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4
Compressed Σ-Protocols: Higher Level

Functionalities

4.1 Introduction

Instantiating compressed Σ-protocols with a homomorphic and compact vector
commitment scheme establishes an honest-verifier zero-knowledge proof for open-
ing linear forms L on committed vectors x. More precisely, its most basic variant
is a protocol for proving knowledge of a commitment opening (x; γ) satisfying the
linear constraint L(x) = y. This functionality might seem somewhat restrictive;
in many practical scenarios the statement one wishes to prove cannot be cap-
tured by a linear constraint directly. In this chapter, we enhance this basic linear
functionality by treating two (classes of) relations that cannot be captured by a
homomorphism directly. In both cases our strategy is to reduce the relation to our
desired starting point, i.e., a prover claiming to know a homomorphism preimage.

First, in Section 4.2, we consider proving the correctness of a large set of commit-
ted multiplication triples (αi, βi, γi = αiβi) ∈ Z3

q. The corresponding multiplica-
tive relation is clearly nonlinear and therefore cannot be captured by a homomor-
phism directly. Our approach is to linearize this relation to bring about the desired
starting point and, subsequently, apply a compressed Σ-protocol. This approach
is based on the work of [CDP12] that shows how to prove arbitrary constraints on
committed vectors by exploiting techniques from secure multi-party computation
(MPC) based on arithmetic secret sharing. More concretely, our work is based
on the ideas underlying the commitment multiplication protocol from [CDM00].
It is this combination of “compact commitments with linear openings” and arith-
metic secret sharing that allows for “linearizing nonlinear relations.” This section
is based on the article [AC20], co-authored by Ronald Cramer.

Second, in Section 4.3, we consider a prover that claims to know the homomor-
phism preimages for a subset of public elements P1, . . . , Pn, i.e., a prover claiming
to have partial knowledge about the preimages of these elements. Proofs of partial
knowledge were introduced in [CDS94]. Their solution combines Σ-protocol the-
ory and linear secret sharing, and achieves linear communication complexity. We
present a Σ-protocol, inspired by the [CDS94]-approach, for linearizing the proof
of partial knowledge relation. However, a careful re-design of the original proto-
col is necessary to allow for compression. After composing with the appropriate
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compressed Σ-protocol, we establish a proof of partial knowledge with logarith-
mic communication complexity. This section is based on the article [ACF21],
co-authored by Ronald Cramer and Serge Fehr.

4.2 An Arithmetic Secret-Sharing Based Linearization
Technique

The main result of [CDP12] is a zero-knowledge protocol for proving the correct-
ness of a large number of committed multiplication triples (αi, βi, γi = αiβi) ∈ Z3

q.
Their technique requires some adaptations to make it work for us here. In Sec-
tion 4.2.1, we first outline the technique from [CDP12] and then discuss the re-
quired adaptations. These adaptations allow us to linearize the nonlinear relations
defined by multiplication triples. Combined with our compressed Σ-protocols for
opening linear forms, we obtain an interactive proof that allows a prover to com-
mit to a large vector of multiplication triples and prove that the committed vector
is of the appropriate form.

In practice, it may happen that the prover is already committed to the vector of
multiplication triples before being asked to prove its correctness. This is referred
to as the “commit-and-prove” scenario. In order to deal with this scenario some
further utility enhancements are needed. The required enhancements, based on
the compactification techniques of Section 3.4.4, are described in Section 4.2.2.

Finally, the linearization technique of Section 4.2.1 requires q > 3m, i.e., the
multiplication triples must be defined over a large enough field Zq. In Section 4.2.3,
we show how to handle the case q ≤ 3m.

4.2.1 Proving Correctness of Multiplication Triples

Let us first outline the technique from [CDP12] for proving the correctness of com-
mitted multiplication triples. Subsequently, we describe our adaptations to this
technique. The work of [CDP12] considers homomorphic commitment schemes
where the secret committed to is not a vector in Zn

q , but a single element of Zq

instead. Their primary result is a Σ-protocol showing the correctness of com-
mitments to m multiplication triples (αi, βi, γi := αiβi). In other words, each
of the αi’s, βi’s and γi’s is individually committed to, and the protocol verifies
the multiplicative relations γi = αi · βi. The communication complexity of the
[CDP12]-approach is linear in the number of multiplication triples m. Adapta-
tions are required to make the protocol amenable for compression and reduce the
communication complexity down to logarithmic.

Their solution employs multiplicative packed secret sharing (Section 2.10). For
instance, consider Shamir’s scheme over Zq, with privacy parameter p = 1, but
with secret-space dimension m. This scheme uses random polynomials of de-
gree ≤ m, subject to the evaluations on the points 1, . . . ,m comprising the desired
secret vector. Note that, for each sharing, a single random Zq-element is required
(which can be taken as the evaluation at 0). Moreover, this packed secret scheme
can be instantiated with q −m players, with shares corresponding to the q −m
evaluations outside the points 1, . . . ,m.
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Remark 4.1. Actually, the above scheme can be instantiated with q−m+1 players
by taking the evaluation at infinity as an additional share. Because this adaptation
only has a minor impact on the properties of the protocol, we will ignore the point
at infinity in our analysis. For more details see [CDN15].

It is important to note that, given a secret vector x ∈ Zm
q and random ele-

ment r ∈ Zq, it holds by Lagrange Interpolation that, for each c ∈ Zq, the evalua-
tion f(c) of such polynomial f(X) is some public Zq-linear combination over the
coordinates of the secret vector and the random element. Namely, consider the
map that, on input m+1 arbitrary evaluations on the points 0, . . . ,m, outputs the
(coefficients of the) unique polynomial f(X) of degree ≤ m that maps the points
0, . . . ,m to these given evaluations. A transformation matrix describing this map
corresponds to the inverse of the Vandermonde-matrix

1 0 0 · · · 0
1 1 1 · · · 1
1 2 4 · · · 2m

...
... . . . ...

1 m m2 · · · mm

 ∈ Z(m+1)×(m+1)
q .

Composed with the linear evaluation at c mapping, this transformation describes
the desired Zq-linear combination.

Now, assume that 3m < q. In this case, the total number of shares q − m is
at least 2m + 1 and the above instantiation of Shamir’s secret-sharing scheme is
multiplicative. More precisely, the secret-sharing scheme has (2m + 1)-product-
reconstruction. In Section 4.2.3, we describe how to handle the case 3m ≥ q. The
[CDP12]-protocol goes as follows.

• The vectors of commitments to the multiplication triples are assumed to be
part of the common input.

• The prover selects a random polynomial f(X) of degree at most m that
defines a packed secret sharing of the vector (α1, . . . , αm). The prover also
selects a random polynomial g(X) of degree at most m that defines a packed
secret sharing of the vector (β1, . . . , βm). Finally, the prover computes the
product polynomial h(X) := f(X)g(X) of degree at most 2m < q.

• The prover commits to the random Zq-element for the sharing based on f(X),
i.e., f(0), and commits to the random Zq-element for the sharing based
on g(X), i.e., g(0). The prover also commits to the evaluations of h(X) on
the points 0,m+ 1, . . . , 2m.1 Note that the “absent” evaluations at 1, . . . ,m
comprise the γi’s and their commitments are already assumed to be part of
the common input.

• The prover sends these m+ 3 commitments to the verifier.

• The verifier selects a random challenge c ∈ Zq, distinct from 1, . . . ,m, and
sends it to the prover.

1By Lagrange interpolation these points, together with the γi’s, determine h(X).
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• By public linear combinations, both prover and verifier can compute three
commitments: one to u := f(c), one to v := g(c) and one to w := h(c). The
prover opens each of these (assuming, of course, that c /∈ {1, . . . ,m}).

• The verifier checks the three openings and verifies that u · v = w .

If the committed polynomials do not satisfy f(X)g(X) = h(X), and under the
assumption that the commitment scheme is binding, there are at most 2m val-
ues of c out of the q − m possibilities such that the final check goes through.
So a dishonest prover succeeds with probability at most 2m/(q − m), which is
smaller than 1 since 3m < q. More precisely, the protocol can be shown to be
(2m+ 1)-out-of-(q −m) special-sound under the assumption that the commit-
ment scheme is binding. Honest-verifier zero-knowledge essentially follows from
1-privacy of the secret-sharing scheme.

We now make the following observation. In the above protocol, the prover may
as well use our compressed Σ-protocol for opening linear forms as a black-box.
Indeed, the entire (4m+ 3)-dimensional Zq-vector

y =
(
α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm, f(0), g(0), h(0), h(m+ 1), . . . , h(2m)

)
of data that the prover commits to in the protocol above can be committed to in a
single compact commitment. Note that, by definition, γi = h(i) for all 1 ≤ i ≤ m,
i.e., the γi’s comprise the “missing” evaluations of h(X). Furthermore, all of the
data opened to the verifier is some fixed linear form on the (long) secret committed
vector y. Indeed, each of the values u, v and w corresponds to an opening of
a public linear form applied to y. The linear form is determined by Lagrange
interpolation as addressed above, under the convention that the form takes zeros
on the portion of the coordinates of y not relevant to the computation, i.e., all
three linear forms correspond to the evaluation of a polynomial whose coefficients
are defined by a different part of y.

Overall, in this adaptation of the [CDP12]-protocol, the prover sends a sin-
gle compact commitment to y to the verifier and, after receiving a chal-
lenge c←R Zq \ {1, . . . ,m}, the prover and verifier proceed by running a com-
pressed Σ-protocol to open three different linear forms. This interactive proof for
committing to m multiplication triples and proving the correctness of these triples
only requires the prover to send O

(
log(m)

)
elements.

4.2.1.1 Generalizing to Arbitrary Packed Secret-Sharing Schemes

For concreteness, the linearization technique has thus far been instantiated with
Shamir’s packed secret-sharing scheme. This scheme allows an m-dimensional
vector with coefficients in a finite field to be secret shared amongst q−m players.
Moreover, the deployed scheme has 1-privacy, (m+1)-reconstruction and (2m+1)-
product-reconstruction. Hence, if 2m + 1 ≤ q −m, or equivalently q > 3m, this
scheme is multiplicative.

More generally, as long as n ≥ R, the linearization technique can be instantiated
with any n-player linear secret-sharing scheme (LSSS) S for m-dimensional vectors
that has R-product-reconstruction and (p ≥ 1)-privacy. As in Section 2.10, we
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let Ŝ denote the LSSS such that every component-wise product [a; ra]S ∗ [b; rb]S
of secret sharings is a secret sharing of the component-wise product a ∗ b with
respect to Ŝ. The linearization technique, now instantiated with S, proceeds as
follows.

• The prover samples rα, rβ ←R Zt
q uniformly at random and computes rγ

such that

[α1, . . . , αm; rα]S ∗ [β1, . . . , βm; rβ ]S = [γ1, . . . , γm; rγ ]Ŝ .

• The prover commits to the long vector

y =
(
α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm, rα, rβ , rγ

)
.

in a single compact commitment.

• The verifier selects an index i←R {1, . . . , n} uniformly at random and sends
it to the prover.

• By linearity of the secret-sharing scheme, both prover and verifier can de-
termine three linear forms L1, L2 and L3: one corresponding to the i-th
share L1(y) = u of [α1, . . . , αm; rα]S when evaluated in y, one to the i-th
share L2(y) = v of [β1, . . . , βm; rβ ]S and one to the i-th share L3(y) = w of
[γ1, . . . , γm; rγ ]Ŝ .

• The prover uses a compressed Σ-protocol to open the three linear forms L1,
L2 and L3 on the compactly committed vector y.

• The verifier checks the three openings and checks whether u · v = w .

The following lemma shows that, if αi · βi ̸= γi for some i, then u · v = w with
probability at most (R − 1)/n. Hence, assuming that the commitment scheme
is binding, a dishonest prover succeeds with probability at most (R − 1)/n in
convincing the verifier.

As before, honest-verifier zero-knowledge essentially follows from (p ≥ 1)-privacy
of the secret-sharing scheme. In fact, the verifier can ask the prover to open the
shares of p different players instead of only one. For p > 1, this reduces the success
probability of a dishonest prover from (R− 1)/n down to

(
R−1

p

)
/
(

n
p

)
.

Lemma 4.1 (Arithmetic Secret Sharing Based Linearization). Let m,n, t, R ∈ N
with R ≤ n, q prime and S the linear secret-sharing scheme (LSSS) defined by
M ∈ Zn×(m+t)

q . Further, let Ŝ be the LSSS defined by

M̂ =

M1 ⊗M1
...

Mn ⊗Mn

 ∈ Zn×(m+t)2

q ,

where Mi denotes the i-th row of M . Suppose that Ŝ has R-reconstruction or,
equivalently, that S has R-product-reconstruction.
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Then, for all a,b, c ∈ Zm
q with a ∗b ̸= c and for all ra, rb and rc, it holds that

the vectors
[a; ra]S ∗ [b; rb]S ∈ Zn

q and [c; rc]Ŝ ∈ Zn
q

coincide in at most R− 1 coefficients.

Proof. First, recall that the component-wise product [a; ra]S∗[b; rb]S of S-sharings
is a secret sharing of a ∗ b with respect to Ŝ (see Section 2.10), i.e.,

[a; ra]S ∗ [b; rb]S = [a ∗ b; r]Ŝ ∈ Zn
q

for some vector r.
Since Ŝ has R-reconstruction, any A of cardinality R of the secret sharing

[a ∗ b; r]Ŝ uniquely determines a ∗ b. Hence, if there exists an R-subset A for
which the shares of [a ∗b; r]Ŝ and [c; rc]Ŝ coincide, it follows that a ∗ b = c. This
contradicts the assumption a ∗ b ̸= c and therefore such an R-subset A cannot
exist. This completes the proof of the lemma.

4.2.2 A Commit-and-Prove Variant

The compressed Σ-protocol for proving the correctness of m multiplication triples,
described in Section 4.2.1, requires the prover to commit to the vector of triples

x =
(
α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm

)
∈ Z3m

q

and the auxiliary information

aux =
(
f(0), g(0), h(0), h(m+ 1), . . . , h(2m)

)
∈ Zm+3

q

in a single compact commitment. By contrast, the original [CDP12]-protocol al-
lows the prover to generate this auxiliary information after it has committed to
the multiplication triples. A protocol where the prover can first commit to the
secret input data and at a later point in time prove that the committed input
satisfies some constraint, unknown at the time of committing to the input data, is
called a commit-and-prove protocol. Hence, whereas the original [CDP12]-protocol
is commit-and-prove, the compressed Σ-protocol of Section 4.2.1 is not.

In particular, note that the [CDP12]-protocol can be repeated arbitrarily many
times, e.g., to prove to multiple verifiers that a fixed set of commitments com-
prises a set of committed multiplication triples. In each repetition the protocol
generates fresh auxiliary information. By contrast, the compressed Σ-protocol
variant outputs a commitment to multiplication triples together with the auxil-
iary information. Hence, repeating this protocol would output different commit-
ments, allowing a dishonest prover to commit to different sets of multiplication
triples in each invocation. Moreover, since the deployed secret-sharing scheme
only has 1-privacy, a prover can not reuse a compact commitment to the long
vector y = (x, aux) ∈ Z4m+3

q . More precisely, it is crucial that the prover only
opens the evaluations f(c), g(c) and h(c) for a single challenge c ∈ Zq \{1, . . . ,m}.
This prevents the prover from reusing a given commitment to the long vector y.

In many practical scenarios, commit-and-prove functionality is crucial. Fortu-
nately, enhancing the compressed Σ-protocol for multiplication triples with this
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functionality turns out to be merely a matter of plug-and-play with the basic
theory.

To see this, suppose P ∈ H is a fixed compact commitment to the vector of m
multiplication triples x ∈ Z3m

q . We aim to bring about the desired starting point,
i.e., a single compact commitment to multiplication triples and freshly generated
auxiliary information aux ∈ Zm+3

q . Let now Q be a commitment to the vector aux
prepended with 3m zeros, i.e., to (0, aux) ∈ Z4m+3

q (here 0 denotes a vector of 3m
zeros). Then, since the commitment scheme is assumed to be homomorphic, P ·Q
is the required compact commitment to the vector y = (x, aux) containing both
the multiplication triples and the auxiliary information. What remains is for the
prover to convince the verifier that the commitment Q is of the appropriate form.
More precisely, it must prove that Q is a commitment to a vector (0, aux) starting
with at least 3m zeros. This simply amounts to opening the 3m linear forms

Li : Z4m+3
q → Zq, x 7→ xi ,

for 1 ≤ i ≤ 3m. Namely, opening Li to 0 on a compactly committed vector shows
that the i-th coordinate of this vector equals 0.

The commit-and-prove variant thus runs two amortized compressed Σ-protocols
for opening linear forms as subroutines. The first one opens the three linear forms,
corresponding to the polynomial evaluations f(c), g(c) and h(c), on the commit-
ment P · Q. The second one opens the n linear forms Li, corresponding to the
required nullity checks, on commitment Q. Recall that the costs of opening n
different linear forms on a single compact commitment can be amortized (Sec-
tion 3.4.2). Therefore, the naive commit-and-prove approach incurs roughly a
factor two loss in communication efficiency. By deploying the compactification
techniques of Section 3.4.4, this factor two loss can be avoided.

The foregoing describes how to handle the scenario where the prover is already
committed to all multiplication triples in a single compact commitment P . Sec-
tion 3.4.4 also shows how to handle the case where the prover is committed to
all coefficients of the vector x of multiplication triples individually, i.e., in sep-
arate 1-dimensional commitments. Further, in Section 7.2.2, we deploy similar
techniques to achieve a commit-and-prove circuit satisfiability protocol.

4.2.3 Correctness of Multiplication Triples in Small Fields

The linearization technique of Section 4.2.1 requires q > 3m, where m is the
number of multiplication triples in the finite field Zq. In fact, linearization is well
defined as long as q > 2m; the prover must commit to 2m+ 1 distinct evaluations
of the polynomial h(X) ∈ Zq[X]. However, since the challenges are sampled from
Zq \ {1, . . . ,m}, the linearization step itself is a (2m + 1)-out-of-(q −m) special-
sound Σ-protocol. In Chapter 6, we show that this implies a knowledge error
κ ≥ 2m/(q−m). Hence, to ensure a nontrivial knowledge error κ < 1, we must even
require q > 3m. In the discrete logarithm instantiation the prime q is exponential
in the security parameter and, with m polynomial in the security parameter, this
gives a negligible knowledge error. However, when the multiplication triples are
defined over smaller fields, possibly even with cardinality q ≤ 3m, the approach
above does not suffice. In this section, we show that only minor adaptations are
required when considering multiplication triples in small fields Zq.



114 Chapter 4 Compressed Σ-Protocols: Higher Level Functionalities

So let, as before,

x =
(
α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm

)
∈ Z3m

q

be a vector of m multiplication triples (αi, βi, γi), but now defined over a small
field with cardinality q ≤ 3m. To handle the fact that q ≤ 3m, we simply de-
fine Shamir’s secret-sharing scheme over a field extension F/Zq with cardinal-
ity at least 3m + 1. More precisely, in this case f(X) ∈ F[X], g(X) ∈ F[X]
and h(X) = f(X)g(X) define packed secret sharings, with 1-privacy, of the αi’s,
the βi’s and the γi’s. Hence, the difference with before is that the polynomials are
now defined over the field extension F instead of the base field Zq. Let d be the
degree of the extension F/Zq, i.e., |F| = qd > 3m. For simplicity, we enumerate
the elements of F, i.e., every 0 ≤ i < qd uniquely corresponds to a field element.
Then, by choosing an appropriate basis of the extension F/Zq, the vector

y =
(
x, f(0), g(0), h(0), h(m+ 1), . . . , h(2m)

)
∈ F4m+3 ,

containing all relevant information, can be viewed as a vector in Z3m+dm+3d
q . Here,

we use that the coefficients of x are elements of the base field Zq. What remains is
to observe that, also in this generalization, all evaluations of f(X), g(X) and h(X)
are accessible as Zq-affine combinations of the coefficients of y.

Taking d such that |F| = qd > 2m results in a well-defined linearization technique
for multiplication triples in Zq. It is a perfectly complete and (2m + 1)-out-of-
(qd −m) special-sound Σ-protocol with knowledge error

κ = 2m+ 1
qd −m

,

i.e., qd > 3m is required for the knowledge error to be nontrivial. Moreover, when
composed with a compressed Σ-protocol for opening linear forms, the prover only
needs to send O

(
log(n+ dm)

)
elements to the verifier.

Exactly the same approach applies to multiplication triples defined over
a ring R. In this case, the evaluation points of the Shamir polynomi-
als f(X), g(X), h(X) ∈ R[X] should be chosen from an exceptional subset of R. If
the maximal size of such an exceptional subset is too small, i.e., at most 3m, one
simply defines the secret-sharing scheme over an appropriate ring extension of R.

4.3 Proofs of Partial Knowledge

In a k-out-of-n proof of partial knowledge [CDS94] a prover knowing witnesses
for some k-subset, i.e., subset of cardinality k, of n given public statements can
convince the verifier of this claim without revealing which k-subset. Typically,
the secrets are solutions to public instances of intractable problems, such as the
discrete logarithm problem. The work of [CDS94] gives an elegant solution with
linear communication complexity that combines Σ-protocol theory with linear se-
cret sharing. Especially the “1-out-of-n” case k = 1 has seen myriad applications
during the last decades, e.g., in electronic voting, ring signatures, and confidential
transaction systems. Our goal is to construct proofs of partial knowledge with
logarithmic communication complexity in both k and n.
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4.3.1 Knowledge of k-out-of-n Homomorphism Preimages

Before we present our solution, let us formalize the k-out-of-n proof of partial
knowledge problem. To this end, for a prime q and a group (GT ,+) with expo-
nent q, let

ψ : Zq → GT

be a homomorphism. The prover now claims to know the preimages for some
k-subset of a set of n public group elements y1, . . . , yn ∈ GT . We aim to construct
an interactive proof for convincing a verifier of the veracity of this claim, without
revealing the preimages or the k-subset. More precisely, we aim to construct an
interactive proof for relation

Rk-out-of-n =
{

(y1, . . . , yn;S,x) : |S| = k, yi = ψ(xi) ∀i ∈ S ⊆ {1, . . . , n}
}
.

Note that, for notational convenience, the secret x is defined as a vector in Zn
q ,

while only the k coefficients (xi)i∈S are relevant in this relation. Further, for
simplicity we assume the domain of the homomorphism Ψ to be Zq. Our techniques
are easily generalized to arbitrary domains G. However, this would require a vector
commitment scheme for mixed vectors with coefficients in both Zq and G, such as
the commitment schemes presented in Section 5.3.

Inspired by the design principle of [CDS94], we reduce the k-out-of-n scenario
to the n-out-of-n scenario by having the prover “eliminate” the preimages (xi)i/∈S

that it does not know, and then we apply an amortized compressed Σ-protocol
to prove the n instances in one go. However, the original solution of [CDS94]
to reduce the k-out-of-n to the n-out-of-n scenario, achieved by secret sharing
the challenge, does not work for us, as the resulting protocol is not in the shape
for the compression mechanism to apply. More precisely, the third message in
the [CDS94]-protocol includes a consistent secret sharing of the challenge, which
cannot be compressed.

Instead, we use the following solution. The prover first chooses an (n− k + 1)-
out-of-n Shamir secret sharing

(
s1 = p(1), . . . , sn = p(n)

)
∈ Zn

q of the default se-
cret s = 1, where it selects the non-constant “random” coefficients a1, . . . , an−k of
the sharing polynomial

p(X) = 1 + a1X + · · ·+ an−kX
n−k ∈ Zq[X]

such that si = 0 for i /∈ S. Hence, p(X) is the unique polynomial of degree at
most n− k such that p(0) = 1 and p(i) = 0 for all i /∈ S.

Now let ti = sixi for any i, i.e., ti = 0 for all i /∈ S. The prover then commits
to the vector

(a, t) = (a1, . . . , an−k, t1, . . . , tn) ∈ Z2n−k
q

in a single compact commitment P = com(x; γ). We assume the commitment
scheme com : Z2n−k

q × Rand→ H to be homomorphic.
What remains is for the prover to show that

ψ(ti) = siyi (4.1)
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for all i ∈ {1, . . . , n}. Recall that si = p(i) = 1 +
∑n−k

j=1 aji
j . Thus, Equation 4.1

can be rewritten as

ϕi(a, t) := ψ(ti)− yi ·
n−k∑
j=1

aji
j = yi ,

where the left hand side is a group homomorphism ϕi : Z2n−k
q → GT evaluated

in the committed vector (a, t). Hence, proving knowledge of an opening of com-
mitment P that satisfies Equation 4.1 for all 1 ≤ i ≤ n, is reduced to proving
knowledge of a Ψ-preimage of (P, y1, . . . , yn), where

Ψ: Z2n−k
q × Rand→ H×Gn

T , (a, t; γ) 7→
(
com(a, t; γ), ϕ1(a, t), . . . , ϕn(a, t)

)
.

In other words, in the final step of the k-out-of-n proof of partial knowledge, the
prover opens n homomorphisms ϕi on the compactly committed vector (a, t).

For efficiency reasons, the costs of opening these n homomorphism can be amor-
tized. More precisely, instead of opening the homomorphisms ϕi individually, the
prover opens a single homomorphism Φc =

∑n
i=1 c

i−1ϕi for a challenge c←R Zq

sampled uniformly at random by the verifier. This approach is a minor adaptation
of the amortization technique presented in Section 3.4.2. The difference is that
here the coefficients of the committed vector (a, t) ∈ Zt

q are of a different type than
the homomorphism openings y1, . . . , yn ∈ GT . For this reason, the evaluations yi

can not be incorporated into the commitment.
Opening the homomorphism Φc with a standard Σ-protocol gives a novel secret-

sharing based realization of [CDS94], with linear communication complexity. How-
ever, in contrast to the original [CDS94]-approach, this novel realization is now
amenable to the compression techniques of Chapter 3, allowing us to reduce the
communication complexity form linear down to logarithmic.

The resulting interactive proof, denoted Πk-out-of-n, is formalized in Protocol 13.
Its main properties are summarized in Theorem 4.1. In particular, note that the
communication costs are logarithmic in both k and n. In this theorem, we minimize
the communication costs by applying the compression mechanism log2(2n− k)− 2
times to reduce the dimension of the secret vector (a, t) from 2n − k down to 4.
Namely, since every factor two reduction of the dimension comes at the cost of
sending two H-elements and two GT -elements, it is suboptimal to continue further
and reduce the dimension of the witness down to two or even one. This also means
that we implicitly assume that n ≥ 4.

Theorem 4.1 (k-out-of-n Proof of Partial Knowledge). Let q be a prime and
k, n, µ ∈ N such that k ≤ n and 2n − k = 2µ. Further, let ψ : Zq → GT be a
homomorphism and com : Zn

q × Rand → H a homomorphic vector commitment
scheme.

Then the compressed Σ-protocol Πk-out-of-n for relation Rk-out-of-n, described
in Protocol 13, is perfectly complete, (n, 2, 3, . . . , 3)-out-of-(q, . . . , q) special-sound,
under assumption that the commitment scheme is binding, and special honest-
verifier zero-knowledge (SHVZK), under the assumption that the commitment
scheme is hiding. Moreover, it has 2µ+ 1 communication rounds and the commu-
nication costs are:
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• P → V: 4 elements of Zq, 2µ− 3 elements of GT , 2µ− 2 elements of H and
1 element of Rand;

• V → P: µ elements of Zq.

Protocol 13 k-out-of-n Proof of Partial Knowledge Πk-out-of-n.

Parameters: k, n ∈ N, prime q, groups (GT ,+) and (H, ·)
with exponent q, ψ ∈ Hom(Zq,GT ) and
com : Z2n−k

q × Rand→ H (homomorphic)
Public Input: y1, . . . , yn ∈ GT

Prover’s Private Input: S ⊆ {1, . . . , n} with |S| = k, x1, . . . , xn ∈ Zn
q

Prover’s Claim: ψ(xi) = yi for all i ∈ S

Prover P Verifier V

p(X) = 1 +
∑n−k

i=1 aiX
i

s.t. p(i) = 0 ∀i /∈ S

t = (p(1)x1, . . . , p(n)xn)

γ ←R Rand
P = com(a, t; γ)

P−−−−−−−−−→
c←R Zq

c←−−−−−−−−−

Run the compressed Σ-protocol Σcomp of Section 3.2.3 to prove knowledge of a
preimage of (P,

∑n
i=1 c

i−1yi) with respect to homomorphism

Ψ: Z2n−k
q × Rand→ H×GT , (a, t; γ) 7→

(
com(a, t; γ),

n∑
i=1

ci−1ϕi(a, t)
)
,

where ϕi(a, t) := ψ(ti)− yi ·
∑n−k

j=1 aji
j for all 1 ≤ i ≤ n.

Proof. Completeness: This property follows from the completeness of the com-
pressed Σ-protocol Σcomp.

SHVZK: This property follows from the fact that the commitment P is hiding and
from the corresponding zero-knowledge property of Σcomp.

Special-Soundness: Similar to the proof of Theorem 3.12 it follows that, under the
assumption that the commitment scheme is binding, there exists an extrac-
tor that, on input an (n, 2, 3, . . . , 3)-tree of accepting transcripts, outputs
an opening (a, t; γ) to the commitment P such that ϕi(a, t) := yi for all
1 ≤ i ≤ n.
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Let p(X) = 1 +
∑n−k

j=1 ajX
j . Then, ϕi(a, t) := yi can be rewritten as

ψ(ti) = p(i)yi. Given the bounded degree of p and the non-zero constant
coefficient, p(i) = 0 for at most n−k choices of i ∈ {1, . . . , n}. Thus, setting
S = {i : p(i) ̸= 0}, we have |S| ≥ k, and for any i ∈ S we can set xi := ti/p(i).
This then implies that ψ(xi) = yi for all i ∈ S, which completes the proof.

Example 4.1 (Discrete Logarithm Instantiations). Taking ψ : Zq → H, x 7→ hx al-
lows one to prove knowledge of the discrete logarithms of a k-subset of public group
elements P1, . . . , Pn ∈ (H, ·). Moreover, it is easily seen that the proofs of partial
knowledge immediately generalize to homomorphism ψ : Zs

q → GT with arbitrary
input dimension s. This observation allows one to instantiate ψ as the Peder-
sen (vector) commitment function and prove knowledge of k-out-of-n commitment
openings.

Remark 4.2. Similar to the linearization technique of Section 4.2, the proof of
partial knowledge deploys Shamir’s linear secret-sharing scheme (LSSS). However,
the linearization technique for multiplication triples crucially depends on the mul-
tiplicativity of the LSSS. By contrast, the k-out-of-n proof of partial knowledge
does not require multiplicativity and can be instantiated with any n player linear
secret-sharing scheme that has (n− k + 1)-reconstruction and (n− k)-privacy.

4.3.2 Pairing-Based Reduction of the Communication Costs

The amortized communication costs for opening the homomorphisms
ϕi : Z2n−k

q → GT are roughly 4 log2(2n − k) elements. This is approximately
a factor two larger than the communication costs for opening n linear forms
Li : Z2n−k

q → Zq (Section 3.4.2). The reason is that, for a linear form, the input
and output coefficients are of the same type; both are Zq elements. Therefore,
using the techniques of Section 3.4.2, the linear form evaluations can be “incor-
porated” into the commitment. More precisely, opening n linear forms Li on a
compact commitment P = com(x; γ) can be reduced to proving knowledge of a
preimage for the homomorphism

Ψc : Z2n−k
q × Rand→ H, (x; γ) 7→ com

(
x,

n∑
i=1

ciLi(x); γ
)
,

where c ←R Zq is a challenge sampled uniformly at random by the verifier. Ap-
plying the same technique for the homomorphisms ϕi : Z2n−k

q → GT requires a
compact commitment scheme for mixed vectors

(
x,
∑n

i=1 c
iLi(x)

)
∈ Z2n−k

q ×GT

containing both Zq and GT coefficients. In some settings, e.g., when prov-
ing knowledge of k-out-of-n discrete logarithms or Pedersen commitment open-
ings, pairing-based commitment schemes with the required properties exist (Sec-
tion 5.3). These commitment schemes allow the communication costs of the cor-
responding k-out-of-n proof of partial knowledge protocol to be reduced with a
factor two, down to roughly 2 log2(2n − k) elements. For more details we refer
to [ACF21].
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4.3.3 General Access Structures

Thus far, we have restricted ourselves to provers that claim to know the preim-
ages of some (secret) subset S, of cardinality at least k, of n (public) elements
P1, . . . , Pn, i.e., the secret subset S is an element of a threshold access structure

Γk,n = {A ⊆ {1, . . . , n} : |A| ≥ k} ⊆ 2{1,...,n}.

Here, we describe how the proof of partial knowledge can easily be generalized to
arbitrary monotone access structures Γ ⊆ 2{1,...,n}, i.e., to provers that claim to
know the preimages of some subset of S ∈ Γ of n public elements. Recall that Γ is
called a monotone access structure if for all A ∈ Γ and for all B ⊆ 2{1,...,n} with
A ⊆ B it holds that B ∈ Γ. The proofs of partial knowledge of [CDS94] already
considered arbitrary access structures and we adapt their techniques by combining
them with our compression framework.

Our k-out-of-n proofs of partial knowledge implicitly deploy a linear secret-
sharing scheme (LSSS) for access structure Γ∗

k,n = Γn−k,n. Here, Γ∗ denotes the
dual of access structure Γ, generally given by

Γ∗ = {A ⊆ {1, . . . , n} : Ac /∈ Γ}.

More concretely the protocol of Section 4.3.1 uses Shamir’s secret-sharing scheme
and the polynomial p(X) = 1 +

∑n−k
j=1 ajX

j defines a secret sharing of the field
element 1.

Now let Γ be a monotone access structure and S an LSSS for sharing field el-
ements for access structure Γ∗. This implies that the adversary structure of S
equals {S : S /∈ Γ∗}, i.e., all player subsets are either qualified or unquali-
fied [CDN15]. Depending on the access structure Γ∗, it might be required that
shares are allowed to consist of several field elements.

Then, to construct a proof of partial knowledge for Γ, we simply replace p(i)
by the i-th share of a secret sharing of 1, with the randomness chosen so that the
“right” shares (i.e., those corresponding to the xi’s that the prover does not know)
vanish. Since the adversary structure of S equals {S : S /∈ Γ}, the randomness can
always be chosen such that the appropriate shares vanish, showing completeness
of the generalized proof of partial knowledge. Special-soundness follows from the
following observation. Let A ⊆ {1, . . . , n} be the subset for which all the corre-
sponding shares vanish. Then, by linearity of the secret-sharing scheme and since
the secret sharing reconstructs to 1, it follows that A /∈ Γ∗. Hence, Ac ∈ Γ and
special-soundness follows as before.

The communication complexity of the resulting protocol depends logarithmically
on the size of the LSSS for Γ∗, which is given by the monotone-span-program
complexity of Γ∗ [SJM91] and which coincides with the monotone-span-program
complexity of Γ [Gál95].




