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on faecal microbiome metabolism in adult twins
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Quinten Raymond Ducarmon4, Anoecim Robecca Geelen4, Romy Daniëlle Zwittink4, Dimitris Tsoukalas5, 
Evangelia Sarandi5, Efstathia I. Paramera6, Timothy Spector2, Claire J. Steves2 and Michael N. Antoniou1* 

Abstract 

Background: Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their 
influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with 
pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the 
first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first 
pesticide association study on gut microbiome composition and function from the TwinsUK registry.

Methods: Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome 
in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban 
environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal 
microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted 
urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physi‑
ological changes.

Results: Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the 
herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from 
organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations 
between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion 
was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and 
phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with 
the phytoestrogens enterodiol and enterolactone, and negatively associated with some N‑methyl amino acids. Urine 
metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues.

Conclusions: The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides 
with unknown long‑term health consequences. Our results highlight the need for future dietary intervention studies 
to understand effects of pesticide exposure on the gut microbiome and possible health consequences.
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Background
Human exposure to pesticides has been linked to a vari-
ety of diseases triggered by acute intoxication [1], occu-
pational exposures or residential proximity to pesticide 
applications [2–4]. Whether typical low levels of pes-
ticide exposure stemming from dietary and domestic 
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use can contribute to disease development is strongly 
debated. Nevertheless, adverse effects from chronic 
exposure during vulnerable periods like pregnancy are 
well known for some insecticides, such as organophos-
phates [5–7], DDT [8] and pyrethroids [9, 10].

Controversies around human health effects of pes-
ticides largely originate from the limited ability of 
current risk assessment procedures employed by gov-
ernment regulatory agencies to predict chronic adverse 
effects. Animal model systems have been traditionally 
used to evaluate the toxicity of pesticides. However, 
toxic effects of pesticides are not always accurately 
detected in the battery of animal bioassays performed 
during precommercial stages of assessment. This is 
the case for neurodevelopmental toxic effects [11], 
cancer caused by early life exposures [12], as well as 
metabolic disorders and fertility problems caused by 
endocrine disruptors [13]. This also holds true for the 
consequences of pesticide exposure on the gut micro-
biota [14], which are of interest because of the large 
enzymatic repertoire harboured by gut microorgan-
isms conferring them the ability to modify the toxicity 
of chemicals. In some cases, the toxicity of xenobiot-
ics can be enhanced after direct chemical modification 
by the gut microbiome [15]. This has been linked to a 
variety of health outcomes locally in the gut, such as 
intestinal damage and severe diarrhea [16], but also at 
distant organ sites, such as for melamine-induced renal 
toxicity [17]. Xenobiotics can also affect human health 
indirectly by changing gut microbiome composition 
[18], decreasing the protective effects of some bacte-
ria or modulating the production of bacterial metabo-
lites [19, 20]. In addition, government regulators do 
not assess mixture effects of pesticide exposure, which 
animal studies reveal toxicity at doses where individual 
compounds show no adverse outcomes [21]. This fur-
ther compromises the ability of current risk assessment 
procedures to predict any negative health outcomes 
from pesticide exposure.

Dietary habits have a profound influence on the meta-
bolic activity of gut microbial species and their influence 
on human metabolism. Healthy dietary patterns strongly 
associate with gut microbiota profiles known to be car-
diometabolic markers of health [22]. The gut microbiome 
responds rapidly to dietary changes [23]. Switching to an 
animal-based diet causes an increase in bile acid secre-
tion to cope with the higher fat intake and this selects for 
bacteria that are resistant to bile acid. In contrast, switch-
ing to a plant-based diet favours bacteria, which can uti-
lise plant polysaccharides. This modulates the capacity 
of gut bacteria to synthesize vitamins and cofactors [24]. 
Although the effects of varying levels of macronutri-
ents on the metabolism of gut bacteria are increasingly 

studied, little is known about the effects of possible con-
taminants such as pesticides.

Recent initiatives have been launched to harmonise 
and aggregate pesticide biomonitoring data in the EU 
with the European Joint Program HBM4EU [25], in the 
US with the CDC’s National Health and Nutrition Exam-
ination Survey [26], or the French national programmes 
Elfe (French Longitudinal Study since Childhood) and 
Esteban (Environment, Health, Biomonitoring, physi-
cal Activity, Nutrition) [27]. However, no comprehensive 
biomonitoring of pesticide exposure has been under-
taken to date in the UK population. The first aim of our 
project is to start to fill this crucial gap in our knowledge 
by studying the exposure to pesticides in 65 twin pairs in 
the UK.

Since animal studies are not always accurate predictors 
of chronic health risks from pesticide exposure, estimat-
ing population-level exposure by direct biomonitoring is 
becoming one of the most successful strategies to evalu-
ate human health effects [28]. Association studies are 
increasingly performed to link chemical exposures with 
human disease development [28]. This strategy allowed 
linking exposure between the pesticide-derivative hepta-
chlor epoxide and Type 2 Diabetes [29]. We also provided 
the first associations between urinary pesticide excre-
tion, food frequency questionnaires, and the composi-
tion and function of the faecal microbiome determined 
by shotgun metagenomics and metabolomics. The com-
bination of metagenomics and metabolomics has proven 
to be the method of choice to study the faecal metabolic 
environment [30], and to evaluate the disturbance of this 
ecosystem by pesticides [31]. This allows associations to 
be made between dietary factors, pesticide exposure, and 
faecal microbiome composition and function.

Our study revealed a widespread exposure to different 
insecticide residues while contamination by fungicides 
and herbicides was less frequent. Analysis of dietary 
choices further suggested that insecticide exposure was 
due to the ingestion of contaminated fruit and vegeta-
bles. Associations between pesticide excretion and faecal 
microbiome composition were detected, suggesting that 
pesticides can be metabolised by gut bacteria. Overall, 
our study lays the foundation for larger epidemiological 
as well as dietary intervention studies designed to assess 
the link between pesticide exposure and human health.

Methods
Participants and pesticide exposure estimation
Subjects were monozygotic twins enrolled in the Twin-
sUK cohort [32]. The St. Thomas’ Hospital Research 
Ethics Committee approved the study. All individuals 
provided informed written consent. Twins were selected 
based on their answers to a food frequency questionnaire 
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(FFQ) modified to include a question on organic food 
consumption [33]. Our aim was to define two groups of 
individuals, one less likely to be exposed to pesticides 
than the other because of organic food consumption. 
Consumption of legumes, fresh fruits and vegetables 
were estimated using existing FFQ data following the 
EPIC-Norfolk guideline [34]. Relevant FFQ items were 
converted to grams consumed per week as previously 
described [33]. Responses to the additional question 
“Please indicate to what extent you consume, when avail-
able, organic fruits and vegetables?” were used as modi-
fiers to estimate potential for pesticide exposure, with the 
per weekly gram consumption being multiplied by the 
relevant weight (Table S2). Individuals who responded 
that they did no eat fruits and vegetables were removed 
from analysis. This resulted in a proxy estimate for poten-
tial of pesticide exposure from the diet (hereafter referred 
to as ‘pesticide exposure’). Differential pesticide expo-
sure between twin pairs was assumed for pairs with a > 1 
standard deviation difference of estimated exposure and 
who fell within different categories. A total of 977, mostly 
female, twin pairs answered questions on organic food 
dietary intake from the TwinsUK questionnaire. Study 
inclusion criteria were as follows; 1) only monozygotic 
twin pairs, 2) discordance for organic food consump-
tion. Among these 977 individuals, 65 twin monozy-
gotic twin pairs were found to be discordant for organic 
food consumption. Thus, only these 65 twin monozy-
gotic twin pairs were selected for inclusion in our study. 
An additional FFQ was completed by participants at the 
time of faecal and urine sample collection to eliminate 
any confounding effects of temporality on the associa-
tion between pesticide exposures and patterns of faecal 
microbiome metabolism.

Geographic location of the individuals from this study 
was based on their postcode centroid. The 111 individu-
als with geographic location were from different UK 
regions, namely East Midlands (9), East of England (16), 
London (10), North East (2), North West (15), South East 
(30), South West (19), West Midlands (6), and Yorkshire 
and The Humber (4). The discrimination between rural 
and urban environments was established with the Land 
Cover Map  2015 (LCM, version 1.2), which was down-
loaded from the Centre for Ecology and Hydrology via 
the ‘Digimap’ portal. Individuals were considered as rural 
or urban based on their surrounding environment in a 
1  km2 area.

Pesticide screening in urine samples
A general pesticide screening in urine samples was 
undertaken to assess the presence of 186 pesticide resi-
dues in a highly multiplexed detection assay with a low 
detection limit of 0.1 μg/L per compound. This included 

residues from common insecticides, herbicides and fun-
gicides, which are used in agricultural and domestic 
settings. The LC-MS/MS system included a Shimadzu 
NEXERA X2 series and 8060 triple quadrupole mass 
spectrometer. Identification and quantification of pesti-
cides was performed in positive and negative mode using 
multiple reaction monitoring (MRM) of a quantifica-
tion and additional qualifier ion. When a pesticide was 
detected, it was included in a follow-up targeted assay 
to accurately quantify urinary concentrations against a 
standard curve.

Glyphosate and AMPA were measured after derivatiza-
tion with FMOC-Cl (9-fluorenylmethyl chloroformate) 
with a Shimadzu NEXERA X2 series and 8060 triple 
quadrupole mass spectrometer. Glyphosate 13C215N was 
used as an internal standard (IS) and was purchased as 
a solution at 100 mg/L (LGC, UK). A total of six cali-
bration standards of glyphosate and AMPA (LGC, UK) 
between the higher limit of quantification (LOQ) and 
the lower LOQ (namely, between 0.1 to 10 μg/L) were 
used for the calibration. Chromatographic separations 
were performed at 40 °C on a Kinetex C18 100A col-
umn (100 × 2.10 mm, 2.6 μm particles) (Phenomenex, 
France). Identification and quantification of glyphosate-
FMOC and AMPA-FMOC were performed in negative 
mode using MRM of a quantifier ion (390.2/62.9 and 
331.9/110.1, respectively) and an additional qualifier ion 
(389.9/168.1 and 331.9/62.9, respectively).

Pyrethroid metabolites were measured in urine after 
hydrolysis with β-glucuronidase (Helix Pomatia) with 
a Shimadzu LC-20 AD and AB SCIEX API 5500 QTrap 
triple quadrupole mass spectrometer. For this, 3-PBA 
13C and trans-Cl2CA 6D were used as IS. Six calibration 
standards between the higher LOQ and the lower LOQ 
(namely, between 0.025 to 10 μg/L) were necessary for 
the calibration with 3-PBA, 4-FPBA, 2,2-dichlorovinyl-
2,2-dimethylcyclopropane-1-carboxylic acid  (Cl2CA) 
(cis and trans), and cis − 3-(2,2-dibromovinyl)-2,2-di-
methylcyclopropane-1-carboxylic acid  (Br2CA) Chroma-
tographic separations were performed on a Atlantis T3 
column (150 × 2.10 mm, 5 μm particles) (Waters, USA). 
Mobile phase A contained 0.1% formic acid and phase 
B included (95/5) methanol acidified with 0.1% formic 
acid and phase A. Identification and quantification of 
3-PBA, 4-FPBA,  Cl2CA (cis and trans) and  Br2CA were 
performed in negative mode using MRM of a quantifier 
ion (213.0/92.9, 231.0/93.1, 208.9/36.9 and 342.9/80.8, 
respectively) and an additional qualifier ion (213.0/65.1, 
231.0/65.1, 207.0/35.0 and 296.8/80.9, respectively).

Organophosphate metabolites (dialkyl phosphate, 
DAP) were measured in urine after extraction with ethyl 
acetate and diethyl ether with a Shimadzu NEXERA X2 
series and 8060 triple quadrupole mass spectrometer. 
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DMP 6D, DMTP 6D, DMDTP 6D, DEP 10D, DETP 10D 
and DEDTP 13C4 were used as IS. DMTP 6D, DMDTP 
6D and DEDTP 13C4 (LGC, UK) at 97, 98 and 95% purity 
respectively. A total of 6 calibration standards between 
the higher LOQ and the lower LOQ (namely, between 2 
to 100 μg/L) were necessary for the calibration for DMP, 
DMTP, DMDTP, DEP, DETP and DEDTP. Chromato-
graphic separations were performed on an INERTSIL 
ODS3 column (100 × 2.10 mm, 5 μm particles) (GL Sci-
ences INC., JAPAN). Identification and quantification 
of DMP, DMTP, DMDTP, DEP, DETP and DEDTP were 
performed in negative mode using MRM of a quanti-
fier ion (125.4/63.1, 141.3/126.1, 157.3/112.1, 153.4/79.1, 
169.4/95.1 and 185.3/157.2, respectively) and an addi-
tional qualifier ion (125.4/79.1, 141.3/96.1, 157.3/142.1, 
153.4/125.1, 169.4/141.1 and 185.3/111.1, respectively).

Exposure to dithiocarbamates was detected by meas-
urement of carbon disulfide  (CS2) in urine after acid 
hydrolysis at high temperature. Benzene 6D (LGC, UK) 
was used as an IS. Five calibration standards between the 
higher LOQ and the lower LOQ (namely, between 10 to 
500 μg/L) were necessary for the calibration with carbon 
disulfide. The HS-GC-MS system included a Perkin Elmer 
TurboMatrix HS 40 and a Shimadzu QP 2010 quadrupole 
mass spectrometer. Chromatographic separations were 
performed on a RTX1 column (30 m × 0.32 mm × 4 μm) 
(RESTEK, France). Carrier gas was helium. For separa-
tion, the temperature was increased from 50 °C to 200 °C 
in 9 min. Identification and quantification of carbon 
disulfide were performed in impact electronic ionization 
mode using SIM of a quantifier ion (75.9) and an addi-
tional qualifier ion (77.9).

More details of the methods describing the measure-
ment of glyphosate, pyrethroid metabolites, organophos-
phate metabolites, and dithiocarbamates, are available as 
supplementary material.

Faecal microbiota
Faecal samples were collected at home by the recruited 
volunteers and stored at King’s College London. All sam-
ples have been processed within 2 hours after reaching 
the laboratory. They were stored at − 80 °C without the 
addition of a stabilising agent. DNA was extracted from 
100 mg faecal samples using the Quick-DNA Faecal/Soil 
Microbe Miniprep Kit (ZymoResearch) according to the 
manufacturer’s instructions. Minor adaptations were 
made as previously described [35] as follows: 1. bead 
beating was performed at 5.5 m/s for three times 60 sec-
onds (Precellys 24 homogeniser, Bertin Instruments) and 
25 μL elution buffer was used to elute the DNA, follow-
ing which the eluate was run over the column once more 
to increase DNA yield. A negative control (no sample 
added) and a positive control (ZymoBIOMICS Microbial 

Community Standard, ZymoResearch) were processed 
for DNA extraction and subsequently sequenced. DNA 
was quantified using the Qubit HS dsDNA Assay kit on a 
Qubit 4 fluorometer (Thermo Fisher Scientific).

Shotgun metagenomics was performed under contract 
by GenomeScan (Leiden, The Netherlands). The NEB-
Next® Ultra II FS DNA module (cat# NEB #E7810S/L) 
and the NEBNext® Ultra II Ligation module (cat# NEB 
#E7595S/L) were used to process the samples. Fragmen-
tation, A-tailing and ligation of sequencing adapters of 
the resulting product was performed according to the 
procedure described in the NEBNext Ultra II FS DNA 
module and NEBNext Ultra II Ligation module Instruc-
tion Manual. The quality and yield after sample prepara-
tion was measured with the Fragment Analyzer. The size 
of the resulting product was consistent with the expected 
size of approximately 500–700 bp. Clustering and DNA 
sequencing using the NovaSeq6000 platform was per-
formed according to manufacturer’s protocols. A con-
centration of 1.1 nM of DNA was used. DNA sequencing 
data was acquired using NovaSeq control software NCS 
v1.6. All information regarding samples, quality checks, 
experimental procedures, and the resulting data that was 
generated is available as Supplementary File 1.

Metabolon Inc. (Durham, NC, USA) was contracted 
to conduct the metabolomics analysis for human faecal 
samples as previously described [31]. Each sample extract 
was analysed on four independent instrument platforms: 
two different separate reverse phase ultra-high perfor-
mance liquid chromatography-tandem mass spectros-
copy analysis (RP/UPLC-MS/MS) with positive ion mode 
electrospray ionisation (ESI), a RP/UPLC-MS/MS with 
negative ion mode ESI, as well as a by hydrophilic-inter-
action chromatography (HILIC)/UPLC-MS/MS with 
negative ion mode ESI. Raw data was extracted, peak-
identified and QC processed using Metabolon’s hardware 
and software as previously described (DeHaven et  al. 
2010). Faecal metabolites were identified by comparison 
to libraries of authenticated standards with known reten-
tion time/index, mass to charge ratio, chromatographic 
and MS/MS spectral data. Peak area values allow the 
determination of relative quantification among samples 
(Evans et al. 2009).

Urine metabolomics
The urine metabolomics analysis was performed as 
before [36] and is an adaptation of a protocol originally 
published by Tanaka and colleagues [37]. Briefly, a liquid-
liquid extraction was first performed to extract the urine 
organic acids after mixing the sample with 2-ketocaproic 
and tropic acids as internal standards (both from Sigma 
Aldrich, St. Louis, MO, USA). Hydroxylamine hydrochlo-
ride (Sigma Aldrich) was added to oxidise 2-keto acids. 
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N,O,-bis-(trimethylsilyl) trifluoroacetamide (Supelco 
Bellefonte, PA, USA) containing 1% trimethylchlorosi-
lane (Supelco Bellefonte) was then added to convert 
organic acids to corresponding trimethylsilyl (TMS) 
ethers, required to impart volatility. Volatile TMS esters 
were separated by gas-chromatography. Detection was 
performed using an electron impact mass spectrometer 
in scan mode with a mass range between 50 and 550 m/z. 
Obtained spectra are compared with published spectra 
for the compounds of interest to achieve identification. 
The absolute quantification of organic acids is performed 
using the calibration curves of standard compounds to 
internal standard ratios. Concentrations were normalized 
to creatinine. The quality assurance of the Organic acids’ 
methodology was assessed by participation in the qual-
ity control scheme of the European Research Network for 
Diagnosis of Inherited disorders of Metabolism (ERN-
DIM): Qualitative urine Organic acids and Quantitative 
urine Organic acids [38]. Precision, linearity and recov-
ery for this method has been published [39].

Statistical analysis
Pesticide biomonitoring data are often left-censored 
because a proportion of the individual’s urinary concen-
trations are below the level of detection. Summary statis-
tics for pesticide urinary concentrations were calculated 
using a maximum likelihood estimation with R package 
NADA v1.6–1 [40] when the number of left-censored 
values was below 50%. In case the number of missing 
values was too high (detection frequency < 20%), only 
the detection frequency was reported. The relationship 
between the Healthy Eating Index 2010 (HEI), or the 
pesticide exposure index created from the consumption 
of fruit and vegetables, with pesticide urinary concentra-
tions was evaluated using regression equations for singly 
censored data using maximum likelihood estimation with 
R package NADA v1.6–1 [40].

Random Forest classification of the 124 urine sam-
ples in which glyphosate could be measured, was 
performed by using faecal microbiome parameters 
as predictors using R package Caret (version 6.0–84) 
[41]. Since the two classes were not balanced (58 non-
organic food consumers and 66 organic food consum-
ers), down-sampling was done prior to processing with 
the trainControl function. Input variables were scaled 
and centred. The optimisation of the number of vari-
ables for splitting at each tree node (mtry) was done 
with default parameters. Accuracy was estimated using 
repeated cross-validation (5-fold, repeated 10 times). 
The model was trained using 66% of the dataset while 
the quality of this model was evaluated using predicted 
sample classification of the remaining 34% of the 

dataset. The quality control metrics were calculated 
using the confusionMatrix function from Caret. This 
function calculates the overall accuracy along a 95% 
confidence interval, with statistical significance of this 
accuracy evaluated with a one-side test comparing the 
experimental accuracy to the ‘no information rate’.

Shotgun metagenomics datasets were analysed with 
Rosalind, the BRC/King’s College London high-perfor-
mance computing cluster. First, data was pre-processed 
using the software package pre-processing v0.2.2 
(https:// anaco nda. org/ fasni car/ prepr ocess ing). In brief, 
this package concatenates all forward reads into one 
file and all reverse reads into another file, and then uses 
trim_galore to remove Illumina adapters, trim low-
quality positions and unknown positions (UN) and 
discard low-quality (quality < 20 or > 2 Ns) or too-short 
reads (< 75 bp). This software package also removes 
contaminants (phiX and human genome sequences) 
and ultimately sorts and splits the reads into R1, R2 
and UN sets of reads. The microbiome of human faecal 
samples was analysed using MetaPhlan3 (v 3.0.14) [42] 
and Humann2 (v 0.10) [43] with the UniRef90 database 
to characterise composition and function.

While pesticides with a detection frequency over 
80% were considered as continuous variables, those 
detected in 50–80% of the samples were dichotomized 
as detected/undetected as recommended by the Euro-
pean Human Biomonitoring Initiative (HMB4EU) and 
as previously described [44]. Pesticides with detection 
frequencies below 20% were not carried forward in the 
association study (Table  1). The association study was 
conducted with a linear-mixed model considering age 
as a covariate and family relationship as a random effect 
with MaAsLin (Microbiome Multivariable Association 
with Linear Models) 2.0 (package version 0.99.12) [45]. 
Metagenome taxa detected in less than 20% of the indi-
viduals were removed and 211 species were carried for-
ward for the association analysis. The metabolome data 
was log-transformed, while the metagenome taxonomic 
composition was transformed using an arcsine square 
root transformation. The Benjamini–Hochberg method 
was used to control the False Discovery Rate (FDR) of 
the MaAsLin analysis. Shannon and Simpson diversity 
indices, and species richness, were calculated with the 
vegan R package version 2.5–6 [46].. Nonmetric mul-
tidimensional scaling of Bray-Curtis dissimilarity with 
stable solution from random starts, with axis scaling, 
was performed with vegan R package [46]. Statisti-
cal significance of Bray-Curtis dissimilarity differences 
according to pesticide residue levels was calculated by 
Permutational Multivariate Analysis Of Variance (PER-
MANOVA) with 1000 permutations [47].

https://anaconda.org/fasnicar/preprocessing
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Results
This observational study included 130 volunteers (93% 
woman, aged 63.8 ± 10.4 years). All were monozygotic 
twins enrolled in the TwinsUK cohort. Their BMI was 
24.5 ± 4.3 kg/m2. We screened urine samples for the 
presence of 186 residues of insecticides, herbicides and 
fungicides. Pyrethroid and organophosphorus residues 
from insecticides were the most abundant pesticides 
detected in all urine samples, followed by DEET and imi-
dacloprid (Table 1). The herbicide glyphosate was found 
in 53% of the urine samples although it was below the 
LOQ (< 0.1 μg/L) in 10 cases (8%) (Fig. 1A-C). Exposure 
to dithiocarbamates measured by the detection of carbon 
disulphide was found in 10.8% of the samples.

Our original objective was to assess if regular consump-
tion of organic food products results in different urinary 
pesticide levels. A total of 65 monozygotic twin pairs dis-
cordant for organic food consumption (one twin eats an 
organic diet whereas the other does not) were selected 
for this investigation. However, when a new FFQ was 
performed at the time of urine collection, only 15 pairs 
were discordant for organic food consumption. In addi-
tion, in the majority of cases organic food formed only 
part rather than an exclusive component of the diet (Sup-
plementary Table S3). The inconsistency in the answers 

provided to the nutrition questionnaire, an issue raised in 
other studies [48], convinced us to drop this component 
of the investigation, as any findings would be deemed as 
inconclusive. The observed inconsistency between the 
results of the FFQ before recruitment and during the 
study is an important finding, which supports the need 
for dietary intervention studies to accurately determine 
the effects of an organic diet on the gut microbiome.

We then evaluated if dietary habits are associated 
with the excretion of pesticide residues to understand 
if the consumption of fruit and vegetables is a major 
source of exposure in the UK using the Healthy Eating 
Index 2010 (HEI) and a pesticide exposure index cre-
ated from the consumption of fruit and vegetables [33]. 
We noted that individuals who are regularly consuming 
organic products had higher healthy eating index values 
(P Wilcoxon = 0.02). This is not surprising because indi-
viduals who eat organic diets lead generally healthier 
lifestyles than individuals eating conventionally grown 
foodstuffs [49]. DMTP levels, a metabolite of methyl-
organophosphates, was associated with fruit and vegeta-
ble consumption (p cenreg = 0.04). This suggested that 
organophosphate exposure is at least in part related to 
food contamination. Geographic location did not predict 
urinary pesticide levels across 9 UK regions (Fig. 1D and 

Table 1 Summary statistics of pesticide residues detected in the urine samples. The summary statistics values (μg/L) were estimated 
using the maximum likelihood inference for left‑censored values. <LOD indicates that a reliable value could not be estimated because 
less than 50% of the samples contained quantifiable amounts of a given compound. In addition to these compounds, fipronil sulfone 
was detected in 1 sample (LOD of 0.1 μg/L) but not quantified. * 6 samples were missing. LOD, limit of detection; DF, detection 
frequency; IQR, 5% and 95% quantiles

pesticide group active ingredient metabolite LOD DF median max IQR

dithiocarbamates dithiocarbamates carbon disulphide (CS2) 5 10.8 <LOD 83 <LOD

pyrethroids cypermethrin, permethrin, cyfluthrin trans 2,2‑dichlorovinyl‑2,2‑dimethyl‑
cyclopropane‑1‑carboxylic acid (Trans 
Cl2CA)

0.02 96.9 0.18 23.0 0.027–1.2

cis 2,2‑dichlorovinyl‑2,2‑dimethylcyclo‑
propane‑1‑carboxylic acid (Cis‑Cl2CA)

0.01 98.4 0.07 7.1 0.014–0.38

most pyrethroids 3‑phenoxybenzoic acid (3‑PBA) 0.015 80.0 0.12 10.6 0.039–1.8

cyfluthrin 4‑Fluoro‑3‑phenoxybenzoic acid (4F‑3‑
PBA)

0.015 10.0 <LOD 0.10 <LOD

deltamethrin cis − 3‑(2,2‑dibromovinyl)‑2,2‑dimethyl‑
cyclopropane‑1‑carboxylic acid (Br2CA)

0.015 95.4 0.077 1.64 0.014–0.42

organophosphorus Unspecific of methyl‑ organophos‑
phates, e.g., dimethoate, chlorpyrifos‑
methyl, azinphos‑methyl, malathion, 
fenthion, phosmet

dimethylphosphate (DMP) 1 14.6 <LOD 51.6 <LOD

dimethylthiophosphate (DMTP) 1 58.5 5.2 88.6 0.83–31.9

dimethyldithiophosphate (DMDTP) 1 2.3 <LOD 36.5 <LOD

Unspecific metabolite of ethyl‑ organo‑
phosphates e.g., chlorpyrifos, diazinon, 
ethion, coumaphos, terbufos

diethylphosphate (DEP) 0.5 75.4 2.5 180 0.35–17.4

diethylthiophosphate (DETP) 1 1.5 <LOD 5.7 <LOD

glyphosate glyphosate glyphosate* 0.05 53 0.045 2.8 0.0025–0.84

aminomethylphosphonic acid (AMPA)* 0.1 5.6 <LOD 1.4 <LOD

N,N‑dialkylarylamides DEET N,N‑Diethyl‑meta‑toluamide (DEET)* 0.1 11.3 <LOD 8 <LOD

neonicotinoid imidacloprid imidacloprid 0.05 1.6 <LOD 1.1 <LOD
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S1). Postcode was available for 123 individuals, which 
were stratified as 30 rural and 93 urban individuals. Simi-
larly, we did not find a difference in pesticide excretion 
between rural or urban individuals (Fig. S2).

As dietary habits have a profound influence on the 
biochemical activity of gut microbial species and influ-
ence metabolism, the faecal microbiome of the 65 twin 
pairs was studied by shotgun metagenomics and metabo-
lomics. Faecal metabolite profiles contained xenobiotics, 

including 84 food components and 46 compounds anno-
tated as pharmaceuticals or pharmaceutical metabolites. 
In addition, we also detected a large number of endog-
enous compounds such as 197 amino acid derivatives, 30 
carbohydrates, and 47 cofactors and vitamins, as well as 
hundreds of lipids, steroids, corticosteroids and endocan-
nabinoids (Fig. 2A).

Taxonomic composition of the faecal microbiome 
was evaluated by counting clade-specific marker genes. 

Fig. 1 Association between urinary concentrations of glyphosate and faecal microbiota metabolism in 124 individuals. A Detection of glyphosate 
in a urine sample spiked with 0.1 μg/L of glyphosate. B MRM transition spectrum for the same sample. C Urinary glyphosate levels as a boxplot 
with the highest censoring threshold (LOQ) shown as a horizontal line. D Glyphosate levels according to living areas. E Faecal metabolites, which 
have the largest difference in abundance as box plots. F Beta diversity using Bray‑Curtis dissimilarity. G Alpha diversity as the number of observed 
species. H. Relative abundance (as copies per million, cpm) for the bacteria contributing to the abundance (white to red: relative abundance; grey: 
undetected) of the shikimate pathway (as MetaCyc: chorismate biosynthesis I)
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Composition profiles of the faecal microbiomes were 
typical for Western developed countries, with the most 
represented taxa assigned to the phyla Firmicutes (56.8%) 
and Bacteroidetes (21.1%) among the microorganisms 
which could be classified by Metaphlan. In total, we iden-
tified 16 phyla including 603 species. These were mostly 
bacteria (493 species), and a few Archaea (4 species), 
eukaryotes (3 species) and viruses (103 species). Faecal 
microbiome composition showed high interindividual 
variation, as only 14 species (out of 26 with an average 
relative abundance over 1%) were present in 80% of the 
samples.

Information on both taxonomic and metabolite com-
position allows the study of faecal microbiome metabo-
lism (Fig.  2B). We detected 6890 correlations between 
708 faecal metabolites and 164 bacterial species with a 
false discovery rate (FDR) of < 0.2. Filtering out poorly 
correlated variables (ρ < 0.3) retained 1391 correlations. 
There were 122 negative and 82 positive correlations to 
xenobiotic metabolites. These can inform on the interac-
tion between environmental exposures and metabolism 
of the gut microbiome. For example, N-(2-furoyl) glycine, 
a furan derivative originating from food subjected to high 
heat, negatively correlated with multiple species such 
as Eggerthella lenta, Clostridium bolteae, Clostridium 
CAG 58 and Flavonifractor plautii. Our data also reveal 
information about correlations between the abundance 

of dietary bioactive compounds and the abundance of 
gut microorganisms. For instance, Firmicutes bacte-
rium CAG:110 was negatively correlated to 7-methylu-
rate, paraxanthine, 3-methylxanthine, 1-methylxanthine, 
1,7-dimethylurate, 3,7-dimethylurate and 1-methylurate. 
The abundance of the product of dietary polyphenol 
metabolism enterolactone was positively correlated to 
the abundance of Ruminococcus callidus, Intestinibac-
ter bartlettii, Bifidobacterium animalis and Coprococcus 
catus. However, compounds known to be used as pesti-
cides were not detectable.

Although the effects of macronutrients on gut bacte-
rial metabolism is increasingly studied, little is known 
about the consequences of pesticide exposure despite the 
increasing number of laboratory animal studies show-
ing perturbations of the gut microbiome [14]. We evalu-
ated the association between pesticide excretion and the 
composition of the faecal microbiome (Supplemental 
Excel Tables). A total of 34 associations between urinary 
insecticide residue concentrations and faecal metabo-
lite concentrations had an FDR below 0.2 (Table 2). The 
insecticide metabolite Br2CA, reflecting deltamethrin 
exposure, was positively associated with the phytoestro-
gens enterodiol and enterolactone, as well as negatively 
associated with some N-methyl amino acids (N-meth-
ylalanine, N-methylglutamate, N-2-methylarginine 
and N-acetyl-1-methylhistidine) (Table  2). Bacteroides 

Fig. 2 Deep phenotyping of the faecal microbiome in 130 individuals (65 twin pairs). A Faecal metabolomics allow the detection of a large number 
of metabolites from different classes, including xenobiotics. B Correlations between the abundance of gut microorganisms and metabolites 
(positive, red; negative, blue) inform on the interaction between environmental exposures and the metabolism of the gut microbiome
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Table 2 Significant associations between urinary excretion of pesticide residues and the composition of the faecal microbiota 
evaluated using shotgun metagenomics and metabolomics. Statistical models were established with MaAsLin2, using the pesticide 
levels as predictors. The model coefficient value (effect size) and the standard error from the model are reported along the p‑values 
and its False Discovery Rate (FDR). Associations with FDR < 0.2 for creatinine adjusted models are reported

Response Predictor effect size stderr pval FDR

METABOLOMICS
Br2CA N‑methylglutamate −0.15 0.04 0.0009 0.12

enterolactone 0.17 0.05 0.0011 0.13

N‑succinyl‑isoleucine −0.12 0.04 0.0012 0.13

palmitoyl‑ethanolamide −0.18 0.05 0.0017 0.13

N‑methylalanine −0.20 0.06 0.0019 0.13

2‑hydroxyglutarate −0.16 0.05 0.0026 0.14

N‑acetyl‑1‑methylhistidine. −0.18 0.06 0.0026 0.14

enterodiol 0.19 0.06 0.0030 0.14

N2‑methylarginine −0.07 0.02 0.0038 0.16

piperidine −0.15 0.05 0.0041 0.16

stearoyl‑ethanolamide −0.21 0.08 0.0060 0.17

2‑oxo‑1‑pyrrolidinepropionate −0.08 0.03 0.0061 0.17

dihydroferulate −0.12 0.04 0.0073 0.19

1‑palmitoyl‑2‑arachidonoyl‑GPC 0.11 0.04 0.0076 0.19

Trans.Cl2CA oleoyl.linoleoyl.glycerol 0.23 0.07 0.0013 0.15

linoleoyl‑linoleoyl‑glycerol 0.23 0.07 0.0014 0.15

4‑hydroxybenzoate −0.14 0.05 0.0020 0.15

glycerol 0.25 0.08 0.0023 0.15

1‑oleoyl‑GPC18 0.25 0.08 0.0031 0.19

anacardic.acid 0.30 0.10 0.0034 0.19

3.PBA arachidoylcarnitine −0.25 0.07 0.0005 0.12

carotenediol −0.13 0.04 0.0006 0.12

3‑methylurate 0.18 0.05 0.0007 0.12

allantoin −0.27 0.08 0.0007 0.12

erucoylcarnitine −0.23 0.07 0.0008 0.12

lysine −0.11 0.04 0.0027 0.18

glyphosate 3.hydroxystearate 0.51 0.14 0.0003 0.19

lactobacillic acid 0.25 0.07 0.0010 0.19

stearate 0.25 0.07 0.0010 0.19

phosphate 0.41 0.12 0.0011 0.19

2‑hydroxylignocerate. 0.33 0.10 0.0011 0.19

pentadecanoate 0.24 0.07 0.0013 0.19

3‑carboxyadipate 0.27 0.08 0.0019 0.19

saccharopine 0.34 0.11 0.0019 0.19

METAGENOMICS
Br2CA Faecalitalea cylindroides 0.06 0.0002 1.3E‑30 1.6E‑28

Streptococcus_anginosus_group 0.11 0.03 0.003 0.19

DEP Hungatella hathewayi −0.03 7.3E‑5 2.0E‑33 9.5E‑31

Collinsella aerofaciens −0.19 0.007 2.65E‑08 4.2E‑6

Clostridium bolteae 0.04 0.01 0.002 0.19

PBA Bacteroides eggerthii 0.16 0.01 3.9E‑8 1.9E‑5

Clostridium symbiosum 0.13 0.02 6.9E‑5 0.02

sumDEP Hungatella hathewayi −0.03 7.3E‑5 2.2E‑33 1.1E‑31

Collinsella aerofaciens −0.18 0.007 2.7E‑8 4.2E‑6

Clostridium bolteae 0.05 0.01 0.0009 0.07

Enterorhabdus caecimuris 0.01 0.004 0.001 0.1



Page 10 of 14Mesnage et al. Environmental Health           (2022) 21:46 

eggerthii and Clostridium symbiosum were positively 
associated to the metabolism of pyrethroids (Table  2). 
Although associations between single pesticide metabo-
lites and the faecal microbiota were limited, the total uri-
nary molar sums of the dimethyl-containing (sumDMP) 
and diethyl-containing (sumDEP) metabolites were posi-
tively associated to several Clostridium spp. (Table  2). 
Insecticide levels did not significantly influence micro-
biome diversity in most cases (Table S1), and only the 
levels of DMP was positively associated to the number of 
observed species.

We recently described a metabolomic signature for 
glyphosate exposure in the gut microbiome of rats [31]. 
We thus evaluated if there was a correlation between 
glyphosate urinary levels and faecal microbiome com-
position and function in the TwinsUK cohort. The 10 
metabolites, which discriminate glyphosate-exposed rats 
from unexposed animals did not significantly predict the 
detection of glyphosate in the 124 individuals with a clas-
sification accuracy of 65% (95% CI [0.49, 0.79]) (Fig. S3). 
Positive associations to glyphosate levels mostly included 
fatty acid metabolites (Fig.  1E). Microbial composition 
measured by Bray-Curtis dissimilarity was no different 
between individuals who excreted glyphosate and those 
for whom glyphosate was undetected (Fig. 1F). A linear-
mixed model considering age and sequencing depth as 
a covariate, and family relationship as a random effect, 
showed that the species richness was higher in individu-
als who excreted glyphosate (p lmer = 0.01) (Fig. 1G) but 
not for Shannon (p lmer = 0.17) and Simpson diversity 
indices (p lmer = 0.60). The positive association between 
phosphate and glyphosate (Fig. 1E) points to an influence 
on phosphate metabolism, which could be due to micro-
bial metabolism of glyphosate [31]. We also estimated 
the relative contribution of the different bacterial spe-
cies to core functions of the gut microbiome. The relative 
abundance of genes from the shikimate pathway among 
bacteria, was no different between the individuals who 
excreted glyphosate and those for whom glyphosate was 
undetected (Fig. 1H).

We performed a urine metabolomics analysis to evalu-
ate whether pesticide urinary excretion also associates 

with physiological changes [36]. This consisted of a tar-
geted analysis of 36 organic acids in a subgroup of 61 
subjects. No differences were detected in the concentra-
tions in organic acids between a group of 28 individuals 
who did not present detectable glyphosate levels in their 
urine compared to a group of 33 individuals with detect-
able glyphosate levels (Table S3). Overall, no associa-
tions between pesticide residues and the composition of 
the urine metabolome were found (Supplemental Excel 
Tables).

Discussion
The consequences of pesticide exposure on human gut 
microbial community composition, function and meta-
bolic health are currently unknown. This is despite the 
increasing number of studies in laboratory animals show-
ing perturbations of the gut microbiome by pesticides 
[14]. As a first step in filling this important knowledge 
gap, we performed the first pesticide biomonitoring sur-
vey of the British population, and subsequently used the 
results of this study to perform the first pesticide associa-
tion study on gut microbiome composition and function 
in individuals from the TwinsUK registry.

Levels of glyphosate, pyrethroid and organophospho-
rus residues were comparable to those of previous studies 
performed with other European populations [50, 51]. A 
large range of pesticides were applied in the UK in 2016, 
including insecticides (316 t), fungicides (5902 t), herbi-
cides (7806 t), and molluscicides (161 t) [52]. Our results 
suggesting that the exposure to DMTP, a metabolite of 
methylorganophosphates (e.g. dimethoate, chlorpyrifos-
methyl, azinphos-methyl, malathion, fenthion, phosmet) 
is related to diet is in accord with previous studies, which 
showed that individuals eating an organic diet had lower 
levels of urinary insecticides than those eating conven-
tional non-organic products [53]. This could point to a 
possible source of health risks as the exposure to organo-
phosphate during sensitive periods of life has been linked 
to a variety of diseases such as neurobehavioral problems 
after prenatal exposure [5]. The consumption of fruit and 
vegetables is the major source of pesticide exposure in 
the UK [54]. However, the consumption of agricultural 

Table 2 (continued)

Response Predictor effect size stderr pval FDR

sumDMP Clostridium citroniae 0.02 2.8E‑5 3.8E‑43 5.49E‑41

Veillonella dispar 0.002 3.9E‑5 2.0E‑22 2.2E‑20

Clostridium bolteae 0.08 0.002 0.001 0.07

Clostridium innocuum 0.14 0.04 0.001 0.07

Eubacterium siraeum −0.13 0.04 0.004 0.16
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products sprayed with pesticides is not always the most 
important source of exposure as pesticides are frequently 
found in dust [55] and ambient air [56]. Pesticides are 
also used by the amenity sector (e.g., golf courses, local 
authorities, lawn care operators, sport stadiums), with 
80 t of pesticides applied in 2016 (77% by glyphosate, 61 t) 
[52]. Domestic use is also an important source of expo-
sure with the use of herbicides to clear weeds in private 
gardens, or the use of insecticides indoors (e.g. anti-mos-
quito sprays, impregnated animal pet collars for flea con-
trol) [57].

Although we could not test whether pesticide excretion 
is different between individuals eating organic food and 
those who do not, the observed inconsistency between 
the results of the FFQ before recruitment and during the 
study is nevertheless an important result as it supports 
the need for intervention studies to evaluate this parame-
ter [58, 59]. Only a few randomized controlled trials have 
been conducted that report lower pesticide body burden 
with consumption of organic food, such as the ORGAN-
IKO trial [60, 61], and the study by Hyland and colleagues 
[62]. The need for an intervention study to evaluate 
health benefits of an organic diet is further supported by 
the finding that individuals who are regularly consuming 
organic products in our study had higher healthy eating 
index values. An organic diet is multifactorial and diffi-
cult to clearly define, which makes self-assessment prone 
to subjective bias [49]. Organic diet consumers have gen-
erally healthier lifestyles than individuals eating conven-
tionally grown foodstuffs. This is a known confounding 
factor in epidemiological studies associating a decreased 
pesticide exposure through organic food consumption to 
health benefits [49]. Although organic food consumers 
may be healthier, this can be in part due to other demo-
graphic and lifestyle covariates as these individuals tend 
to have a higher physical activity, smoke less, are more 
educated and make heathier dietary choices. One way of 
at least partially mitigating these lifestyle confounding 
factors in determining health benefits of an organic diet 
would be to focus on vulnerable groups, such as preg-
nant farmworkers who do not necessarily have access to 
proper safety equipment in rural environments and are 
thus exposed to higher pesticide levels [63].

The findings of our study provide a foundation for 
larger environmental epidemiology investigations link-
ing pesticide exposure to metabolic perturbations 
and their health consequences. Environmental levels 
of pesticide exposure have been suggested to disturb 
gut microbial metabolism. The insecticide metabolite 
Br2CA, reflecting deltamethrin exposure, was nega-
tively associated with amino acid metabolites (Table 2). 
Deltamethrin transformation by Bacillus thuringiensis 

has been found to cause a downregulation of energy 
metabolism [64], although a direct comparison of these 
findings to the gut microenvironment is speculative. 
Microbial abundance and diversity was not found to be 
decreased by glyphosate as theorised by some authors 
[65] but increased, which is coherent with the findings 
of our recent study in rats where we found glyphosate 
interference with gut microbial metabolism [31]. The 
positive association between phosphate and glyphosate 
points to an influence on phosphate metabolism, which 
could be due to the metabolism of glyphosate by the gut 
microbiome as hypothesised previously [66]. Only one 
other study in humans has made a direct link between 
the degradation of organophosphate insecticides in the 
gut microbiome with negative consequences on glucose 
metabolism [67] although this involved higher exposed 
pesticide users [68].

The major limitation of this study is its sample size. 
The number of individuals we investigated is sufficient 
to provide reliable information on environmental lev-
els of exposure, since reference values in biomonitor-
ing studies require a sample size ranging from 73 to 
120 individuals [69]. However, our sample size is low to 
find associations between pesticide excretion and gut 
microbiome composition. Small differences in alpha 
diversity (an effect size of 0.55) between two groups 
of 55 individuals can be detected with 80% statistical 
power [70], which provides sufficient power to sug-
gest that the increased microbial diversity observed in 
individuals excreting detectable levels of glyphosate is 
reliable. However, gut microbiome taxonomic data is 
typically over-dispersed and zero-inflated [71]. There is 
no gold standard for statistical analysis of EWAS data, 
and it is not clear how a list of statistically significant 
associations can be translated to information usable for 
public health policies [72]. In our study, more than 50% 
of the datapoints were equal to 0 for 525 species out of 
the 603 detected. In this case, when a value is 0, it is 
not clear whether the species is absent or undetected. 
In addition, a large number of unidentified factors 
influence the results of gut microbiome studies [73]. 
These factors can be technical covariates such as the 
DNA extraction procedure [35, 74], or the sequencing 
approach [75], demographic differences [76], lifestyle 
changes such as the intake of prescription medications 
[77], alcohol consumption frequency and bowel move-
ment quality [78], or even socioeconomic factors [79]. 
In addition, there is no gold standard for hardware 
and software for taxonomic assignment of shotgun 
metagenomics datasets [80]. Our study is thus a first 
step towards the understanding of pesticide-induced 
gut microbial changes in human populations, but larger 
studies will be needed.
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Conclusions
In conclusion, although consumption of fruit and vegeta-
bles has known health benefits, we show that if conven-
tionally grown this leads to higher ingestion of pesticides 
with unknown long-term health consequences. We 
found that individuals who are regularly consuming 
organic products had higher healthy eating index values 
but that other lifestyle choices are, in all likelihood, also 
contributing factors. We provide the first evidence of 
an association between pesticide excretion and changes 
in gut microbiome metabolism at environmental levels 
of exposure in the UK population. Our findings high-
light the need for future dietary interventional studies 
to understand the impact of pesticide exposure on gut 
microbiome composition and function and its health 
implications.
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