in combination with a minimum Fold Change above 1.5, 2 or even 4;
•	 In some studies, no formal statistical significance criterion is used and instead the top X 

(e.g. 75 or 100) most up- and downregulated genes are selected for reversion. 

The number of genes which ended up in the disease signature across these diverse studies subsequently 
ranged widely from 21 up to 1,000. This has been one of the main motivations behind the development 
of Dr. Insight (Drug Repurposing: Integration and Systematic Investigation of Genomic High-Throughput 
data), a “signature free” method, i.e. the researcher does not have to choose a cutoff.37 This method was 
benchmarked to 4 existing methods (The KS method implemented in the original CMAP study, ssCMAP, 
NFFinder and Cogena) and demonstrated superior performance in simulated datasets and three cancer 
datasets. Additionally, Dr. Insight was shown to be robust to simulated additional experimental noise, 
even when up to 90% of extra noise was added to the expression profiles. 

Unfortunately, to date no independent systematic and quantitative benchmarking of signature reversal 
methods has been published which includes both EMUDRA and Dr. Insight. Computational validation is 
further complicated by the fact that there is no general agreement on the best way to validate whether 
a computational drug repositioning method results in clinically efficacious repositioning hypotheses.38 
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The key issue is that since true positive and true negative hits are unknown, it is impossible to establish 
the sensitivity and specificity of computational drug repositioning methods in an unbiased manner using 
real data. Therefore, simulation studies based on realistic assumptions are likely the best alternative 
to choose the current best TSR algorithm.

Current and possible future application of TSR in precision 
oncology trials

In all TSR studies reviewed thus far the selected drugs were not given directly to patients. However, 
in theory TSR can be relatively easily personalized by simply replacing the average tumor signature 
with the patient’s own tumor signature. In August 2018, the first trial was published which utilized 
RNA sequencing and the underlying principle of TSR to reposition drugs against relapsed multiple 
myeloma (MM). 

From February 2014 to February 2016, 64 patients with relapsed multiple myeloma (MM), a prognosis 
of 6 months of survival and lack of FDA-approved treatments were included in the trial.39 DNA and RNA 
sequencing were performed on CD138+ cells isolated from the bone marrow. In this highly pretreated 
cohort of patients, an overall response rate of 66% with a median duration of response of 131 days was 
achieved in the 21 evaluable patients with 5 patients experiencing a durable response.

Patients received drugs based on either DNA sequencing (N = 8), RNA-seq (N = 11) or both (N = 2). 
This trial therefore illustrates that selecting drugs based on RNA-seq can have a complementary value 
to selecting drugs based on DNA-sequencing alone. However, recommended drugs were prioritized 
based on prescriber discretion and on whether there were any specific associations with MM in the CIViC 
(Clinical Interpretations of Variants in Cancer) database.40 Furthermore, for most drugs given based on 
RNA-seq (trametinib, venetoclax, panobinostat), the target gene or pathway was used instead of the cor-
responding drug signature from the LINCS L1000 database. Seemingly only etoposide was directly chosen 
because of an opposite relationship with the patient’s gene expression profile using their TSR-based 
drug repositioning algorithm, although observed activation of the HDAC pathway frequently coincided 
with the selection of vorinostat (a HDAC-inhibitor) using the TSR-based drug repositioning algorithm. 

This clinical trial thus raises the question of how TSR fits into the current clinical drug repositioning 
landscape. If drugs are always prioritized based on existing clinical evidence of anti-cancer activity, it 
will be hard to clinically test promising non-cancer drug repositioning candidates in precision oncology 
trials. One way out of this dilemma would be to establish clinically predictive ex vivo models of tumor 
types and screen drug repositioning candidates on these models. 
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Future perspective and concluding remarks 

TSR has already proven itself to be a cost and time efficient method to rapidly screen for potentially 
effective non-cancer drugs which frequently are proven effective, at least under laboratory conditions. 
However, up to now attempted validation in clinical trials has been severely lacking. 

Because of the heterogenous nature of cancer between and even within patients, it makes scientific and 
clinical sense to reposition drugs on an individual patient basis. However, a single tumor and healthy 
tissue sample makes it impossible to distinguish which of the differentially expressed genes compared 
to healthy cells are actually driving tumor growth and metastasis, and which genes are differentially 
expressed because of passenger events and/or non-functional collateral damage. Single cell RNA-seq 
and the analysis of multiple tumor samples from the same patient may make the identification of key 
genes to revert more tractable in the future. 

Another key issue is the external validity of the drug signatures for the individual patient’s tumor cells. 
From the reviewed analysis of cell lines present in LINCS we already know that the drug signature at a 
standardized concentration and incubation duration varies significantly between cell lines, and thus 
the predicted expected reversion of genes is expected to vary significantly between tumor clones of 
individual patients as well. Although drug signatures calculated over the average cell line at stand-
ardized conditions proved predictive in aggregate, individual in silico prediction of efficacy may have 
too much uncertainty to directly clinically test predicted drug repositioning candidates on individual 
patients. This uncertainty is further compounded by the availability of the multitude of computational 
algorithms and lack of standardization of TSR studies.    

Ex vivo validation of individual patient drug repositioning candidates may therefore be the solution to 
reduce the uncertainty associated with individual drug repositioning predictions.41 This will require the 
existence of clinically predictive ex vivo models but it can provide an independent check of predicted 
drug repositioning candidates, and a relative benchmark against drugs hypothesized to be effective 
through other methods (e.g. actionable mutation-based drug repositioning).
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