
Compressed Σ-protocol theory
Attema, T.

Citation
Attema, T. (2023, June 1). Compressed Σ-protocol theory. Retrieved from
https://hdl.handle.net/1887/3619596

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3619596

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619596

6
Knowledge Soundness of
Compressed Σ-Protocols

6.1 Introduction

In a compressed Σ-protocol for relation R a prover aims to convince a verifier
to know a witness w ∈ R for some statement x ∈ {0, 1}∗. A dishonest prover,
without knowledge of a witness w, should not be able to convince a verifier. This
property is called knowledge soundness and is formally captured by Definition 2.27.
Knowledge soundness requires the existence of an extraction algorithm, called a
knowledge extractor that, on input x and given oracle access to a prover P∗, aims
to output a witness w ∈ R.

Thus far, we have only shown compressed Σ-protocols to satisfy the weaker no-
tion special-soundness. It is well known that 3-round k-out-of-N special-sound
interactive proofs are knowledge sound with knowledge error (k − 1)/N , i.e., for
3-round interactive proofs, special-soundness implies knowledge soundness. Fur-
ther, the t-fold parallel repetition of a 3-round 2-out-of-N special-sound interactive
proof is easily seen to decrease the knowledge error from 1/N down to 1/N t. Fi-
nally, the security loss of the Fiat-Shamir transformation of a 3-round interactive
proof is known to be linear in the number of random oracle queries admitted to a
prover attacking the considered non-interactive proof. However, for multi-round
interactive proofs, the situation is significantly more complicated. In this chap-
ter, we discuss knowledge soundness of certain (natural variations of) multi-round
special-sound interactive proofs.

In Section 6.2, we explain the difficulties that arise when generalizing existing
knowledge extractors for 3-round interactive proofs to (2µ + 1)-round interactive
proofs.

In Section 6.3, we describe an extraction algorithm for special-sound multi-round
interactive proofs that runs in strict polynomial time. The success probability of
this extractor is not large enough to prove knowledge soundness; it only shows
that a subclass of special-sound interactive proofs satisfies an alternative notion of
knowledge soundness (Definition 2.31). It is not known how to increase the success
probability of the extractor in strict polynomial time. In fact, unless one allows
for smaller success probability, strict polynomial time extraction is impossible for
nontrivial constant-round zero-knowledge proofs [BL02]. This section is based on

148 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

the article [AC20], co-authored by Ronald Cramer.
In Section 6.4, we show that the success probability of the extraction algo-

rithm can be increased if it is allowed to run in expected polynomial time. The
resulting knowledge extractor shows that, also for multi-round interactive proofs,
special-soundness tightly implies knowledge soundness. This section is based on
the article [ACK21], co-authored by Ronald Cramer and Lisa Kohl.

In Section 6.5, we consider the t-fold parallel repetition of multi-round special-
sound interactive proofs. In many occasions, the knowledge error κ of an inter-
active proof is not small enough and parallel repetition is used to decrease it.
We show that, also for multi-round protocols, the t-fold parallel repetition of a
special-sound interactive proof reduces the knowledge error from κ down to κt.
This section is based on the article [AF22], co-authored by Serge Fehr.

In Section 6.6, we show that the security loss of the Fiat-Shamir transformation
of a special-sound interactive proof is independent of the number of rounds. More
precisely, we show that, similar to the 3-round case, the security loss is linear in
the number of random oracle queries admitted to the prover P∗ attacking the
considered non-interactive protocol. This section is based on the article [AFK22],
co-authored by Serge Fehr and Michael Klooß.

Table 6.1 summarizes the main properties, i.e., the efficiency and success prob-
ability, of the different knowledge extractors described in this chapter.

Protocol Section Number of P∗-queries X Success probability P
Π 6.3 X ≤ K P ≥ (ϵ− κ)K

Π 6.4 E[X] ≤ K P ≥ ϵ− κ

Πt 6.5 E[X] ≤ t · 2µ ·K ≤ t ·K2 P ≥ 1
2K (ϵ− κt)

FS[Π] 6.6 E[X] ≤ K + (K − 1)Q P ≥ ϵ− (Q+ 1)κ

Table 6.1: The efficiency and success probability of different knowledge extrac-
tors for (variations of) a (k1, . . . , kµ)-special-sound interactive proof
Π = (P,V). Here, Πt and FS[Π] denote the t-fold parallel repetition
and the Fiat-Shamir transformation of Π. Moreover, ϵ = ϵ(x,P∗) is the
success probability of the prover P∗ attacking the considered protocol
on statement x and κ is the knowledge error of Π. Finally, Q is the
number of random-oracle queries admitted to a non-interactive prover
attacking FS[Π] and K =

∏µ
i=1 ki.

6.2 The Knowledge Soundness Problem for Multi-Round
Special-Sound Interactive Proofs

A 3-round public-coin interactive proof is said to be 2-special-sound if there exists
an efficient algorithm that, on input a colliding pair of accepting transcripts (a, c, z)
and (a, c′, z′), i.e., with common first message a and distinct challenges c ̸= c′,

6.2 The Knowledge Soundness Problem 149

outputs a witness w ∈ R(x) for the statement x. By contrast, knowledge soundness
requires the existence of an extractor that is given oracle access to a prover; it
should extract a witness by interacting with a prover in a black-box manner. In
particular, a knowledge extractor does not receive protocol transcripts as input.
It should either generate these transcripts or extract a witness by some other
means. In order to prove that 2-special-soundness implies knowledge soundness,
one must show how to efficiently output a colliding pair of accepting transcripts
given only oracle access to a prover. By special-soundness a witness can then be
extracted efficiently from this pair of transcripts. Together these two steps define
a knowledge extractor.

In the theory of Σ-protocols, i.e., 3-round interactive proofs, it is well known
that 2-out-of-N special-soundness implies knowledge soundness with knowledge
error 1/N , where N is the size of the challenge set. This can be shown by a heavy-
row type approach [Dam10; HL10]. The alternative knowledge soundness notion
of Definition 2.31, requiring a strict polynomial time extractor that is allowed to
have somewhat smaller success probability, is also implied by special-soundness.
In [Cra96], it is shown how this follows by an application of Jensen’s inequality.

The knowledge error 1/N of a 2-out-of-N special-sound interactive proof equals
the probability that the prover guessed the challenge correctly before receiving
it from the verifier. For this reason, it corresponds to the success probability of
a trivial cheating strategy admitted by typical special-sound interactive proofs.
In particular, every 3-round interactive proof that is special honest-verifier zero-
knowledge admits such a cheating strategy. For this reason, the knowledge error
1/N is the best one can hope for and the implication from 2-out-of-N special-
soundness to knowledge soundness is tight.

Recently, and in particular for compressed Σ-protocols, a natural generalization
of special-soundness has become relevant: k-out-of-N special-soundness, where
k = (k1, . . . , kµ) and N = (N1, . . . , Nµ). This is a generalization in two ways:
(1) from requiring a colliding pair of transcripts to requiring a k-collision of k
transcripts, i.e., k accepting transcripts with common first message and pairwise
distinct challenges, and (2) from 3-round interactive proofs with 1 challenge, sent
from the verifier to the prover, to (2µ + 1)-round interactive proofs with µ chal-
lenges.

Typical k-out-of-N special-sound interactive proofs admit a cheating strategy
that succeeds if at least one of the µ random challenges ci, received from the
verifier, hits a certain set Γi of size ki − 1 chosen by the dishonest prover. The
success probability of this cheating strategy is

Er(k1, . . . , kµ;N1, . . . , Nµ) := 1−
µ∏

i=1

(
1− ki − 1

Ni

)
. (6.1)

This cheating strategy is a generalization of the one for 2-out-of-N Σ-protocols,
where a dishonest prover succeeds if it guesses the challenge correctly before re-
ceiving it. Indeed, the latter has a success probability Er(2, N) = 1/N , which
matches the knowledge error of a 2-out-of-N special-sound Σ-protocol. It is not
unnatural to expect k-out-of-N special-sound interactive proofs to be knowledge
sound with knowledge error Er(k,N).

150 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

However, in particular due to the generalization to multi-round interactive
proofs, the mentioned extractor analyses are no longer directly applicable. Hence,
it is not straightforward to show that k-out-of-N special-soundness also implies
knowledge soundness if µ > 1. For this reason, prior works resort to alternative
arguments. Bootle et al. [BCC+16] give an asymptotic analysis of k-out-of-N
special-sound interactive proofs. Their analysis is only applicable to interactive
proofs with exponentially large challenge sets and it does not give an exact know-
ledge error. Wikström generalizes Bootle et al.’s analysis and constructs a know-
ledge extractor with a configurable knowledge error [Wik18]. At the cost of in-
creasing the runtime, the knowledge error of this extractor can be configured to
be arbitrarily close to

µ∑
i=1

ki − 1
Ni

> Er(k,N) .

However, as the knowledge error moves closer to
∑µ

i=1
ki−1

Ni
, the runtime of the

extractor grows indefinitely. Moreover, also Wikström’s analysis only applies to
interactive proofs with exponentially large challenge sets.

As a consequence of these seemingly suboptimal extractor analyses, Hoffman,
Klooß and Rupp raised the question whether there even exists an efficient know-
ledge extractor with knowledge error

∑µ
i=1

ki−1
Ni

[HKR19, Question D.4.]. Hence,
at that time, it was unclear whether the knowledge error

∑µ
i=1

ki−1
Ni

was achievable,
let alone the strictly smaller knowledge error Er(k,N).

Recent works, while remaining non-tight, have improved the tightness and gen-
eralized the extraction to interactive proofs with smaller, i.e., not necessarily ex-
ponentially large, challenge sets [PLS19; JT20; AL21]. A common characteristic of
all aforementioned approaches for analyzing multi-round knowledge extractors is
the use of tail bounds, such as Markov’s inequality, to bound the success probabil-
ity and/or the (expected) runtime of the knowledge extractor. Using tail bounds,
non-tightness appears to be unavoidable. In particular, Albrecht and Lai deemed
a knowledge extractor with knowledge error

∑µ
i=1

ki−1
Ni

out of reach with current
techniques [AL21].

6.3 A Partial Solution: Strict Polynomial Time Extraction

This section provides a partial solution towards our goal of proving that k-out-of-N
special-soundness implies knowledge soundness. More precisely, we show that ev-
ery k-out-of-N special-sound interactive proof Π = (P,V) admits a strict polyno-
mial time extractor that, given a statement x and oracle access to a prover P∗,
succeeds in extracting a witness w ∈ R(x) with probability at least(

ϵ(x,P∗)− Er(k; N)
)K

,

where ϵ(x,P∗) is the success probability of P∗ attacking Π on public input x,
Er(k; N) is the knowledge error as defined in Equation (6.1) and K =

∏µ
i=1 ki.

This is only a partial solution for two reasons. First, the standard notion of
knowledge soundness requires an extractor with success probability proportional

6.3 A Partial Solution: Strict Polynomial Time Extraction 151

in ϵ(x,P∗)− Er(k; N) instead of(
ϵ(x,P∗)− Er(k; N)

)K
.

Therefore, this strict polynomial time extractor only shows that, for appropriate k,
k-out-of-N special-sound interactive proofs satisfy the alternative notion of know-
ledge soundness of Definition 2.31. Second, the requirements of Definition 2.31 are
only satisfied if K =

∏µ
i=1 ki is constant in the size of the input x. In fact, since

the success probability of the extractor degrades exponentially in K, this result
only gives a meaningful security notion if K is constant. Unfortunately, for many
protocols of interest this is not the case and K even grows superlinearly in |x|.

Hence, the extractor presented in this section shows that, for a subclass of inter-
active proofs, k-out-of-N special-soundness implies a meaningful, but alternative,
notion of knowledge soundness. However, in contrast to the full solution that
will be presented in Section 6.4, this extractor runs in strict polynomial time,
which is known to be impossible if one insist on the standard notion of knowledge
soundness [BL02].

6.3.1 Σ-Protocols

To simplify the exposition, we start with the simpler case of Σ-protocols, i.e.,
3-round interactive proofs. The general case of multi-round interactive proofs will
be treated in the subsequent section.

It is well known that a 2-out-of-N special-sound Σ-protocol admits a
strict polynomial time extractor that succeeds with probability at least
(ϵ(x,P∗)− 1/N)2 [Cra96]. This result follows from an application of Jensen’s
inequality to the convex function f(X) = X(X − 1/N). More precisely, Cramer
defined the collision-game described below. This is essentially the game played by
the knowledge extractor and Lemma 6.1 gives a lower bound for the probability
of winning the game. Both the game and the lemma presented here are almost
identical to the ones found in [Cra96]. We note that Bellare and Neven use similar
techniques to prove the security of non-interactive protocols in the Fiat-Shamir
paradigm [BN06].
Collision-Game. Consider a 0/1-matrix H with n rows and N columns. The
rows correspond to the prover’s randomness and the columns to the verifier’s
randomness. Therefore, every entry of H corresponds to a protocol transcript. An
entry of the matrix is 1 if the transcript is accepting and 0 otherwise.

The game goes as follows. Select an entry of H uniformly at random. If this
entry is a 1, select another entry of the same row uniformly at random. If this
entry is again a 1, the game outputs success. If any of the selected entries equals
a 0, the game is lost.

To bound the probability of winning the collision-game, Jensen’s inequality is
used, which states that, if X is a real-valued random variable and f is a continuous
convex function defined on the support of X, it holds that

f (E[X]) ≤ E[f(X)] .

152 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Lemma 6.1 (Lemma 2.1 of [Cra96]). Let H be a 0/1-matrix with n rows and N
columns, and let ϵ denote the fraction of 1-entries in H. Then the probability of
winning the collision-game is greater than or equal to ϵ(ϵ− 1/N).

Proof. For 1 ≤ i ≤ n, let ϵi denote the fraction of 1-entries in the i-th row. Clearly,
the probability of winning the collision-game is equal to1

1
n

n∑
i=1

ϵi

(
Nϵi − 1
N − 1

)
= 1
n

N

N − 1

n∑
i=1

ϵi

(
ϵi −

1
N

)
≥ 1
n

n∑
i=1

ϵi

(
ϵi −

1
N

)
.

To complete the proof, observe that E[ϵi] = ϵ, put f(x) = x(x − 1/N) on the
interval [0, 1] and apply Jensen’s inequality (using that f is a convex function).

Using Lemma 6.1, it is straightforward to construct a strict polynomial time
knowledge extractor that succeeds with probability at least (ϵ(x,P∗)− 1/N)2 for
2-out-of-N special-sound Σ-protocols.

Instead, we show that the above argument can be adapted to show that, in
order to satisfy the alternative notion of knowledge soundness (Definition 2.31),
it is enough to consider deterministic provers P∗. This observation simplifies the
extractor analysis of interactive proofs and allows us to immediately handle the
more general case of k-out-of-N special-sound Σ-protocols. In particular, the first
message a sent by a deterministic prover is fixed, i.e., a does not vary over different
invocations of the prover. Moreover, this observation will allow us to recursively
generalize the analysis to multi-round interactive proofs.

Recall that for the standard definition of knowledge soundness (Definition 2.27),
it is straightforward to see that one only needs to consider deterministic provers
(Remark 2.3). The main reason is that ϵ(x,P∗) − κ(|x|) is linear in P∗’s suc-
cess probability ϵ(x,P∗) and linear functions commute with the expected value
operator. This reasoning does not apply to the alternative notion of knowledge
soundness, where extractors have success probability

(
ϵ(x,P∗)−κ(|x|)

)c for some
constant c ≥ 1. However, by an appropriate application of Jensen’s inequality, the
argument can be adapted.

The following lemma shows that, also for the alternative notion of knowledge
soundness, it is enough to consider deterministic provers.

Lemma 6.2 (Deterministic and Probabilistic Provers). Let Π = (P,V) be an
interactive proof for relation R, κ : N → [0, 1], c ≥ 1 a constant and q a positive
polynomial. Further, let Edet be a knowledge extractor for Π that, given input x and
oracle access to a deterministic prover P∗

det, runs in strict polynomial time and, if
ϵ(x,P∗

det) ≥ κ(|x|), succeeds in outputting a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

det
det (x)) ∈ R

)
≥
(
ϵ(x,P∗

det)− κ(|x|)
)c

q(|x|) ,

where ϵ(x,P∗
det) := Pr

(
(P∗

det,V)(x) = accept
)
.

1This is minor correction of the original proof, which incorrectly states that the success proba-
bility is equal to 1

n

∑n

i=1 ϵi

(
ϵi − 1

N

)
.

6.3 A Partial Solution: Strict Polynomial Time Extraction 153

Then there exists a knowledge extractor E that, given input x and oracle ac-
cess to a (possibly probabilistic) prover P∗, runs in strict polynomial time and, if
ϵ(x,P∗) ≥ κ(|x|), succeeds in outputting a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥
(
ϵ(x,P∗)− κ(|x|)

)c

q(|x|) .

Proof. Let P∗ be an arbitrary randomized dishonest prover, and let P∗[r] be the
deterministic prover obtained by fixing P∗’s randomness to r. Then ϵ(x,P∗) =
Er[ϵ(x,P∗[r])], where Er denotes the expectation over the random choice of r.

Given input x and oracle access to P∗, the knowledge extractor E is declared to
run EP∗[r]

det (x) for a random choice of r. Clearly, EP∗(x) runs in strict polynomial
time. So let us analyze its success probability.

The extractor EP∗(x) succeeds with probability

Pr
(
(x; EP∗

(x)) ∈ R
)

= Er

[
Pr
(
(x; EP∗[r]

det (x)) ∈ R
)]

≥ Er

[(
ϵ(x,P∗[r])− κ(|x|)

)c

q(|x|)

]

≥
Er

[
f
(
ϵ(x,P∗[r])

)]
q(|x|) ,

where the function f is defined as follows

f : R→ R : α 7→

{(
α− κ(|x|)

)c
, if α ≥ κ(|x|) ,

0 , otherwise.
(6.2)

Note that, in the above, x is an arbitrary but fixed statement.
It is easily seen that f is twice-differentiable and, for all α ∈ R \ {κ(|x|)},

f ′′(α) ≥ 0. Moreover, for α0 = κ(|x|) it holds that

lim
α↑α0

f(α)− f(α0)
α− α0

= 0 ≤ lim
α↓α0

f(α)− f(α0)
α− α0

.

Hence, f is a convex function.
Therefore, by Jensen’s inequality, it follows that, if ϵ(x,P∗) ≥ κ(|x|), the ex-

tractor EP∗(x) succeeds with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥

Er

[
f
(
ϵ(x,P[r]∗)

)]
q(|x|)

≥
f
(
Er

[
ϵ(x,P[r]∗)

])
q(|x|)

=
f
(
ϵ(x,P∗)

)
q(|x|)

=
(
ϵ(x,P∗)− κ(|x|)

)c

q(|x|) ,

154 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

which completes the proof.

Let us now return to the extractor analysis of k-out-of-N special-sound
Σ-protocols. For multiple reasons, we will state and prove our core technical re-
sults in a more abstract language. One reason is that this allows us to focus on the
important aspects. Another reason is that we will actually exploit the considered
abstraction, and thus generalization, of the considered problem in the subsequent
sections, where we consider parallel repetitions and Fiat-Shamir transformations.
In particular, it allows us to unify the notation over the different sections of this
chapter. The abstraction crucially depends on Lemma 6.2, showing that it is
sufficient to consider deterministic provers P∗.

In our abstraction, we consider an arbitrary function V : C × {0, 1}∗ → {0, 1},
(c, y) 7→ V (c, y), and an arbitrary (possibly probabilistic) algorithm A that takes
as input an element c ∈ C and outputs a string y ← A(c). The success probability
of A is then naturally defined as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where, here and below, the probability space is defined by means of the randomness
of A and the random variable C being uniformly random in C.

The obvious instantiation of A is given by a deterministic dishonest prover
P∗ attacking the considered k-out-of-N special-sound Σ-protocol Π = (P,V) on
input x. More precisely, on input c, A runs P∗, sending c as the challenge, and
outputs P∗’s (fixed) first message a and its response z, and the function V is
defined as the verification check that V performs. In this instantiation

ϵV (A) = ϵ(x,P∗) .

Moreover, we point out that this instantiation gives rise to a deterministic A.
However, later on, when generalizing the approach to the parallel composition of
interactive proofs (Section 6.5), it will be crucial that in our abstract treatment,
A may be an arbitrary randomized algorithm that decides on its output y in a
randomized manner given the input c, and that V is arbitrary. Moreover, the more
general treatment of probabilistic A does not complicate the analysis. Therefore,
the abstraction will not be restricted to deterministic A.

Motivated by the k-out-of-N special-soundness of the considered Σ-protocol,
given oracle access to A, the goal of the extractor will be to find correct re-
sponses y1, . . . , yk for k pairwise distinct challenges c1, . . . , ck ∈ C, i.e., such that
V (ci, yi) = 1 for all i. This extractor E is formally described in Figure 6.1 and
Lemma 6.3 shows that it runs in strict polynomial time and succeeds with proba-
bility at least (

ϵV (A)− k − 1
N

)k

.

Lemma 6.3 (Strict Polynomial Time Extraction - Σ-Protocols). Let k ∈ N, C a
finite set with cardinality N ≥ k and let V : C×{0, 1}∗ → {0, 1}. Then there exists
an oracle algorithm E, described in Figure 6.1, with the following properties: The

6.3 A Partial Solution: Strict Polynomial Time Extraction 155

algorithm EA, given oracle access to a (probabilistic) algorithm A : C → {0, 1}∗,
requires at most k queries to A and, if ϵV (A) ≥ (k−1)/N , with probability at least(

ϵV (A)− k − 1
N

)k

,

it outputs k pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for
all i and ci ̸= cj for all i ̸= j.

Proof. The extractor EA is described in Figure 6.1 and proceeds as follows. It
samples c1 ∈ C uniformly at random and evaluates y1 ← A(c1). If V (c1, y1) = 0,
EA aborts. Otherwise, it samples c2 ∈ C \{c1} uniformly at random and evaluates
y2 ← A(c2). The extractor EA continues in this manner, until either it aborts,
i.e., it finds a pair (ci, yi) with V (ci, yi) = 0, or until it has extracted k pairs
(c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for all i and ci ̸= cj

for all i ̸= j.
Clearly, EA makes at most k queries to A. Moreover, if ϵV (A) ≥ (k − 1)/N , its

success probability is at least

k−1∏
j=0

N

N − j

(
ϵV (A)− j

N

)
≥
(
ϵV (A)− k − 1

N

)k

,

which completes the proof of the lemma.

Figure 6.1: Strict Polynomial Time Extractor E .
Parameters: k ∈ N.
Oracle access to: Algorithm A : C → {0, 1}∗ and verification function
V : C × {0, 1}∗ → {0, 1}.

• For i ∈ {1, . . . , k}:
– Sample ci ∈ C \ {c1, . . . , ci−1} uniformly at random and evaluate
yi ← A(ci).

– If V (ci, yi) = 0, abort. Else, continue.

Output: If A has not aborted, output k pairs (c1, y1), . . . , (ck, yk) ∈ C ×
{0, 1}∗, with V (ci, yi) = 1 for all i and ci ̸= cj for all i ̸= j.

The following theorem is an immediate consequence of Lemma 6.2 and
Lemma 6.3. It shows that, if k is constant in |x|, k-out-of-N special-sound Σ-
protocols satisfy the alternative knowledge soundness notion of Definition 2.31.

Theorem 6.1 (Strict Polynomial Time Extraction for Σ-Protocols). Let
Π = (P,V) be a k-out-of-N special-sound Σ-protocol for relation R. Then there ex-
ists an extraction algorithm E with the following properties: The extractor EP∗(x),
given input x and oracle access to a (potentially dishonest) prover P∗, requires at

156 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

most k queries to P∗ and, if ϵ(x,P∗) ≥ (k − 1)/N , outputs a witness w ∈ R(x)
with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥
(
ϵ(x,P∗)− k − 1

N

)k

,

where ϵ(x,P∗) := Pr
(
(P∗,V)(x) = accept

)
.

6.3.2 Multi-Round Interactive Proofs

Let us now move to multi-round interactive proofs and show that k-out-of-N
special-soundness, for k = (k1, . . . , kµ) and N = (N1, . . . , Nµ), implies the exis-
tence of an extraction algorithm that requires at most K =

∏µ
i=1 ki queries to P∗

and succeeds in extracting a witness with probability at least

(ϵ(x,P∗)− Er(k; N))K
,

where Er(k; N) is as defined in Equation 6.1. Note that Er(k;N) = (k − 1)/N ,
i.e., this is indeed a multi-round generalization of the result of Section 6.3.1.

As a multi-round generalization of the abstraction of the previous section, we
now consider a (possibly randomized) algorithm A that takes as input a vector
(c1, . . . , cµ) ∈ C1 × · · · × Cµ of challenges and outputs a string y, and we consider
a function

V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1} .

The obvious instantiation is a deterministic prover P∗ attacking the consid-
ered multi-round interactive proof Π = (P,V) on input x. Formally, on input
(c1, . . . , cµ), A runs P∗, sending c1 in the first challenge round, c2 in the second,
etc., and eventually A outputs all of P∗’s messages. Then the function V captures
the verification procedure of V, i.e., V (c1, . . . , cµ, y) = 1 if and only if the corre-
sponding transcript is accepting for statements x. As before, this instantiation
actually results in a deterministic algorithm A. However, our analysis also allows
probabilistic instantiations of A.

Syntactically identical to the previous section, the success probability of A is
defined as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Cµ) is uniformly random in C1 × · · · × Cµ. However, here the
goal of the extractor is different: the goal is to find correct responses for a k-tree of
challenge vectors (Definition 2.33). Note that, since the prover P∗ is deterministic,
any k-tree of challenge vectors corresponds uniquely to a k-tree of transcripts.

Towards constructing a knowledge extractor, we make the following observa-
tion. For notational convenience, let us write km = (1, . . . , 1, km+1, . . . , kµ) for all
1 ≤ m ≤ µ. Then, a k-tree of challenge vectors has the following recursive nature:

• A (1, . . . , 1)-tree of challenge vectors is simply a challenge vector (c1, . . . , cµ);

• A km−1-tree of challenge vectors is a set of km km-trees, where all
∏µ

i=m ki

challenge vectors have the first m− 1 coordinates in common.

6.3 A Partial Solution: Strict Polynomial Time Extraction 157

The following lemma exploits the recursive nature of k-trees of challenge vectors
and shows the existence of an extraction algorithm with the desired runtime and
success probability.

Lemma 6.4 (Strict Polynomial Time Extraction - Multi-Round Protocols). Let
k = (k1, . . . , kµ),N = (N1, . . . , Nµ) ∈ Nµ, C1, . . . , Cµ finite sets with cardinality
|Ci| = Ni ≥ ki and let V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1}. Then there exists an
algorithm E with the following properties: The algorithm EA, given oracle access to
a (probabilistic) algorithm A : C1×· · ·×Cµ → {0, 1}∗, requires at most K =

∏µ
i=1 ki

queries to A and, if ϵV (A) ≥ Er(k; N), with probability at least(
ϵV (A)− Er(k; N)

)K
,

it outputs K pairs (c1, y1), . . . , (cK , yK) ∈ C1 × · · · × Cµ × {0, 1}∗ with
V (ci, yi) = 1 for all i and such that the vectors ci ∈ C1 × · · · × Cµ form a
k-tree of challenge vectors, where we recall that

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

Proof. The extraction algorithm E is defined recursively. To this end, we write
km = (1, . . . , 1, km+1, . . . , kµ) and Km =

∏µ
i=m+1 ki for all 0 ≤ m ≤ µ, with the

understanding that kµ = (1, . . . , 1) and Kµ = 1.
For all m and c⃗m = (c1, . . . , cm) ∈ C1 × · · · × Cm, we let EA

m(c⃗m) be
the algorithm that, given oracle access to A, aims to output Km pairs
(c1, y1), . . . , (cKm , yKm) ∈ C1 × · · · × Cµ × {0, 1}∗ with V

(
ci, yi) = 1 for all i and

such that the vectors ci ∈ C1 × · · · × Cµ form a km-tree of challenge vectors with
the first m coordinates equal to c⃗m = (c1, . . . , cm).

Let us now define the extraction algorithm EA
m(c⃗m). For m = µ and c⃗µ =

(c1, . . . , cµ), EA
µ (c⃗µ) simply evaluates y ← A(c⃗µ). If V (c⃗µ, y) = 1, EA

µ (c⃗µ) success-
fully outputs (c⃗µ, y). In this case we write EA

µ (c⃗µ) ̸= ⊥.
For m < µ and c⃗m = (c1, . . . , cm), EA

m(c⃗m) runs EA
m+1(c⃗m, yℓ) for 1 ≤ ℓ ≤ km+1

and yℓ ∈ Cm+1 sampled uniformly at random such that yi ̸= yj for all i ̸= j. We
say EA

m(c⃗m) aborts if any of its EA
m+1-invocations fails, i.e., if EA

m+1(c⃗m, yℓ) = ⊥
for some ℓ. If EA

m(c⃗m) does not abort, it is easily seen that the km+1 km+1-trees,
output by its EA

m+1-invocations, form a km-tree of challenge vectors.
The extraction algorithm EA simply runs EA

0 . Let us now analyze the expected
number of A-queries and success probability of EA.

Expected Number of A-Queries. By induction, it immediately follows that,
for all m and c⃗m = (c1, . . . , cm), EA

m(c⃗m) makes at most Km+1 = km+1 · · · kµ

queries to A. Hence, EA requires at most K queries to A, which proves the
claimed number of A-queries.

Success Probability. For all m and c⃗m = (c1, . . . , cm), let

ϵ(c⃗m) = Pr
(
V (C,A(C)) = 1 | C1 = c1 ∧ · · · ∧ Cm = cm

)
,

where C = (C1, . . . , Cµ) is uniformly random in C1×· · ·×Cµ, i.e., ϵ(c⃗m) denotes the
success probability of A conditioned on the first m challenges being equal to c⃗m.

158 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Moreover, similar to the convex function of Equation 6.2, we let

fm : R→ R : α 7→

{(
α− Er(km; N)

)Km
, if α ≥ Er(km; N) ,

0 , otherwise.

By induction, for all 0 ≤ m ≤ µ and for all c⃗m, we will show that

Pr
(
EA

m(c⃗m) ̸= ⊥
)
≥ fm

(
ϵ(c⃗m)

)
. (6.3)

It holds that kµ = (1, . . . , 1), Kµ = 1 and Er(kµ; N) = 0. Therefore,

Pr
(
EA

µ (c⃗µ) ̸= ⊥
)

= ϵ(c⃗µ) = fµ

(
ϵ(c⃗µ)

)
,

which proves the base case m = µ.
So let us assume that the induction hypothesis of Equation 6.3 is satisfied for m

and for all c⃗m ∈ C1 × · · · × Cm. Then, for all c⃗m−1,

Pr
(
EA

m−1(c⃗m−1) ̸= ⊥
)

= Ey1,...,ykm

[
km∏
ℓ=1

Pr
(
EA

m(c⃗m−1, yℓ) ̸= ⊥
)]

≥ Ey1,...,ykm

[
km∏
ℓ=1

fm

(
ϵ(c⃗m−1, yℓ)

)]
,

where the expected value is over the random choices of pairwise distinct
y1, . . . , ykm ∈ Cm.

By basic probability theory it now follows that

Ey1,...,ykm

[
km∏
ℓ=1

fm

(
ϵ(c⃗m−1, yℓ)

)]
=

km∏
ℓ=1

Eyℓ|y1,...,yℓ−1

[
fm

(
ϵ(c⃗m−1, yℓ)

)]
,

where the latter expected values are over the random choices of the variables
yℓ ∈ Cm \ {y1, . . . , yℓ−1}, i.e., conditioned on the first ℓ− 1 choices to be equal to
y1, . . . , yℓ−1.

Using the fact that fm is convex and applying Jensen’s inequality shows that

Pr
(
EA

m−1(c⃗m−1) ̸= ⊥
)
≥

km∏
ℓ=1

fm

(
Eyℓ|y1,...,yℓ−1

[
ϵ(c⃗m−1, yℓ)

])
.

Since yℓ is sampled uniformly at random from Cm \ {y1, . . . , yℓ−1}, it holds that

Eyℓ|y1,...,yℓ−1

[
ϵ(c⃗m−1, yℓ)

]
=
Nm · ϵ(c⃗m−1)−

∑ℓ−1
j=1 ϵ(c⃗m−1, yj)

Nm − ℓ+ 1

≥ Nm

Nm − ℓ+ 1

(
ϵ(c⃗m−1)− ℓ− 1

Nm

)
= 1− Nm

Nm − ℓ+ 1
(
1− ϵ(c⃗m−1)

)
.

6.3 A Partial Solution: Strict Polynomial Time Extraction 159

Hence, since fm is monotonically increasing,

Pr
(
EA

m−1(c⃗m−1) ̸= ⊥
)
≥

km∏
ℓ=1

fm

(
1− Nm

Nm − ℓ+ 1 (1− ϵ(c⃗m−1))
)

≥ fm

(
1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

))km

.

To complete the proof, we must express this lower bound in terms of the function
fm−1 instead of fm. To this end, we first consider the case ϵ(c⃗m−1) < Er(km−1; N).
In this case

1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

)
< 1− Nm

Nm − km + 1 (1− Er(km−1; N))

= Er(km; N) .

Hence, in this case

fm

(
1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

))km

= fm−1
(
ϵ(c⃗m−1)

)
= 0 .

So let us consider the other case, i.e., ϵ(c⃗m−1) ≥ Er(km; N). Then

fm

(
1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

))km

=
(

1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

)
− Er(km; N)

)Km−1

=
((

Nm

Nm − km + 1

)(
ϵ(c⃗m−1)− 1 + Nm − km + 1

Nm

(
1− Er(km; N)

)))Km−1

=
(

Nm

Nm − km + 1

)Km−1

·

(
ϵ(c⃗m−1)− Er(km−1; N)

))Km−1

≥

(
ϵ(c⃗m−1)− Er(km−1; N)

))Km−1

= fm−1
(
ϵ(c⃗m−1)

)
.

Altogether it follows that, for all c⃗m−1 ∈ C1 × · · · Cm−1,

fm

(
1− Nm

Nm − km + 1
(
1− ϵ(c⃗m−1)

))km

≥ fm−1
(
ϵ(c⃗m−1)

)
,

and therefore,
Pr
(
EA

m−1(c⃗m−1) ̸= ⊥
)
≥ fm−1

(
ϵ(c⃗m−1)

)
,

160 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

which proves the induction hypothesis of Equation 6.3.
In particular, if ϵV (A) ≥ Er(k; N),

Pr
(
EA ̸= ⊥

)
= Pr

(
EA

0 ̸= ⊥
)
≥
(
ϵV (A)− Er(k; N)

)K
,

which completes the proof of the lemma.

The following theorem is an immediate consequence of Lemma 6.4. It shows
that, if K = k1 . . . kµ is constant in |x|, k-out-of-N special-sound interactive proofs
satisfy the alternative knowledge soundness notion of Definition 2.31 with know-
ledge error Er(k; N). The knowledge error Er(k; N) is tight, since k-out-of-N
special-sound interactive proofs typically admit a cheating strategy that succeeds
with probability Er(k; N).

Theorem 6.2 (Strict Polynomial Time Extraction for Multi-Round Protocols).
Let k = (k1, . . . , kµ),N = (N1, . . . , Nµ) ∈ Nµ and let K = k1 . . . kµ. Let
Π = (P,V) be a k-out-of-N special-sound interactive proof for relation R. Then
there exists an extraction algorithm E with the following properties: The extrac-
tor EP∗(x), given input x and oracle access to a (potentially dishonest) prover P∗,
requires at most K queries to P∗ and, if ϵ(x,P∗) ≥ Er(k; N), outputs a witness
w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥ (ϵ(x,P∗)− Er(k; N))K

,

where ϵ(x,P∗) := Pr
(
(P∗,V)(x) = accept

)
and

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

6.4 A Complete Solution in Expected Polynomial Time

In this section, we present a complete solution to the knowledge soundness prob-
lem for k-out-of-N special-sound interactive proofs, i.e., we prove that k-out-of-N
special-soundness implies knowledge soundness with knowledge error Er(k,N).
More precisely, towards satisfying Definition 2.27, we construct a knowledge ex-
tractor that, given a statement x and oracle access to a prover P∗, runs in expected
polynomial time and succeeds in extracting a witness w ∈ R(x) with probability
at least

ϵ(x,P∗)− Er(k,N) ,

where ϵ(x,P∗) is the success probability of P∗ on input x. Therefore, with respect
to the partial solution of Section 6.3 we show that, at the cost of relaxing from strict
to expected polynomial time extraction, the success probability can be increased
from (

ϵ(x,P∗)− Er(k,N)
)K to ϵ(x,P∗)− Er(k,N) ,

where K =
∏µ

i=1 ki. This shows that indeed k-out-of-N special-soundness tightly
implies knowledge soundness with knowledge error Er(k,N).

6.4 A Complete Solution in Expected Polynomial Time 161

6.4.1 Σ-Protocols

As before, to simplify the exposition, we start with the simpler case of Σ-protocols,
i.e., 3-round interactive proofs. Moreover, we use the same abstract notation, i.e.,
we consider an arbitrary algorithm A : C → {0, 1}∗ and an arbitrary verification
function V : C × {0, 1}∗ → {0, 1}. Recall that A has a naturally defined success
probability

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where C is uniformly random in C. The obvious instantiation of A is given by
a deterministic2 prover P∗ attacking the considered k-out-of-N special-sound Σ-
protocol Π = (P,V) on input x.

As before, given oracle access to A, the goal is to find correct responses y1, . . . , yk

for k pairwise distinct challenges c1, . . . , ck ∈ C, i.e., such that V (ci, yi) = 1 for all i.
However, this time we follow a different approach. The first step of the extractor
is the same as in Section 6.3.1, i.e., it samples a random challenge c1 and evaluates
y1 ← A(c1). If V (c1, y1) = 0, the extractor aborts. Otherwise, i.e., if V (c1, y1) = 1,
the extractor samples challenges from C \ {c1}, without replacement, until either
k − 1 additional pairs (c2, y2), . . . , (ck, yk), with V (ci, yi) = 1 for all i, have been
found or until the entire challenge set C has been exhausted. This extraction
algorithm is also described in Figure 6.2 and its properties are summarized in
Lemma 6.5.

Recall that the strict polynomial-time extractor of Section 6.3.1 aborts if any
pair (c, y) with V (c, y) = 0 is encountered. By contrast, if V (c1, y1) = 1, the
expected polynomial time extractor described here continues searching until it has
succeeded or until there are no more challenges to try. Lemma 6.5 shows that
this adaptation increases the success probability from (ϵV (A)− (k − 1)/N)k to
ϵV (A)− (k − 1)/N , where N = |C|. The cost of this improvement is a degradation
from strict to expected polynomial runtime. However, this is still sufficient for
proving knowledge soundness.

The proof of the following lemma can be simplified by restricting to deterministic
algorithms A. This would still be sufficient for proving knowledge soundness.
However, in the next section, for multi-round protocols, we will apply this lemma
recursively and there it is crucial that A is allowed to be probabilistic.

Lemma 6.5 (Expected Polynomial Time Extraction - Σ-Protocols). Let k ∈ N,
C a finite set with cardinality N ≥ k and let V : C × {0, 1}∗ → {0, 1}. Then there
exists an oracle algorithm E with the following properties: The algorithm EA, given
oracle access to a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected
number of at most k queries to A and with probability at least

N

N − k + 1

(
ϵV (A)− k − 1

N

)
,

it outputs k pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for
all i and ci ̸= cj for all i ̸= j.

2Recall that, in order to prove knowledge soundness, it is sufficient to consider deterministic
provers (Remark 2.3).

162 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Figure 6.2: Expected Polynomial Time Extractor E .
Parameters: k ∈ N.
Oracle access to: Algorithm A : C → {0, 1}∗ and verification function
V : C × {0, 1}∗ → {0, 1}.

• Sample c1 ∈ C uniformly at random and evaluate y1 ← A(c1).

• If V (c1, y1) = 0, abort.

• Else, repeat
– sample c ∈ C\{c1} uniformly at random (without replacement) and

evaluate y ← A(c);
until either k−1 additional pairs (c2, y2), . . . , (ck, yk), with V (ci, yi) = 1
for all i, have been found or until all challenges c ∈ C \ {c1} have been
tried.

Output: In the former case, output k pairs (c1, y1), . . . , (ck, yk) ∈ C × {0, 1}∗

with V (ci, yi) = 1 for all i and ci ̸= cj for all i ̸= j.

Proof. The extractor EA, given oracle access to A, is described in Figure 6.2 and
proceeds as follows. It samples a random challenge c1 and evaluates y1 ← A(c1).
If V (c1, y1) = 0, the extractor aborts. Otherwise, if V (c1, y1) = 1, the extractor
samples challenges from C \{c1}, without replacement, until either k−1 additional
pairs (c2, y2), . . . , (ck, yk), with V (ci, yi) = 1 for all i, have been found or until the
entire challenge set C has been exhausted.

We write C1 for the random variable denoting the first challenge sampled by
the extractor, i.e., C1 is uniformly random in C. Moreover, we write Γ = 0 and
Γ = 1 for the events V

(
C1,A(C1)

)
= 0 and V

(
C1,A(C1)

)
= 1, respectively. In

particular, note that
ϵV (A) = Pr(Γ = 1) .

Let us now analyze the expected number ofA-queries and the success probability
of the extractor EA.

Expected Number of A-Queries. Let T denote the number of A-queries
made by EA. Moreover, let S denote the number of challenges c ∈ C for which A
returns a correct response, i.e., S =

∣∣{c ∈ C | V (c,A(c)
)

= 1}
∣∣. Note that, since A

is probabilistic, S is a random variable with support {0, . . . , N}.
Let us now assume that the first A-query by EA is successful, i.e., Γ = 1. Then

conditioned on S = ℓ > 0, the remainder of the extraction algorithm can be
modeled by a negative hyper geometric distribution; challenges are drawn (without
replacement) from a set of size N − 1 containing ℓ− 1 correct responses.

Therefore, by Lemma 2.3,

E[T | Γ = 1 ∧ S = ℓ > 0] ≤ k + (k − 1)N − ℓ
ℓ

= 1 + (k − 1)N
ℓ
.

Moreover, Γ = 0 implies T = 1 and thus E[T | Γ = 0 ∧ S = ℓ] = 1. Hence, for all

6.4 A Complete Solution in Expected Polynomial Time 163

0 < ℓ ≤ N ,

E[T | S = ℓ] = Pr
(
Γ = 0 | S = ℓ

)
· E[T | Γ = 0 ∧ S = ℓ]

+ Pr
(
Γ = 1 | S = ℓ

)
· E[T | Γ = 1 ∧ S = ℓ]

= N − ℓ
N

· E[T | Γ = 0 ∧ S = ℓ] + ℓ

N
· E[T | Γ = 1 ∧ S = ℓ]

≤ N − ℓ
N

+ ℓ

N
·
(

1 + (k − 1)N
ℓ

)
= 1 + k − 1 = k .

Since E[T | S = 0] = 1, it follows that E[T] ≤ k, which proves the claimed expected
number of A-queries made by EA.

Success Probability. The extractor succeeds if S ≥ k and the first challenge
returns a correct response, i.e.,

Pr
(
EA ̸= ⊥

)
= Pr

(
Γ = 1 ∧ S ≥ k

)
=

N∑
ℓ=k

Pr
(
S = ℓ

)
Pr
(
Γ = 1 | S = ℓ

)
=

N∑
ℓ=k

Pr
(
S = ℓ

) ℓ
N
.

Now, for ℓ ≤ N , note that

ℓ

N
= 1−

(
1− ℓ

N

)
≥ 1− N

N − k + 1

(
1− ℓ

N

)
= N

N − k + 1

(
N − k + 1

N
− 1 + ℓ

N

)
= N

N − k + 1

(
ℓ

N
− k − 1

N

)
.

Hence,

Pr
(
EA ̸= ⊥

)
≥

N∑
ℓ=k

Pr
(
S = ℓ

) N

N − k + 1

(
ℓ

N
− k − 1

N

)

≥
N∑

ℓ=0
Pr
(
S = ℓ

) N

N − k + 1

(
ℓ

N
− k − 1

N

)
= N

N − k + 1

(
Pr
(
Γ = 1

)
− k − 1

N

)
= N

N − k + 1

(
ϵV (A)− k − 1

N

)
,

which completes the proof of the lemma.

From Lemma 6.5 it immediately follows that k-out-of-N special-soundness
tightly implies knowledge soundness.

164 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Theorem 6.3 (Knowledge Soundness of Σ-Protocols). Let Π = (P,V) be a
k-out-of-N special-sound Σ-protocol for relation R. Then Π is knowledge sound
with knowledge error Er(k;N) = (k − 1)/N .

An alternative knowledge extractor for 2-out-of-N special-sound Σ-protocols,
proving Theorem 6.3 for this special case, can be found in [HL10]. Their extractor
follows a heavy-row type approach and is designed towards satisfying the equiv-
alent, but different, knowledge soundness definition (Definition 2.28). Therefore,
in order to compare the two approaches, one must perform a generic transfor-
mation [Gol04]. Concretely, towards satisfying Definition 2.28, our extractor can
be repeated until it succeeds resulting in a knowledge extractor for 2-out-of-N
special-sound Σ-protocols that, if ϵV (A) > 1/N , always succeeds and requires an
expected number of at most

2
ϵV (A)− 1/N

queries to A.
Our approach simplifies the extraction algorithm and its analysis. The crucial

difference is that, instead of sampling challenges with replacement, our extractor
samples new challenges without replacement. Most importantly, as we will show in
the next section, our approach allows for a generalization to the multi-round case.
By contrast, all known multi-round generalizations of the heavy-row approach
of [HL10] result in suboptimal knowledge errors and expected runtimes.

6.4.2 Multi-Round Interactive Proofs

We are now ready to prove that k-out-of-N special-sound multi-round interactive
proofs are indeed knowledge sound with knowledge error Er(k; N). We use the
same abstract notation as in Section 6.3.2, i.e., we consider an arbitrary proba-
bilistic algorithm A : C1×· · ·×Cµ → {0, 1}∗ and an arbitrary verification function

V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1} .

The obvious instantiation of A is given by a deterministic prover P∗ attacking
the considered interactive proof Π = (P,V) on input x. Recall that A’s success
probability is denoted as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Cµ) is uniformly random in C1 × · · · × Cµ.
The goal of the extractor is, given oracle access to A, to find correct responses

for a k-tree of challenge vectors (Definition 2.33). The following lemma shows the
existence of an extractor with the desired properties. The extractor is a recursive
application of the 3-round extractor of Lemma 6.5.

Lemma 6.6 (Expected Polynomial Time Extraction - Multi-Round Protocols).
Let k = (k1, . . . , kµ),N = (N1, . . . , Nµ) ∈ Nµ, C1, . . . , Cµ finite sets with cardinality
|Ci| = Ni ≥ ki and let V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1}. Then there exists an
oracle algorithm E with the following properties: The algorithm EA, given oracle

6.4 A Complete Solution in Expected Polynomial Time 165

access to a (probabilistic) algorithm A : C1×· · ·×Cµ → {0, 1}∗, requires an expected
number of at most K =

∏µ
i=1 ki queries to A and with probability at least

1
1− Er(k; N)

(
ϵV (A)− Er(k; N)

)
,

it outputs K pairs (c1, y1), . . . , (cK , yK) ∈ C1 × · · · × Cµ × {0, 1}∗ with
V (ci, yi) = 1 for all i and such that the vectors ci ∈ C1 × · · · × Cµ form a
k-tree of challenge vectors, where we recall that

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

Proof. The proof goes by induction on µ. For µ = 1, the lemma directly follows
from Lemma 6.5. So let µ > 1 and let us assume the lemma holds for µ = M and
consider the case µ = M + 1.

For any c ∈ C1, let Ac be the algorithm that takes as input a vector (c2, . . . , cµ) ∈
C2×· · ·×Cµ and runs A(c, c2, . . . , cµ). The function Vc is defined accordingly, i.e.,

Vc : C2 × · · · × Cµ × {0, 1}∗ → {0, 1}, (c, y) 7→ V (c, c, y) .

Moreover, let k′ = (k2, . . . , kµ),N′ = (N2, . . . , Nµ) ∈ Nµ−1 and K ′ =
∏µ

i=2 ki.
By the induction hypothesis there exists an algorithm EAc

µ−1 that,
given oracle access to Ac, aims to output a set Y of K ′ pairs
(c1, y1), . . . , (cK′ , yK′) ∈ C2 × · · · × Cµ × {0, 1}∗ with V (c, ci, yi) = 1 for all i such
that the vectors ci ∈ C2 × · · · × Cµ form a k′-tree of challenge vectors. Moreover,
EAc

µ−1 requires an expected number of at most K ′ queries to A and succeeds with
probability at least

1
1− Er(k′; N′)

(
ϵVc(Ac)− Er(k′; N′)

)
.

We define W : C1 × {0, 1}∗ → {0, 1}, by setting W (c,Y) = 1 if and only if Y is a
set satisfying the above properties.

Now let BA : C1 → {0, 1}∗ be the algorithm that, given oracle access to A, takes
as input an element c ∈ C1 and runs EAc

µ−1. By Lemma 6.5, there exists an expected
polynomial time algorithm EBA

1 that, given oracle access to BA, aims to output k1
pairs (c1,Y1), . . . , (ck1 ,Yk1) ∈ C1 × {0, 1}∗ with W (ci,Yi) = 1 for all i and ci ̸= cj

for all i ̸= j. Clearly, the set of k1 k′-trees of challenge vectors forms a k-tree.
For this reason, the extractor EA is simply defined to run EBA

1 . Note that, by the
associativity of the composition of oracle algorithms, EA = EBA

1 = (EB
1)A is indeed

an oracle algorithm given oracle access to A.
Let us now analyze the success probability and the expected number ofA-queries

of the algorithm EA = EBA

1 .
Success Probability. By Lemma 6.5, and the induction hypothesis, it follows

166 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

that EBA

1 succeeds with probability at least

N1

N1 − k1 + 1

(
ϵW
(
BA)− k1 − 1

N1

)
= N1

N1 − k1 + 1

(
Ec

[
Pr
(
EAc

µ−1 ̸= ⊥
)]
− k1 − 1

N1

)

≥ N1

N1 − k1 + 1

(
Ec

[
1

1− Er(k′; N′)
(
ϵVc(Ac)− Er(k′; N′)

)]
− k1 − 1

N1

)

= N1

N1 − k1 + 1

(
1

1− Er(k′; N′)
(
ϵV (A)− Er(k′; N′)

)
− k1 − 1

N1

)
= 1

1− Er(k; N)

(
ϵV (A)− Er(k′; N′)− k1 − 1

N1

(
1− Er(k′; N′)

))
= 1

1− Er(k; N)

(
ϵV (A)− 1 + N1 − k1 + 1

N1

(
1− Er(k′; N′)

))
= 1

1− Er(k; N)
(
ϵV (A)− Er(k; N)

)
,

where we (twice) use the recursive relation

1− Er(k; N) = N1 − k1 + 1
N1

(1− Er(k′; N′)) .

This shows that EBA

1 has the desired success probability.
Expected Number of A-Queries. By Lemma 6.5 it follows that EAc

µ−1 requires
an expected number of at most k1 queries to BA for all c. Moreover, by the
induction hypothesis, BA requires an expected number of at most K ′ queries to
A. Hence, EBA

1 requires an expected number of at most K queries to A, which
completes the proof of the lemma.

Remark 6.1. In the proof of Lemma 6.6, it is crucial that the algorithm BA is
allowed to be probabilistic. For this reason, we did not restrict Lemma 6.5 to
deterministic algorithms, even though this would have been sufficient for proving
knowledge soundness of k-out-of-N special-sound Σ-protocols.

From Lemma 6.6 it immediately follows that, also for multi-round protocols,
k-out-of-N special-soundness tightly implies knowledge soundness. This result is
summarized in the following theorem.

Theorem 6.4 (Knowledge Soundness of Multi-Round Interactive Proofs). Let
Π = (P,V) be a k-out-of-N special-sound interactive proof for relation R, where
k = (k1, . . . , kµ), N = (N1, . . . , Nµ) ∈ Nµ. Then Π is knowledge sound with
knowledge error

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

6.5 Solving the Parallel Repetition Problem 167

6.4.3 A Note on Witness Extended Emulation

A technical issue arises when using proofs of knowledge as sub-protocols in larger
cryptographic protocols [GK96; Lin01; Lin03]. More precisely, to prove security of
the compound protocol, a simulator is typically required to run the extractor of the
proof of knowledge. However, the naive simulation approach does not necessarily
run in polynomial time. To this end, Lindell defined the notion of witness-extended
emulation, capturing precisely the properties required when proofs of knowledge
are used as sub-protocols [Lin01; Lin03]. Moreover, he showed that any proof
of knowledge, with negligible knowledge error, has witness-extended emulation,
thereby solving this technical issue for all proofs of knowledge at once. Hence, from
our extraction analysis it follows that any k-out-of-N special-sound interactive
proof has witness-extended emulation if Er(k,N) is negligible.

The first multi-round extractor analysis for k-out-of-N special-sound interactive
proofs considered witness emulation directly [BCC+16], i.e., it did not show that
k-out-of-N special-soundness implies knowledge soundness, but merely that it im-
plies witness extended emulation. In particular, their analysis does not provide a
concrete knowledge error and only applies to protocols with exponentially large
challenge sets.

6.5 Solving the Parallel Repetition Problem

In certain occasions, the knowledge error of a “basic” proof of knowledge (and
thereby the cheating probability of a dishonest prover) is not small enough, and
thus needs to be reduced. In particular, this is the case for lattice-based proofs of
knowledge (PoKs), where typically challenge sets are only of polynomial size re-
sulting in nonnegligible knowledge errors [LS18; ACX21]. Reducing the knowledge
error can be done generically by repeating the PoK. Indeed, repeating a PoK t
times sequentially, i.e., one after the other, is known to reduce the knowledge error
from κ down to κt [Gol01]. However, this approach also increases the number of
communication rounds by a factor t. This is often undesirable, and sometimes
even insufficient, e.g., because the security loss of the Fiat-Shamir transformation,
transforming interactive into non-interactive protocols, is oftentimes exponential
in the number of rounds (see Section 6.6).

Therefore, it is much more attractive to try to reduce the knowledge error by
parallel repetition. However, analyzing parallel repetitions is significantly more
complicated than analyzing sequential repetitions, because a dishonest prover does
not have to treat all t parallel instances independently, i.e., a message correspond-
ing to a specific instance may depend on the messages and challenges of the other
parallel instances. In fact, it is not true in general that the t-fold parallel repeti-
tion decreases the knowledge error from κ down to κt; there even exist interactive
arguments for which parallel repetition does not decrease the success probability
of a dishonest prover at all [BIN97; PW07].

For this reason, parallel repetition of interactive proofs has been studied ex-
tensively, but mainly in the context of decreasing the soundness error [HPW+10;
CL10; CP15]. However, knowledge soundness is a strictly stronger requirement
than soundness; there exist interactive proofs that are sound but not knowledge

168 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

sound. More precisely, proving the existence of an efficient knowledge extractor
is a much more delicate task than proving that the verifier is unlikely to accept a
false statement.

In the special case of 2-out-of-N special-sound interactive proofs such a parallel
repetition is much easier to analyze: the t-fold parallel repetition of a 2-special-
sound interactive proof with challenge space of cardinality N is again 2-special-
sound, but now with a challenge space of size N t, and so knowledge-soundness
with knowledge error 1/N t follows immediately from the generic reduction of Theo-
rem 6.3. Unfortunately, this reasoning does not extend to k-out-of-N special-sound
interactive proofs with k > 2: even though we still have that the t-fold parallel
repetition of a k-out-of-N special-sound interactive proof is ℓ-out-of-N t special-
sound, but now with ℓ = (k − 1)t + 1, this large increase in the special-soundness
parameter ℓ renders the extractor, obtained via the generic reduction, inefficient.
More precisely, the runtime of an ℓ-out-of-N t special-sound interactive proof scales
linearly in ℓ, and therefore exponentially in t for ℓ = (k− 1)t + 1, unless k = 2. In
case of multi-round interactive proofs, it is not even clear that the t-fold parallel
repetition of a k-out-of-N special-sound (2µ+ 1)-round interactive proof satisfies
any meaningful notion of special-soundness.

We consider parallel repetition of interactive proofs in the context of decreasing
the knowledge error. In Section 6.5.1, we show, based on a result from [CP15],
that the t-fold parallel repetition of any public-coin interactive proof reduces the
knowledge error from κ down to κt+ν for any noticeable term ν. This generic result
is tight, since there are interactive proofs for which parallel repetition does not
allow the knowledge error to be reduced down to a negligible function [DJM+12].
However, it is also suboptimal in that, when applied to a k-out-of-N special-sound
protocol for instance, it does not give the knowledge error Er(k;N)t that one
expects (and that one should get when k = 2) and, worse, the knowledge error
remains nonnegligible.

For this reason, in Section 6.5.2, we restrict the analysis to k-out-of-N special-
sound Σ-protocols, i.e., 3-round interactive proofs, and derive a strong parallel
repetition result. Here, as usual in the general context of parallel repetition, the
term “strong” means that the figure of merit κ, here the knowledge error, drops
from κ to κt under a t-fold parallel repetition. In Section 6.5.3, we generalize
this result to k-out-of-N special-sound multi-round interactive proofs. Finally,
in Section 6.5.4, we consider the more general case of s-out-of-t threshold parallel
repetition, where the verifier accepts if s-out-of-t instantiations of the basic inter-
active proof are accepting. Threshold parallel repetition allows both the knowledge
and the completeness error to be reduced simultaneously.

6.5.1 A Generic but Suboptimal Solution

In this section, we establish a weak parallel repetition theorem. We write Πt =
(Pt,Vt) for the t-fold parallel repetition of an interactive proof Π = (P,V), which
runs t instances of Π in parallel and the verifier Vt accepts if all the parallel
instances are accepted. Then we show that, if Π is public-coin and knowledge
sound with knowledge error κ, Πt has knowledge error κt + ν for any noticeable ν.
The result is weak in that it does not reduce the knowledge error from κ down
to κt. However, it is generically applicable to any public-coin interactive proof.

6.5 Solving the Parallel Repetition Problem 169

Our main building block is a result by Chung and Pass [CP15] summa-
rized in Theorem 6.5. This theorem shows the existence of a prover P that,
given input x and oracle access to a dishonest prover P∗ attacking interactive
proof Πt = (Pt,Vt), succeeds in convincing V with probability approximately
ϵ(x,P∗)1/t, where ϵ(x,P∗) is the probability that the prover P∗ successfully con-
vinces verifier Vt on input x. This theorem immediately shows that the t-fold
parallel repetition reduces the soundness error from σ down to approximately σt.
Subsequently, in Theorem 6.6, we show how this result can be used to derive
our parallel repetition theorem for reducing the knowledge error instead of the
soundness error.

Theorem 6.5 (Theorem 2 of [CP15]). Let Π = (P,V) be a public-coin interactive
proof for relation R. Let t ∈ N, and let Πt = (Pt,Vt) be the t-fold parallel
repetition of Π. Then there exists an oracle algorithm P(·) such that for every
ξ, δ : {0, 1}∗ → (0, 1), every x ∈ {0, 1}∗, and every PPT prover P∗, it holds that if

Pr
((
P∗,Vt

)
(x) = accept

)
≥ (1 + ξ(x)) · δ(x)t︸ ︷︷ ︸

ϵ(x):=

,

then
Pr
((

PP∗
,V
)
(x) = accept

)
≥ δ(x) .

Furthermore, PP∗ runs in time poly
(
|x|, t, ξ(x)−1, ϵ(x)−1, (1− δ(x))−1).

Theorem 6.5 was actually established specifically in the context of decreasing the
soundness error of computationally sound interactive proofs. Recall that computa-
tional soundness only requires the success probability of computationally bounded
dishonest provers to be smaller than the soundness error. For this reason, in con-
trast to the case of unconditional soundness, analyzing the parallel repetition of
computationally sound interactive proofs is significantly more complicated. More
precisely, from Theorem 6.5 it follows by contraposition that parallel repetition
decreases the soundness error; given a prover P∗ attacking the parallel repetition
Πt with success probability ϵ, an oracle prover P(·) attacking the basic interactive
proof Π with success probability approximately ϵ1/t is constructed. Applying this
argument in the context of computational soundness requires the oracle prover P(·)

to be efficient. In the context of unconditional soundness the oracle prover P(·)

is not required to be efficient. In fact, it is well known that the t-fold parallel
repetition of an unconditionally sound public-coin interactive proof decreases the
soundness error σ down to σt [BGG90; Gol98], i.e., for these protocols there exists
a strong parallel repetition result.

By contrast, both the unconditional and computational variant of knowledge
soundness require the existence of an efficient extractor. Therefore, restricting
to either of the two variations does not simplify the analysis. However, in the
following theorem we show that, using the above oracle prover P(·), a knowledge
extractor for the parallel repetition Πt can be constructed. The extractor in-
vokes P(·) a polynomial number of times and is therefore efficient as long as P(·)

is efficient. Altogether, Theorem 6.6 shows that t-fold parallel repetition decreases

170 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

the knowledge error from κ down to κt +ν for any noticeable ν. However, we can-
not show that Πt has negligible knowledge error for any fixed negligible function,
because the running time of PP∗ scales with ϵ(x,P∗)−1.

While it might seem that this barrier is rather an artifact of the proof technique
of [CP15] on which we build, it was shown by [DJM+12] that Theorem 6.5 is
tight when considering soundness amplification of interactive proofs in general.
More precisely, based on some cryptographic assumptions they showed that, for
some protocols, parallel repetition does not amplify security beyond negligible,
meaning that for any negligible function η one can find an instantiation that when
starting with nonnegligible soundness error, the protocol can always be broken
with probability η(x), no matter how many parallel repetitions one runs.

Theorem 6.6 (Generic Parallel Repetition Theorem). Let Π = (P,V) be a public-
coin interactive proof for relation R that is knowledge sound with knowledge error
κ : N → [0, 1]. Let ν : N → (0, 1) be an arbitrary noticeable function. Then, the
t-fold parallel repetition Πt = (Pt,Vt) of Π is knowledge sound with knowledge
error κ′ = κt + ν.

Proof. We construct a knowledge extractor Et for Πt = (Pt,Vt) as follows. Let
P∗ be some (potentially dishonest) prover attacking Π with success probability
ϵ(x, P ∗) on input x. Let ξ : N → (0, 1) be such that ξ(n) = ν(n)/κ(n)t for all
n ∈ N. Then, by Theorem 6.5, there exists an oracle prover P(·) such that

ϵ(x,PP∗
) = Pr

(
(PP∗

,V)(x) = accept
)
≥ δ(x) ,

where

δ(x) =
(
ϵ(x,P∗)

1 + ξ(|x|)

)1/t

.

By assumption Π = (P,V) is knowledge sound with knowledge error κ and, there-
fore, there exists a knowledge extractor E for Π. We define Et as the algorithm
that executes the knowledge extractor E on the prover PP∗ .

Let us now analyze the expected runtime and success probability of extractor
Et for interactive proof Πt. Recall that, in order to prove knowledge soundness
with knowledge error κ′(|x|), it is enough to consider statements x ∈ {0, 1}∗ with
ϵ(x,P∗) > κ′(|x|) (Remark 2.4). Therefore, it is left to show that the following
holds:
Claim. If ϵ(x,P∗) > κ′(|x|), then the extractor Et as defined above runs in an
expected polynomial number of steps and there exists a positive polynomial q
such that Et is successful with probability at least (ϵ(x,P∗)− κ′(|x|))/q(|x|).

Expected Runtime. We start proving the claim by showing that PP∗ runs
in an expected polynomial number of steps. By Theorem 6.5, we have that the
runtime of PP∗ is in poly(|x|, t, ξ(|x|)−1, ϵ(x,P∗)−1, (1− δ(x))−1). It holds that

ξ(|x|) = ν(|x|)/κ(|x|)t ≥ ν(|x|)

and ϵ(x,P∗) > κ′(|x|) ≥ ν(|x|) and therefore also ξ(|x|)−1, ϵ(x,P∗)−1 ≤ poly(|x|).
It is left to show that 1− δ(x) is noticeable. Via the Taylor approximation of the

6.5 Solving the Parallel Repetition Problem 171

function f(a) = a1/t in a = 1, we obtain

δ(x) =
(
ϵ(x,P∗)

1 + ξ(|x|)

)1/t

≤ 1− 1
t

(
1− ϵ(x,P∗)

1 + ξ(|x|)

)
.

Therefore, we also have

1− δ(x) ≥ 1
t

(
1− ϵ(x,P∗)

1 + ξ(|x|)

)
= 1
t

(
1 + ξ(|x|)− ϵ(x,P∗)

1 + ξ(|x|)

)
ξ,ϵ≤1
≥ ξ(|x|)

2t ≥ ν(|x|)
2t ,

as required.
Next, note that if ϵ(x,P∗) > κ′(|x|), then δ(x) > κ(|x|). This is a simple

consequence of the definition of ξ(|x|) and δ(x), because

ϵ(x,P∗) > κ(|x|)t + ν(|x|) = κ(|x|)t
(
1 + ξ(|x|)

)
implies δ(x) = (ϵ(x,P∗)/(1 + ξ(|x|))1/t

> κ(|x|) as required.
Altogether, this shows that if ϵ(x,P∗) > κ′(|x|), then Et runs in an expected

polynomial number of steps.
Success Probability. Let us now consider the success probability of Et. By

definition of the knowledge extractor E , there exists a positive polynomial p such
that Et outputs a witness w ∈ R(x) with probability at least

δ(x)− κ(|x|)
p(|x|) .

Therefore, it is left to show that if ϵ(x,P∗) > κ′(|x|), there exists a positive
polynomial q such that

δ(x)− κ(|x|)
p(|x|) ≥ ϵ(x,P∗)− κ(|x|)t − ν(|x|)

q(|x|) .

To express the success probability of Et in terms of ϵ(x,P∗), let us define the
functions f(a) = t(a1/t − b) and g(a) = a − bt, for b ∈ [0, 1]. Observe that
f(a) is concave for a ≥ 0. Moreover, f(bt) = g(bt) = 0 and f(1) = t(1 − b) ≥
(1− b)

∑t−1
i=0 b

i = g(1). Hence max(f(a), 0) ≥ g(a) for all a ∈ [0, 1].
From this inequality we have that whenever δ(x) > κ(|x|), it holds that

δ(x)− κ(|x|) = max(δ(x)− κ(|x|), 0)

= max

(ϵ(x,P∗)(
1 + ξ(|x|)

))1/t

− κ(|x|), 0

≥ 1
t

(
ϵ(x,P∗)(

1 + ξ(|x|)
) − κ(|x|)t

)

= 1
t(1 + ξ(|x|))

(
ϵ(x,P∗)− (1 + ξ(|x|))κ(|x|)t

)
≥ 1

2t
(
ϵ(x,P∗)− κ(|x|)t − ν(|x|)

)
.

Thus, choosing q(|x|) = 2t · p(|x|) yields the desired result, which proves the claim
and completes the proof of the theorem.

172 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Remark 6.2. Let M be the total size of the challenge set, i.e., M =
∏µ

i=1 |Ci|
where the ith challenge is sampled from challenge set Ci. If M is polynomial in
the size of the input x, the analysis can be simplified significantly. In this case the
knowledge extractor can query all possible challenges and still run in polynomial
time. A parallel repetition theorem then follows by a simple counting argument.
This is the approach in the analysis of the 5-round (2, 2)-out-of-(q, 2) special-
sound signature scheme MQDSS [SSH11; CHR+16]. It is much more challenging
to construct efficient knowledge extractors when M is not polynomial in |x|.

6.5.2 Parallel Repetition of k-out-of-n Special-Sound Σ-Protocols

Let us now restrict ourselves to special-sound interactive proofs. To simplify the
exposition, we start with the simpler case of Σ-protocols; the general case of multi-
round protocols will then be treated in the subsequent section. Thus, for the
remainder of this section, we consider a k-out-of-N special-sound interactive proof
Π = (P,V) with challenge set C of cardinality N ≥ k. We have seen in Section 6.4
that Π is knowledge sound with knowledge error Er(k;N) = (k − 1)/N . In this
section, we prove that the t-fold parallel repetition Πt = (Pt,Vt) of Π is then again
knowledge sound, but now with knowledge error Er(k;N)t, which is optimal. Thus,
we show what is sometimes referred to as strong parallel repetition, meaning that
the figure of merit decreases with power t under parallel repetition. This is well
known to hold for special-sound Σ-protocols, i.e., for k = 2, but was open for
general k.

The standard way to reason about parallel repetition for the special case k = 2
uses the fact that Πt is ℓ-out-of-N t special-sound with ℓ = (k − 1)t + 1. However,
this reasoning does not apply in general, because ℓ grows exponentially in t for
k > 2. Instead, our result crucially depends on the fact that Πt is the t-fold
parallel repetition of a k-out-of-N special-sound protocol Πt. In this section, we
first construct a novel extraction algorithm for k-out-of-N special-sound interactive
proofs Π, thereby reproving that k-out-of-N special-soundness implies knowledge
soundness (Theorem 6.3). Subsequently, we show how this extraction algorithm
can be used to deduce a strong parallel repetition result for Πt. In Section 6.5.3,
we then extend our results to multi-round interactive proofs.

On a high level, the crucial ingredient in our analyses is to introduce and work
with a more “fine-grained” notion of success probability of a dishonest prover, as
explained below.

Knowledge Soundness of a Single Invocation

Consider a dishonest deterministic prover P∗ attacking the considered k-out-of-N
special-sound interactive proof Π = (P,V) on public input x. The goal of the
extractor is to run P∗ sufficiently many times so as to obtain k correct an-
swers z1, . . . , zk for k pairwise distinct challenges c1, . . . , ck ∈ C. By the special-
soundness property, a witness w ∈ R(x) can be computed efficiently from the
resulting set of protocol transcripts. Recall that, without loss of generality, we
may assume P∗ to be deterministic and therefore its first message a to be fixed
(Remark 2.3).

The crucial question is how often P∗ needs to be invoked, and thus what is

6.5 Solving the Parallel Repetition Problem 173

the (expected) running time of the extractor. Alternatively, towards satisfying
Definition 2.27, we would like to have an extractor that runs in a fixed (expected)
polynomial time, but may fail with some probability. It is quite clear that in
both cases the figure of merit (i.e., the running time in the former and the success
probability in the latter) depends on the success probability ϵ(x,P∗) of P∗ on
input x; for instance, if ϵ(x,P∗) is below the knowledge error Er(k;N) then we
cannot expect extraction to work in general. However, a crucial observation is that
for a given dishonest prover P∗, its success probability ϵ(x,P∗) does actually not
characterize (very well) whether extraction is possible or not: if in a special-sound
Σ-protocol P∗ provides the correct response with probability ϵ(x,P∗) (and fails
to do so with probability 1 − ϵ(x,P∗)) for every possible choice of the challenge,
then extraction is still possible even when ϵ(x,P∗) < Er(k;N) (but not negligible),
simply by trying sufficiently many times for two distinct challenges. Below, we will
identify an alternative, in some sense more fine-grained, “quality measure” of P∗,
and we show that this measure does characterize when extraction is possible.
This will be helpful when it comes to more complicated settings, like a parallel
repetition, or a multi-round protocol, or, ultimately, a parallel repetition of a multi-
round protocol.

As before, we will state and prove our core technical results in a more abstract
language, i.e., we consider an arbitrary probabilistic algorithm A : C → {0, 1}∗ and
an arbitrary verification function V : C ×{0, 1}∗ → {0, 1}. The success probability
of A is denoted as

ϵ(A) := Pr
(
V
(
C,A(C)

)
= 1
)
,

where C is uniformly random in C. The obvious instantiation of A is given by
a deterministic dishonest prover P∗ attacking the considered k-out-of-N special-
sound Σ-protocol Π on input x.

Given oracle access to A, the goal of the extractor is to find correct re-
sponses y1, . . . , yk for k pairwise distinct challenges c1, . . . , ck ∈ C, i.e., such that
V (ci, yi) = 1 for all i. In Section 6.4.1, we showed how to do this in expected
polynomial time and with success probability at least

ϵ(A)− Er(k;N) .

Below we follow a different approach and show that a more fine-grained measure,
capturing how well extraction can be done, is

δk(A) := min
S⊆C:|S|<k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

More precisely, we argue existence of an extraction algorithm EA with oracle access
to A, that runs in expected polynomial time and succeeds with probability at least
δk(A)/k.

Lemma 6.7 (Extraction Algorithm - Σ-protocols). Let k ∈ N, C a finite set with
cardinality N ≥ k and let V : C × {0, 1}∗ → {0, 1}. Then there exists an oracle
algorithm E with the following properties: The algorithm EA, given oracle access
to a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected number of at
most 2k− 1 queries to A and, with probability at least δk(A)/k, it outputs k pairs

174 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

(c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for all i and ci ̸= cj

for all i ̸= j.

Figure 6.3: Recursive Expected Polynomial Time Extractor Ek(D).
Parameters: k ∈ N and D ⊆ C.
Oracle access to: Algorithm A : C → {0, 1}∗ and verification function
V : C × {0, 1}∗ → {0, 1}.

• Sample c1 ∈ D uniformly at random and evaluate y1 ← A(c1).

• If V (c1, y1) = 0, abort.

• If V (c1, y1) = 1 and k = 1, output (c1, y1) ∈ D × {0, 1}∗.

• Else, set coin = 0 and repeat
– run Ek−1(D \ {c1});
– set coin← V

(
d,A(d)

)
for d ∈ D sampled uniformly at random;

until either Ek−1(D \ {c1}) outputs k − 1 pairs (c2, y2), . . . , (ck, yk) with
V (ci, yi) = 1 for all i have been found or until coin = 1.

Output: In the former case, output k pairs (c1, y1), . . . , (ck, yk) ∈ D×{0, 1}∗

with V (ci, yi) = 1 for all i and ci ̸= cj for all i ̸= j.

Proof. The extraction algorithm is defined recursively over k. For this reason, we
add a subscript k and write EA

k for the extraction algorithm that, given oracle
access to A, aims to output k pairs (ci, yi). In this proof, we also make the set
D ⊆ C, from which the extractor samples the challenges ci, explicit by writing
EA

k (D). This allows the extractor to be deployed on subsets D of the full challenge
set C, i.e., extractor EA

k (D) aims to output k pairs (ci, yi) with pairwise distinct
challenges ci ∈ D and V (ci, yi) = 1 for all i. When writing EA

k (D) we will always
implicitly assume that |D| ≥ k. Accordingly, we also write

ϵV (A,D) := Pr
(
V (C,A(C)) = 1

)
,

δV
k (A,D) := min

S⊆D:|S|<k
Pr
(
V (C,A(C)) = 1 | C /∈ S

)
,

where the probability space is defined over of the randomness of A and the random
variable C being uniformly random in D ⊆ C. If V is clear from context we
sometimes simply write ϵ(A,D) and δk(A,D). Note that for all k ≥ 1,

δk+1(A,D) ≤ δk(A,D) ≤ δ1(A,D) = ϵ(A,D) .

Let us now define the extraction algorithm. The extraction algorithm is defined
recursively over k and also described in Figure 6.3. Let D ⊆ C be an arbitrary
subset with cardinality at least k. For k = 1, the extractor EA

1 (D) simply sam-
ples a challenge c1 ∈ D uniformly at random and computes y1 ← A(c1). If

6.5 Solving the Parallel Repetition Problem 175

V (c1, y1) = 0, it outputs ⊥ and aborts. Otherwise, if V (c1, y1) = 1, it successfully
outputs (c1, y1). This extractor queries A once and it succeeds with probability
ϵ(A,D) = δ1(A,D).

For k > 1, the extractor EA
k (D) first runs the extractor EA

1 (D). If EA
1 (D)

fails, EA
k (D) outputs ⊥ and aborts; otherwise, if EA

1 (D) succeeds to output a
pair (c1, y1), EA

k (D) proceeds as follows. It defines the set D′ = D \ {c1} and
runs EA

k−1(D′). If EA
k−1(D′) succeeds to output k − 1 pairs (c2, y2), . . . (ck, yk),

EA
k (D) successfully outputs k pairs (c1, y1), . . . , (ck, yk). On the other hand, if
EA

k−1(D′) fails, EA
k (D) tosses a coin that returns heads with probability ϵ(A,D).

This coin can be implemented by running EA
1 (D), i.e., sampling a random challenge

d ← D and evaluating V
(
d,A(d)

)
. If the coin returns heads, EA

k (D) outputs ⊥
and aborts. If the coin returns tails, EA

k (D) runs EA
k−1(D′) once more and performs

the same steps as before. The algorithm proceeds in this manner until either it
has successfully found k pairs (ci, yi) or until the coin returns heads.

Let us now analyze the success probability and the expected number ofA-queries
of this algorithm.

Success Probability. We aim to show that, for all k ∈ N and for all D ⊆ C
with |D| ≥ k, the success probability ∆k(D) of the extractor EA

k (D) satisfies

∆k(D) ≥ δk(A,D)/k .

The analysis goes by induction. Since ∆1(D) = ϵ(A,D) = δ1(A,D)/1 , the induc-
tion hypothesis is satisfied for the case k = 1.

Let us now consider k > 1 and assume that the induction hypothesis holds for
k′ = k−1 and all D′ with |D′| ≥ k−1. We consider arbitrary D ⊆ C with |D| ≥ k.
Then, if in its first step EA

k (D) successfully runs extractor EA
1 (D) (outputting a pair

(c1, y1) with V (c1, y1) = 1), it starts running two geometric experiments until one
of them finishes. In the first geometric experiment the extractor aims to find an
additional set of k− 1 pairs (ci, yi) by running EA

k−1(D′), where D′ = D\{c1}. By
the induction hypothesis, the parameter p of this geometric distribution satisfies

p := ∆k−1(D′) ≥ δk−1(A,D′)/(k − 1) ≥ δk(A,D)/(k − 1) .

In the second geometric experiment the extractor tosses a coin that returns heads
with probability

q := ϵ(A,D) .
The second step of the extractor succeeds if the second geometric experiment

does not finish before the first, and so by Lemma 2.2 this probability is lower
bounded by

Pr
(
Geo(p) ≤ Geo(q)

)
≥ p

p+ q
= ∆k−1(D′)

∆k−1(D′) + ϵ(A,D)

≥ δk(A,D)/(k − 1)
δk(A,D)/(k − 1) + ϵ(A,D)

≥ δk(A,D)/(k − 1)
ϵ(A,D)/(k − 1) + ϵ(A,D)

= δk(A,D)
k · ϵ(A,D) ,

176 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

where the second inequality follows from the monotonicity of the function x 7→ x
x+q .

Since the first step of the extractor succeeds with probability ϵ(A,D), it follows
that EA

k (D) succeeds with probability at least δk(A,D)/k.
Therefore, by induction it follows that for all k and D with |D| ≥ k, the ex-

tractor EA
k (D) succeeds with probability at least δk(A,D)/k. In particular, the

extractor EA
k (C) succeeds with probability at least δk(A)/k, which proves that this

extractor has the desired success probability.
Expected Number of A-Queries. For D ⊆ C with |D| ≥ k, we let Qk(D) be

the expected number of A-queries made by the extractor EA
k (D). We will prove

that Qk(D) ≤ 2k − 1 for all k ∈ N and D ⊆ C with |D| ≥ k. The proof of this
claim goes by induction. First note that, since Q1(D) = 1 for all D ≠ ∅, this claim
is clearly satisfied for the base case k = 1.

Let us now consider k > 1 and assume the claim is satisfied for k′ = k − 1. Let
D ⊆ C be arbitrary with |D| ≥ k. Then EA

k (D) first runs EA
1 (D), which requires

exactly Q1(D) = 1 query. Then with probability ϵ(A,D) it continues to the second
step. In each iteration of the second step EA

k (D) runs EA
k−1(D′), for some D′ ⊆ C

with |D′| ≥ k−1, and it tosses a coin by running EA
1 (D). Therefore, each iteration

requires an expected number of at most Qk−1(D′) + 1 ≤ 2k−2 queries. Moreover,
the expected number of tosses until the coin returns heads is 1/ϵ(A,D). Hence,
the expected number of iterations in the second step of this extraction algorithm
is at most 1/ϵ(A,D). It follows that

Qk(D) ≤ 1 + ϵ(A,D) 1
ϵ(A,D) (2k − 2) = 2k − 1 .

Here it is crucial that the above inequality holds for all D ⊆ C. This proves the
claimed upper bound on the expected number of A-queries and completes the
proof of the lemma.

In the context of a deterministic dishonest prover P∗ attacking a k-out-of-N
special-sound protocol, we make the following observation. First, by basic proba-
bility theory and for any S ⊆ C,

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)
Pr
(
C /∈ S

)
≥

Pr
(
V (C,A(C)) = 1)− Pr

(
C ∈ S

)
Pr
(
C /∈ S

) .

(6.4)

Thus, extractor EA succeeds with positive probability as soon as ϵ(A) > Pr
(
C ∈ S

)
for every S ⊆ C with |S| < k. More precisely,

Pr
(
EA ̸= ⊥

)
≥ δk(A)

k
≥ ϵ(A)− Er(k;N)
k(1− Er(k;N)) , (6.5)

where Er(k;N) = (k − 1)/N .
This observation confirms that k-out-of-N special-soundness implies knowledge

soundness with knowledge error Er(k;N), i.e., it provides an alternative proof

6.5 Solving the Parallel Repetition Problem 177

for Theorem 6.3. Hence, in comparison to ϵ(A), δk(A) is indeed a more fine-
grained measure capturing how well extraction can be done.

Note that the extractor of Lemma 6.7 does not strictly outperform the extractor
of Lemma 6.5. Namely, it behaves somewhat worse in the (expected) polynomial
runtime, and also in the success probability when the measure δk(A) is bounded
by ϵ(A)− (k − 1)/N ; the expected runtime is roughly a factor two larger and the
success probability is roughly a factor k smaller. However, this is still sufficient for
proving that k-out-of-N special-soundness tightly implies knowledge soundness.
Moreover, by exploiting the definition of δ, as we show below, we can obtain an
extractor for a parallel repetition of the considered interactive proof by running
the extractor individually on each instance of the parallel repetition. Thus, our
extractor is well suited to handle parallel repetitions of k-out-of-N special-sound
Σ-protocols. Nevertheless, it remains an interesting problem whether our extractor
can be improved to match up with the extractor from Lemma 6.5 while still giving
rise to our parallel-repetition results.

Knowledge-Soundness of the Parallel Repetition

When moving to the t-fold parallel repetition Πt = (Pt,Vt) of the k-out-of-N
special-sound Σ-protocol Π = (P,V), we consider an algorithm A that takes as
input a row (c1, . . . , ct) ∈ Ct of challenges3 and outputs a string y, and the success
probability of A is then defined as

ϵ(A) = Pr
(
V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1

)
,

for some given V : Ct × {0, 1}∗ → {0, 1} and where the Cj are understood to be
independently and uniformly distributed over C. We use superscripts to distinguish
between the different parallel instantiations of basic Σ-protocol Π, so that later,
when considering multi-round interactive proofs, the subscripts can be used to
distinguish between the different rounds of the protocol.

The obvious instantiation of A is given by a deterministic prover P∗ attacking
the considered t-fold parallel repetition Πt = (Pt,Vt) of Π on input x. More
precisely, on input (c1, . . . , ct), A runs P∗ sending (c1, . . . , ct) as the challenges for
the t repetitions of Π, and outputs P∗’s (fixed) first messages (a1, . . . , at) and its
responses (z1, . . . , zt), and the function V is defined as the verification procedure
of Vt, which checks each repetition independently and accepts only if all are correct.

Such an A naturally induces t algorithms A1, . . . ,At as considered above in the
context of a single execution of a k-out-of-N special-sound protocol, taking one
challenge as input: on input cj , the algorithm Aj runs y ← A(c1, . . . , ct) with ci

chosen uniformly at random from C for i ̸= j, and outputs y along with the ci’s for
i ̸= j. We can thus run the extractor from above on all of the Aj ’s individually,
with the goal being that at least one of them succeeds. We know that for each Aj

individually, the extraction succeeds with probability

δV
k (Aj) = min

Sj⊆C:|Sj |<k
Pr
(
V (Cj ,Aj(Cj)) = 1 | Cj /∈ Sj

)
, (6.6)

3There is no rigorous meaning in the list of challenges forming a row; it is merely that later we
will also consider a column of challenges, which will then play a different contextual role.

178 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

where V is understood to appropriately reorder its inputs. The following lemma
allows us to bound the probability that at least one of the extractors EAj succeeds
to produce k challenge-response pairs

(
(c1, . . . , ct), y

)
that all verify V and for

which the k choices of cj are all distinct for the considered j.

Lemma 6.8. Let k, t ∈ N, C a set with |C| = N ≥ k, V : Ct × {0, 1}∗ → {0, 1},
and A a (probabilistic) algorithm that takes as input a vector (c1, . . . , ct) ∈ Ct and
outputs a string y ∈ {0, 1}∗. Then

t∑
j=1

δV
k (Aj) ≥ ϵ(A)− Er(k;N)t

1− Er(k;N) ,

where Er(k;N) = (k − 1)/N .

Proof. Let Λ denote the event V
(
C1, . . . , Ct,A(C1, . . . , Ct)

)
= 1 and, for

1 ≤ j ≤ t, let Sj be such that it minimizes Equation 6.6. Moreover, let Γj de-
note the event Cj /∈ Sj .

Without loss of generality, we may assume that |Sj | = k− 1 for all j. Then, for
all j,

Pr(Γj) = Pr(cj /∈ Sj) = 1− Er(k;N) .

Moreover, using elementary probability theory,

t∑
j=1

δk(Aj) =
t∑

j=1
Pr
(
V (Cj ,Aj(Cj)) = 1 | Cj /∈ Sj

)
=

t∑
j=1

Pr
(
Λ | Γj

)
=

t∑
j=1

Pr
(
Λ ∧ Γj

)
Pr
(
Γj

) =
t∑

j=1

Pr
(
Λ ∧ Γj

)
1− Er(k;N) ≥

Pr
(
Λ ∧ ∃ j : Γj

)
1− Er(k;N)

≥
Pr
(
Λ
)
− Pr

(
¬Γj ∀j

)
1− Er(k;N) = ϵ(A)− Er(k;N)t

1− Er(k;N) ,

which completes the proof.

Lemma 6.8 readily provides a lower bound on maxi δ
V
k (Ai) ≥

∑
i δ

V
k (Ai)/t,

and thus on the success probability of the extractor. However, we can do slightly
better. For this purpose, let ∆ = min

(
1,
∑t

i=1 δ
V
k (Ai)/k

)
. Then, by the inequality

of the arithmetic and the geometric mean,(
t∏

i=1

(
1− δV

k (Ai)
k

))1/t

≤ 1
t

t∑
i=1

(
1− δV

k (Ai)
k

)
≤ 1− ∆

t
.

Hence, the probability that at least one extractor EAi succeeds equals

1−
t∏

i=1

(
1− δV

k (Ai)
k

)
≥ 1−

(
1− ∆

t

)t

≥ 1− e−∆ ≥ (1− e−1)∆ ≥ 1
2∆ , (6.7)

6.5 Solving the Parallel Repetition Problem 179

where the third inequality uses that (1 − e−x) ≥ (1 − e−1)x for all 0 ≤ x ≤ 1,
which is easily verified.4 Hence, by Lemma 6.8, the probability of at least one of
the extractors EAi being successful is at least

∆
2 ≥

ϵV (A)− Er(k;N)t

2k(1− Er(k;N)) .

From this it follows that the t-fold parallel repetition Πt of a k-out-of-N special-
sound protocol Π is knowledge sound with knowledge error Er(k;N)t, where
Er(k;N) = (k − 1)/N is the knowledge error of a single execution of Π. This
strong parallel repetition result for k-out-of-N special-sound Σ-protocols is for-
malized in Theorem 6.7.

Theorem 6.7 (Parallel Repetition of k-Special-Sound Σ-Protocols). Let
Π = (P,V) be a k-out-of-N special-sound Σ-protocol. Let Πt = (Πt,Vt) be the
t-fold parallel repetition of Π. Then Πt is knowledge sound with knowledge er-
ror Er(k;N)t, where Er(k;N) = (k − 1)/N .

Also here we have that the knowledge error Er(k;N)t matches the trivial cheat-
ing probability, which succeeds if in each instance of the parallel repetition the
challenge falls into a given set of size k − 1.
Remark 6.3. The above parallel repetition result (and also the generalization
of Section 6.5.3) directly generalizes to the parallel composition of t different pro-
tocols or to the parallel composition of t different instances of the same protocol.
In this case, the knowledge error will be the product of the individual knowledge
errors.

6.5.3 Parallel Repetition of Multi-Round Interactive Proofs

We now consider the general case of multi-round interactive proofs. The line of
reasoning is quite similar to that of 3-round protocols, but with an appropriately
adjusted definition of δ. So, for the remainder of this section, we consider a
k-out-of-N special-sound (2µ + 1)-round interactive proof Π = (P,V), where the
verifier samples its i-th challenge uniformly at random from a finite set Ci for 1 ≤
i ≤ µ. Eventually, we want to analyze its t-fold parallel repetition Πt = (Pt,Vt),
but again we first consider a single invocation.

Knowledge Soundness of a Single Invocation

Similar to Section 6.4.2, we consider a probabilistic algorithm A that takes as
input a vector (c1, . . . , cµ) ∈ C1 × · · · × Cµ of challenges and outputs a string y,
and we consider a function

V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1} .

As before, the success probability of A is defined as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

4For instance by observing that the two sides are equal for x = 0 and x = 1, and that the left
hand side is a concave function while the right hand side is linear.

180 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

where C = (C1, . . . , Cµ) is uniformly random in C1×· · ·×Cµ. The obvious instan-
tiation of A is a deterministic prover P∗ attacking the considered protocol. The
goal of the extractor is to find correct responses for a k-tree of challenges (Defini-
tion 2.33), where k = (k1, . . . , kµ). Generalizing the case of ordinary Σ-protocols,
i.e., 3-round interactive proofs, the figure of merit here is

δV
k (A) := min

S1,S2(·),...,Sµ(·)
Pr
(

Λ
∣∣∣∣∣ C1 /∈ S1 ∧ C2 /∈ S2(C1) ∧ · · ·

· · · ∧ Cµ /∈ Sµ(C1, . . . , Cµ−1)

)
, (6.8)

where Λ denotes the event V (C,A(C)) = 1 and the minimum is over all sets
S1 ∈ C1|<k1 , and over all functions S2 : C1 → C2|<k2 , S3 : C1 × C2 → C3|<k3 , etc.
Here for any set C and k ∈ N, C|<k denotes the set of subsets of C with cardinality
smaller than k.

Indeed, the following lemma shows that there exists an expected polynomial time
extractor EA with oracle access toA that, with probability at least δV

k (A)/
∏µ

i=1 ki,
succeeds to extract correct responses for a k-tree of challenges. Exploiting the
abstract notation of Lemma 6.7, the proof of this lemma follows by induction over
the number of challenges µ sent by the verifier. In particular, the extractor of the
following lemma follows the same recursive approach as the one in Lemma 6.6,
where we also considered knowledge extraction for multi-round interactive proofs.
However, instead of Lemma 6.5, here we apply Lemma 6.7 for the base case of
3-round Σ-protocols. Subsequently, we will show that this adaptation allows us to
handle parallel repetitions of multi-round interactive proofs.

Lemma 6.9 (Multi-Round Extraction Algorithm). Let k = (k1, . . . , kµ),
N = (N1, . . . , Nµ) ∈ Nµ, K =

∏µ
i=1 ki, C1, . . . , Cµ finite sets Ci with cardinality

Ni ≥ ki and let V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1}. Then there exists an oracle
algorithm E with the following properties: The algorithm EA, given oracle access to
a (probabilistic) algorithm A : C1×· · ·×Cµ → {0, 1}∗, requires an expected number
of at most 2µ · K queries to A and, with probability at least δV

k (A)/K, outputs
K pairs (c1, y1), . . . , (cK , yK) ∈ C1 × · · · × Cµ × {0, 1}∗ with V (ci, yi) = 1 for all i
and such that the vectors ci ∈ C1 × · · · × Cµ form a k-tree.

Proof. The proof goes by induction on µ. For the base case µ = 1, the lemma
directly follows from Lemma 6.7. So let us assume the lemma holds for µ′ =
µ− 1. Then, for any c ∈ C1, let Ac be the algorithm that takes as input a vector
(c2, . . . , cµ) ∈ C2 × · · · × Cµ and runs A(c, c2, . . . , cµ). The function Vc is defined
accordingly, i.e.,

Vc : C2 × · · · × Cµ × {0, 1}∗ → {0, 1}, (c, y) 7→ V (c, c, y) .

Moreover, let k′ = (k2, . . . , kµ),N′ = (N2, . . . , Nµ) ∈ Nµ−1 and K ′ =
∏µ

i=2 ki. By
the induction hypothesis, there exists an algorithm EAc

µ−1 that aims to output a set
Y of K ′ pairs (c1, y1), . . . , (cK′ , yK′) ∈ C2 × · · · × Cµ × {0, 1}∗ with V (c, ci, yi) = 1
for all i and such that the vectors ci ∈ C2 × · · · × Cµ form a k′-tree of challenge
vectors. Moreover, EAc

µ−1 requires an expected number of at most 2µ−1 ·K ′ queries
to A and succeeds with probability at least δVc

k′ (Ac)/K ′. We define W : C1 ×
{0, 1}∗ → {0, 1}, by setting W (c,Y) = 1 if and only if Y is a set satisfying the
above properties.

6.5 Solving the Parallel Repetition Problem 181

Now let BA : C1 → {0, 1}∗ be the algorithm, with oracle access to A, that takes
as input an element c ∈ C1 and runs EAc

µ−1. By Lemma 6.7, there exists an expected
polynomial time algorithm EBA

1 , with oracle access to BA, that aims to output k1
pairs (c1,Y1), . . . , (ck1 ,Yk1) ∈ C1 × {0, 1}∗ with W (ci,Yi) = 1 for all i and ci ̸= cj

for all i ̸= j. The extractor EA simply runs EBA

1 . Note that, by the associativity of
the composition of oracle algorithms, EA = EBA

1 = (EB
1)A is indeed an algorithm

with oracle access to A.
Let us now analyze the success probability and the expected number ofA-queries

of the algorithm EBA

1 and therefore of EA.
Success Probability. Again by Lemma 6.7 it follows that EBA

1 succeeds with
probability at least

δW
k1

(BA)/k1 = min
S1⊆C1,|S1|<k1

Pr
(
W (C,BA(C)) = 1 | C /∈ S1

)
k1

= min
S1⊆C1,|S1|<k1

Pr
(
W (C,BA(C)) = 1 ∧ C /∈ S1

)
k1 · Pr(C /∈ S1)

= min
S1⊆C1,|S1|<k1

∑
c/∈S1

Pr(C = c) · Pr
(
W (c,BA(c)) = 1

)
k1 · Pr(C /∈ S1) ,

where C is uniformly random in C. Hence, by the induction hypothesis it follows
that

δW
k1

(BA)/k1 ≥ min
S1⊆C1,|S1|<k1

∑
c/∈S1

Pr(C = c) · δVc

k′ (Ac)
k1 ·K ′ · Pr(C /∈ S1)

= min
S1⊆C1,|S1|<k1

∑
c/∈S1

Pr(C = c) · δVc

k′ (Ac)
K · Pr(C /∈ S1) . (6.9)

Now note that

δVc

k′ (Ac) = min
S2(·),...,Sµ(·)

Pr
(

Λ
∣∣∣∣∣ C1 = c ∧ C2 /∈ S2(C1) ∧ · · ·
· · · ∧ Cµ /∈ Sµ(C1, . . . , Cµ−1)

)
,

where Λ denotes the event V (C,A(C)) = 1. Hence,∑
c/∈S1

Pr(C = c) · δVc

k′ (Ac) =

min
S2(·),...,Sµ(·)

Pr
(

Λ ∧ C1 /∈ S1

∣∣∣∣∣ C2 /∈ S2(C1) ∧ · · ·
· · · ∧ Cµ /∈ Sµ(C1, . . . , Cµ−1)

)
.

Combining this equality with Equation 6.9, shows that

δW
k1

(BA)/k1 ≥
δV

k (A)
K

,

which shows that EBA

1 has the desired success probability.

182 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Expected Number of A-Queries. By Lemma 6.7, it follows that EBA

1 requires
an expected number of at most 2k1 queries to BA. By the induction hypothesis it
follows that BA(c) requires an expected number of at most 2µ−1 ·K ′ queries to A
for all c ∈ C. Hence, EA = EBA

1 requires an expected number of at most 2µ · K
queries to A, which completes the proof of the lemma.

Let S1, S2(·), . . . , Sµ(·) be the arguments minimizing Equation 6.8. Further, let
Λ denote the event V (C,A(C)) = 1 and let Γ denote the event

Γ = C1 /∈ S1 ∧ C2 /∈ S2(C1) ∧ · · · ∧ Cµ /∈ Sµ(C1, . . . , Cµ−1) .

Then, using the same kind of reasoning as in Equation 6.4, we have

δV
k (A) = Pr(Λ | Γ) = Pr(Λ ∧ Γ)

Pr(Γ) ≥ Pr(Λ)− Pr(¬Γ)
Pr(Γ) = ϵV (A)− Er(k; N)

1− Er(k; N) ,

where

Er(k; N) = Pr(¬Γ) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

This confirms that a k-out-of-N special-sound interactive proof is knowledge sound
with knowledge error Er(k; N), i.e., it provides an alternative proof for Theo-
rem 6.4. This alternative approach, and in particular the quality measure δV

k (A),
allows us to generalize to parallel repetitions of k-out-of-N special-sound interac-
tive proofs.

Knowledge-Soundness of the Parallel Repetition

We finally move towards stating and proving our main general parallel repeti-
tion result for multi-round protocols. Thus, consider the t-fold parallel repetition
Πt = (Pt,Vt) of the given k-out-of-N special-sound (2µ + 1)-round interactive
proof Π = (P,V).

We consider an algorithm A that takes as input a row (c1, . . . , ct) of columns
cj = (cj

1, . . . , c
j
µ) ∈ C1×· · ·×Cµ of challenges and outputs a string y. Furthermore,

we consider a verification function V , which then defines the success probability of
A as

ϵV (A) = Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Ct) with Cj distributed uniformly over C1 × · · · Cµ for all
1 ≤ j ≤ t.

Again, the obvious instantiation for A is a deterministic dishonest prover P∗

attacking Πt = (Pt,Vt) on input x. More precisely, on input a row (c1, . . . , ct) of
columns, A runs P∗ sending (c1, . . . , ct) as the challenges, and outputs all of P∗’s
messages, and the function V is defined as the verification check that Vt performs.

Such an A naturally induces t algorithms A1, . . . ,At as considered before in
the context of a single execution of a multi-round protocol, taking one challenge-
column as input and outputting one string: on input cj , the algorithm Aj runs
y ← A(c1, . . . , cµ) with ci chosen uniformly at random from C1×· · ·×Cµ for i ̸= j,

6.5 Solving the Parallel Repetition Problem 183

and outputs y along with the ci’s for i ̸= j. Thus, we can run the extractor from
Lemma 6.9 on all of the Aj ’s individually, with the goal being that at least one of
them succeeds. For each Aj individually, the extraction succeeds with probability
at least

δV
k (Aj)/K =

min
Sj

1 ,Sj
2(·),...,Sj

µ(·)
Pr
(

Λj

∣∣∣∣∣ C
j
1 /∈ Sj

1 ∧ C
j
2 /∈ Sj

2(Cj
1) ∧ · · ·

· · · ∧ Cj
µ /∈ Sj

µ(Cj
1 , . . . , C

j
µ−1)

)
/K ,

(6.10)

where Λj denotes the event V (Cj ,Aj(Cj)) = 1, V is understood to appropriately
reorder its inputs and K =

∏µ
i=1 ki. The following lemma allows us to bound the

probability that at least one of the extractors EAj succeeds.

Lemma 6.10. Let k = (k1, . . . , kµ),N = (N1, . . . , Nµ) ∈ Nµ, t ∈ N, C1, . . . , Cµ

finite sets Ci with cardinality Ni ≥ ki and let V :
(
C1×· · ·×Cµ

)t×{0, 1}∗ → {0, 1}.
Further, let A be a (probabilistic) algorithm that takes as input a row (c1, . . . , ct)
of columns cj = (cj

1, . . . , c
j
µ) ∈ C1×· · ·×Cµ and outputs a string y ∈ {0, 1}∗. Then

t∑
j=1

δV
k (Aj) ≥ ϵV (A)− Er(k; N)t

1− Er(k; N) ,

where

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

Proof. Let Λ denote the event V (C,A(C)) = 1 and, for 1 ≤ j ≤ t, let Sj
1, Sj

2(·),
. . . , Sj

µ(·) be such that they minimize Equation 6.10. Moreover, let Γj denote the
event

Cj
1 /∈ Sj

1 ∧ C
j
2 /∈ Sj

2(Cj
1) ∧ · · · ∧ Cj

µ /∈ Sj
µ(Cj

1 , . . . , C
j
µ−1) .

Without loss of generality, we may assume that
∣∣∣Sj

1

∣∣∣ = k1 − 1 and

Sj
i : C1 × · · · × Ci−1 → {S ⊆ Ci : |S| = ki − 1}

for all 2 ≤ i ≤ µ and 1 ≤ j ≤ t. Then, for all 1 ≤ j ≤ t,

Pr(Γj) =
µ∏

i=1

(
1− ki − 1

N

)
= 1− Er(k; N) .

Moreover, using elementary probability theory,
t∑

j=1
δV

k (Aj) =
t∑

j=1
Pr
(
Λ | Γj

)
=

t∑
j=1

Pr
(
Λ ∧ Γj

)
Pr
(
Γj

) =
t∑

j=1

Pr
(
Λ ∧ Γj

)
1− Er(k; N)

≥
Pr
(
Λ ∧ ∃ j : Γj

)
1− Er(k; N) ≥

Pr
(
Λ
)
− Pr

(
¬Γj ∀j

)
1− Er(k; N) = ϵV (A)− Er(k; N)t

1− Er(k; N) ,

which completes the proof.

184 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

As for the parallel repetition of a 3-round protocol, it follows that the probability
of at least one of the extractors EAj being successful is at least

∆
2 ≥

ϵV (A)− Er(k; N)t

2K(1− Er(k; N)) ,

where ∆ = min
(
1,
∑t

j=1 δ
V
k (Aj)/K

)
and K =

∏µ
i=1 ki. This gives us the following

strong parallel repetition result for k-out-of-N special-sound protocols.
Theorem 6.8 (Parallel Repetition Theorem for Multi-Round Protocols). Let Π =
(P,V) be a k-out-of-N special-sound interactive proof. Then the t-fold parallel
repetition Πt = (Pt,Vt) of Π is knowledge sound with knowledge error Er(k; N)t,
where

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
,

is the knowledge error of Π.

Also here, the knowledge error Er(k; N)t coincides with success probability∏
j Pr(¬Γj) of the trivial cheating strategy, which typical k-out-of-N special-sound

interactive proofs admit.

6.5.4 Threshold Parallel Repetition

In the previous section we have shown that the knowledge error Er(k; N)t of the
t-fold parallel repetition Πt = (Pt,Vt) of a k-out-of-N special-sound interactive
proof Π = (P,V) decreases exponentially with t. However, the completeness error
of Πt equals ρ′ = 1 − (1 − ρ)t, where ρ is the completeness error of Π. Hence,
if ρ /∈ {0, 1}, the completeness error of Πt increases quickly with t. In order
to decrease both the knowledge and the completeness error simultaneously, we
consider a threshold parallel repetition. The s-out-of-t threshold parallel repetition
of an interactive proof Π, denoted by Πt

s = (Pt
s,Vt

s), runs t instances of Π in
parallel and Vt

s accepts if at least s-out-of-t instances are accepted. In particular,
it holds that Πt

t = Πt. In this section, we show that if Π is k-out-of-N special-
sound then Πt

s is knowledge sound. We will immediately consider the general case
of multi-round protocols.

As in Section 6.5.3, we consider an algorithm A that takes as input a row
c = (c1, . . . , ct) of columns cj = (cj

1, . . . , c
j
µ) ∈ C1 × · · · × Cµ of challenges and

outputs a string y. However, this time we consider t different verification functions

Vj :
(
C1 × · · · × Cµ

)t × {0, 1}∗ → {0, 1} ,

together with one additional threshold verification function defined as follows:

V (c, y) =

1 if

t∑
j=1

Vj(c, y) ≥ s,

0 otherwise .

(6.11)

The obvious instantiation for A is a deterministic dishonest prover P∗ attacking
Πt

s. This instantiation defines Vj as the verification performed by the j-th instance
of V. The verification function V then captures the verification performed by Vt

s.

6.5 Solving the Parallel Repetition Problem 185

As before, such A induces t algorithms A1, . . . ,At as considered in the context
of a single execution of Π, taking one challenge-column as input and outputting
one string: on input cj , the algorithm Aj runs y ← A(c1, . . . , cµ) with ci chosen
uniformly at random from C1×· · ·×Cµ for i ̸= j, and outputs y along with the ci’s
for i ̸= j. For each Aj , we can run the extractor from Lemma 6.9, which succeeds
with probability at least

δ
Vj

k (Aj)/K =

min
Sj

1 ,Sj
2(·),...,Sj

µ(·)
Pr
(

Λj

∣∣∣∣∣ C
j
1 /∈ Sj

1 ∧ C
j
2 /∈ Sj

2(Cj
1) ∧ · · ·

· · · ∧ Cj
µ /∈ Sj

µ(Cj
1 , . . . , C

j
µ−1)

)
/K ,

(6.12)

where Λj denotes the event Vj(Cj ,Aj(Cj)) = 1 and K =
∏µ

i=1 ki. The following
lemma is a generalization of Lemma 6.10 and it allows us to bound the probability
that at least one of the extractors EAj succeeds.

Lemma 6.11. Let k = (k1, . . . , kµ), N = (N1, . . . , Nµ) ∈ Nµ, t ∈ N, C1, . . . , Cµ

finite sets Ci with cardinality Ni ≥ ki, let V :
(
C1 × · · · × Cµ

)t × {0, 1}∗ → {0, 1}
be the threshold verification function as defined in Equation (6.11). Further, let A
be a (probabilistic) algorithm that takes as input a row (c1, . . . , ct) of columns
cj = (cj

1, . . . , c
j
µ) ∈ C1 × · · · × Cµ and outputs a string y ∈ {0, 1}∗. Then

t∑
j=1

δ
Vj

k (Aj) ≥ ϵV (A)− Ert
s(k; N)

1− Er(k; N) ,

where

Ert
s(k; N) =

t∑
ℓ=s

(
t

ℓ

)
Er(k; N)ℓ(1− Er(k; N))t−ℓ

and

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

Note that Ert
s(k; N) is the probability of being successful at least s times when

given t trials, when each trial is successful with independent probability Er(k; N).

Proof. For 1 ≤ j ≤ t, let Λj denote the event Vj(C,Aj(C)) = 1 and let
Sj

1, S
j
2(·), . . . , Sj

µ(·) such that they minimize Equation 6.12. Moreover, let Γj de-
note the event

Cj
1 /∈ Sj

1 ∧ C
j
2 /∈ Sj

2(Cj
1) ∧ · · · ∧ Cj

µ /∈ Sj
µ(Cj

1 , . . . , C
j
µ−1) .

Without loss of generality, we may assume that |Sj
1| = k1 − 1 and

Sj
i : C1 × · · · Ci−1 → {S ⊂ Ci : |S| = ki − 1}

for all 2 ≤ i ≤ µ and 1 ≤ j ≤ t. Then, for all 1 ≤ j ≤ t,

Pr(Γj) =
µ∏

i=1

(
1− ki − 1

Ni

)
= 1− Er(k; N) .

186 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Moreover, using elementary probability theory,

t∑
j=1

δ
Vj

k (Aj) =
t∑

j=1
Pr
(
Λj | Γj

)
=

t∑
j=1

Pr
(
Λj ∧ Γj

)
Pr
(
Γj

) =
t∑

j=1

Pr
(
Λj ∧ Γj

)
1− Er(k; N)

≥
Pr
(
∃ j : Λj ∧ Γj

)
1− Er(k; N) ≥

Pr
(
|{j : Λj}| ≥ s ∧ |{j : Γj}| ≥ t− s+ 1

)
1− Er(k; N)

≥
Pr
(
|{j : Λj}| ≥ s

)
− Pr

(
|{j : Γj}| ≤ t− s

)
1− Er(k; N) ≥ ϵV (A)− Ert

s(k; N)
1− Er(k; N) ,

which completes the proof.

As before (see Equation 6.7), it follows that the probability of at least one of
the extractors EAj being successful is at least

∆
2 ≥

ϵV (A)− Ert
s(k; N)

2K(1− Er(k; N)) ,

where ∆ = min
(
1,
∑t

j=1 δ
Vj

k (Aj)/K
)

and K =
∏µ

i=1 ki. This proves the following
threshold parallel repetition result for k-out-of-N special-sound interactive proofs.

Theorem 6.9 (Threshold Parallel Repetition Theorem). Let Π = (P,V) be a
k-out-of-N special-sound interactive proof. Then the s-out-of-t threshold parallel
repetition Πt

s = (Pt
s,Vt

s) of Π is knowledge sound with knowledge error

Ert
s(k; N) =

t∑
ℓ=s

(
t

ℓ

)
Er(k; N)ℓ(1− Er(k; N))t−ℓ ,

where

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
,

is the knowledge error of Π.

As before, the knowledge error Ert
s(k; N) coincides with the trivial cheating

probability for Πt
s, confirming the tightness of Theorem 6.9.

Note that the completeness error of Πt
s equals

ρt
s =

s−1∑
ℓ=0

(
t

ℓ

)
ρt−ℓ(1− ρ)ℓ .

Hence, the completeness error ρt
s increases and the knowledge error Ert

s(k; N)
decreases in s. Moreover, it is easily seen that for t large enough and Er(k; N) · t <
s < (1 − ρ)t the threshold parallel repetition Πt

s has a smaller knowledge and
a smaller completeness error than Π, i.e., Ert

s(k; N) < Er(k; N) and ρt
s < ρ.

In contrast to standard parallel repetition, threshold parallel repetition therefore
allows both these errors to be reduced simultaneously.

6.6 Non-Interactivity 187

6.6 Non-Interactivity: Knowledge Extraction under the
Fiat-Shamir Transformation

The celebrated and broadly used Fiat-Shamir transformation turns any public-coin
interactive proof into a non-interactive proof, which inherits the main security
properties (in the random oracle model) of the interactive version. The rough
idea is to replace the random challenges, which are provided by the verifier in
the interactive version, by the hash of the current message (concatenated with
the message-challenge pairs from previous rounds). By a small adjustment, where
also the to-be-signed message is included in the hashes, the transformation turns
any public-coin interactive proof into a signature scheme. Indeed, the latter is a
commonly used design principle for constructing very efficient signature schemes.

While originally considered in the context of 3-round public-coin interactive
proofs, i.e., so-called Σ-protocols, the Fiat-Shamir transformation also applies to
multi-round protocols. However, a major drawback in the case of multi-round pro-
tocols is that, in general, the security loss obtained by applying the Fiat-Shamir
transformation grows exponentially with the number of rounds. Concretely, for any
(2µ+1)-round interactive proof Π that admits a cheating probability of at most ϵ,
captured by the knowledge or soundness error, the Fiat-Shamir-transformed pro-
tocol FS[Π] admits a cheating probability of (approximately) at most Qµ · ϵ, where
Q denotes the number of random-oracle queries admitted to the dishonest prover.
More precisely, a tight reduction is due to [BCS16] with a security loss

(
Q
µ

)
≈ Qµ

µµ ,
where the approximation holds whenever µ is much smaller than Q, which is the
typical case. More concretely, [BCS16] introduces the notions of state-restoration
soundness (SRS) and state-restoration knowledge (SRK), and it shows that any
(knowledge) sound protocol Π satisfies these notions with the claimed security
loss.5 The security of FS[Π] (with the same loss) then follows from the fact that
these soundness notions imply the security of the Fiat-Shamir transformation.

Furthermore, there are (contrived) examples of multi-round protocols Π for
which this Qµ security loss is almost tight. For instance, the µ-fold sequential
repetition Π of a special-sound Σ-protocol with challenge space C is ϵ-sound with
ϵ = 1/|C|µ, while it is easy to see that, by attacking the sequential repetitions round
by round, investing Q/µ queries per round to try to find a “good” challenge, and
assuming |C| to be much larger than Q, its Fiat-Shamir transformation FS[Π] can
be broken with probability approximately

(
Q
µ

1
|C|
)µ = Qµ

µµ · ϵ.6
For µ beyond 1 or 2, let alone for non-constant µ (e.g., for compressed

Σ-protocols, IOP-based protocols [BCS16; AHI+17; BCR+19] and also other
Bulletproofs-like protocols [BCC+16; BBB+18]), this is a very unfortunate sit-
uation when it comes to choosing concrete security parameters. If one wants to
rely on the proven security reduction, one needs to choose a large security pa-
rameter for Π, in order to compensate for the order Qµ security loss, affecting its
efficiency; alternatively, one has to give up on proven security and simply assume

5As a matter of fact, [BCS16] considers arbitrary interactive oracle proofs (IOPs), but these
notions are well defined for ordinary interactive proofs too.

6This is clearly a contrived example since the natural construction would be to apply the Fiat-
Shamir transformation to the parallel repetition of the original Σ-protocol, where no such
huge security loss would then occur.

188 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

that the security loss is much milder than what the general bound suggests.
This situation gives rise to the following question: Do there exist natural classes

of multi-round public-coin interactive proofs for which the security loss behaves
more benign than what the general reduction suggests? Ideally, the general Qµ loss
appears for contrived examples only.

So far, the only positive results, establishing a security loss linear in Q,
were established in the context of straight-line/online extractors that do not
require rewinding. These extractors either rely on the algebraic group model
(AGM) [GT21], or are restricted to protocols using hash-based commitment
schemes in the random oracle model [BCS16]. To analyze the properties of
straight-line extractors, new auxiliary soundness notions were introduced: round-
by-round (RBR) soundness [CCH+19] and RBR knowledge [CMS19]. However, it
is unclear if and how these notions can be used in scenarios where straight-line
extraction does not apply.

In this section, we address the above question (in the plain random-oracle model,
and without restricting to schemes that involve hash-based commitments), and
give both positive and negative answers.

6.6.1 Technical Overview

Positive Result. We show that the Fiat-Shamir transformation of any
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound interactive proof has a security loss
of at most Q + 1. More concretely, we consider the knowledge error κ as the
figure of merit, i.e., informally, the maximal probability of the verifier accept-
ing the proof when the prover does not have a witness for the claimed state-
ment, and we prove the following result. For any (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-
special-sound (2µ + 1)-round interactive proof Π with knowledge error κ =
Er(k1, . . . , kµ, N1, . . . , Nµ), the Fiat-Shamir transformed protocol FS[Π] has a
knowledge error at most (Q+ 1) · κ.

Since in the Fiat-Shamir transformation of any (2µ + 1)-round protocol Π, a
dishonest prover can simulate any attack against Π, and can try Q/µ times when
allowed to do Q queries in total, our new upper bound (Q + 1) · κ is close to the
trivial lower bound 1−(1− κ)Q/µ ≈ Qκ/µ. Another, less explicit security measure
in the context of knowledge soundness is the run time of the knowledge extractor.
Our bound on the knowledge error holds by means of a knowledge extractor that
makes an expected number of K+Q ·(K−1) queries, where K = k1 · · · kµ. This is
a natural bound: K is the number of necessary distinct “good” transcripts (which
form a certain tree-like structure). The loss of Q · (K − 1) captures the fact that a
prover may finish different proofs, depending on the random oracle answers, and
only one out of Q proofs may be useful for extraction, as explained below.

Our result on the knowledge soundness of FS[Π] for special-sound protocols Π
immediately carries over to ordinary soundness of FS[Π], with the same security
loss Q + 1. However, proving knowledge soundness is more intricate; showing
a linear-in-Q loss for ordinary soundness can be obtained via simpler arguments
(e.g., there is no need to argue efficiency of the extractor).

The construction of our knowledge extractor is motivated by the extractor from
Section 6.4 in the interactive case, but the analysis here in the context of a non-

6.6 Non-Interactivity 189

interactive proof is more involved. We analyze the extractor in an inductive man-
ner, and capture the induction step (and the base case) by means of an abstract
experiment. The crucial idea for the analysis (and extractor) is how to deal with
accepting transcripts that are not useful.

To see the core problem, consider a Σ-protocol, i.e., a 3-round k-special-sound
interactive proof, and a semi-honest prover that knows a witness and behaves as
follows. It prepares, independently, Q first messages a1, . . . , aQ and asks for all
hashes ci = RO(ai), and then decides “randomly” (e.g., using a hash over all
random oracle answers) which thread to complete, i.e., for which i∗ to compute
the response z and then output the valid proof (ai∗

, z). When the extractor then
reprograms the random oracle at the point ai∗ to try to obtain another valid
response but now for a different challenge, this affects i∗, and most likely the
prover will then use a different thread j∗ and output the proof (aj∗

, z′) with
aj∗ ̸= ai∗ . More precisely, Pr(j∗ = i∗) = 1/Q. Hence, an overhead of Q appears
in the run-time.

In case of an arbitrary dishonest prover with an unknown strategy for computing
the ai’s above, and with an arbitrary (unknown) success probability ϵ, the intuition
remains: after reprogramming, we still expect Pr(j∗ = i∗) ≥ 1/Q and thus a linear-
in-Q overhead in the run-time of the extractor. However, providing a rigorous proof
is complicated by the fact that the event j∗ = i∗ is not necessarily independent of
the prover producing a valid proof (again) after the reprogramming. Furthermore,
conditioned on the prover having been successful in the first run and conditioned on
the corresponding i∗, the success probability of the prover after the reprogramming
may be skewed, i.e., may not be ϵ anymore. As a warm-up for our general multi-
round result, we first give a rigorous analysis of the above case of a Σ-protocol. For
that purpose, we introduce an abstract sampling game that mimics the behavior
of the extractor in finding two valid proofs with j∗ = i∗, and we bound the success
probability and the “cost” (i.e., the number of samples needed) of the game, which
directly translate to the success probability and the run-time of the extractor.

Perhaps surprisingly, when moving to multi-round protocols, dealing with the
knowledge error is relatively simple by recursively composing the extractor for
the Σ-protocol. However, controlling the run-time is intricate. If the extractor is
recursively composed, i.e., it makes calls to a sub-extractor to obtain a subtree,
then a naive construction and analysis gives a blow-up of Qµ in the run-time.
Intuitively, because only 1/Q of the sub-extractor runs produce useful subtrees,
i.e., subtrees which extend the current ai∗ . The other trees belong to some aj∗

with j∗ ̸= i∗ and are thus useless. This overhead of Q then accumulates per round
(i.e., per sub-extractor).

The crucial observation that we exploit in order to overcome the above issue
is that the very first (accepting) transcript sampled by a sub-extractor already
determines whether a subtree will be (potentially) useful, or not. Thus, if this
very first transcript already shows that the subtree will not be useful, there is no
need to run the full-fledged subtree extractor, saving precious time.

To illustrate this more, we again consider the simple case of a dishonest prover
that succeeds with certainty. Then, after the first run of the sub-extractor to
produce the first subtree (which requires expected time linear in Q) and having
reprogrammed the random oracle with the goal to find another subtree that ex-

190 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

tends the current ai∗ , it is cheaper to first do a single run of the prover to learn j∗

and only run the full fledged sub-extractor if j∗ = i∗, and otherwise reprogram
and re-try again. With this strategy, we expect Q tries, followed by the run of
the sub-extractor, to find a second fitting subtree. Altogether, this amounts to
linear-in-Q runs of the prover, compared to the Q2 using the naive approach.

Again, what complicates the rigorous analysis is that the prover may succeed
with bounded probability ϵ only, and the event j∗ = i∗ may depend on the
prover/sub-extractor being successful (again) after the reprogramming. Further-
more, as an additional complication, conditioned on the sub-extractor having been
successful in the first run and conditioned on the corresponding i∗, both the suc-
cess probability of the prover and the run-time of the sub-extractor after the
reprogramming may be skewed now. Again, we deal with this by considering an
abstract sampling game that mimics the behavior of the extractor, but where the
cost function is now more fine-grained in order to distinguish between a single run
of the prover and a run of the sub-extractor. Because of this more fine-grained
way of defining the “cost,” the analysis of the game also becomes substantially
more intricate.

Negative Result. We also show that the general exponential security loss of the
Fiat-Shamir transformation, when applied to a multi-round protocol, is not an
artifact of contrived examples, but there exist natural protocols that indeed have
such an exponential loss. For instance, our negative result applies to the lattice-
based protocols in [BLN+20; ACK21]. Concretely, we show that the t-fold parallel
repetition Πt of a typical (k1, . . . , kµ)-special-sound (2µ+1)-round interactive proof
Π features this behavior when t ≥ µ. For simplicity, let us assume that t and Q
are multiples of µ. Then, in more detail, we show that for any typical (k1, . . . , kµ)-
special-sound protocol Π there exists a polynomial time Q-query prover P∗ against
FS[Πt] that succeeds in making the verifier accept with probability approximately
1
2Q

µκt/µµ+t for any statement x, where κ is the knowledge error (as well as the
soundness error) of Π. Thus, with the claimed probability, P∗ succeeds in making
the verifier accept for statements x that are not in the language and/or for which
P∗ does not know a witness. Given that, by Section 6.5, κt is the knowledge
error of Πt (i.e., the soundness error of Πt as an interactive proof), this shows
that the knowledge error of Πt grows proportionally with Qµ when applying the
Fiat-Shamir transformation.

6.6.2 Related Work

Independent Concurrent Work. In independent and to a large extent concurrent
work,7 Wikström [Wik21] achieves a similar positive result on the Fiat-Shamir
transformation, using a different approach and different techniques: [Wik21] re-
duces non-interactive extraction to a form of interactive extraction and then ap-
plies a generalized version of [Wik18], while our construction adapts the interactive
extractor from Section 6.4 and offers a direct analysis. One difference in the results,
which is mainly of theoretical interest, is that our result holds and is meaningful
for any Q < |C|, whereas [Wik21] requires the challenge set C to be large.

7When finalizing our write-up [AFK22], we were informed by Wikström that he derived similar
results a few months earlier, subsequently made available online [Wik21].

6.6 Non-Interactivity 191

The Forking Lemma. The security of the Fiat–Shamir transformation of k-out-of-
N special-sound Σ-protocols is widely used for construction of signatures. There,
unforgeability is typically proven via a forking lemma [PS96; BN06], which ex-
tracts, with probability roughly ϵk/Q, a witness from a signature-forging adversary
with success probability ϵ, where Q is the number of queries to the random oracle.
The loss ϵk is due to strict polynomial time extraction (and can be decreased, but
in general not down to ϵ). Such a k-th power loss in the success probability for
a constant k is fine in certain settings, e.g., for proving the security of signature
schemes; however, not for proofs of knowledge (which, on the other hand, consider
expected polynomial time extraction [BL02]).

We are not aware of forking lemmas being used in the context of the Fiat–
Shamir transformation for multi-round interactive proofs, i.e., for (2µ+ 1)-round
interactive proofs with µ > 1. The techniques for interactive proofs are not directly
applicable to the Fiat-Shamir mode. First, incorporating the query complexity Q
of a dishonest prover P∗ attacking the non-interactive Fiat–Shamir transformation
complicates the analysis. Second, a naive adaptation of the forking lemmas for
interactive proofs gives a blow-up of Qµ in the run-time.

6.6.3 An Abstract Sampling Game

Towards the goal of constructing and analyzing a knowledge extractor for the
Fiat-Shamir transformation FS[Π] of special-sound interactive proofs Π, we define
and analyze an abstract sampling game. Given access to a deterministic Q-query
prover P∗, attacking the non-interactive random oracle proof FS[Π], our extractor
will essentially play this abstract game in the case Π is a Σ-protocol, and it will
play this game recursively in the general case of a multi-round protocol. The
abstraction allows us to focus on the crucial properties of the extraction algorithm,
without unnecessarily complicating the notation.

The game considers an arbitrary but fixed U -dimensional array M , where, for
all 1 ≤ j1, . . . , jU ≤ N , the entry M(j1, . . . , jU) = (v, i) contains a bit v ∈ {0, 1}
and an index i ∈ {1, . . . , U}. Think of the bit v indicating whether this en-
try is “good” or “bad,” and the index i pointing to one of the U dimensions.
The goal will be to find k “good” entries with the same index i, and with all
of them lying in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU) for some
1 ≤ j1, . . . , ji−1, ji+1, . . . , jU ≤ N .

Looking ahead, considering the case of a Σ-protocol first, this game captures
the task of our extractor to find k proofs that are valid and feature the same first
message, but have different hash values assigned to the first message. Thus, in
our application, the sequence j1, . . . , jU specifies the function table of the random
oracle

RO : {1, . . . , U} → {1, . . . , N} , i 7→ ji

while the entry M(j1, . . . , jU) = (v, i) captures the relevant properties of the proof
produced by the considered prover when interacting with that particular speci-
fication of the random oracle. Concretely, the bit v indicates whether the proof
is valid, and the index i is the first message a of the proof. Replacing ji by j′

i

then means to reprogram the random oracle at the point i = a. Note that after
the reprogramming, we want to obtain another valid proof with the same first

192 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

message, i.e., with the same index i (but now a different challenge, due to the
reprogramming).

The game is formally defined in Figure 6.4 and its core properties are summa-
rized in Lemma 6.12 below. Looking ahead, we note that for efficiency reasons,
the extractor will naturally not sample the entire sequence j1, . . . , jU (i.e., function
table), but will sample the relevant components on the fly using lazy sampling.

It will be useful to define, for all 1 ≤ i ≤ U , the function

ai : {1, . . . , N}U → N≥0,

(j1, . . . , jU) 7→
∣∣{j : M(j1, . . . , ji−1, j, ji+1, . . . , jU) = (1, i)

}∣∣ . (6.13)

The value ai(j1, . . . , jU) counts the number of entries that are “good” and have
index i in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU). Note that ai

does not depend on the i-th entry of the input vector (j1, . . . , jU), and so, by a
slight abuse of notation, we sometimes also write ai(j1, . . . , ji−1, ji+1, . . . , jU).

Lemma 6.12 (Abstract Sampling Game). Consider the game in Figure 6.4. Let
J = (J1, . . . , JU) be uniformly distributed in {1, . . . , N}U , indicating the first en-
try sampled, and let (V, I) = M(J1, . . . , JU). Further, for all 1 ≤ i ≤ U , let
Ai = ai(J). Moreover, let X be the number of entries of the form (1, i) with i = I
sampled (including the first one), and let Λ be the total number of entries sampled
in this game. Then

E[Λ] ≤ 1 + (k − 1)P and

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,

where P =
∑U

i=1 Pr(Ai > 0).

Remark 6.4. Note the abstractly defined parameter P . In our application, where
the index i of (v, i) = M(j1, . . . , jU) is determined by the output of a prover making
no more than Q queries to the random oracle with function table j1, . . . , jU , the
parameter P will be bounded by Q+1. We show this formally (yet again somewhat
abstractly) in Lemma 6.13. Intuitively, the reason is that the events Ai > 0 are
disjoint for all but Q indices i (those that the considered prover does not query),
and so their probabilities add up to at most 1. Indeed, if ai(j1, . . . , jU) > 0 for
an index i that the algorithm did not query, then M(j1, . . . , jU) ∈ {(0, i), (1, i)};
namely, since i has not been queried, the index i output by the algorithm is
oblivious to the value of ji. Therefore, given j1, . . . , jU , there is at most one
unqueried index i with ai(j1, . . . , jU) > 0.

Proof (of Lemma 6.12). Expected Number of Samples. Let us first derive an
upper bound on the expected value of Λ. To this end, let X ′ denote the number
of sampled entries of the form (1, i) with i = I, but, in contrast to X, without
counting the first one. Similarly, let Y ′ denote the number of sampled entries of
the form (v, i) with v = 0 or i ̸= I, again without counting the first one. Then
Λ = 1 +X ′ + Y ′ and

Pr(X ′ = 0 | V = 0) = Pr(Y ′ = 0 | V = 0) = 1 .

6.6 Non-Interactivity 193

Figure 6.4: Abstract Sampling Game.

Parameters: k,N,U ∈ N, and M a U -dimensional array with entries in
M(j1, . . . , jU) ∈ {0, 1} × {1, . . . , U} for all 1 ≤ j1, . . . , jU ≤ N .

• Sample (j1, . . . , jU) ∈ {1, . . . , N}U uniformly at random and set (v, i) =
M(j1, . . . , jU).

• If v = 0, abort.

• Else, repeat
– sample j′ ∈ {1, . . . , N} \ {ji} (without replacement),
– compute (v′, i′) = M(j1, . . . , ji−1, j

′, ji+1, . . . , jU),
until either k − 1 additional entries equal to (1, i) have been found, or
until all indices j′ have been tried.

Hence, E[X ′ | V = 0] = E[Y ′ | V = 0] = 0.
Let us now consider the expected value E[Y ′ | V = 1]. To this end, we observe

that, conditioned on the event V = 1 ∧ I = i ∧ Ai = a with a > 0, Y ′ follows
a negative hypergeometric distribution with parameters N − 1, a − 1 and k − 1.
Hence, by Lemma 2.3,

E[Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1)N − a
a

,

and thus, using that Pr(X ′ ≤ k − 1 | V = 1) = 1,

E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1) + (k − 1)N − a
a

= (k − 1)N
a
.

On the other hand
Pr(V = 1 ∧ I = i | Ai = a) = a

N

and thus
Pr(V = 1 ∧ I = i ∧Ai = a) = Pr(Ai = a) a

N
. (6.14)

Therefore, and since Pr(V = 1 ∧ I = i ∧Ai = 0) = 0,

Pr(V = 1) · E[X ′ + Y ′ | V = 1] =
U∑

i=1

N∑
a=1

Pr(V = 1 ∧ I = i ∧Ai = a)

· E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a]

≤
U∑

i=1

N∑
a=1

Pr(Ai = a)(k − 1)

= (k − 1)
U∑

i=1
Pr(Ai > 0) = (k − 1)P ,

194 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

where P =
∑U

i=1 Pr(Ai > 0). Hence,

E[Λ] = E[1 +X ′ + Y ′]
= 1 + Pr(V = 0) · E[X ′ + Y ′ | V = 0] + Pr(V = 1) · E[X ′ + Y ′ | V = 1]
≤ 1 + (k − 1)P ,

which proves the claimed upper bound on E[Λ].
Success Probability. Let us now find a lower bound for the “success proba-

bility” Pr(X = k) of this game. Using (6.14) again, we can write

Pr(X = k) =
U∑

i=1
Pr(V = 1 ∧ I = i ∧Ai ≥ k) =

U∑
i=1

N∑
a=k

Pr(Ai = a) a
N
.

Now, using a ≤ N , note that
a

N
= 1−

(
1− a

N

)
≥ 1− N

N − k + 1

(
1− a

N

)
= N

N − k + 1

(
N − k + 1

N
− 1 + a

N

)
= N

N − k + 1

(
a

N
− k − 1

N

)
.

Therefore, combining the two, and using that the summand becomes negative for
a < k to argue the second inequality, and using (6.14) once more, we obtain

Pr(X = k) ≥
U∑

i=1

N∑
a=k

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

≥
U∑

i=1

N∑
a=1

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

= N

N − k + 1

U∑
i=1

N∑
a=1

(
Pr(V = 1 ∧ I = i ∧Ai = a)− Pr(Ai = a) · k − 1

N

)
.

Hence,

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1)− k − 1

N

U∑
i=1

Pr(Ai > 0)
)

= N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,

where, as before, we have used that Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0 for all
1 ≤ i ≤ U , and finally that P =

∑U
i=1 Pr(Ai > 0). This completes the proof of

the lemma.

Our knowledge extractor will instantiate the abstract sampling game via a de-
terministic Q-query prover P∗ attacking the Fiat-Shamir transformation FS[Π].
The index i of M(v, i) = (j1, . . . , jU) is then determined by the output of P∗, with
the random oracle being given by the function table j1, . . . , jU . Since the index i
is thus determined by Q queries to the random oracle, the following shows that
the parameter P will in this case be bounded by Q+ 1.

6.6 Non-Interactivity 195

Lemma 6.13. Consider the game in Figure 6.4. Let v and idx be functions
such that M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let

J = (J1, . . . , JU) be uniformly distributed in {1, . . . , N}U , and set Ai = ai(J) for
all 1 ≤ i ≤ U . Let us additionally assume that for all j ∈ {1, . . . , N}U there exists
a subset S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for
all j′ with j′

ℓ = jℓ for all ℓ ∈ S(j). Then

P =
U∑

i=1
Pr(Ai > 0) ≤ Q+ 1 .

Proof. By basic probability theory, it follows that8

P =
U∑

i=1
Pr(Ai > 0)

=
∑

j∈{1,...,N}U

Pr(J = j)
U∑

i=1
Pr(Ai > 0 | J = j)

=
∑

j

Pr(J = j)
(∑

i∈S(j)

Pr(Ai > 0 | J = j) +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

≤
∑

j

Pr(J = j)
(
Q+

∑
i/∈S(j)

Pr(Ai > 0 | J = j)
)

= Q+
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr(Ai > 0 | J = j) ,

where the inequality follows from the fact that |S(j)| ≤ Q for all j.
Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j)

and j∗ ∈ {1, . . . , N}, it holds that

Pr
(
idx(J1, . . . , Ji−1, j

∗, Ji+1, . . . , JU) = idx(j) | J = j
)

= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},

Pr(Ai > 0 | J = j) = 0 .

Hence, ∑
i/∈S(j)

Pr(Ai > 0 | J = j) ≤ Pr(Aidx(j) > 0 | J = j) ≤ 1.

Altogether, it follows that

P ≤ Q+
∑

j

Pr(J = j) = Q+ 1 ,

which completes the proof.
8The probabilities Pr(Ai > 0 | J = j) are all 0 or 1; however, it’s still convenient to use

probability notation here.

196 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

6.6.4 The Fiat-Shamir Transformation of Σ-Protocols

Let us first consider the Fiat-Shamir transformation FS[Π] of a k-out-of-N special-
sound Σ-protocol Π, i.e., a 3-round interactive proof with challenge set C of car-
dinality N . Subsequently, in Section 6.6.6, we move to general multi-round inter-
active proofs.

Let P∗ be a deterministic dishonest Q-query random-oracle prover, attacking
the Fiat-Shamir transformation FS[Π] of Π on input x. Given a statement x
as input, after making Q queries to the random oracle RO : {0, 1}≤u → C, P∗

outputs a proof π = (a, z). For reasons to become clear later, we re-format (and
partly rename) the output and consider I := a and π as P∗’s output. We refer
to the output I as the index. Furthermore, we extend P∗ to an algorithm A that
additionally checks the correctness of the proof π. Formally, A runs P∗ to obtain I
and π, queries RO to obtain c := RO(I), and then outputs

I = a , y := (a, c, z) and v := V (y) ,

where V (y) = 1 if y is an accepting transcript for the interactive proof Π on
input x and V (y) = 0 otherwise. Hence, A is a random-oracle algorithm making
at most Q+ 1 queries; indeed, it relays the oracle queries done by P∗ and makes
the one needed to do the verification. We may write ARO to make the dependency
of A’s output on the choice of the random oracle RO explicit. The random-oracle
algorithm A has a naturally defined success probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is chosen uniformly at random. The probability ϵ(A)
corresponds to the success probability ϵ(x,P∗) of the random-oracle prover P∗ on
input x.

Our goal is now to construct an extraction algorithm that, when given oracle
access to A, aims to output k accepting transcripts y1, . . . , yk with common first
message a and distinct challenges. By the k-out-of-N special-soundness of Π, a
witness for statement x can be computed efficiently from these transcripts. Recall
that an extractor with oracle access to a random oracle algorithm is free to choice
the answers to the random oracle queries made by the algorithm. However, the
answers provided by the extractor must be indistinguishable from those provided
by a true random oracle algorithm.

The extractor E is defined in Figure 6.5. We note that, after a successful first
run of A, having produced a first accepting transcript (a, c, z), we rerun A from the
very beginning and answer all oracle queries consistently, except the query to a;
i.e., we only reprogram the oracle at the point I = a. Note that since P∗ (and
thus A) is deterministic, and we only reprogram the oracle at the point I = a, in
each iteration of the repeat loop A is ensured to make the query to I again.9

A crucial observation is the following. Within a run of E , all the queries that
are made by the different invocations of A are answered consistently using lazy
sampling, except for the queries to the index I, where different responses c, c′, . . .

9Of course, it would be sufficient to rewind A to the point where it makes the (first) query to a,
but this would make the description more clumsy.

6.6 Non-Interactivity 197

Figure 6.5: Extractor E for Random Oracle Algorithms.
Parameters: k,Q ∈ N.
Oracle access to: The (Q+ 1)-query random oracle algorithm A as above.

• Run A as follows to obtain (I, y1, v): answer all (distinct) oracle queries
with uniformly random values in C. Let c be the response to query I.

• If v = 0, abort.

• Else, repeat
– sample c′ ∈ C \ {c} (without replacement);
– run A as follows to obtain (I ′, y′, v′): answer the query to I with c′,

while answering all other queries consistently if the query was per-
formed by A already on a previous run, and with a fresh random
value in C otherwise;

until either k − 1 additional challenges c′ with v′ = 1 and I ′ = I have
been found or until all challenges c′ ∈ C \ {c} have been tried.

• In the former case, output the k accepting transcripts y1, . . . , yk. In the
latter case, the algorithm aborts.

are given. This is indistinguishable from having them answered by a full-fledged
random oracle, i.e., by means of a pre-chosen function RO : {0, 1}≤u → C, but then
replacing the output RO(I) at I by fresh challenges c′ for the runs ofA in the repeat
loop. By enumerating the elements in the domain and codomain of RO, it is easily
seen that the extractor is actually running the abstract game from Figure 6.4.
Thus, bounds on the success probability and the expected run time (in terms of
queries to A) follow from Lemma 6.12 and Lemma 6.13. Altogether we obtain the
following result.

Lemma 6.14 (Extractor for Random Oracle Algorithms). The extractor E of Fig-
ure 6.5 makes an expected number of at most k + Q · (k − 1) queries to A and
succeeds in outputting k transcripts y1, . . . , yk with common first message a and
distinct challenges with probability at least

N

N − k + 1

(
ϵ(A)− (Q+ 1) · k − 1

N

)
.

Proof. By enumerating all the elements in the domain and codomain of the
random oracle RO, we may assume that RO : {1, ..., U} → {1, ..., N}, and thus
RO can be represented by the function table (j1, ..., jU) ∈ {1, . . . , N}U for
which RO(i) = ji. Further, since P∗ is deterministic, the outputs I, y and v
of the algorithm A can be viewed as functions taking as input the function
table (j1, . . . , jU) ∈ {1, . . . , N}U of RO, and so we can consider the array
M(j1, . . . , jU) =

(
I(j1, . . . , jU), v(j1, . . . , jU)

)
.

Then, a run of the extractor perfectly matches up with the abstract sampling
game of Figure 6.4 instantiated with array M . The only difference is that, in

198 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

this sampling game, we consider full-fledged random oracles encoded by vectors
(j1, . . . , jU) ∈ {1, . . . , N}U , while the actual extractor implements these random
oracles by lazy sampling. Thus, we can apply Lemma 6.12 to obtain bounds on the
success probability and the expected run time. However, in order to control the
parameter P , which occurs in the bound of Lemma 6.12, we make the following
observation, so that we can apply Lemma 6.13 to bound P ≤ Q+ 1.

For every (j1, . . . , jU), let S(j1, . . . , jU) ⊆ {1, . . . , U} be the set of points that P∗

queries to the random oracle when (j1, . . . , jU) corresponds to the entire function
table of the random oracle. Then, P∗ will produce the same output when the
random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU) = I(j1, . . . , ji−1, j

′, ji+1, . . . , , jU) for all j, j′ and for
all i /∈ S(j1, . . . , jU). Furthermore, |S(j1, . . . , jU)| ≤ Q. Hence, the conditions
of Lemma 6.13 are satisfied and P ≤ Q+1. The bounds on the success probability
and the expected run time now follow, completing the proof.

The existence of the above extractor, combined with the k-out-of-N special-
soundness property, implies the following theorem. This theorem shows that the
security loss of the Fiat-Shamir transformation for k-out-of-N Σ-protocols is Q+1,
i.e., the security loss is linear in the query complexity Q of a prover P∗ attacking
the Fiat-Shamir transformation.

Theorem 6.10 (Fiat-Shamir Transformation of a Σ-Protocol). The Fiat-Shamir
transformation FS[Π] of a k-out-of-N special-sound Σ-protocol Π is knowledge
sound with knowledge error

κfs(Q) = (Q+ 1) · κ ,

where κ := Er(k;N) = (k − 1)/N is the knowledge error of the (interactive) Σ-
protocol Π.

6.6.5 A Refined Analysis of the Abstract Sampling Game

Before we prove knowledge soundness of the Fiat-Shamir transformation of multi-
round interactive protocols, we reconsider the abstract game of Section 6.6.3, and
present a refined analysis of the cost of playing the game. The multi-round know-
ledge extractor will essentially play a recursive composition of this game; however,
the analysis of Section 6.6.3 is insufficient for our purposes (resulting in a super-
polynomial bound on the run-time of the knowledge extractor). Fortunately, it
turns out that a refinement allows us to prove the required (polynomial) upper
bound.

In Section 6.6.3, the considered cost measure is the number of entries visited
during the game. For Σ-protocols, every entry corresponds to a single invocation
of the dishonest prover P∗. For multi-round protocols, every entry will correspond
to a single invocation of a sub-tree extractor. The key observation is that some
invocations of the sub-tree extractor are expensive while others are cheap. For this
reason, we introduce a cost function Γ and a constant cost γ to our abstract game,
allowing us to differentiate between these two cases. Γ and γ assign a cost to every
entry of the array M ; Γ corresponds to the cost of an expensive invocation of the
sub-tree extractor, and γ corresponds to the cost of a cheap invocation. While this

6.6 Non-Interactivity 199

refinement presents a natural generalization of the abstract game of Section 6.6.3,
its analysis becomes significantly more involved.

The following lemma provides an upper bound for the total cost of playing the
abstract game in terms of these two cost functions.
Lemma 6.15 (Abstract Sampling Game - Weighted Version). Consider again the
game of Figure 6.4, as well a cost function Γ: {1, . . . , N}U → R≥0 and a constant
cost γ ∈ R≥0. Let J = (J1, . . . , JU) be uniformly distributed in {1, . . . , N}U ,
indicating the first entry sampled, and let (V, I) = M(J1, . . . , JU). Further, for all
1 ≤ i ≤ U , let Ai = ai(J), where the function ai is as defined in Equation 6.13.

We define the cost of sampling an entry M(j1, . . . , jU) = (v, i) with index i = I
to be Γ(j1, . . . , jU) and the cost of sampling an entry M(j1, . . . , jU) = (v, i) with
index i ̸= I to be γ. Let ∆ be the total cost of playing this game. Then

E[∆] ≤ k · E[Γ(J)] + (k − 1) · T · γ

where T =
∑U

i=1 Pr(I ̸= i ∧Ai > 0) ≤ P .
Remark 6.5. Note that the parameter T in the statement here differs slightly from
its counterpart P =

∑
i Pr(Ai > 0) in Lemma 6.12. Recall the informal discussion

of P in the context of our application (Remark 6.4), where the array M is instan-
tiated via a Q-query prover P∗ attacking the Fiat-Shamir transformation of an
interactive proof. We immediately see that now the defining events I ̸= i ∧Ai > 0
are empty for all U −Q indices that the prover does not query, giving the bound
T ≤ Q here, compared to the bound P ≤ Q + 1 on P . The formal (and more
abstract) statement and proof is given in Lemma 6.16.

Proof. Let us split up ∆ into the cost measures ∆1, ∆2 and ∆3, defined as follows.
∆1 denotes the total costs of the elements M(j1, . . . , jU) = (1, i) with i = I sam-
pled in the game, i.e., the elements with bit v = 1 and index i = I; correspondingly,
X denotes the number of entries of the form (1, i) with i = I sampled (includ-
ing the first one if V = 1). Second, ∆2 denotes the total costs of the elements
M(j1, . . . , jU) = (0, i) with i = I sampled, i.e., the elements with bit v = 0 and
index i = I; correspondingly, Y denotes the number of entries of the form (0, i)
with i = I sampled (including the first one if V = 0). Finally, ∆3 denotes the total
costs of the elements M(j1, . . . , jU) = (v, i) with i ̸= I sampled; correspondingly,
Z denotes the number of entries of this form sampled.

Clearly ∆ = ∆1 + ∆2 + ∆3. Moreover, since the cost γ is constant, it fol-
lows that E[∆3] = γ · E[Z]. In a similar manner, we now aim to relate E[∆1]
and E[∆2] to E[Y] and E[Z], respectively. However, since the cost function
Γ: {1, . . . , N}U → R≥0 is not necessarily constant, this is more involved.

For 1 ≤ i ≤ U let us write J∗
i = (J1, . . . , Ji−1, Ji+1, . . . , JU), which is uni-

formly random with support {1, . . . , N}U−1. Moreover, for all 1 ≤ i ≤ U and
j∗ = (j∗

1 , . . . , j
∗
i−1, j

∗
i+1, · · · , jU) ∈ {1, . . . , N}U−1, let Λ(i, j∗) denote the event

Λ(i, j∗) = [I = i ∧ J∗
i = j∗] .

We note that conditioned on the event Λ(i, j∗), all samples are picked from the
subarray M(j∗

1 , . . . , j
∗
i−1, · , j∗

i+1, · · · , j∗
U); the first one uniformly at random sub-

ject to the index I being i, and the remaining ones (if V = 1) uniformly at random
(without replacement).

200 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

We first analyze and bound E[∆1 | Λ(i, j∗)]. We observe that, for all i and j∗

with Pr(Λ(i, j∗)) > 0,

E[∆1 | Λ(i, j∗)] =
N∑

ℓ=0
Pr
(
X = ℓ | Λ(i, j∗)

)
· E[∆1 | Λ(i, j∗) ∧X = ℓ] .

Since, conditioned on Λ(i, j∗) ∧ X = ℓ for ℓ ∈ {0, . . . , N}, any size-ℓ subset of
elements with v = 1 and index i is equally likely to be sampled, it follows that

E[∆1 | Λ(i, j∗) ∧X = ℓ] = E[Γ(J) | V = 1 ∧ Λ(i, j∗)] · ℓ .

Hence,

E[∆1 | Λ(i, j∗)] = E[Γ(J) | V = 1 ∧ Λ(i, j∗)] ·
∑

ℓ

Pr
(
X = ℓ | Λ(i, j∗)

)
· ℓ

= E[Γ(J) | V = 1 ∧ Λ(i, j∗)] · E[X | Λ(i, j∗)] .

Similarly,

E[∆2 | Λ(i, j∗)] = E[Γ(J) | V = 0 ∧ Λ(i, j∗)] · E[Y | Λ(i, j∗)] .

Next, we bound the expected values of X and Y conditioned on Λ(i, j∗). The
analysis is a more fine-grained version of the proof of Lemma 6.12. Bounding
E[X | Λ(i, j∗)] is quite easy: since V = 0 implies X = 0 and V = 1 implies X ≤ k,
it immediately follows that

E[X | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[X | V = 0 ∧ Λ(i, j∗)]
+ Pr(V = 1 | Λ(i, j∗)) · E[X | V = 1 ∧ Λ(i, j∗)]

≤ Pr(V = 1 | Λ(i, j∗)) · k .

Hence,

E[∆1 | Λ(i, j∗)] ≤ k · Pr(V = 1 | Λ(i, j∗)) · E[Γ(J) | V = 1 ∧ Λ(i, j∗)] . (6.15)

Suitably bounding the expectation E[Y | Λ(i, j∗)], and thus E[∆2 | Λ(i, j∗)],
is more involved. For that purpose, we introduce the following parameters.
For the considered fixed choice of the index 1 ≤ i ≤ U and of j∗ =
(j∗

1 , . . . , j
∗
i−1, j

∗
i+1, · · · , j∗

U), we let10

a := ai(j∗) =
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j
∗
i−1, j, j

∗
i+1, . . . , j

∗
U) = (1, i)

}∣∣ and

b := bi(j∗) :=
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j
∗
i−1, j, j

∗
i+1, . . . , j

∗
U) = (0, i)

}∣∣ .
Let us first note that

Pr
(
V = 1 | Λ(i, j∗)

)
= a

a+ b
and Pr

(
V = 0 | Λ(i, j∗)

)
= b

a+ b

10Recall that we use the notation ai(j1, . . . , jU) and ai(j1, . . . , ji−1, ji+1, . . . , jU) interchange-
ably, exploiting that ai(j1, . . . , jU) does not depend on the i-th input ji.

6.6 Non-Interactivity 201

for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0. Therefore, if we condition on the event

V = 1 ∧ Λ(i, j∗) we implicitly assume that i and j∗ are so that a is positive.
Now, towards bounding E[Y | Λ(i, j∗)], we observe that conditioned on the event
V = 1 ∧ Λ(i, j∗), the random variable Y follows a negative hypergeometric distri-
bution with parameters a+ b− 1, a− 1 and k − 1 (see also Remark 2.2). Hence,
by Lemma 2.3,

E[Y | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1) b
a
,

and thus

E[Y | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[Y | V = 0 ∧ Λ(i, j∗)]
+ Pr(V = 1 | Λ(i, j∗)) · E[Y | V = 1 ∧ Λ(i, j∗)]

≤ Pr
(
V = 0 | Λ(i, j∗)

)
+ Pr

(
V = 1 | Λ(i, j∗)

)
· (k − 1) b

a

= b

a+ b
+ a

a+ b
· (k − 1) b

a
= k

b

a+ b

= k · Pr(V = 0 | Λ(i, j∗)) ,

where we use that E[Y | V = 0 ∧ Λ(i, j∗)] = 1. Hence,

E[∆2 | Λ(i, j∗)] ≤ k · Pr(V = 0 | Λ(i, j∗)) · E[Γ(J) | V = 0 ∧ Λ(i, j∗)] ,

and thus, combined with Equation 6.15,

E[∆1 + ∆2 | Λ(i, j∗)] ≤ k · E[Γ(J) | Λ(i, j∗)] .

Since this inequality holds for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0, it follows that

E[∆1 + ∆2] ≤ k · E[Γ(J)] .

What remains is to show that E[Z] ≤ (k − 1)T , from which it follows that
E[∆3] = γE[Z] ≤ (k − 1)Tγ. The slightly weaker bound E[Z] ≤ (k − 1)P follows
immediately from observing that Z ≤ Y ′ for Y ′ as in the proof of Lemma 6.12
(the number of entries counted by Z is a subset of those counted by Y ′), and using
that E[Y ′] ≤ E[X ′ + Y ′] ≤ (k − 1)P as derived in the proof of Lemma 6.12. In
order to get the slightly better bound in terms of T , we bound E[Z] from scratch
below. We use a similar approach as above for bounding the expectation of Y .
Thus, we consider a fixed choice of i and j∗ and set a := ai(j∗) and b := bi(j∗).
Then, conditioned on V = 1 ∧ Λ(i, j∗), also Z follows a negative hypergeometric
distribution, but now with parameters N − b− 1, a− 1 and k − 1. Therefore, for
all i and j∗ with Pr

(
V = 1 ∧ Λ(i, j∗)

)
> 0,

E[Z | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1)N − a− b
a

.

Using that E[Z | V = 0 ∧ Λ(i, j∗)] = 0, but also recalling that
Pr
(
V = 1 | Λ(i, j∗)

)
= a/(a+ b) and exploiting Pr(I = i | J∗

i = j∗) = (a+ b)/N ,

202 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

it follows that

E[Z | Λ(i, j∗)] = Pr
(
V = 1 | Λ(i, j∗)

)
· E[Z | V = 1 ∧ Λ(i, j∗)]

≤ a

a+ b
· (k − 1) · N − a− b

a
= (k − 1) · N − a− b

a+ b

= (k − 1) ·
(1

Pr(I = i | J∗
i = j∗) − 1

)
= (k − 1) · Pr(J∗

i = j∗)− Pr(I = i ∧ J∗
i = j∗)

Pr(I = i ∧ J∗
i = j∗)

= (k − 1) · Pr(I ̸= i ∧ J∗
i = j∗)

Pr(I = i ∧ J∗
i = j∗) = (k − 1) · Pr(I ̸= i ∧ J∗

i = j∗)
Pr(Λ(i, j∗)) .

We recall that the above holds for all i and j∗ for which a = ai(j∗) > 0, so that
Pr(V = 1 ∧ Λ(i, j∗)) > 0. For i and j∗ with a = ai(j∗) = 0, it holds that Λ(i, j∗)
implies V = 0, and thus E[Z | Λ(i, j∗)] = 0. Therefore

E[Z] =
U∑

i=1

∑
j∗ s.t.

ai(j∗)>0

Pr[Λ(i, j∗)] · E[Z | Λ(i, j∗)]

≤ (k − 1) ·
U∑

i=1

∑
j∗ s.t.

ai(j∗)>0

Pr(I ̸= i ∧ J∗
i = j∗)

≤ (k − 1) ·
U∑

i=1
Pr(I ̸= i ∧Ai > 0) = (k − 1) · T .

Hence E[∆3] ≤ (k − 1) · T · γ, as intended, and altogether it follows that

E[∆] = E[∆1 + ∆2 + ∆3] ≤ k · E[Γ(J)] + (k − 1) · T · γ ,

which completes the proof of the lemma.

Lemma 6.16. Consider the game in Figure 6.4. Let v and idx be functions
such that M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let

J = (J1, . . . , JU) be uniformly distributed in {1, . . . , N}U and set Ai = ai(J) for
all 1 ≤ i ≤ U as in Equation 6.13. Let us additionally assume that for all
j ∈ {1, . . . , N}U there exists a subset S(j) ⊆ {1, . . . , U} of cardinality at most
Q such that idx(j) = idx(j′) for all j, j′ with jℓ = j′

ℓ for all ℓ ∈ S(j). Then

T =
U∑

i=1
Pr
(
idx(J) ̸= i ∧Ai > 0

)
≤ Q .

Proof. The proof is analogous to the proof of Lemma 6.13. By basic probability

6.6 Non-Interactivity 203

theory, it follows that

T =
U∑

i=1
Pr(idx(J) ̸= i ∧Ai > 0)

=
∑

j

Pr(J = j)
(∑

i∈S(j)

Pr(idx(J) ̸= i ∧Ai > 0 | J = j)

+
∑

i/∈S(j)

Pr(idx(J) ̸= i ∧Ai > 0 | J = j)
)

≤ Q+
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr(idx(J) ̸= i ∧Ai > 0 | J = j) ,

where the inequality follows from the fact that |S(j)| ≤ Q for all j.
Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j)

and ji ∈ {1, . . . , N}, it holds that

Pr
(
idx(J1, . . . , Ji−1, ji, Ji+1, . . . , JU) = idx(j) | J = j

)
= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},

Pr(Ai > 0 | J = j) = 0 .

Hence, ∑
i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
≤ Pr

(
idx(J) ̸= idx(j) ∧Aidx(j) > 0 | J = j

)
= 0 .

Altogether, it follows that

T ≤ Q+
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
= Q ,

which completes the proof.

6.6.6 The Fiat-Shamir Transformation of Multi-Round Protocols

Let us now move to multi-round interactive proofs. More precisely, we consider the
Fiat-Shamir transformation FS[Π] of a k-out-of-N special-sound (2µ + 1)-round
interactive proof Π, with k = (k1, . . . , kµ). While the multi-round extractor has
a natural recursive construction, it requires a more fine-grained analysis to show
that it indeed implies knowledge soundness.

To avoid a cumbersome notation, we first handle (2µ + 1)-round interactive
proofs in which the verifier samples all µ challenges uniformly at random from the
same set C. Subsequently, we argue that our techniques have a straightforward
generalization to interactive proofs where the verifier samples its challenges from
different challenge sets.

204 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

Multi-Round Interactive Proofs with a Single Challenge Set

Consider a deterministic dishonest Q-query random-oracle prover P∗, attacking
the Fiat-Shamir transformation FS[Π] of a k-out-of-N special-sound interactive
proof Π on input x. We assume all challenges to be elements of the same
set C. After making at most Q queries to the random oracle, P∗ outputs a
proof π = (a1, . . . , aµ+1). We re-format the output and consider

I1 := a1 , I2 := (a1, a2) , . . . , Iµ := (a1, . . . , aµ) and π

as P∗’s output. Sometimes it will be convenient to also consider

Iµ+1 := (a1, . . . , aµ+1) .

Furthermore, we extend P∗ to a random-oracle algorithm A that additionally
checks the correctness of the proof π. Formally, relaying all the random oracle
queries that P∗ is making, A runs P∗ to obtain I = (I1, . . . , Iµ) and π, additionally
queries the random oracle to obtain c1 := RO(I1), . . . , cµ := RO(Iµ), and then
outputs

I , y := (a1, c1, . . . , aµ, cµ, aµ+1) and v := V (x, y) ,

where V (x, y) = 1 if y is an accepting transcript for the interactive proof Π on
input x, and V (x, y) = 0 otherwise. Hence, A makes at most Q + µ queries (the
queries done by P∗, and the queries to I1, . . . , Iµ). Moreover, A has a naturally
defined success probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is distributed uniformly. As before, ϵ(A) = ϵ(x,P∗).
Our goal is now to construct an extraction algorithm that, when given oracle

access to A, and thus to P∗, aims to output a k-tree of accepting transcripts (Def-
inition 2.33). By the k-out-of-N special-soundness of Π, a witness for statement x
can then be computed efficiently from these transcripts.

To this end, we recursively introduce a sequence of “sub-extractors” E1, . . . , Eµ,
where Em aims to find a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts. The
main idea behind this recursion is that such a (1, . . . , 1, km, . . . , kµ)-tree of accept-
ing transcripts is the composition of km appropriate (1, . . . , 1, km+1, . . . , kµ)-trees.

For technical reasons, we define the sub-extractors Em as random-oracle algo-
rithms, each one making Q + µ queries to a random oracle. As we will see, the
recursive definition of Em is very much like the extractor from the 3-round case, but
with A replaced by the sub-extractor Em+1; however, for this to work we need the
sub-extractor to be the same kind of object as A, thus a random-oracle algorithm
making the same number of queries. As base for the recursion, we consider the
algorithm A (which outputs a single transcript, i.e., a (1, . . . , 1)-tree); thus, the
sub-extractor Eµ (which outputs a (1, . . . , 1, kµ)-tree) is essentially the extractor
of the 3-round case, but with A now outputting an index vector I = (I1, . . . , Iµ),
and with Eµ being a random-oracle algorithm, so that we can recursively replace
the random-oracle algorithm A by Eµ to obtain Eµ−1, etc.

6.6 Non-Interactivity 205

Figure 6.6: Sub-extractor Em, as a (Q+ µ)-query random-oracle algorithm.
Parameters: km, Q ∈ N.
Oracle access to: Em+1.
Random oracle queries: ≤ Q+ µ.

• Run Em+1 as follows to obtain (I, y1, v): relay the Q + µ queries to the
random oracle and record all query-response pairs. Let c be the response
to query Im.

• If v = 0, abort with output v = 0.

• Else, repeat
– sample c′ ∈ C \ {c} (without replacement);
– run Em+1 as follows to obtain (I′, y′, v′), aborting right after the

initial run of P∗ if I ′
m ̸= Im: answer the query to Im with c′, while

answering all other queries consistently if the query was performed
by Em+1 already on a previous run and with a fresh random value
in C otherwise;

until either km − 1 additional challenges c′ with v′ = 1 and I ′
m = Im

have been found or until all challenges c′ ∈ C \ {c} have been tried.

• In the former case, output I, the km accepting (1, . . . , 1, km+1, . . . , kµ)-
trees y1, . . . , ykm

, and v := 1; in the latter case, output v := 0.

Formally, the recursive definition of Em from Em+1 is given in Figure 6.6, where
Eµ+1 (the base case) is set to Eµ+1 := A, and where Em exploits the following early
abort feature of Em+1: like A, the sub-extractor Em+1 computes the index vector
it eventually outputs by running P∗ as its first step (see Lemma 6.17 below). This
allows the executions of Em+1 in the repeat loop in Fig. 6.6 to abort after a single
run of P∗ if the requirement I ′

m = Im on its index vector I is not satisfied, without
proceeding to produce the remaining parts y′, v′ of the output (which would invoke
more calls to P∗).

The actual extractor E is then given by a run of E1, with the Q+µ random-oracle
queries made by E1 being answered using lazy-sampling.

Remark 6.6. Let us emphasize that within one run of Em, except for the query to
Im for which the response is “reprogrammed,” all the queries made by the multiple
runs of the sub-extractor Em+1 in the repeat loop are answered consistently, both
with the run of Em+1 in the first step and among the runs in the repeat loop. This
means that a query to a value ξ that has been answered by η in a previous run
on Em+1 (within the considered run of Em) is again answered by η, and a query
to a value ξ′ that has not been queried yet in a previous run on Em+1 (within the
considered run of Em) is answered with a freshly chosen uniformly random η′ ∈ C.
In multiple runs of Em, very naturally the random tape of Em will be refreshed,
and thus there is no guaranteed consistency among the answers to the query calls
of Em+1 across multiple runs of Em.

206 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

The following lemma captures some technical property of the sub-extractors Em.
Subsequently, Proposition 6.1 shows that Em, if successful, indeed outputs a
(1, . . . , 1, km . . . , kµ)-tree of accepting transcripts. Proposition 6.2 bounds the suc-
cess probability and expected run time of Em. All statements are understood to
hold for any statement x and any m ∈ {1, . . . , µ+ 1}.

Lemma 6.17 (Consistency of P∗ and Em). Em obtains the index vector I, which it
eventually outputs, by running (I, π)← P∗ as its first step. In particular, for any
fixed choice of the random oracle RO, the index vector I output by ERO

m matches
the one output by P∗,RO.

Proof. The first claim holds for Eµ+1 = A by definition of A, and it holds for Em

with m ≤ µ by induction, given that Em runs Em+1 as a first step. The claim on
the matching index vectors then follows trivially.

Proposition 6.1 (Correctness). For any fixed choice of the random ora-
cle let (I, y1, . . . , ykm

, v) ← ERO
m (x). If v = 1 then (y1, . . . , ykm

) forms a
(1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts.

Proof. All
∏µ

j=m+1 kj transcripts in a (1, . . . , 1, km+1, . . . , kµ)-tree contain the
same partial transcript (a1, c1, . . . , cm, am+1), i.e., the first 2m− 1 messages in all
these transcripts coincide. Hence, any (1, . . . , 1, km+1, . . . , kµ)-tree of transcripts
has a well-defined trunk (a1, c1, . . . , cm, am+1).

By induction on m, we will prove that if v = 1 then (y1, . . . , ykm
)

forms a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts with trunk
(a1,RO(I1), . . . ,RO(Im−1), am), where Ij = (a1, . . . , aj). This obviously
implies the correctness claim.

For the base case m = µ + 1, recall that Eµ+1 = A, and that by definition
of A and its output (I, y, v), if v = 1, then y is an accepting transcript, and
thus a (1, . . . , 1)-tree of accepting transcripts with (a1,RO(I1), . . . ,RO(Iµ), aµ+1)
as trunk by definition of I = (I1, . . . , Iµ).

For the induction step, by the induction hypothesis on Em+1 and its output
(I, y, v), if v = 1, then y is a (1, . . . , 1, km+1, . . . , kµ)-tree of accepting transcripts
with trunk (a1,RO(I1), . . . , am,RO(Im), am+1), where Im+1 = (a1, . . . , am+1).
This holds for (I, y1, v) output by Em+1 in the first step of Em, but also for any
invocation of Em+1 in the repeat loop with output (I′, y′, v′), here with trunk
(a′

1,RO′(I ′
1), . . . , a′

m,RO′(I ′
m), a′

m+1), where RO′ is such that RO′(Ij) = RO(Ij)
for all j ̸= m, while RO(Im) = ci and RO′(Im) = c′

i. By definition of the output
of Em, for y1 and y′ occurring in the output of Em, it is ensured that Im = I ′

m.
Now note that by Lemma 6.17, for the purpose of the argument, Em could have

run P∗ instead of Em+1 to obtain I and I′. Therefore, by definition of the index
vectors output by P∗, which is such that Ij is a (fixed-size) prefix of Im for j < m,
it follows that also Ij = I ′

j for all j < m.
Therefore, the output y1, . . . , ykm of Em forms a (1, . . . , 1, km, . . . , kµ)-tree

of accepting transcripts with trunk (a1,RO(I1), . . . , am−1,RO(Im−1), am), where
Im = (a1, . . . , am). This completes the proof.

6.6 Non-Interactivity 207

Proposition 6.2 (Run Time and Success Probability). Let Km =
∏µ

j=m kj. The
extractor Em makes an expected number of at most Km +Q · (Km−1) queries to A
(and thus to P∗) and successfully outputs v = 1 with probability at least

ϵ(A)− (Q+ 1) · κm

1− κm

where

κm := Er(km, . . . , kµ;N, . . . , N) = 1−
µ∏

i=m+1

(
1− ki − 1

N

)
.

Proof. The proof goes by induction on m. The base case m = µ+1 holds trivially,
understanding that Kµ+1 = 1 and Er(∅, N) = 0. Indeed, Eµ+1 makes one call to
A and outputs v = 1 with probability ϵ(A). Alternatively, we can take m = µ as
base case, which follows immediately from Lemma 6.14.

For the induction step, we assume now that the lemma is true for m′ = m + 1
and consider the extractor Em. As in the 3-round case, we observe that, within a
run of Em, all the queries that are made by the different invocations of Em+1 are
answered consistently using lazy sampling, except for the queries to the index Im,
which are answered with different responses c′. This is indistinguishable from hav-
ing them answered by a full-fledged random oracle RO : {1, . . . , U} → {1, . . . , N},
where we have enumerated the domain and codomain of RO as before. This
enumeration allows RO to be identified with its function table (j1, . . . , jU) ∈
{1, . . . , N}U . Thus, the extractor is actually running the abstract sampling game
from Figure 6.4.

However, in contrast to the instantiation of Section 6.6.4, the entries of the ar-
ray M are now probabilistic. Namely, while A is deterministic, the extractor Em+1
is a probabilistic algorithm. Fortunately, this does not influence the key properties
of the abstract sampling game. Namely, for the purpose of the analysis, we may fix
the randomness of the extractor Em+1. By linearity of the success probability and
the expected run time, the bounds that hold for any fixed choice of randomness
also hold when averaged over the randomness. Thus, we can apply Lemma 6.12
and Lemma 6.15 to bound the success probability and the expected run time.11

To control the parameters P and T , which occur in the bounds of these lemmas,
we make the following observation. A similar observation was required in the proof
of Lemma 6.14.

First, by Lemma 6.17, the index vector I output by Em+1 matches the index
vector output by P∗, when given the same random oracle RO. Second, since
P∗ is deterministic, its output can only change when the random oracle is re-
programmed at one of the indices i ∈ {1, . . . , U} queried by P∗. Therefore, for
every (j1, . . . , jU), let S(j1, . . . , jU) ⊆ {1, . . . , U} be the set of points that P∗

queries to the random oracle when (j1, . . . , jU) corresponds to the entire func-
tion table of the random oracle. Then, P∗ will produce the same output when
11To be more precise, to allow for fresh randomness in the different runs of Em+1 within Em,

we first replace the randomness of Em+1 by F (j1, . . . , jU) for a random function F , where
(j1, . . . , jU) is the function table of the random oracle providing the answers to Em+1’s
queries, and then we fix the choice of F and average over F after having applied Lemma 6.12
and Lemma 6.15.

208 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU) = I(j1, . . . , ji−1, j

′, ji+1, . . . , , jU) for all j, j′ and for
all i /∈ S(j1, . . . , jU). Furthermore, |S(j1, . . . , jU)| ≤ Q. Hence, the conditions of
Lemma 6.13 and Lemma 6.16 are satisfied, and it follows that P ≤ Q + 1 and
T ≤ Q. We are now ready to analyze the success probability and the expected
number of A queries of Em.

Success Probability. By the induction hypothesis, the success probability
pm+1 of Em+1 is bounded by

pm+1 ≥
ϵ(A)− (Q+ 1) · κm+1

1− κm+1
.

Then, by Lemma 6.12 and Lemma 6.13, the success probability of Em is bounded by

N

N − km + 1

(
pm+1 − (Q+ 1)km − 1

N

)

≥ N

N − km + 1

(
ϵ(A)− (Q+ 1) · κm+1

1− κm+1
− (Q+ 1)km − 1

N

)
.

Now observe that, for κm = Er(km, . . . , kµ;N, . . . , N
)
, the following recursive

property is easily derived:

N − km + 1
N

(1− κm+1) = 1− κm .

Hence,

pm ≥
ϵ(A)− (Q+ 1) · κm+1

1− κm
− (Q+ 1) km − 1

N − km + 1

= 1
1− κm

(
ϵ(A)− (Q+ 1) ·

(
κm+1 + (1− κm) km − 1

N − km + 1

))

= 1
1− κm

(
ϵ(A)− (Q+ 1) ·

(
1− (1− κm) · N

N − km + 1

+ (1− κm) km − 1
N − km + 1

))

= ϵ(A)− (Q+ 1) · κm

1− κm
,

which proves the claimed success probability.
Expected Number of A-Queries. Let the random variable Tm denote the

number of A-queries made by extractor Em. By the induction hypothesis, it holds
that

E[Tm+1] ≤ Km+1 +Q · (Km+1 − 1) .

6.6 Non-Interactivity 209

We make one crucial observation, allowing us to achieve the claimed query
complexity, linear in Q. Namely, we can view the run of a (sub)extractor as a
two-stage algorithm that allows an early abort. By Lemma 6.17, after only one
A-query, Em+1 already returns the index Im. At this stage, Em can decide whether
to continue the execution of Em+1 or to early abort this execution. If the index is
incorrect, i.e., it does not match the one obtained in the first invocation of Em+1,
then Em early aborts the execution of Em+1. Only if the index is correct, the Em+1
execution has to be finished.

For this reason, we define the function (j1, . . . , jU) 7→ Γ(j1, . . . , jU), where
Γ(j1, . . . , jU) is the (expected) costs of running Em+1 (completely) with random
oracle (j1, . . . , jU). Moreover, we set γ = 1 indicating the cost of an early abort
invocation of Em+1. These cost functions measure the expected number of calls
to A.

Hence, by Lemma 6.15 and Lemma 6.16, the expected cost of running Em is at
most

E[Tm] ≤ km · E[Γ(C)] + γ ·Q · (km − 1) = km · E[Tm+1] +Q · (km − 1)
≤ Km +Q · (Km − km) +Q · (km − 1) = Km +Q · (Km − 1) ,

where C is distributed uniformly at random in CU . This completes the proof.

The existence of extractor E1, combined with the k-special-soundness property,
implies Theorem 6.11. This theorem shows that the Fiat-Shamir security loss for
k-out-of-N special-sound (2µ+1)-round interactive proofs is Q+1, i.e., the security
loss is linear in the query complexity Q of provers P∗ attacking the considered non-
interactive random oracle proof FS[Π]. In particular, the Fiat-Shamir security loss
is independent of the number of rounds (2µ+ 1) of the interactive proof Π.

Theorem 6.11 (Fiat-Shamir Transformation of a Multi-Round Interactive
Proof with a Single Challenge Set). Let k = (k1, . . . , kµ), N = (N, . . . , N) ∈ Nµ.
The Fiat-Shamir transformation FS[Π] of a k-out-of-N special-sound interactive
proof Π, in which all challenges are sampled from a set C of size N , is knowledge
sound with knowledge error

(Q+ 1) · Er(k; N) ,

where

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

N

)
is the knowledge error of the interactive proof Π.

Multi-Round Interactive Proofs with Arbitrary Challenge Sets

Thus far, we considered and analyzed multi-round interactive proofs in which all
challenges are sampled uniformly at random from the same set C of cardinality N .
However, it is straightforward to verify that our techniques also apply to multi-
round interactive proofs with different challenge sets, i.e., where the i-th challenge
is sampled from a set Ci of cardinality Ni.

210 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

A natural first step in this generalization is to consider µ random oracles
ROi : {0, 1}≤u → Ci instead of one. Besides some additional bookkeeping, all
the reasoning goes through unchanged. Indeed, everything works as is when the
prover P∗ has the additional freedom to choose which random oracle it queries.
Thus, we obtain the following generalization of Theorem 6.11.

Theorem 6.12 (Fiat-Shamir Transformation of a Multi-Round Interactive Proof).
Let k = (k1, . . . , kµ) ∈ Nµ and N = (N1, . . . , Nµ) ∈ Nµ. The Fiat-Shamir trans-
formation of a k-out-of-N special-sound interactive proof Π is knowledge sound
with knowledge error (Q+ 1) · Er(k; N), where

Er(k; N) := 1−
µ∏

i=1

(
1− ki − 1

Ni

)
is the knowledge error of the interactive proof Π.

6.6.7 An Attack on the Fiat-Shamir Transformation of a Parallel
Repetition

In the previous sections we have established a positive result: for a broad class
of interactive proofs the Fiat-Shamir security loss is only linear in the number of
queriesQ admitted to a prover P∗ attacking the considered non-interactive random
oracle proof. One might therefore wonder whether the generic security loss for
(2µ+ 1)-round interactive proofs, roughly equal to Qµ, is only tight for contrived
examples. In this section, we show that this is not the case. We demonstrate a
nontrivial attack on the Fiat–Shamir transformation of the parallel repetition of
k-out-of-N special-sound interactive proofs.

Recall that typical k-out-of-N special-sound interactive proofs Π admit a cheat-
ing strategy that succeeds if at least one of the µ random challenges ci, received
from the verifier, hits a certain set Γi of size ki−1 chosen by the dishonest prover.
The success probability of this cheating strategy matches the knowledge error

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
.

A straightforward analysis shows that this approach generalizes to a cheating strat-
egy for the t-fold parallel repetition Πt = (Pt,Vt) of Π, with success probability
Er(k; N)t again matching the knowledge error (now of Πt).

The following (informal) theorem shows the existence of an attack strategy
for the Fiat-Shamir transformation of Πt that succeeds with probability roughly
Qµ/µt+µ · Er(k; N)t. In particular, the security loss of the Fiat-Shamir trans-
formation, when applied to the t-fold parallel repetition Πt, is roughly Qµ/µt+µ.
This stands in stark contrast to a single execution of a k-out-of-N special-sound
protocol, where the loss is linear in Q and independent of µ. The main idea of
this attack is that a dishonest prover P∗ can attack different groups of parallel in-
stances in different rounds of the protocol independently. More precisely, in every
round the dishonest prover P∗ attacks t/µ parallel instances.

In order to focus on the crucial aspects of the attack, the theorem is stated
informally, allowing us to avoid certain cumbersome details. First, we do not

6.6 Non-Interactivity 211

formalize the properties required by the basic interactive proof Π and merely state
that this attacks applies to “typical” k-out-of-N special-sound interactive proofs.
Informally, our attack applies to interactive proofs where:

1. the aforementioned cheating strategy, with success probability Er(k,N), ap-
plies;

2. in the Fiat-Shamir mode the prover P∗ can try sufficiently many message-
challenge pairs in every round of the protocol.

The second property ensures that if, at some point during the attack, the random
oracle returns a challenges c that does not hit the subset specified by the dishon-
est prover P∗, i.e., this phase of the attack fails, then P∗ can simply try again
by querying the random oracle with a different input value. Typical k-out-of-N
special-sound interactive proofs admit both properties. However, there exist (ar-
tificial) counterexamples. Moreover, we only give an approximation of the success
probability, and the accuracy of this approximation is not discussed. For a more
formal treatment of this attack we refer the reader to the article [AFK22], co-
authored by Serge Fehr and Michael Klooß, on which this section is based.

Theorem 6.13 (Informal - Attack on the Fiat-Shamir Transformation of a Par-
allel Repetition). The Fiat-Shamir transformation of FS[Πt] of the t-fold parallel
repetition Πt of a “typical” k-out-of-N special-sound interactive proof Π admits a
Q-query cheating strategy that succeeds with probability “roughly”

Qµ

µt+µ
· Er(k; N)t ,

where Er(k; N) is the knowledge error of Π and, thus, Er(k; N)t is the knowledge
error of Πt.

Proof. For simplicity, let us assume k = (k, . . . , k) and N = (N, . . . , N) for some
k,N ∈ N, and assume t and Q to be multiples of µ, i.e., t = µ · t′ and Q = µ ·Q′

for some t′, µ′ ∈ N. For a more general treatment we refer to [AFK22].
The main idea of the cheating strategy is that a cheating prover P∗ attacks t′

parallel instances of Π in every round of the protocol. The attacks in the different
rounds can be executed independently.

More precisely, the cheating strategy proceeds as follows. In the first round,
the cheating prover P∗ chooses random first messages a1

1, . . . , a
t′

1 together with
subsets Γ1, . . . ,Γt′ ⊆ C1 of cardinality k − 1, such that the following holds. If the
first challenge cj

1 for instance 1 ≤ j ≤ t′ lands in Γj , then P∗ is able to honestly
complete the execution of instance j and have the verifier accept that instance.
Recall that typical k-out-of-N special-sound interactive proofs admit a cheating
strategy following precisely this approach. The first messages at′+1

1 , . . . , aµ
1 for

the remaining t− t′ parallel instances are chosen at random. Then, the prover P∗

queries the random oracle to receive the first round challenges c1
1, . . . , c

t
1 ∈ C1 for all

parallel instances. This step of the attack succeeds if cj
1 ∈ Γj for all 1 ≤ j ≤ t′, i.e.,

if the first t′ challenges land in the previously specified subsets Γj , which happens
with probability (k − 1)t′

/N t′ . If this step of the attack has not succeeded, P∗

rewinds to the start of the first round, chooses new first messages and proceeds as

212 Chapter 6 Knowledge Soundness of Compressed Σ-Protocols

before. The cheating prover P∗ tries to attack this round at most Q′ times and
therefore succeeds in doing so with probability

1−
(

1−
(
k − 1
N

)t′)Q′

≈ Q′ ·
(
k − 1
N

)t′

,

where the approximation holds if Q′ ≪ N t′
/(k − 1)t′ .

If the attack of the first round has succeeded, P∗ moves to the second round
and tries to attack parallel instances t′ + 1, . . . , 2t′ in a similar manner, again
succeeding with probability roughly Q′ ·(k−1)t′

/N t′ . While doing so P∗ generates
the messages for parallel instances 1, . . . , t′ honestly and samples the messages for
instances 2t′ + 1, . . . , t randomly. The cheating prover P∗ continues until it has
either aborted or successfully attacked all t parallel instances.

In every round, P∗ makes at most Q′ random oracle queries. Therefore, P∗ is a
Q′ ·µ = Q-query random oracle algorithm. Moreover, this attack strategy succeeds
with probability roughly(

Q′ ·
(
k − 1
N

)t′)µ

=
(
Q

µ

)µ

·
(
k − 1
N

)t

.

The observation that

Er(k,N) = 1−
(

1− k − 1
N

)µ

≤ µ · k − 1
N

,

completes the proof of this informal theorem.

6.6 Non-Interactivity 213

