
Compressed Σ-protocol theory
Attema, T.

Citation
Attema, T. (2023, June 1). Compressed Σ-protocol theory. Retrieved from
https://hdl.handle.net/1887/3619596

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3619596

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619596

7
Applications of Compressed

Σ-Protocols

7.1 Introduction

The primary functionality of compressed Σ-protocols is to prove knowledge of an
opening to one or several compact commitments satisfying a linear constraint.
In Chapter 4, in order to handle certain nonlinear relations, this functionality was
enhanced. First, it was shown how to commit to a long vector of multiplication
triples (αi, βi, γi = αiβi) and prove that the committed vector satisfies the corre-
sponding multiplicative relation. Second, a proof of partial knowledge technique
was presented, allowing a prover to prove knowledge of k-out-of-n homomorphism
preimages. The enhancements, required to handle these two nonlinear scenarios,
can be viewed as linearization techniques; in both cases the nonlinear relation is
reduced to a linear relation amenable for basic compressed Σ-protocols.

In this chapter, we present two applications of the basic compressed Σ-protocols
together with these higher level (nonlinear) functionalities. First, in Section 7.2,
we show how to prove arbitrary constraints, captured by an arithmetic circuit,
on committed vectors. More precisely, we show how to prove that a committed
vector x ∈ Zn

q satisfies the constraint C(x) = 0 for some public arithmetic cir-
cuit C : Zn

q → Zs
q. Protocols with this functionality are also referred to as circuit

zero-knowledge protocols. It turns out that, by deploying the linearization tech-
niques of Section 4.2, we only need black-box access to the basic functionality for
opening linear forms. This explains also why compressed Σ-protocols do not need
any direct provision to handle nonlinearity. Further, the number of black-box calls
to this basic functionality is constant. Therefore, the (poly)logarithmic commu-
nication complexity is directly inherited when proving arbitrary constraints on
committed vectors. Section 7.2 is based on the article [AC20], co-authored by
Ronald Cramer.

Second, in Section 7.3, we combine the proofs of partial knowledge with an ap-
propriate signature scheme to construct a threshold signature scheme (TSS). A
k-out-of-n TSS is a standard signature scheme, allowing each of the n players to
individually sign arbitrary messages m, enriched with a public k-aggregation algo-
rithm. The k-aggregation algorithm takes as input k signatures, issued by any k
distinct players, on the same message m and outputs a threshold signature. A TSS

218 Chapter 7 Applications of Compressed Σ-Protocols

is designed such that no adversary holding strictly less than k distinct signatures
on a given message m can issue a valid threshold signature on this message. A
naive TSS is obtained by exhibiting the k individual signatures directly. However,
this approach results in threshold signatures with size linear in the threshold k.
The main goal for TSSs is to have succinct threshold signatures, i.e., with size sub-
linear in k and n. The succinct TSS of [Sho00] immediately found an application in
reducing the communication complexity of consensus protocols [CKS00; CKS05],
this application was revived recently [LM18; AMS19; YMR+19; ADD+19]. The
impact of succinctness is significant since, in consensus applications, the thresh-
old k is of the same order of magnitude as n (typically k = n/2 or k = 2n/3). Al-
though desirable in some applications, it is not required that a threshold signature
hides the k-subset of signers. We construct a succinct TSS that has this additional
security property, i.e., threshold signatures do not reveal any information about
the k-subset of players that supplied valid signatures to the aggregation algorithm.
Section 7.3 is based on the article [ACR21], co-authored by Ronald Cramer and
Matthieu Rambaud.

7.2 Circuit Zero-Knowledge Protocols

First, in Section 7.2.1, we describe the compressed Σ-protocol for basic circuit
satisfiability. This protocol allows a prover to commit to an input x and subse-
quently prove that the committed input x satisfies the constraint C(x) = 0 for
an arbitrary, but fixed, arithmetic circuit C. In practice, it may happen that the
prover is already committed to the secret x before receiving the circuit C. This
is referred to as the “commit-and-prove” scenario. In order to deal with this sce-
nario, we need some further utility enhancements. The required enhancements are
described in Section 7.2.2. Finally, in Section 7.2.3, we describe a generalization
from arithmetic circuits to bilinear group arithmetic circuits.

7.2.1 The Compressed Σ-Protocol for Arithmetic Circuits

Suppose C : Zn
q → Zs

q is an arithmetic circuit with n inputs, s outputs and m
multiplication gates. We only count multiplication gates with variable inputs; ad-
ditions and multiplications by constants are implicitly handled and immaterial to
the communication costs. We can easily turn our approach for proving correctness
of multiplication triples into a solution for “circuit zero-knowledge,” i.e., the prover
convinces the verifier it knows an input x ∈ Zn

q for which the circuit C, without
loss of generality, returns 0. We note that [CDP12] also gives a solution for circuit
zero-knowledge based on linearizing multiplication triples. But that solution has
a communication complexity that is linear in the size of the circuit C. We aim for
a (poly)logarithmic communication complexity, so we make some changes.

The protocol goes as follows. The prover first determines the computation
graph implied by instantiating the circuit C with its input vector x. In this graph
every wire is assigned a value in Zq. In particular, let α1, . . . , αm ∈ Zq be the left
inputs, β1, . . . , βm ∈ Zq the right inputs and γ1, . . . , γm ∈ Zq the outputs of the m
multiplication gates in this computation graph. Hence, each (αi, βi, γi) ∈ Z3

q is a
multiplication triple.

7.2 Circuit Zero-Knowledge Protocols 219

Let us now use the following simple fact about arithmetic circuits. For each i,
there are affine forms1 ui, vi : Zn+m

q → Zq, depending only on C, such that, for
all x ∈ Zn

q , it holds that αi = ui(x, γ1, . . . , γm) and βi = vi(x, γ1, . . . , γm). These
forms are uniquely determined by the addition and scalar multiplication gates. In
other words, a given vector (x, γ1, . . . , γm) ∈ Zn+m

q can be completed to a valid
computation graph if and only if

ui(x, γ1, . . . , γm) · vi(x, γ1, . . . , γm) = γi ,

for all 1 ≤ i ≤ m. Hence, checking whether (x, γ1, . . . , γm) corresponds to a
valid computation graph amounts to verifying the multiplication triples defined by
the γi’s and the public linear forms ui and vi. This verification can be performed
by deploying the arithmetic secret-sharing based linearization technique for mul-
tiplication triples of Section 4.2. Further, there are affine forms wj : Zn+m

q → Zq

corresponding to the s output gates of C. Hence, the evaluation C(x) returns 0 if
and only if wj(x, γ1, . . . , γm) = 0 for all 1 ≤ j ≤ s. Recall that s is the dimension
of the codomain of the circuit C : Zn

q → Zs
q.

Altogether, after computing the above computation graph, the circuit satisfia-
bility protocol therefore proceeds as follows. As in Section 4.2, the prover selects a
random polynomial f(X) of degree at most m that defines a packed secret sharing
of the vector (α1, . . . , αm) of left inputs to the multiplication gates. The prover
also selects a random polynomial g(X) of degree at most m that defines a packed
secret sharing of the vector (β1, . . . , βm) of right inputs to the multiplication gates.
Finally, the prover computes the product polynomial h(X) := f(X)g(X) of degree
at most 2m < q.

The prover commits to each coordinate of x and to the auxiliary data

aux = (f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z2m+3
q

in one single compact commitment. The length of the committed vector y =
(x, aux) thus equals n + 2m + 3. Note that the vector y contains the outputs
γ1 = h(1), . . . , γm = h(m) of the multiplication gates of C evaluated on x. How-
ever, it does not necessarily contain the inputs α1, β1, . . . , αm, βm of these mul-
tiplication gates. These inputs are namely affine combinations of the coefficients
of y. This explains why it is not necessary to commit explicitly to the αi’s and
the βi’s as these are now implicitly committed to via said affine forms evaluated
on y. Therefore, since the values f(0) and g(0) are still included in y, the poly-
nomials f(X), g(X) and h(X) are well defined by y, and their evaluations are, by
composition of the appropriate maps, also affine evaluations on y. What remains
is to check that the polynomial h(X) is indeed the product of f(X) and g(X).

Therefore, with the above observations at hand, the circuit zero-knowledge
protocol is reduced to opening the affine forms that, on input y, output(
C(x), f(c), g(c), h(c)

)
∈ Zs+3

q for a challenge c←R Zq \ {1, . . . ,m} sampled uni-
formly at random by the verifier. First, the verifier checks that h(c) = f(c)g(c),

1Recall that an affine form A : Zn
q → Zq is a linear form L plus a constant a ∈ Zq . Hence,

opening an affine form A = L + a amounts to opening the linear form L and adding the
(public) constant a.

220 Chapter 7 Applications of Compressed Σ-Protocols

which, as in Section 4.2, shows that h(X) = f(X)g(X) holds with high proba-
bility. Second, the verifier checks that C(x) = 0, which shows that the circuit is
satisfiable and that the prover knows a witness x.

This approach thus reduces the nonlinear circuit satisfiability relation to opening
a constant number of affine forms on a compactly committed vector, it is therefore
again a linearization technique. The compressed Σ-protocol for circuit satisfiability
thus consists of two main building blocks: (1) the linearization technique and (2)
a compressed Σ-protocol for opening linear forms.

The linearization technique itself can be presented as an interactive proof for
the circuit satisfiability relation

RCS = {(C; x) : C(x) = 0} .

This interactive proof is composable with a basic compressed Σ-protocol for open-
ing linear forms, allowing its linear communication complexity to be reduced. A
formal description can be found in Protocol 16. To simplify the exposition we
consider an abstract compact vector commitment scheme

[·] :
⋃
ℓ∈N

Zℓ
q → H

that allows a prover to commit to arbitrary length vectors x ∈
⋃

ℓ∈N Zℓ
q in a single

group element P ∈ H. In this notation, we leave the commitment randomness
implicit, i.e., [x] denotes a commitment to the vector x.

As a stand-alone building block, the interactive proof described in Protocol 16
might seem pointless, as the prover’s final message (y, u, v, w) contains the wit-
ness x. Hence, it is clearly not zero-knowledge and it is less efficient than a trivial
interactive proof that simply reveals the witness x. However, the key point is
that the long vector y can be viewed as an interactive proof for opening linear
forms. This long vector, dominating the communication costs, can therefore be
replaced by a basic compressed Σ-protocol. Thus, Protocol 16 indeed linearizes the
nonlinear circuit satisfiability relation, making it amenable for basic compressed
Σ-protocols. Below we describe the properties of this composition, but Theo-
rem 7.1 first summarizes the main properties of the stand-alone linearization tech-
nique for circuit satisfiability. It shows that this technique is a perfectly complete
and (2m+ 1)-out-of-(q −m) special-sound Σ-protocol.

Theorem 7.1 (Linearization for Circuit Satisfiability). Let n,m, s ∈ N, q > 3m a
prime, [·] :

⋃
ℓ∈N Zℓ

q → H a homomorphic vector commitment scheme and C : Zn
q →

Zs
q an arithmetic circuit with m multiplication gates. The Σ-protocol for relation

RCS = {(C; x) : C(x) = 0} ,

described in Protocol 16, is perfectly complete, and (2m+1)-out-of-(q−m) special-
sound, under the assumption that the commitment scheme is binding.

Proof. Completeness: This property follows immediately.

7.2 Circuit Zero-Knowledge Protocols 221

Protocol 16 Linearization of the Circuit Satisfiability Relation.

Parameters: n,m, s ∈ N, prime q > 3m, group (H, ·) with
exponent q and homomorphic vector
commitment scheme [·] :

⋃
ℓ∈N Zℓ

q → H
Public Input: circuit C : Zn

q → Zs
q with m multiplication gates

Prover’s Private Input: x ∈ Zn
q and, for 1 ≤ i ≤ m, (αi, βi) denote the

left and right inputs to the multiplication gates
of the circuit C evaluated in x

Prover’s Claim: C(x) = 0

Prover P Verifier V

f(X), g(X)←R Zq[X] s.t.
deg(f) ≤ m ∧ deg(g) ≤ m
∧ f(i) = αi ∧ g(i) = βi ∀i
∧ h(X) = f(X)g(X)

y =
(
x, f(0), g(0), h(0), . . . , h(2m)

)
P = [y]

P−−−−−−−−−→
c←R Zq \ {1, . . . ,m}

c←−−−−−−−−−
u = f(c)
v = g(c)
w = h(c)

y,u,v,w−−−−−−−−−→ u · v ?= w

[y] ?= P

AC(y) ?= 0 , fy(c) ?= u

gy(c) ?= v , hy(c) ?= w

Here, AC : Zn+2m+3
q → Zs

q is the affine mapping that, on input the vector y
containing the secret input x ∈ Zn

q and the outputs of the multiplication gates
of C evaluated in x, outputs C(x) ∈ Zs

q. Further, fy(X), gy(X) and hy(X) are
the polynomials defined by the vector y and the circuit C. They correspond to
the polynomials f(X), g(X) and h(X) constructed by an honest prover.

Special-Soundness: Let

(P, c0,y0, u0, v0, w0) , . . . , (P, c2m,y2m, u2m, v2m, w2m)

be 2m+ 1 accepting transcripts with common first message P and pairwise
distinct challenges cj ∈ Zq \ {1, . . . ,m}. Then, under the assumption that
the commitment scheme [·] is binding, it follows that y0 = · · · = y2m = y,

222 Chapter 7 Applications of Compressed Σ-Protocols

and we may write f(X) = fy(X), g(X) = gy(X) and h(X) = hy(X) for the
three polynomials unique defined by y.
Further, y corresponds to a wire value assignment of the circuit C. In
particular, for 1 ≤ i ≤ m, αi = f(i), βi = g(i) and γi = h(i) correspond to
the values assigned to the left input, the right input and the output of the
i-th multiplication gate in C. Moreover, since AC(y) = 0, the values assigned
to the output wires are equal to 0. What remains is to verify that this wire
value assignment is valid, i.e., for all gates the output should correspond to
the appropriate combination of the input values.
The linear relations, defined by the addition and scalar multiplication gates,
are automatically satisfied. Therefore, all that needs to be verified are
the multiplicative relations αi · βi = γi. To this end, observe that, for all
0 ≤ j ≤ 2m,

f(cj) · g(cj) = uj · vj = wj = h(cj) .

Since the polynomials f(X) and g(X) are of degree at most m and h(X) is
of degree at most 2m, it follows that f(X) · g(X) = h(X). Hence,

αi · βi = f(i) · g(i) = h(i) = γi

for all 1 ≤ i ≤ m, which completes the proof.

The vector y, sent in the final round of Protocol 16, is a trivial proof of knowledge
for opening the s+ 3 affine forms that return(

C(x) = AC(y), fy(c), gy(c), hy(c)
)
∈ Zs+3

q

on input y. The compressed Σ-protocol for basic circuit satisfiability simply re-
places this trivial interactive proof, i.e., the message y, by a compressed Σ-protocol
for opening the appropriate linear forms. Recall that the costs of these s+3 linear
form openings can be amortized (Section 3.4.2), i.e., the amortized communication
costs are independent of s.

The exact communication costs depend on the instantiation of the compact
commitment scheme. For instance, the discrete logarithm based instantiation has
logarithmic communication, while, due to soundness slack, the lattice based in-
stantiation has polylogarithmic communication. For concreteness let us consider
the discrete logarithm instantiation of Section 5.2. The following theorem sum-
marizes the main properties of the discrete logarithm based circuit satisfiability
protocol ΠCS. Note in particular that this compressed Σ-protocol has a communi-
cation complexity that is logarithmic in the dimension n of the input vector x ∈ Zn

q

and the number of multiplication gates m. Moreover, since the Pedersen vector
commitment scheme is unconditionally hiding, it is special honest-verifier zero-
knowledge.

Theorem 7.2 (DL-Based Compressed Σ-Protocol for Circuit Satisfiability). Let q
be a prime and µ, n,m, s ∈ N such that n+ 2m+ 4 = 2µ and q > 3m. Further, let
com : Zn+2m+3

q × Zq → H be the Pedersen vector commitment scheme.

7.2 Circuit Zero-Knowledge Protocols 223

Then the compressed Σ-protocol ΠCS for relation

RCS = {(C; x) : C(x) = 0} ,

instantiated with the Pedersen commitment scheme com, is perfectly complete,
computationally (2m+ 1, s+ 4, 3, . . . , 3)-out-of-(q−m, q, . . . , q) special-sound, un-
der the discrete logarithm assumption, and special honest-verifier zero-knowledge
(SHVZK). Moreover, it has 2µ+ 5 communication rounds and the communication
costs are:

• P → V: 5 elements of Zq and 2µ elements of H;

• V → P: µ+ 2 elements of Zq.

Proof. Completeness and special-soundness follow directly from Lemma 3.1. This
lemma describes the properties of the composition of interactive proofs. How-
ever, Lemma 3.1 only states that the composition Πb ⋄Πa of interactive proofs is
SHVZK if the interactive proof Πa that is applied first is SHVZK.

In our case, the interactive proof that is applied first, the linearization of Pro-
tocol 16, is not SHVZK. So we need to use additional properties to prove that the
compressed Σ-protocol for circuit satisfiability is SHVZK. It turns out that this
property follows from the fact that the Pedersen vector commitment scheme is
perfectly hiding and the deployed instantiation of Shamir’s packed secret-sharing
scheme has 1-privacy.

To see this, let us describe the SHVZK simulator. Assume that the circuit C
admits an input x such that C(x) = 0 and let (αi, βi, γi = αiβi) denote the left
input, right input and output values of the multiplication gates of C evaluated
in x. The simulator then proceeds as follows. First, it samples the challenges
c1 ←R Zq \ {1, . . . ,m} and c2, . . . , cµ+2 ←R Zq uniformly at random. Second, it
samples a Pedersen commitment P ←R H and field elements u, v ←R Zq uniformly
at random, and sets w = u · v.

The first three messages P , c1 and (u, v, w) of the circuit satisfiability protocol
have now been simulated. The remaining messages are sampled by using the
SHVZK simulator of the compressed Σ-protocol for opening linear forms. However,
this is only possible when the commitment P admits an opening (y; γ) satisfying
the appropriate linear relations.

To see that this is the case, note that, since c1 /∈ {1, . . . ,m}, there exist polyno-
mials2 f, g ∈ Zq[X] of degree at most m such that f(c1) = u and g(c1) = v, and
f(i) = αi and g(i) = βi for all 1 ≤ i ≤ m. Let h(X) = f(X) · g(X).

Hence, there exists a vector y =
(
x, f(0), g(0), h(0), . . . , h(2m)

)
that satisfies

the linear relations AC(y) = 0, fy(c1) = f(c1) = u, gy(c1) = g(c1) = v and
hy(c1) = h(c1) = w. Moreover, since the Pedersen vector commitment scheme
is perfectly hiding, the random commitment P has an opening (y; γ) for some
γ ∈ Zq. Hence, the compressed Σ-protocol for opening linear forms is instanti-
ated with a statement P that admits a witness satisfying the appropriate linear
constraints. Therefore, the simulator for our circuit satisfiability protocol can run
the SHVZK simulator of the compressed Σ-protocol for opening linear forms to

2The existence of these polynomials follows from the 1-privacy of the secret-sharing scheme.

224 Chapter 7 Applications of Compressed Σ-Protocols

simulate the remaining messages. Again using the hiding property of the Pedersen
vector commitment scheme and the 1-privacy of the secret-sharing scheme, it is
easily seen that the simulated transcripts follow the same distribution as honestly
generated ones.

The terminology circuit satisfiability seems to suggest that we are only consid-
ering circuits for which it is hard to compute a satisfying witness x, i.e., an x with
C(x) = 0. However, many practical scenarios consider circuits C for which it is
easy to compute an x such that C(x) = 0. In these scenarios the functionality
offered by a circuit zero-knowledge protocol is still nontrivial. Namely, after eval-
uating the protocol, the prover has not only proven knowledge of a witness x, but
is also committed to this vector x. Hence, in this case, a prover can show that a
committed vector satisfies certain properties captured by the arithmetic circuit.
These properties do not need to be captured by arithmetic circuits for which it is
hard to compute an input evaluating to 0.

7.2.2 An Extension to Commit-and-Prove Protocols

In the previous section we treated the basic circuit satisfiability scenario, where
a prover claims to know a satisfiable input x ∈ Zn

q such that C(x) = 0 for some
public arithmetic circuit C : Zn

q → Zs
q. The compressed Σ-protocol ΠCS for basic

circuit satisfiability requires the prover to commit to the input x and a vector of
auxiliary data aux in a single compact commitment. However, in practice it is
likely that the prover is already committed to the input x before the start of the
protocol. Consider, for example, the following two extreme cases:

Case 1: The prover is committed to x in a single compact commitment.

Case 2: The prover is committed to the coordinates of x individually, i.e., each
coordinate is committed to in a separate 1-dimensional commitment.

Besides these extreme cases one can consider hybrid scenarios in which the secret-
vector-of-interest x = (x1, . . . ,xs) is dispersed over s compact commitments to
vectors xi ∈ Zni

q . We will focus on the two extreme cases, but hybrid scenarios
can be handled similarly.

An interactive proof that allows a prover to prove statements about secret vec-
tors that it is already committed to is called a commit-and-prove protocol. More
precisely, given a compact vector commitment scheme [·] :

⋃
ℓ∈N Zℓ

q → H (again
leaving the commitment randomness implicit), a commit-and-prove protocol, for
the case 1 scenario, is an interactive proof for relation

R1
CS = {(P,C; x) : [x] = P ∧ C(x) = 0} ,

and a commit-and-prove protocol, for the case 2 scenario, is an interactive proof
for relation

R2
CS = {(P1, . . . , Pn, C; x) : [xi] = Pi ∀i ∧ C(x) = 0} .

In order to deal with these scenarios, we first need to bring about the desired
starting point for the circuit satisfiability protocol of Section 7.2.1, i.e., the prover

7.2 Circuit Zero-Knowledge Protocols 225

needs to be committed to all coordinates of the input x and the required auxiliary
information aux in a single compact commitment. Similar to Section 4.2.2, we han-
dle the commit-and-prove scenario by deploying the compactification techniques
of Section 3.4.4.

Let us first consider the case 1 commit-and-prove scenario. In this case, the
basic circuit satisfiability protocol is adapted as follows.

• In the first round, instead of sending a compact commitment to the n+2m+3
dimensional vector y = (x, aux), the prover sends a compact commitment Q
to (0, aux) ∈ Zn+2m+3

q to the verifier.3

• Given the commitment P = [x] = [(x, 0)] to the input vector x and the com-
mitment Q = [(0, aux)] to the auxiliary data, both the prover and verifier
can compute a single compact commitment P ·Q = [(x, aux)] to all relevant
data. This brings about the desired starting point for the circuit satisfiability
protocol of Section 7.2.1.

• What remains is for the prover to show that the commitment Q is of the
appropriate form. More precisely, Q should be a commitment to a vector
with zeros in its first n coordinates. This boils down to opening the linear
forms Li(y) = yi, for 1 ≤ i ≤ n, that return the first n coordinates of the
vector y. As before, the communication complexity of opening n different
linear forms on the same commitment can be amortized.

The above shows how the case 1 commit-and-prove scenario is reduced to open-
ing s+ 3 linear forms on the commitment P ·Q = [(x, aux)] and opening n linear
forms on the commitment Q = [(0, aux)]. The naive approach of simply evaluating
two (amortized) compressed Σ-protocols increases the communication costs with
roughly a factor two, with respect to the basic circuit satisfiability protocol ΠCS.
However, the factor two loss can be avoided by deploying the (case 1) compactifi-
cation techniques of Section 3.4.4. Recall that compactification allows a prover to
compactify relevant data that is dispersed over several commitments, into a single
compact commitment. Phrased alternatively, compactification techniques allow a
prover to open linear forms evaluated on inputs that are dispersed over several
commitments.

The resulting compressed Σ-protocol, denoted by Π1
CS, is an interactive proof

for commit-and-prove relation R1
CS. Theorem 7.3 summarizes the main properties

of the discrete logarithm instantiation of Π1
CS, i.e., the instantiation using the

Pedersen vector commitment scheme. The other instantiations of Chapter 5 work
similarly, but may result in different communication complexities. Note that the
communication costs of R1

CS are roughly the same as those of the compressed
Σ-protocol for basic circuit satisfiability.

Theorem 7.3 (DL-Based Case 1 Commit-and-Prove Protocol for Arithmetic Cir-
cuits). Let q be a prime and µ, n,m, s ∈ Zq such that n+2m+6 = 2µ and q > 3m.
Further, let com :

(⋃
ℓ∈N Zℓ

q

)
× Zq → H the Pedersen vector commitment scheme

and C : Zn
q → Zs

q an arithmetic circuit with m multiplication gates.

3Here, (0, aux) denotes the vector aux ∈ Z2m+3
q of auxiliary information prepended with n zeros.

226 Chapter 7 Applications of Compressed Σ-Protocols

Then the discrete logarithm based compressed Σ-protocol Π1
CS for relation

R1
CS = {(P,C; x, γ) : com(x; γ) = P ∧ C(x) = 0}

is perfectly complete, computationally (2m + 1,max(n + 1, s + 4), 2, 2, 3, . . . , 3)-
out-of-(q −m, q, q, q − 1, q, . . . , q) special-sound, under the discrete logarithm as-
sumption, and special honest-verifier zero-knowledge (SHVZK). Moreover, it has
2µ+ 11 communication rounds and the communication costs are:

• P → V: 11 elements of Zq and 2µ+ 4 elements of H;

• V → P: µ+ 5 elements of Zq.

The case 2 commit-and-prove scenario is handled similarly. However, instead of
the case 1 compactification techniques, we now deploy the case 2 compactification
techniques of Section 3.4.4. The resulting protocol, denoted by Π2

CS, is a com-
pressed Σ-protocol for relation R2

CS. Theorem 7.4 summarizes the main properties
of its discrete logarithm instantiation.

Theorem 7.4 (DL-Based Case 2 Commit-and-Prove Protocol for Arithmetic Cir-
cuits). Let q be a prime and µ, n,m, s ∈ Zq such that n + 2m + 5 = 2µ and
q > 3m. Further, let com :

(⋃
ℓ∈N Zℓ

q

)
× Zq → H be the Pedersen vector commit-

ment scheme and C : Zn
q → Zs

q an arithmetic circuit with m multiplication gates.
Then the discrete logarithm based compressed Σ-protocol Π1

CS for relation

R1
CS = {(P1, . . . , Pn, C; x, γ1, . . . , γn) : com(xi; γi) = Pi ∀i ∧ C(x) = 0} ,

is perfectly complete, computationally (2m + 1, n + 1, s + 5, 2, 3, . . . , 3)-out-of-
(q −m, q, . . . , q) special-sound, under the discrete logarithm assumption, and spe-
cial honest-verifier zero-knowledge (SHVZK). Moreover, it has 2µ + 7 communi-
cation rounds and the communication costs are:

• P → V: 7 elements of Zq and 2µ+ 1 elements of H;

• V → P: µ+ 3 elements of Zq.

7.2.3 A Generalization to Bilinear Group Arithmetic Circuits

Every computable function with fixed input length can be expressed as an arith-
metic circuit. Therefore interactive proofs for arithmetic circuit satisfiability are
extremely powerful and widely deployed. In fact, they lead to an obvious, but
indirect, approach for arbitrary relations:

1. Construct an arithmetic circuit capturing the relation;

2. Apply an efficient circuit ZK protocol to this arithmetic circuit.

However, for some relations, the associated arithmetic circuits can be large and
complex, thereby losing the conceptual simplicity and possibly even the concrete
efficiency over a more direct approach.

For instance, Lai et al. [LMR19] consider the bilinear group arithmetic cir-
cuit model. A bilinear group arithmetic circuit is defined over a bilinear group

7.3 Threshold Signature Scheme 227

(q,G1,G2,H, e), where e : G1 × G2 → H is a bilinear pairing between groups of
prime order q. Its wires take values in either Zq, G1, G2 or H, and gates are either
group operations, Zq-scalar multiplications or bilinear pairings. Hence, bilinear
group circuits are generalizations of arithmetic circuits. They directly capture
relations encountered in, e.g., identity based encryption [SW05] and structure pre-
serving signatures [AFG+16].

Every bilinear group arithmetic circuit can also be expressed as an arithmetic cir-
cuit. This requires every group element to be expressed as a vector of Zq-elements
and every gate to be replaced by a Zq-circuit. For instance, for a highly opti-
mized group of order q ≈ 2256, evaluating a single group exponentiation requires
an arithmetic circuit with approximately 800 multiplication gates [HBH+20]. In
the bilinear circuit model, exactly the same operation would only comprise a sin-
gle gate. Hence, expressing a bilinear group arithmetic circuit as an arithmetic
circuit can significantly increase its size. Therefore, avoiding this reduction might
significantly reduce the communication costs.

Lai et al. [LMR19] generalize the Bulletproof framework for arithmetic circuits to
handle bilinear group arithmetic circuits directly. Also compressed Σ-protocols ad-
mit a straightforward adaption for this more general model. To see this, we merely
require two observations. First, the pairing-based commitment scheme of Sec-
tion 5.3 allows a prover to commit to mixed vectors x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×HnT .
This commitment scheme is homomorphic and the size of a commitment is constant
in n0 + n1 + n2 and linear in nT . Second, the gates in a bilinear group arithmetic
circuit are either affine or bilinear. The affine gates are handled directly by our
compressed Σ-protocols. Moreover, as before, the bilinear gates can be linearized
via an arithmetic secret-sharing scheme. Altogether we obtain a compressed Σ-
protocol for relations captured by bilinear arithmetic circuits. For more details we
refer the reader to [ACR21].

7.3 Threshold Signature Scheme

In this section, as a second application of compressed Σ-protocols, we construct a
transparent k-out-of-n threshold signature scheme (TSS) with threshold signatures
that are O(λ logn) bits, where λ is the security parameter. Recall that a TSS
enables any set of at least k players, in a group of n, to issue a “threshold”
signature on a message m, but no subset of less than k players is able to issue one.
A TSS is called transparent if it does not require a trusted setup phase, i.e., all
public parameters are random coins. Given recent advances in efficient circuit zero-
knowledge, an obvious TSS construction defines a threshold signature as a proof of
knowledge attesting the knowledge of k-out-of-n signatures. With the appropriate
circuit zero-knowledge protocol this would immediately result in a transparent
TSS with sublinear size threshold signatures. However, this approach requires
an inefficient reduction from the corresponding threshold signature relation to a
relation defined over an arithmetic circuit. More precisely, the arithmetic circuits
capturing these relations are typically large.

For this reason, we follow a more direct approach avoiding this inefficient re-
duction. Namely, we append the BLS signature scheme [BLS01; BLS04] with a

228 Chapter 7 Applications of Compressed Σ-Protocols

k-aggregation algorithm. The BLS signature scheme is defined over a bilinear
group. In particular, the BLS verification algorithm checks a linear constraint
defined over a bilinear group. This naturally fits with the compressed Σ-protocols
for opening homomorphisms. To derive the required threshold functionality, we
use the proof of partial knowledge techniques from Section 4.3. The compressed
Σ-protocols are interactive. To obtain a signature scheme, they can be made
non-interactive by applying the Fiat-Shamir transformation [FS86].

The non-interactive proofs contain precisely the messages sent from the prover
to the verifier in the interactive proof. Hence, the logarithmic TSS size is inherited
from the logarithmic communication complexity of the compressed Σ-protocol.

The k-aggregation algorithm can be evaluated by any party with input at least k
valid signatures from distinct signers. Besides the signatures, the k-aggregation al-
gorithm only takes public input values. Moreover, the threshold k can be chosen at
aggregation time independent of the set-up phase. By contrast, Shoup’s construc-
tion [Sho00] requires a different trusted setup phase for every threshold k. Since
the compressed Σ-protocol is special honest-verifier zero-knowledge, an additional
property of our TSS is that a threshold signature hides the k-subset of signers S.
Further, the TSS does not require a trusted setup and is therefore transparent.
More precisely, the players can generate their own public-private key-pairs and
the Σ-protocol only requires an unstructured public random string defined by the
public parameters of the commitment scheme.

We deviate slightly from the standard TSS definitions. Therefore, in Sec-
tion 7.3.1, we first formalize our security model before, in Section 7.3.2, we present
our construction.

7.3.1 Definition and Security Model

We deviate from standard TSS definitions and aim for a strictly stronger function-
ality. In standard TSS definitions [Sho00; Bol03], a non-transparent mechanism
(e.g., a trusted dealer or a multiparty computation protocol) generates a single
public key and n private keys that are distributed amongst the n players. The
private keys allow individual players to generate partial signatures on messages m.
There is a public algorithm to aggregate k partial signatures into a threshold sig-
nature. The threshold signature can be verified with the public key generated by
the trusted dealer.

By contrast, we define a TSS as an extension of a digital signature scheme.
The fundamental strengthening of the definitions of [Sho00; Bol03] and related
works, is that the public and private keys are generated by the players locally.
Public keys are published on a bulletin board and thereby publicly tied to the
player’s identities. Since this setup does not require a trusted dealer (or another
non-transparent mechanism for generating keys), it is said to be transparent. The
players can individually sign messages by using their private keys. The aggregation
algorithm now takes as input k signatures, instead of partial signatures, to generate
a threshold signature. For simplicity we assume the threshold k to be fixed. We
will explain later why our construction (trivially) satisfies some stronger properties.

Let us first give a definition for the basic building block of our TSS.

Definition 7.1 (Digital Signature). A digital signature scheme consists of three

7.3 Threshold Signature Scheme 229

algorithms:

• keygen is a randomized key generation algorithm that outputs a public-
private key-pair (pk, sk);

• sign is a (possibly randomized) signing algorithm that, on input a message
m ∈ {0, 1}∗ and a secret key sk, outputs a signature σ = sign(sk,m);

• verify is a deterministic verification algorithm that, on input a public key
pk, a message m and a signature σ, outputs either accept or reject.

A signature scheme is correct if verify (pk,m, sign(sk,m)) = accept with prob-
ability 1 for all key-pairs (pk, sk) ← keygen and messages m ∈ {0, 1}∗. If
verify(pk,m, σ) = accept, we say that σ is a valid signature on message m.
Moreover, an adversary that does not know the secret key sk should not be able
to forge a valid signature. This security property is formally captured in the
widely accepted definition Existential Unforgeability under Chosen-Message At-
tacks (EUF-CMA) [Bol03]. We assume digital signature schemes to be correct
and EUF-CMA by definition.

Definition 7.2 (Threshold Signature). A k-out-of-n threshold signature
scheme (TSS) is a digital signature scheme (keygen, sign,verify) appended with
two algorithms:

• k-aggregate is a (possibly randomized) aggregation algorithm that, on
input n public keys (pk1, . . . , pkn), k signatures (σi)i∈S for a k-subset S ⊆
{1, . . . , n} and a message m ∈ {0, 1}∗, outputs a threshold signature Σ;

• k-verify is a deterministic verification algorithm that, on input n public
keys (pk1, . . . , pkn), a message m and a threshold signature Σ, outputs either
accept or reject;

Let S ⊆ {1, . . . , n} be some k-subset of indices and let (σ)i∈S be signatures, such
that verify(pki,m, σi) = accept, for all i ∈ S, and for some message m ∈ {0, 1}∗.
Then a TSS is correct if for all (pk1, . . . , pkn), m, S and (σ)i∈S ,

k-verify
(
pk1, . . . , pkn,m, k-aggregate(m, (σi)i∈S)

)
= accept ,

with probability 1. If k-verify(pk1, . . . , pkn,m,Σ) = accept, we say that Σ is
a valid threshold signature. Moreover, an adversary with at most k − 1 valid
signatures on a message m should not be able to construct a valid threshold sig-
nature. This unforgeability property can be formalized by the following security
game. Consider an adversary that is allowed to choose a subset of k − 1 indices
I ⊂ {1, . . . , n} and impose the values of the keys pki in this subset. Assume that
all remaining keys pki were generated honestly from keygen and therefore corre-
spond to secret keys ski. The adversary is allowed to query polynomially many
signatures σ′

i = sign(ski,m
′) for arbitrary messages m′. The TSS is said to be

unforgeable if the adversary is incapable of producing a valid k-out-of-n threshold
signature on some message m that has not been queried.

230 Chapter 7 Applications of Compressed Σ-Protocols

7.3.2 The Threshold Signature Scheme

We follow a non-standard, but conceptually simple, approach for constructing a
threshold signature scheme. The starting point of our TSS is a digital signature
scheme (keygen, sign,verify) and the k-aggregation algorithm k-aggregate
simply produces a proof of knowledge of k valid signatures on a message m, i.e., a
proof of knowledge for the following relation:

RT =
{

(pk1, . . . , pkn,m;S, (σi)i∈S) :
|S| = k, verify(pki,m, σi) = accept ∀i ∈ S

}
.

(7.1)

The obvious approach is to capture this relation by an arithmetic circuit, i.e.,
reduce it to a number of constraints defined over Zq, and apply a communication-
efficient proof of knowledge for arithmetic circuit relations in a black-box manner.
A significant drawback of this indirect approach is that it relies on an inefficient re-
duction to arithmetic circuit relations. For this reason, we follow a direct approach
avoiding these inefficient reductions.

We instantiate our TSS with the BLS signature scheme [BLS01; BLS04] defined
over a bilinear group (q,G1,G2,H, e,G,H). Recall that we write the group op-
erations in G1 and G2 additively and the group operations in H multiplicatively.
Let us now briefly recall the BLS signature scheme, instantiated in our n-player
setting. All players i, 1 ≤ i ≤ n, generate their own private key ui ∈ Zq, and pub-
lish the associated public key Pi = ui ·H ∈ G2. To sign a message m ∈ {0, 1}∗,
player i computes signature σi = ui · H(m) ∈ G1, where H : {0, 1}∗ → G1 is some
(public) collision resistant hash function. The public verification algorithm accepts
a signature σi if

e(σi, H) = e(H(m), Pi) . (7.2)

By the bilinearity of e, all honestly generated signatures are accepted. The un-
forgeability follows from the so called co-CDH* assumption [BLS04].
Remark 7.1. The BLS signature scheme was originally instantiated such that
G1 = G2, i.e., both input coordinates of the pairing e are elements of the same
group. However, the authors already showed that the scheme can be instanti-
ated in a more general setting, where G1 and G2 are possibly different. But still,
their security proof, showing that unforgeability follows from the Computational
co-Diffie-Hellman (co-CDH) assumption, requires the existence of an efficiently
computable isomorphism ψ : G2 → G1. As discussed in Section 2.6, the existence
of such an isomorphism contradicts the SXDH assumption; more precisely, the
DDH assumption in G2 cannot hold if there exists an efficiently computable iso-
morphism ψ : G2 → G1. Now recall that the binding properties of the commitment
schemes of Definition 5.2 and Definition 5.3 are derived from the DDH assump-
tion in G2 and the SXDH assumption, respectively. Hence, at first glance BLS
signatures and these pairing-based commitments appear incompatible, i.e., they
seem to require different bilinear groups. Fortunately, Boneh, Lynn and Shacham
already commented on the necessity of the isomorphism ψ in the journal version of
their work [BLS04]. They mention that, by relying on a slightly different complex-
ity assumption referred to as the co-CDH* assumption [SV07], the BLS signature

7.3 Threshold Signature Scheme 231

scheme can also be instantiated in bilinear groups (q,G1,G2,GT , e,G,H) with-
out efficiently computable isomorphisms between G1 and G2, i.e., bilinear groups
of Type III [GPS08]. This shows that, under the co-CDH* assumption, we can
safely instantiate the BLS signature scheme and the pairing-based commitment
scheme in the same bilinear group. A more detailed analysis of certain pairing-
based signature schemes, instantiated with Type III bilinear groups, is provided
in [CHK+10]. In particular, they show that the co-DHP and co-DHP* assump-
tions are equivalent if the generators are suitably chosen and conclude that existing
evidence suggests that Type III pairings offer at least as much security as Type II
pairings when used to implement the BLS signature scheme.

In order to commit to mixed vectors with coefficients in both Zq and G1, we
will use the extended Pedersen vector commitment scheme of Definition 5.2:

com : Zn0
q ×Gn1

1 × Zq → H, (x,y; γ) 7→ hx · e(y,g) · hγ ,

where hx :=
∏n0

i=1 h
xi
i and e(y,g) :=

∏n1
i=1 e(yi, gi). This commitment scheme is

binding under the DDH assumption in G1. We do not need to be able to commit
to G2- and H-coefficients.

Instantiating relation RT with the BLS signature scheme therefore results in
the following relation:

RT SS = {(P1, . . . , Pn,m;S, (σi)i∈S) : |S| = k, e(σi, H) = e(H(m), Pi) ∀i ∈ S} .

The k-aggregate algorithm simply computes a proof of knowledge for rela-
tion RT SS . The main challenge is that the prover only knows k-out-of-n signatures.
To handle this problem the k-out-of-n case is reduced to the n-out-of-n case by
deploying the linear secret sharing based proofs of partial knowledge technique
from Section 4.3. In fact, this technique allows us to reduce the nonlinear rela-
tion RT SS to a linear relation defined over the bilinear group (q,G1,G2,H, e,G,H).

Let us recall the proof of partial knowledge technique in the context of the
threshold signature relation RT SS . First, the k-aggregator defines

p(X) = 1 +
n−k∑
j=1

ajX
j ∈ Zq[X]

to be the unique polynomial of degree at most n − k with p(i) = 0 for all
i ∈ {1, . . . , n}\S. This polynomial defines an (n − k + 1)-out-of-n secret shar-
ing of 1, with shares si = 0 for all i /∈ S. Then, the k-aggregator lets σ̃i = p(i)σi,
where σ̃i is understood to be equal to 0 for i /∈ S, i.e., the secret sharing defined
by p(X) eliminates the signatures (σi)i/∈S that the k-aggregator does not know.
Subsequently, the k-aggregator commits to the mixed vector

x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−k
q ×Gn

1 .

Note that the committed vector x satisfies

fi(x) = fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi)

232 Chapter 7 Applications of Compressed Σ-Protocols

for all 1 ≤ i ≤ n, where

fi : Zn−k
q ×Gn

1 → H, x 7→ e(σ̃i, H)−
n−k∑
j=1

aji
je(H(m), Pi) . (7.3)

Hence, by proving that the committed vector satisfies these relations, it follows
that the k-aggregator knows a non-zero polynomial p(X) of degree at most n− k
and group elements σ̃1, . . . σ̃n ∈ G1 such that e(σ̃i, H) = p(i)e(H(m), Pi) for all
1 ≤ i ≤ n. Therefore, the k-aggregator must know valid signatures for all in-
dices i with p(i) ̸= 0, and since p(X) is non-zero and of degree at most n − k,
at least k of its evaluations are non-zero. Because the mappings fi are homo-
morphisms, the required proof of knowledge follows by applying the appropriate
compressed Σ-protocol. As before, amortization can be applied to open all n ho-
momorphisms f1, . . . , fn for essentially the price of one. Further, the protocol is
made non-interactive by applying the Fiat-Shamir transformation. Altogether, the
threshold signature contains a commitment P ∈ H to the mixed vector x together
with a non-interactive proof of knowledge π of an opening of P that satisfies the
aforementioned linear constraints. The k-aggregate algorithm is summarized
in Algorithm 17. The associated k-verification algorithm k-verify simply runs
the verifier of the compressed Σ-protocol. Correctness of the resulting threshold
signature follows immediately from the completeness of the compressed Σ-protocol,
and unforgeability follows from its (knowledge) soundness. The properties of the
TSS are summarized in Theorem 7.5. Note that our TSS has some additional
properties not required by the definition of Section 7.3.1. For instance, since
the interactive proof of knowledge is special honest-verifier zero-knowledge, our
threshold signatures hide the k-subset S of signers.

Theorem 7.5 (Threshold Signature Scheme). The k-out-of-n threshold signature
scheme defined by the BLS signatures scheme [BLS01; BLS04], appended with
the k-aggregation algorithm described in Algorithm 17, is correct and unforgeable.
Moreover:

• a threshold signature contains exactly 4 ⌈log2(n)⌉+ 3 elements of H, 1 ele-
ment of G1 and 1 element of Zq;

• a threshold signature is zero-knowledge on the identities of the k-signers;

• the threshold k can be chosen at aggregation time;

• the threshold signature scheme resists against an adaptive adversary which,
can replace the public keys of corrupted players.

Proof. Correctness This immediately follows from the completeness of compressed
Σ-protocol Σcomp.

Unforgeability The proof is similar to the proof of Theorem 4.1, describing the
properties of the proof of partial knowledge protocol. From special-soundness
of the compressed Σ-protocol, it follows that there exists an efficient extrac-
tor E that outputs a vector x′ = (a′, τ1, . . . , τn) ∈ Zn−k

q × Gn
1 such that

7.3 Threshold Signature Scheme 233

Algorithm 17 Algorithm k-aggregate.
Parameters: k, n ∈ N, prime q, hash function H : {0, 1}∗ → G1 and

bilinear group (q,G1,G2,H, e,G,H)
Public Input: Public keys P1, . . . , Pn ∈ G2 and message m ∈ {0, 1}∗

Private Input : Subset S ⊆ {1, . . . , n} and signatures σi ∈ G1 ∀i ∈ S
Output : TSS Σ = (π, P) ∈ Zq ×G1 ×H4⌈log2(n)⌉+3 ∪ {⊥}

1. If ∃i ∈ S such that e(σi, H) ̸= e(H(m), Pi), output ⊥ and abort.

2. Compute the unique polynomial p(X) = 1 +
∑n−k

i=1 ajX
j ∈ Zq[X] of degree

at most n− k such that p(i) = 0 for all i ∈ {1, . . . , n}\S.

3. Compute σ̃i := p(i)σi for all i ∈ S and set σ̃i = 0 for all i /∈ S.

4. Let x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−k
q × Gn

1 and compute commitment
P = com(x; γ) ∈ H for γ ∈ Zq sampled uniformly at random.

5. Run the non-interactive variant of compressed Σ-protocol Σcomp to produce
a proof π attesting that the committed vector x satisfies

fi(x) = fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi)

for all 1 ≤ i ≤ n, where fi are the homomorphisms defined in Equation (7.3).

6. Output commitment P and the non-interactive proof π.

fi(x) = e(H(m), Pi) for all 1 ≤ i ≤ n, where fi is as in Equation (7.3). Let
us denote p′(X) = 1 +

∑n−k
i=1 a′

jX
k ∈ Zq[X], then S′ = {i : p′(i) ̸= 0} has

cardinality at least k. Moreover, it is easily seen that p′(i)−1Si is a valid BLS
signature on message m associated to public key Pi. Hence, an adversary
capable of forging a threshold signature is also capable of computing k dis-
tinct valid signatures on m. Since the adversary is capable of corrupting at
most k − 1 players, this contradicts the unforgeability of the BLS signature
scheme.
The remaining properties are trivially verified.

