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Summary

The field of (probabilistic) proof systems has developed into a flourishing subfield
of cryptology and computer science. In analogy to mathematical proofs, the goal
of a proof system is for a prover to convince a verifier of the correctness of a claim.
However, by contrast, probabilistic proofs allow the verifier to make mistakes,
i.e., to accept false claims (soundness error) or reject true claims (completeness
error). In many occasions, the error probability can be made negligibly small
by repetition, causing only a minor loss in efficiency, which is sufficient for most
practical applications. Further, probabilistic proofs may have multiple rounds of
interaction between the prover and the verifier, in which case they are also referred
to as interactive proofs. These two relaxations, due to Babai, Goldwasser, Micali
and Rackoff [Bab85; GMRS5], revolutionized the theory of proofs. For instance,
by trading absolute certainty for high probability and allowing interaction, it is
possible to prove claims without revealing anything beyond their correctness, i.e.,
in zero-knowledge. Nowadays, zero-knowledge proofs are widely deployed; they are
for instance essential in the public-key infrastructures (PKIs) that manage digital
identities and secure communication channels on the internet.

Especially the theory of X-protocols [Cra96] now provides a well-understood
basis for the modular design of zero-knowledge proof systems in a wide variety of
application domains. A Y-protocol is an interactive proof with three rounds; the
prover first sends a message to the verifier, who replies with a challenge sampled
uniformly at random from some finite set, and after receiving the prover’s response
the verifier decides whether to accept or reject the prover’s claim. The theory of
Y-protocols stands out in its modularity; basic ¥-protocols are elegant and easy
to analyze, and complex application scenarios are handled by appropriately com-
bining these basic building blocks. This includes proving the satisfiability of an
arithmetic circuit C': Zy — Z, [CD98], where Z, denotes the ring of integers mod-
ulo g. More precisely, it includes proving that C' admits a satisfiable input x € Zg
such that C(x) = 0. In fact, X-protocols even offer a stronger functionality; they
allow provers to not only prove that a circuit admits a satisfiable input, but also
that they know one. This property is referred to as knowledge soundness, and
knowledge sound interactive proofs are called proofs of knowledge. The circuit
satisfiability problem is NP-complete, i.e., every problem for which solutions are
efficiently verifiable can be written as a circuit satisfiability problem. Therefore,
by means of a X-protocol, every efficiently verifiable claim can be proven in zero-
knowledge. However, due to the modularity of Y-protocol theory, there are often
more direct and more efficient solutions that avoid the oftentimes cumbersome
reduction to a circuit satisfiability problem.

Probabilistic proofs have various performance metrics, indicating for instance
the (computational) complexity of generating or verifying a proof. The communi-



2

6

SUMMARY

cation costs define another important performance metric, i.e., the number of bits
communicated between the prover and the verifier. Unfortunately, for many appli-
cation scenarios, the communication costs of standard Y-protocols grow linearly
in the size of the problem instance. For instance, the communication complex-
ity of a X-protocol for the circuit satisfiability problem is linear in the size of
the arithmetic circuit. More recently, a folding technique was introduced to re-
duce the communication complexity from linear down to logarithmic in the size
of the problem instance [BCC+16; BBB+18]. The resulting protocols are referred
to as Bulletproofs. Bulletproofs were introduced as a “drop-in replacement” for
Y-protocols in several applications, such as zero-knowledge proofs for arithmetic
circuit satisfiability.

In this dissertation, we reconcile Bulletproofs’ folding technique with the estab-
lished theory of ¥-protocols. We show that the folding technique can be cast as
a significant strengthening, rather than a replacement, of -protocols. Our start-
ing point is a basic X-protocol for proving knowledge of a preimage of a group
homomorphism ¥: G" — H. More precisely, this X-protocol allows a prover to
prove knowledge of a secret input vector x € G™ such that ¥(x) = P for some
public P € H, with communication complexity linear in n € N. Subsequently, we
show that, by an appropriate adaptation of Bulletproofs’ folding technique, the
communication complexity can be reduced down to logarithmic in n (or poly-
logarithmic depending on the concrete instantiation). In line with Bulletproofs,
this reduction comes at the expense of a logarithmic number of rounds, instead
of constant. Since the compression mechanism is cast as an extension of a basic
Y-protocol, many techniques well known from Y-protocol theory directly carry
over to this new compressed ¥-protocol theory.

Further, we enhance compressed Y-protocol theory with two higher level func-
tionalities. First, by an arithmetic secret-sharing based technique, we show how
to prove the correctness of m multiplication triples (o, 8i,7; = ;- B;) € Zg for
1 <4 < 'm. More precisely, proving correctness of multiplication triples is reduced
to proving knowledge of a homomorphism preimage, i.e., the nonlinear multipli-
cation triple relation is linearized. This approach is known from Y-protocol the-
ory [CDMO00; CDP12] and inspired by secure multiparty computation [CDN15],
however, some adaptations are required to make it amenable for compression.
By an appropriate and efficient reduction, we show that this functionality en-
hancement is sufficient for proving the satisfiability of an arithmetic circuit in
(poly)logarithmic communication. As a second functionality enhancement, we
construct a novel k-out-of-n proof of partial knowledge, allowing to prove know-
ledge of k-out-of-n homomorphism preimages without revealing which preimages
the prover knows. Proofs of partial knowledge, especially 1-out-of-n, have seen
myriad applications during the last decades, e.g., in electronic voting, ring signa-
tures, and confidential transaction systems. Our construction shows how to reduce
their communication complexity from linear down to (poly)logarithmic in k and n.
We avoid the use of generic circuit satisfiability machinery and identify regimes of
practical relevance where our approach achieves asymptotic and concrete perfor-
mance improvements.

Compressed Y-protocol theory is presented in a simple and abstract language,
allowing for instantiations in a variety of cryptographic platforms. In particular,



we show how to instantiate compressed Y-protocols from the discrete logarithm
assumption, resulting in a logarithmic communication complexity. Moreover, we
show how to extend this instantiation to bilinear pairing based platforms. Based
on the knowledge of exponent assumption, the communication complexity can
be reduced further down to constant. Finally, we present strong-RSA and lattice-
based instantiations, the latter plausibly providing post-quantum security. Strong-
RSA and lattice-based instantiations are subject to a so-called soundness slack.
This warrants larger protocol parameters and causes the resulting communication
complexity to be polylogarithmic rather than logarithmic or constant.

Additionally, we identify and close three gaps in the general theory of multi-
round interactive proofs, with particular relevance to Bulletproofs and compressed
Y-protocols. More precisely, it is generally nontrivial to show that an interactive
proof is knowledge sound and to find a tight bound on the knowledge error, i.e., the
success probability of a dishonest prover. Therefore, in the context of 3-protocols,
the more convenient notion special-soundness was introduced [Cra96]. It is well
known that special-soundness, or more precisely 2-out-of-/NV special-soundness, im-
plies knowledge soundness with knowledge error 1/N, where N is the size of the
verifier’s challenge set. More generally, k-out-of-V special-soundness implies know-
ledge soundness with knowledge error (k — 1)/N. Bulletproofs and compressed
Y-protocols have rendered natural multi-round generalizations of special-soundness
relevant.

The first open problem that we address is the lack of a tight knowledge soundness
analysis for special-sound multi-round interactive proofs. Non-tight bounds on
the knowledge error warrant the use of overly conservative protocol parameters,
possibly rendering concrete instantiations inefficient. We provide the first tight
knowledge soundness analysis for the broad class of special-sound multi-round
interactive proofs.

The second open problem questions the effect of parallel repetition on the know-
ledge error. In many occasions, the knowledge error « is not small enough, and
thus needs to be reduced. This can be done generically by repeating the inter-
active proof in parallel. The effect of parallel repetition on 2-out-of-INV special-
sound Y-protocols is well known, but the situation becomes significantly more
complicated when considering k-out-of-N special-soundness for k£ > 2, let alone
its multi-round generalizations. More precisely, the t-fold parallel repetition of a
2-out-of-N special-sound interactive proof is easily seen to be 2-out-of-N? special-
sound, and thus has knowledge error 1/N?. A similar result does not hold for the
(multi-round) generalizations of special-soundness. We solve the state-of-affairs
by proving that, for all special-sound interactive proofs, t-fold parallel repetition
optimally reduces the knowledge error from x down to &°.

Third, we analyze the Fiat-Shamir transformation of special-sound multi-round
interactive proofs. The Fiat-Shamir transformation is a commonly used heuris-
tic that renders a public-coin® interactive proof non-interactive by replacing the
verifier’s messages by certain hash function evaluations. Unfortunately, the Fiat-
Shamir transformation comes with a security loss; in general, the security loss
is exponential in the number of rounds of the interactive proof. For multi-round

1 An interactive proof is said to be public-coin if the verifier publishes all its randomness during
a protocol execution.
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interactive proofs, this is a very unfortunate situation when it comes to choosing
concrete security parameters. If one wants to rely on the proven security reduction,
one needs to choose a large security parameter for the interactive proof, in order to
compensate for the exponential security loss, affecting its efficiency. Alternatively,
one has to give up on proven security and simply assume that the security loss is
much milder than what the general bound suggests — indeed, for many interactive
proofs, the known attacks do not feature such a large security loss. The latter,
of simply assuming the loss to be milder, has become common practice. In this
dissertation, we show that for special-sound interactive proofs the security loss is
independent of the number of rounds. One can now rely on proven security without
choosing overly conservative, and hence inefficient, protocol parameters.

Finally, as an application of compressed X-protocol theory, we construct a novel
k-out-of-N threshold signature scheme (TSS). The TSS is succinct since a thresh-
old signature has size sublinear in k and n, and in contrast to other succinct TSSs,
our TSS does not require a trusted setup and is therefore transparent. We be-
lieve that, by the modular nature of compressed Y-protocol theory, many more
application scenarios can be handled in an intuitive and efficient manner.
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