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3
Compressible Σ-Protocols

3.1 Introduction

The theory of Σ-protocols [Cra96] provides a well-understood basis for the modu-
lar design of cryptographic protocols. Recently, Bulletproofs [BCC+16; BBB+18]
have been introduced as a “drop-in replacement” for Σ-protocols in several im-
portant applications. Notably, this includes zero-knowledge for arithmetic circuit
relations with communication complexity logarithmic in the size of the circuit. By
contrast, standard Σ-protocols implement this functionality with linear communi-
cation complexity.

In this chapter, we reconcile Bulletproofs with Σ-Protocol Theory, allowing for a
simpler and modular design of cryptographic protocols within established theory,
while achieving exactly the same logarithmic communication. More precisely, we
show that Bulletproofs’ folding technique can be repurposed as a compression
mechanism for a large class of standard Σ-protocols reducing their communication
complexity from linear down to logarithmic.

We present our results in an abstract and generic language by observing that
the core functionality we are aiming for is proving knowledge of a preimage of
some one-way group homomorphism

Ψn : Gn → H .

The desired applications then follow as appropriate instantiations of our abstract
protocols.

In Section 3.2, we handle precisely this scenario. First, we present a well-
known Σ-protocol for proving knowledge of a preimage of the homomorphism
Ψn : Gn → H. Second, by an appropriate adaptation of Bulletproof’s folding
technique, we show how to reduce the communication complexity from linear
down to logarithmic in n. The resulting protocol is referred to as a compressed
Σ-protocol. Moreover, we provide certain functionality enhancements for (com-
pressed) Σ-protocols.

In Section 3.3, we generalize this functionality to proving knowledge of a “short”
preimage. This generalization is motivated by the desired strong-RSA and lattice
instantiations of our protocols. In these instantiations the one-way property of the
homomorphisms of interest only holds with respect to “short” preimages, i.e., it is
easy to find arbitrary preimages, but hard to find short preimages.
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In Section 3.4, we discuss perhaps the most prominent instantiation of our ab-
stract protocols; proving knowledge of a commitment opening satisfying a given,
but arbitrary, linear constraint. Since the resulting protocols can be instantiated
from a wide variety of commitment schemes, the results of this section are still
generic; we only require the commitment scheme to be homomorphic and compact,
i.e., the size of a commitment should be constant (or at the very least sublinear) in
the size of the committed vector. Further, we present certain efficiency improve-
ments for proving knowledge of commitment openings.

This chapter is based on the articles [AC20; ACF21; ACK21], co-authored by
Ronald Cramer, Serge Fehr and Lisa Kohl.

3.2 Proving Knowledge of Homomorphism Preimages

Let Ψn : Gn → H be a homomorphism between abelian groups (Gn,+) and (H, ·)
with prime exponent q ≥ 3. Note that the group operations in G (and Gn) are
written additively and the ones in H are written multiplicatively. Further, recall
that the exponent of a group (K, ·) is the smallest integer e such that ge = 1 for
all all g ∈ K. In particular, it is easy to see that both G and Gn have the same
exponent q. Moreover, recall that abelian groups with exponent q are Zq-modules,
and that therefore Ψn is actually a Zq-module homomorphism.

Our goal is to construct a communication-efficient interactive proof for proving
knowledge of a preimage x ∈ Gn of a public element P ∈ H, i.e., an interactive
proof for relation

Rn = {(P,Ψn; x) : Ψn(x) = P} . (3.1)

For technical reasons, we consider the homomorphism Ψn as part of the statement.
However, if Ψn is clear from context, we will also refer to the group elements P ∈ H
as statements, and thereby omit the more cumbersome statement notation (P,Ψn).

Obviously, an interactive proof for relation Rn only bears practical relevance
for statements (P,Ψn), where Ψn is a one-way homomorphism, i.e., it should be
hard to invert Ψn and compute preimages of public elements P ∈ H. In this
case, Ψn is a q-one-way homomorphism [Cra96; CD98], i.e., Ψn is a one-way
homomorphism with an efficient procedure for computing preimages of P q for
arbitrary P . However, our techniques do not need Ψn to be one-way, and we will
therefore not impose this requirement.

In Section 3.2.1, we present a basic Σ-protocol for relation Rn, following
the standard and well-known approach for q-one-way homomorphisms. In Sec-
tion 3.2.2, we introduce a compression mechanism for reducing the communica-
tion costs of this Σ-protocol. In Section 3.2.3, we recursively compose the Σ-
protocol with the compression mechanism and obtain a compressed Σ-protocol
for relation Rn with logarithmic round and communication complexity. To this
end, we formalize what it means for two interactive proofs to be composable.
In Section 3.2.4, we enhance the functionality with an amortization technique,
well known from Σ-protocol theory, for proving knowledge of many preimages for
the price of one. Finally, in Section 3.2.5, we present a natural generalization
of the compression mechanism, and show how to achieve sublinear, although not
logarithmic, communication complexity in a constant number of rounds.
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3.2.1 Basic Σ-Protocol

The basic Σ-protocol Σb = (P,V) for relation Rn = {(P,Ψn; x) : Ψn(x) = P},
described in Protocol 1, follows the generic design for q-one-way homomor-
phisms [Cra96; CD98]. Theorem 3.1 shows that Σb is perfectly complete, 2-out-of-q
special-sound and special honest-verifier zero-knowledge (SHVZK). Both the com-
munication costs from the prover P to the verifier V, and vice versa, are given.
Note that such Σ-protocols are oftentimes deployed non-interactively, via the Fiat-
Shamir transformation [FS86], in which case the communication costs from verifier
to prover might be irrelevant.

Protocol 1 Basic Σ-Protocol Σb for Relation Rn.

Parameters: n ∈ N, prime q, and
groups (G,+) and (H, ·) with exponent q

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H)
Prover’s Private Input: x ∈ Gn

Prover’s Claim: Ψn(x) = P

Prover P Verifier V

r←R Gn

A = Ψn(r) A−−−−−−−−−→
c←R Zq

c←−−−−−−−−−
z = r + cx

z−−−−−−−−−→ Ψn(z) ?= A · P c

Theorem 3.1 (Basic Σ-Protocol). The Σ-protocol Σb for relation Rn, described
in Protocol 1, is perfectly complete, 2-out-of-q special-sound and special honest-
verifier zero-knowledge (SHVZK). Moreover, the communication costs are:

• P → V: n elements of G and 1 element of H;

• V → P: 1 element of Zq.

Proof. Completeness: This property follows directly from the fact that Ψn is a
homomorphism between groups with exponent q, i.e., it is a Zq-module ho-
momorphism.

Special-Soundness: Let (A, c, z) and (A, c′, z′) be two accepting transcripts with
common first message A and distinct challenges c ̸= c′ ∈ Zq. Then z̄ =
(c− c′)−1(z−z′) ∈ Gn is easily seen to satisfy Ψ(z̄) = P , i.e., z̄ ∈ Rn(P,Ψn)
is a witness for statement (P,Ψn), which proves that Σb is 2-out-of-q special-
sound.

SHVZK: Transcript are simulated as follows. Sample c ←R Zq and z ←R Gn

uniformly at random and set A = Ψ(z) · P−c. It is immediate that, if P
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admits a witness, i.e., P ∈ LR = Ψ(Gn), then simulated transcripts (A, c, z)
have exactly the same distribution as honestly generated transcripts, which
completes the proof of the theorem.

Remark 3.1. In the proof of Theorem 3.1, it is implicitly assumed that messages of
an accepting transcript (A, c, z) for basic Σ-protocol Σb are of the “correct type.”
In particular, the prover’s first message A is an element in the group H and the
prover’s final message z is a vector in Gn. In practical implementations, this means
that the verification algorithm should reject messages that are not of the correct
type. In the remainder of this dissertation, without loss of generality, we assume
that even dishonest provers deviating from the protocol description always send
message of the correct type.

3.2.2 A Compression Mechanism

The communication complexity of Σ-protocol Σb is linear in n. More precisely,
the final message z ∈ Gn of this protocol is n-dimensional, i.e., it has exactly the
same size as the secret witness x. The crucial observation is now that this final
message is again a witness with respect to relation Rn, but now for a different
statement (Q,Ψn), i.e., z ∈ Rn(Q,Ψn). This is no coincidence, as it holds generi-
cally for this standard construction of Σ-protocols for q-one-way homomorphisms.
The final message of protocol Σb can therefore be understood as a trivial interac-
tive proof for relation Rn. Namely, the prover simply reveals the witness z. Note
that Q = A · P c is efficiently computable, given the initial statement P and the
first two messages A and c.

Replacing this trivial interactive proof by a more efficient one will thus reduce the
communication costs without affecting the security (significantly). In particular,
the alternative interactive proof does not have to be zero-knowledge, because the
trivial one clearly is not.

Our compression mechanism Σc is thus again an interactive proof for relation

Rn = {(P,Ψn; x) : Ψn(x) = P} .

However, in contrast to Σb, it is not special honest-verifier zero-knowledge.
The compression mechanism Σc uses an adaptation of Bulletproofs’ folding

technique [BCC+16; BBB+18], and thereby reduces the communication costs by
roughly a factor two. For simplicity, let us assume that n is even; if it is not,
the witness x ∈ Gn can be appended with a zero. The witness x = (xL,xR) can
be divided into a left half xL ∈ Gn/2 and a right half xR ∈ Gn/2. We will write
(0,y), (y, 0) ∈ Gn for the n-dimensional vectors that contain y ∈ Gn/2 appended
with n/2 zeros on the left and right, respectively.

The compression mechanism Σc, described in Protocol 2, now proceeds as fol-
lows. The prover sends A = Ψn(0,xL) and B = Ψn(xR, 0) to the verifier. Then,
upon receiving a challenge c ∈ Zq, sampled uniformly at random by the veri-
fier, the prover sends z = xL + cxR ∈ Gn/2 to the verifier, who confirms that
Ψn(cz, z) = A · P c · Bc2 . Note that the final response z is the combination of the
left and right halves of the witness x = (xL,xR). For this reason, this procedure is
also referred to as folding. Hence, at the cost of sending two H-elements A and B,
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the prover reduces the number of G-elements it has to send from n down to n/2.
Moreover, the compression mechanism Σc has three rounds, and is therefore a Σ-
protocol. Further, it is 3-out-of-q special-sound and thus requires q ≥ 3. The main
properties of the compression mechanism Σc are summarized in Theorem 3.2.

Protocol 2 Compression Mechanism Σc for relation Rn.

Parameters: n = 2m ∈ N, prime q, and
groups (G,+) and (H, ·) with exponent q ≥ 3

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H)
Prover’s Private Input: xL,xR ∈ Gn/2

Prover’s Claim: Ψn(xL,xR) = P

Prover P Verifier V

A = Ψn(0,xL)
B = Ψn(xR, 0) A,B−−−−−−−−−→

c←R Zq
c←−−−−−−−−−

z = xL + cxR ∈ Gn/2

z−−−−−−−−−→ Ψn(cz, z) ?= A · P c ·Bc2

Theorem 3.2 (Compression Mechanism). Let n ∈ N be even. Then, the compres-
sion mechanism Σc for relation Rn, described in Protocol 2, is a perfectly complete
and 3-out-of-q special-sound Σ-protocol. Moreover, the communication costs are:

• P → V: n/2 elements of G and 2 elements of H;

• V → P: 1 element of Zq.

Proof. Completeness: This property follows immediately.
Special-Soundness: Let (A,B, c1, z1), (A,B, c2, z2) and (A,B, c3, z3) be three ac-

cepting transcripts with common first message (A,B) and pairwise distinct
challenges c1, c2, c3 ∈ Zq. Further, let us define the Vandermonde matrix

V =

 1 1 1
c1 c2 c3
c2

1 c2
2 c2

3

 ∈ Z3×3
q ,

with determinant (c2 − c1)(c3 − c1)(c3 − c2) ∈ Zq. Since the challenges
c1, c2, c3 ∈ Zq are pairwise distinct, this determinant is non-zero and the
matrix V is invertible. Leta1

a2
a3

 = V −1

0
1
0

 ∈ Z3
q
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and z̄ =
∑3

i=1 ai(cizi, zi) ∈ Gn. Then

Ψ(z̄) = Ψ(c1z1, z1)a1 ·Ψ(c2z2, z2)a2 ·Ψ(c3z3, z3)a3

= Aa1+a2+a3 · P c1a1+c2a2+c3a3 ·Bc2
1a1+c2

2a2+c2
3a3

= P ,

i.e., z̄ ∈ Rn(P,Ψn) is a witness for statement (P,Ψn), which completes the
proof.

3.2.2.1 Intermezzo: A General View on the Compression Mechanism.

Implicitly, our compression mechanism uses the following linear encoding, param-
eterized by an arbitrary challenge c ∈ Zq,

Encc : Gn → Gn, x = (xL,xR) 7→ (0,xL) + c(xL,xR) + c2(xR, 0) .

This encoding has three properties that are necessary and sufficient for our pur-
poses:

1. For fixed c ∈ Zq, Encc(x) is a linear combination of (0,xL), x and (xR, 0).
Hence, Ψn

(
Encc(x)

)
is a linear combination of Ψn(0,xL), Ψn(x) and

Ψn(xR, 0), i.e., Ψn

(
Encc(x)

)
is a linear combination of elements that are

independent of c ∈ Zq.

2. For pairwise distinct c1, c2, c3 ∈ Zq and fixed A,B, P ∈ H, there exist ef-
ficiently computable a1, a2, a3 ∈ Zq, such that Qa1

1 · Q
a2
2 · Q

a3
3 = P , where

Qi = A · P ci ·Bc2
i for 1 ≤ i ≤ 3.

3. For fixed c ∈ Zq,

Encc(xL,xR) =
(
c(xL + cxR),xL + cxR

)
∈ {(cz, z) ∈ Gn : z ∈ Gn/2} ,

i.e., the image Encc(Gn) is a linear subspace of Gn of dimension n/2.
The first property allows the prover to send A = Ψn(0,xL) and B = Ψn(xR, 0)
to the verifier before receiving the challenge c ∈ Zq, while still being able to
efficiently compute a preimage of A · P c · Bc2 , after receiving the challenge c.
This property therefore implies completeness of Σc. The second property of the
encoding directly implies 3-out-of-q special-soundness. Finally, the third property
shows that the preimage of A ·P c ·Bc2 , requested by the verifier, lies in a subspace
of dimension n/2. For this reason, the final message can be reduced to a vector
of dimension n/2 instead of n, i.e., a reduction of roughly a factor two in the
communication costs.

3.2.3 The Compressed Σ-Protocol

Analogously to the previous section, we observe that the final message z ∈ Gn/2

of compression mechanism Σc is a witness, but now with respect to relation Rn/2

and for statement (Q,Ψn/2), where Q = A · P c ·Bc2 ∈ H and

Ψn/2 : Gn/2 → H, x 7→ Ψn(cx,x) .
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Therefore, the final message can again be understood as a trivial interactive proof,
but now for relation Rn/2 instead of Rn. To further reduce the communication
costs, this message can be replaced by another appropriate instantiation of com-
pression mechanism Σc. Continuing in this manner until the final message is of
constant dimension, e.g., dimension 1, results in an interactive proof with a loga-
rithmic (in n) communication complexity.

Our compressed Σ-protocol is thus the recursive composition of Σ-protocol Σb

and appropriate instantiations of compression mechanism Σc. For this reason, let
us define what it means for two interactive proofs to be composable. Informally,
two interactive proofs Π1 = (P1,V1) and Π2 = (P2,V2), for relations R1 and R2
respectively, are composable if the verifier V1 accepts if and only if P1’s final mes-
sage is a witness for some statement (that may depend on the protocol transcript)
with respect to relation R2. The following definition formalizes this notion of
composability.

Definition 3.1 (Composable Interactive Proofs). Let Π1 be a (2µ1 + 1)-round
interactive proof for relation R1 and let Π2 be a (2µ2 + 1)-round interactive proof
for relation R2. Then Π1 and Π2 are said to be composable if there exists an
efficiently computable function ϕ, such that a transcript (a1, c1, a2, . . . , cµ1 , aµ1+1)
of Π1(x1), on public input x1 ∈ {0, 1}∗, is accepting if and only if aµ1+1 is a witness
for statement x2 = ϕ(x1, a1, c1, . . . , cµ1), i.e., aµ1+1 ∈ R2(x2).

In this case, we write Πc = Π2 ⋄ Π1 for their composition, which proceeds as
follows. On input statement-witness pair (x1;w1), the prover and verifier run
Π1(x1;w1) without the prover sending the final message, i.e., the prover obtains a
complete protocol transcript (a1, c1, . . . , cµ1 , aµ1+1) and the verifier obtains a par-
tial protocol transcript (a1, c1, . . . , cµ1). Both the prover and the verifier compute
x2 = ϕ(x, a1, c1, . . . , cµ1) and run Π2 on statement-witness pair (x2; aµ1+1) ∈ R2.
The verifier accepts if the verification for Π2 succeeds.

The following lemma summarizes the main properties of the composition Π2⋄Π1
of two interactive proofs.

Lemma 3.1 (Composable Interactive Proofs). Let Π1 and Π2 be composable
interactive proofs for relations R1 and R2, respectively. Moreover, let µ1, µ2 ∈ N
such that Π1 has 2µ1 + 1 rounds and Π2 has 2µ2 + 1 rounds. Then:

• Π2 ⋄Π1 is an interactive proof for relation R1 with 2(µ1 + µ2) + 1 rounds;

• if Π1 has completeness error ρ1 : {0, 1}∗ → [0, 1] and Π2 has constant com-
pleteness error ρ2 ∈ [0, 1], then Π2 ⋄Π1 has completeness error

ρ : {0, 1}∗ → [0, 1], x 7→ (1− ρ2)ρ1(x) + ρ2 ;

• if Π1 is k1-out-of-N1 special-sound and Π2 is k2-out-of-N2 special-sound,
then Π2 ⋄Π1 is (k1,k2)-out-of-(N1,N2) special-sound;

• if Π1 is special honest-verifier zero-knowledge, then so is Π2 ⋄Π1.

Proof. It follows by construction that Π2⋄Π1 is an interactive proof for relation R1
with 2(µ1 + µ2) + 1 rounds. So let us prove the remaining claims of the lemma.
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Completeness: Let (a1, c1, . . . , cµ1 , aµ1+1) be a transcript output by Π1 evaluated
on statement-witness pair (x1;w1) ∈ R1. Then, if the verifier of Π2 ⋄ Π1
rejects, it must hold that either aµ+1 is not a witness for statement x2 =
ϕ(x1, a1, c1, . . . , cµ1) with respect to relation R2, or the Π2-verifier rejects
the transcript output by Π2(x2; aµ+1). By the composability of Π1 and Π2
and the completeness of Π1, the former happens with probability at most
ρ1(x1). By the completeness of Π2, the latter event happens with probability
at most ρ2. Note that ρ2 is assumed to be constant. Hence, the probability
that the output of Π2 ⋄Π1, on input (x1;w1) ∈ R1 is rejected, is at most

1− (1− ρ1(x1)) (1− ρ2) = (1− ρ2)ρ1(x) + ρ2 ,

which proves the claimed completeness error.
Special-Soundness: Let us write k1 = (k1, . . . , kµ1). Then any (k1,k2)-tree of

accepting transcripts for Π2 ⋄Π1, on input x ∈ {0, 1}∗, is the composition of
K1 =

∏µ1
i=1 ki accepting (1, . . . , 1,k2)-trees Y1, . . . ,YK1 .

For all 1 ≤ j ≤ K1, all transcripts in the tree Yj have the same first 2µ1
messages (a1,j , c1,j , a2,j , . . . , cµ1,j) which, by the composability property, cor-
responds to a statement x2,j = ϕ(x, a1,j , c1,j , a2,j , . . . , cµ1,j) ∈ {0, 1}∗. By
the special-soundness property of Π2, a witness w2,j ∈ R2(x2,j) can be
computed efficiently from the (1, . . . , 1,k2)-tree Yj of accepting transcripts.
Namely note that, by construction of Π2 ⋄ Π1, Yj contains a k2-tree of ac-
cepting transcripts for Π2 on public input x2,j . By the composability of Π1
and Π2, it follows that the transcript (a1,j , c1,j , a2,j . . . , cµ1,j , w2,j) must be
an accepting transcript for Π1 on input x, i.e., every (1, . . . , 1,k2)-tree of ac-
cepting transcripts Yj corresponds to an accepting transcript for interactive
proof Π1.
Moreover, the K1 accepting transcripts corresponding to the trees
Y1, . . . ,YK1 form a k1-tree of transcripts. By the special-soundness property
of Π1, a witness w ∈ R1(x) can be computed efficiently from this k1-tree of
accepting transcripts for Π1. Hence, a witness w can be computed efficiently
from every (k1,k2)-tree of accepting transcripts, which proves the claimed
special-soundness property for Π2 ⋄Π1.

SHVZK: The simulator S proceeds as follows. It samples µ1 + µ2 challenges for
Π2 ⋄ Π1 uniformly at random. Then it uses the first µ1 challenges to run
the simulator for Π1 and obtains a transcript (a1, c1, . . . , cµ1 , aµ1+1). Sub-
sequently, S runs Π2 on input (ϕ(a1, c1, . . . , cµ1); aµ1+1) ∈ R2 and obtains
a transcript (a′

1, c
′
1, . . . , c

′
µ2
, a′

µ2+1) for Π2, using the µ2 challenges sampled
before. The simulator then outputs the transcript

(a1, c1, . . . , cµ1 , a
′
1, c

′
1, . . . , c

′
µ2
, a′

µ2+1)

for Π2 ⋄ Π1 of length 2(µ1 + µ2) + 1. It follows immediately that simulated
transcripts have the same distribution as honestly generated ones, which
completes the proof of the lemma.
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Remark 3.2. Lemma 3.1 assumes that the completeness error of Π2 is constant.
In general, the completeness error is a function of the statement x ∈ {0, 1}∗.
However, this more general treatment would significantly complicate the analysis
of Π2⋄Π1. More precisely, in this general treatment, the completeness error ϕ2(x2)
of Π2 is a function of the public statement x2 used in the instantiation of Π2 within
Π2⋄Π1, and not a function of the input statement x1 of Π2⋄Π1. Since we typically
consider interactive proofs with constant completeness error, we have omitted this
more general treatment.

Let us now return to Σ-protocol Σb and compression mechanism Σc and show
that they are composable. To this end, let

ϕ : {0, 1}∗ → {0, 1}∗, (P,Ψn, A, c) 7→ (A · P c,Ψn) .

Then a transcript (A, c, z) for Σb, on public input (P,Ψn), is accepting if and only
if z is a witness for ϕ(P,Ψn, A, c), i.e., Σb and Σc are indeed composable and their
composition Σc ⋄ Σb is well defined. Similarly, by defining the function

ϕ′ : {0, 1}∗ → {0, 1}∗, (P,Ψn, A,B, c) 7→
(
AP cBc2

,Ψn/2 : x 7→ Ψn(cx,x)
)
,

it follows that the compression mechanism Σc instantiated for relation Rn is com-
posable with Σc instantiated for Rn/2.

Our compressed Σ-protocol Σcomp for relation Rn, i.e., the recursive composition
of Σb and appropriate instantiations Σc, is therefore well defined. In every appli-
cation of the compression mechanism, at the cost of sending two H-elements, the
dimension of the witness is reduced by a factor two. For simplicity, let us assume
that the initial dimension n of the witness is a power of two, i.e., n = 2µ. If this
is not the case, the witness can be appended with zeros. The optimal amount of
recursions depends on the bit-size of G- and H-elements. For instance, reducing
the witness dimension from two down to one, would reduce the communication
costs by one element of G, but it would increase the communication costs by 2
elements of H; this is only beneficial if G-elements are at least twice as large of
H-elements. For simplicity, we optimize the communication cost for instantiations
where elements of G and H have the same bit-size, by continuing the compression
until the witness has dimension two. However, we note that Σcomp is easily adapted
to other scenarios.

Altogether, the compressed Σ-protocol is therefore defined as

Σcomp = Σc ⋄ · · · ⋄ Σc︸ ︷︷ ︸
µ−1 times

⋄Σb .

The main properties of Σcomp follow (recursively) from Lemma 3.1 and are sum-
marized in Theorem 3.3. For completeness, a full protocol description is given in
Protocol 3.

Theorem 3.3 (Compressed Σ-Protocol). Let n = 2µ for some µ ∈ N. Then the
compressed Σ-protocol Σcomp for relation Rn, described in Protocol 3, is perfectly
complete, (2, 3, . . . , 3)-out-of-(q, . . . , q) special-sound and special honest-verifier
zero-knowledge (SHVZK). Moreover, it has (2µ + 1) communication rounds and
the communication costs are:
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• P → V: 2 elements of G and 2µ− 1 elements of H;

• V → P: µ elements of Zq.

Protocol 3 Compressed Σ-Protocol Σcomp for Relation Rn.

Parameters: n = 2µ ∈ N, prime q, and
groups (G,+) and (H, ·) with exponent q ≥ 3

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H)
Prover’s Private Input: x ∈ Gn

Prover’s Claim: Ψn(x) = P

Prover P Verifier V

r←R Gn

A0 = Ψn(r) A0−−−−−−−−−→
c1 ←R Zq

x1 = (x1
L,x1

R) = r + c1x c1←−−−−−−−−−
Q1 = A0P

c1

A1 = Ψn(0,x1
L)

B1 = Ψn(x1
R, 0) A1,B1−−−−−−−−−→

c2 ←R Zq
c2←−−−−−−−−−

x2 = x1
L + c2x1

R ∈ Gn/2 Q2 = A1Q1
c2B

c2
2

1

...
...

...

Aµ−1 = Ψ4(0,xµ−1
L )

Bµ−1 = Ψ4(xµ−1
R , 0) Aµ−1,Bµ−1−−−−−−−−−→

cµ ←R Zq
cµ←−−−−−−−−−

z = xµ−1
L + cµxµ−1

R ∈ G2 Qµ = Aµ−1Qµ−1
cµB

c2
µ

µ−1
z−−−−−−−−−→

Ψ2(z) ?= Qµ

The homomorphisms Ψℓ, for ℓ ∈ {2, 4, . . . , 2µ−1}, are defined recursively:

Ψℓ : Gℓ → H, y 7→ Ψ2ℓ(cµ−log(ℓ)+1y,y) .

3.2.4 Amortizing the Communication Costs

Various techniques from Σ-protocol theory are directly applicable to compressed
Σ-protocols. As an example we show how to prove knowledge of many preim-
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ages of the homomorphism Ψn with the same communication costs as before, i.e.,
amortizing the communication costs over many statement-witness pairs.

Protocol 4 describes the standard Σ-protocol Σa for this amortized setting, i.e.,
it is a Σ-protocol for relation

RA = {(P1, . . . , Ps,Ψn; x1, . . . ,xs) : Ψn(xi) = Pi ∀i} .

The properties of Σa are summarized in Theorem 3.4. In particular, note that the
communication costs of Σa, while linear in n, are independent of the number of
statements s. Moreover, Σa is (s+1)-out-of-q special sound and therefore requires
q ≥ s+ 1.

Theorem 3.4 (Amortized Σ-Protocol). The amortized Σ-protocol Σa for rela-
tion RA, described in Protocol 4, is perfectly complete, (s+1)-out-of-q special-sound
and special honest-verifier zero-knowledge (SHVZK). Moreover, the communica-
tion costs are:

• P → V: n elements of G and 1 element of H;

• V → P: 1 element of Zq.

Proof. Completeness: This property follows immediately.
Special-Soundness: Let (A, c0, z0), . . . , (A, cs, zs) be s + 1 accepting transcripts

with common first message A and pairwise distinct challenges cj ∈ Zq. Fur-
ther, let us define the Vandermonde matrix

V =


1 1 · · · 1
c0 c1 · · · cs

...
... . . . ...

cs
0 cs

1 · · · cs
s

 ∈ Z(s+1)×(s+1)
q ,

with determinant
∏

i<j(cj − ci) ∈ Zq. Since the challenges cj ∈ Zq are
pairwise distinct, this determinant is nonzero and the matrix V is invertible.
Let (aj,i)0≤j,i≤s = V −1, i.e., the aj,i’s are the entries of the inverse of V ,
and, for 1 ≤ ℓ ≤ s, let z̄ℓ =

∑s
j=0 aj,ℓzj ∈ Gn. Then

Ψ(z̄ℓ) = Ae0 ·
s∏

i=1
P ei

i ,

where e0 =
∑s

j=0 aj,ℓ and ei =
∑s

j=0 aj,ℓc
i
j for all 1 ≤ i ≤ s. Hence,

ei = 0 for all i ̸= ℓ and eℓ = 1. It follows that Ψ(z̄ℓ) = Pℓ, i.e., (z̄1, . . . , z̄s)
is a witness for statement (P1, . . . , Ps), which proves the claimed special-
soundness property.

SHVZK: Transcripts are simulated as follows. Sample c ←R Zq and z ←R Gn

uniformly at random and set A = Ψ(z) ·
∏s

i=1 P
−ci

i . It is immediate that,
if (P1, . . . , Ps) admits a witness, then simulated transcripts (A, c, z) have
exactly the same distribution as honestly generated transcripts, which com-
pletes the proof of theorem.
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Protocol 4 Amortized Σ-Protocol Σa for Relation RA.

Parameters: n, s ∈ N, prime q, and groups (G,+) and (H, ·)
with exponent q ≥ s+ 1

Public Input: P1, . . . , Ps ∈ H, Ψn ∈ Hom(Gn,H)
Prover’s Private Input: x1, . . . ,xs ∈ Gn

Prover’s Claim: Pi = Ψn(xi) ∀i

Prover P Verifier V

r←R Gn

A = Ψn(r) A−−−−−−−−−→
c←R Zq

c←−−−−−−−−−
z = r +

∑s
i=1 c

ixi
z−−−−−−−−−→ Ψn(z) ?= A ·

∏s
i=1 P

ci

i

The final message of Σa is a witness for relation Rn. Therefore, Σ-protocol Σa

is amenable for our compression mechanism. This underlines our viewpoint that
the compression mechanism is a strengthening of the well-established Σ-protocol
theory. Let us write

ΣA = Σc ⋄ · · · ⋄ Σc︸ ︷︷ ︸
µ−1 times

⋄Σa .

for the resulting compressed Σ-protocol for relation RA. Its properties are sum-
marized in Theorem 3.5. Note that compression has reduced the communication
complexity from linear down to logarithmic in n.

Theorem 3.5 (Amortized Compressed Σ-Protocol). Let n = 2µ ∈ N. Then the
amortized compressed Σ-protocol ΣA for relation RA is perfectly complete, uncon-
ditionally (s+1, 3, . . . , 3)-out-of-(q, . . . , q) special-sound and special honest-verifier
zero-knowledge (SHVZK). Moreover, it has (2µ + 1) communication rounds and
the communication costs are:

• P → V: 2 elements of G and 2µ− 1 elements of H;

• V → P: µ elements of Zq.

3.2.5 Sublinear Communication in Constant Rounds

Towards reducing the dimension, the compression mechanism Σc divides the
witness x = (xL,xR) ∈ Gn in two parts xL and xR. This approach has a
straightforward generalization, where the witness is divided into k parts, i.e.,
x = (x1, . . . ,xk). This generalization, denoted by Σk, is described in Proto-
col 5 and its properties are summarized in Theorem 3.6. In particular, Σk is
(2k − 1)-out-of-q special-sound and therefore requires q ≥ 2k − 1.
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Protocol 5 Generalized Compression Mechanism Σk with k-fold folding.

Parameters: n = k ·m ∈ N, prime q, and groups (G,+)
and (H, ·) with exponent q ≥ 2k − 1

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H)
Prover’s Private Input: x = (x1, . . . ,xk) ∈ Gn

Prover’s Claim: Ψn(x1, . . . ,xk) = P

Prover P Verifier V

A1 = Ψn(0, . . . , 0,x1)
A2 = Ψn(0, . . . , 0,x1,x2)

...
A2k−1 = Ψn(xk, 0, . . . , 0) A1,...,Ak−1−−−−−−−−−→

Ak+1,...,A2k−1

c←R Zq
c←−−−−−−−−−

z =
∑k

i=1 c
i−1xi ∈ Gn/k

z−−−−−−−−−→ Ψn(ck−1z, . . . , cz, z)

?= P ·
∏
i ̸=k

Aci

i

Theorem 3.6 (Generalized Compression Mechanism). The generalized compres-
sion mechanism Σk for relation Rn, described in Protocol 5, is a perfectly complete
and (2k−1)-out-of-q special-sound Σ-protocol. Moreover, the communication costs
are:

• P → V: n/k elements of G and 2k − 2 elements of H;

• V → P: 1 element of Zq.

Proof. Completeness: This property follows immediately.
Special-Soundness: Let

(A1, . . . , Ak−1, Ak+1, . . . , A2k−1, c0, z0) ,
...

(A1, . . . , Ak−1, Ak+1, . . . , A2k−1, c2k−2, z2k−2) ,

be 2k − 1 accepting transcripts with common first message and pairwise
distinct challenges cj ∈ Zq. Further, let us define the Vandermonde matrix

V =


1 1 · · · 1
c0 c1 · · · c2k−2
...

... . . . ...
c2k−2

0 c2k−2
1 · · · c2k−2

2k−2

 ∈ Z(2k−1)×(2k−1)
q ,
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with determinant
∏

i<j(cj − ci) ∈ Zq. Since the challenges cj ∈ Zq are
pairwise distinct, this determinant is nonzero and the matrix V is invertible.
Let a = (a0, . . . , a2k−2)T = V −1ek, where ek is the k-th unit vector, i.e.,
ek’s k-th entry is 1 and its remaining entries are zero. Then

z̄ =
2k−2∑
i=0

ai(ck−1
i zi, . . . , czi, zi) ∈ Gn

is easily seen to satisfy Ψn(z̄) = P , i.e., it is a witness for statement (P,Ψn),
which completes the proof.

Assuming, for simplicity, that n is a power k, i.e., n = kµ for some µ ∈ N,
allows this generalized compression mechanism to be applied recursively to our
basic Σ-protocol Σb, resulting in the composition

Σk ⋄ · · · ⋄ Σk︸ ︷︷ ︸
µ−1 times

⋄Σb .

This composite protocol has the following communications costs:

• P → V: k elements of G and (2k − 2) logk(n)− 2k + 3 elements of H;

• V → P: logk(n) element of Zq.

If G and H elements are of the same size, the communication costs from
prover to verifier are minimized for k = 2, resulting in exactly the compressed
Σ-protocol Σcomp from Section 3.2.3.

However, while the communication costs are minimized for k = 2, this instanti-
ation does result in a logarithmic number of rounds. By contrast, taking k =

√
n,

results in a 5-round interactive proof, with communication costs:

• P → V:
√
n elements of G and 2

√
n− 1 elements of H;

• V → P: 2 element of Zq.

Hence, the resulting instantiation achieves a sublinear communication complexity
in a constant number of rounds. Of course, in the non-interactive Fiat-Shamir
mode the k = 2 instantiation with logarithmic communication might be preferable.
Altogether the generalization of this section demonstrates a trade-off between the
communication costs and the round complexity.

3.3 Proving Knowledge of Short Preimages

Certain cryptographic functions only admit desirable one-way properties with re-
spect to “short” preimages, i.e., for these functions it is in general easy to find
a preimage, but hard to find a short preimage of a given element. The most
prominent examples are one-way functions based on lattice assumptions, but also
certain one-way functions based on the strong-RSA assumption require preimages
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to be short. In these cryptographic scenarios, the goal is therefore not to prove
knowledge of just any preimage, but to prove knowledge of a short preimage. For
this reason, towards accommodating lattice and strong-RSA based cryptographic
platforms, we will generalize our compressed Σ-protocols.

To this end, let us assume that the group G is equipped with an absolute value
(norm)

|·| : G 7→ R≥0, x 7→ |x| .
Moreover, we assume a norm ∥·∥p on Gn to be defined as a natural extension of
this absolute value. More precisely,

∥·∥p : Gn 7→ R≥0, x = (x1, . . . , xn) 7→ ∥x∥p = (|x1|p + ·+ |xn|p)1/p
.

for some p ∈ R≥1 ∪ {∞}, where p = ∞ corresponds to the ℓ∞-norm. The results
in this section hold for any choice of p.

Then our goal is to construct a communication-efficient interactive proof for
proving knowledge of a preimage of the homomorphism Ψn : Gn → H with
bounded norm, i.e., an interactive proof for relation

Sn = {(P,Ψn, α; x) : Ψn(x) = P ∧ ∥x∥p ≤ α} . (3.2)

As before, for technical reasons, we consider the homomorphism Ψn and the norm
bound α to be part of the statement. However, if Ψn and α are clear from context,
we will also refer to the group elements P ∈ H as statements, and thereby omit
the more cumbersome notation (P,Ψn, α) of the statement.

In order to accommodate lattice based instantiations, a second generalization
is required. Namely, thus far we assumed G and H to be abelian groups with
exponent q, i.e., Zq-modules. However, in this section we allow G and H to be
R-modules for an arbitrary commutative ring R. In fact, the homomorphisms
encountered in lattice based cryptography are typically of the form Ψ: Rn → Rs

q

for some ring R and n, s, q ∈ N, where we recall that Rq = R/qR.
Our approach is to generalize the interactive proofs of Section 3.2. For this

reason, in Section 3.3.1, we construct a basic Σ-protocol for Sn. Subsequently,
in Section 3.3.2, we adapt the compression mechanism to this more general sce-
nario. Finally, in Section 3.3.3, we recursively compose these building blocks to
obtain a compressed Σ-protocol for relation Sn.

3.3.1 Basic Σ-Protocol

The main difficulty in generalizing the basic Σ-protocol Σb of Section 3.2.1 comes
from the fact that, in this generalization, witnesses have to be of small norm. In
Σb the prover samples a vector r ∈ Gn, sends Ψn(r) to the verifier and, after
receiving a challenge c, it sends the response z = r + cx. Since the vector r is
sampled uniformly at random, responses z are also uniformly distributed, i.e., r
masks cx. For this reason, basic Σ-protocol Σb is perfectly special honest-verifier
zero-knowledge (SHVZK). However, even if the witness x is of small norm, the
same does not have to hold for responses z. Hence, following the above approach,
it cannot be guaranteed that extracted witnesses have small norm.

For this reason, in our generalization, we require the random vector r and chal-
lenges c to be of small norm too. This allows us to bound the norm of the prover’s
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final message z = r + cx and thereby also the norm of extracted witnesses. How-
ever, as a consequence, r is no longer uniformly distributed in Gn and therefore
no longer perfectly masks cx, i.e., the resulting protocol is not perfectly SHVZK.
A first solution is to sample r, such that the distribution of z is statistically close
to a distribution independent of the witness x. This will result in a Σ-protocol
that is statistically SHVZK with responses z of bounded norm. Altogether, the
random vector r should be sampled such that:

1. the norm of r is not much larger than that of the secret witness x, but;
2. r still (statistically) masks cx for arbitrary challenges c.

A more efficient strategy was introduced by Lyubashevsky.1 By using rejection
sampling, he showed how to reduce the norm of responses z = r + cx significantly,
while still achieving a meaningful zero-knowledge property [Lyu09; Lyu12]. In his
approach, after receiving the challenge and computing the response z = r+cx, the
prover decides whether to abort or to send z to the verifier. Informally, this allows
a prover to only complete protocol executions that do not reveal information about
the secret witness x. Rejection sampling does introduce an abort probability or
completeness error to the protocol. Moreover, it weakens the special honest-verifier
zero-knowledge property. More precisely, aborting transcripts of the form (A, c,⊥)
might reveal information about the secret witness x. The resulting protocol is
therefore only non-abort SHVZK. Fortunately, non-abort SHVZK is sufficient for
most practical purposes. Namely, there exist generic approaches for transforming a
non-abort SHVZK interactive proof into one that is SHVZK. Moreover, in the non-
interactive Fiat-Shamir mode the prover only outputs non-aborting transcripts, so
in this mode non-abort SHVZK indeed suffices.

In the following definition we abstract Lyubashevsky’s rejection sampling by a
distribution D and an algorithm F : Gn ×Gn → Gn ∪ {⊥} such that:

1. elements r sampled from D (statistically) mask elements v ∈ V ⊆ Gn;
2. masked elements v + r have bounded norm;
3. the abort probability Pr(F(v; r) = ⊥ : r ←R D) is essentially independent

of v ∈ V .

Definition 3.2 ((V, δ)-Hiding and β-Bounded Sampling). Let R be a commuta-
tive ring, G an R-module and n ∈ N. Let V ⊆ Gn and δ ∈ [0, 1]. Further, Let D
be an efficiently sampleable distribution with support in Gn and F a polynomial
time algorithm. We say (D,F) is (V, δ)-hiding if there exists a polynomial time
algorithm F ′ such that, for every v ∈ V :

• F , on input v and r←R D, outputs v + r or ⊥;

• F ′ outputs an element z ∈ Gn or ⊥,

such that the output distributions of (D,F) and F ′ have statistical distance at
most δ, i.e.,

∆ ({F(v; r) : r←R D}, {F ′}) ≤ δ ∀v ∈ V .
1In fact, in the full version [Gro05] of [Gro03] predating Lyubashevsky’s work, Groth already

describes this rejection sampling strategy.
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If δ = 0, we say (D,F)-is perfectly V -hiding. Further, we define

ρ := min(Pr(F ′ = ⊥) + δ, 1) ∈ [0, 1]

to be the abort probability of (D,F).
Finally, let β ∈ R≥0. We say that (D,F) is β-bounded if

Pr(∥z∥p ≤ β : z←R F(v; r) ∧ r←R D ∧ z ̸= ⊥) = 1 ∀v ∈ V .

Note that, if (D,F) is (V, δ)-hiding, the abort probability of (D,F) satisfies

Pr(F(v; r) = ⊥ : r←R D) ≤ Pr(F ′ = ⊥) + δ ∀v ∈ V ,

where the right-hand side is independent of v.
Even with the use of rejection sampling, a knowledge extractor will in general

only be able to extract preimages of Ψn with norm larger than the norm bound
claimed by honest provers. More precisely, an extractor outputs preimages of norm
at most τ ·α for some τ ∈ R≥0, while an honest prover claims to know a witness of
norm at most α. The factor τ is referred as the soundness slack and introduces a
relaxed notion of knowledge soundness and special-soundness. Interactive proofs
for relation Sn that satisfy this relaxed notion are said to be knowledge sound, or
special-sound, with soundness slack τ . As long as it is hard to find preimages of
norm τ · α this relaxation is still meaningful.

There are two sources introducing soundness slack. First, z = r + cx itself
will in general already have larger norm than x. Second, even worse, extracting a
witness z̄ from two accepting transcripts, introduces additional slack. This slack is
more difficult to control, as it depends on the (multiplicative) inverse of challenge
differences.

In fact, differences of ring elements c, c′ ∈ R are not necessarily invertible, let
alone have short inverses. For this reason, we introduce a second relaxation to the
knowledge soundness notion. Namely, for some fixed element ζ ∈ R, we allow the
knowledge extractor to output a preimage of P ζ ∈ H instead of P . The element ζ
is referred to as an approximation factor, and interactive proofs that admit such
an extractor are said to be knowledge sound, or special-sound, with approximation
factor ζ.

Let us now introduce the notion of an ζ-exceptional subset. This notion captures
precisely the challenge sets required to guarantee the existence of a knowledge
extractor with the above, relaxed, properties.

Definition 3.3 (ζ-Exceptional Subset). Let R be a ring, ζ ∈ R, and C ⊆ R be
a set. We say C is a ζ-exceptional subset of R if for all c, c′ ∈ C with c ̸= c′ there
exists an a ∈ R such that a(c − c′) = ζ. If C is a 1-exceptional subset of R, we
simply say that C is an exceptional subset.

Note that the 1-exceptional subsets are precisely the subsets of R with invertible
nonzero differences, i.e., these are indeed the exceptional subsets of R. Moreover,
every subset of R is 0-exceptional.

Instantiating the Σ-protocol for relation Sn with rejection sampling and a
ζ-exceptional challenge set C ⊆ R results in an interactive proof that is 2-out-of-|C|
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special-sound with soundness slack τ and approximation factor ζ, for some
τ ∈ R≥0. Before we present this Σ-protocol and its properties, we need to in-
troduce some notation allowing us to specify the soundness slack τ . To this end,
for ζ-exceptional subsets C ⊆ R we define w(C) and w(C, ζ) as follows:

w(C) = max
c∈C,x∈G\{0}

|cx|
|x|

,

w(C, ζ) = max
c ̸=c′∈C,x∈G\{0}

∣∣ζ(c− c′)−1x
∣∣

|x|
.

(3.3)

In the above, we assume that R does not have zero-divisors, i.e., the element
(c − c′)−1 is well defined in the field of fractions of R. Moreover, since C is ζ-
exceptional it follows that ζ(c− c′)−1 ∈ R.

The value w(C) gives an upper bound on how much the norm of a vector x ∈ Gn

increases when multiplied by an element in C, i.e., w(C) is such that

∥cx∥p ≤ w(C) · ∥x∥p ∀c ∈ C, ∀x ∈ Gn .

Note that if R = G = Z, we simply have w(C) = max{|c| : c ∈ C ⊆ Z}.
The value w(C, ζ) gives an upper bound on how much the norm of a vector

x ∈ Gn increases when multiplied with the “approximation” ζ(c − c′)−1 of a
challenge difference inverse (c− c′)−1, i.e., w(C, ζ) is such that∥∥ζ(c− c′)−1x

∥∥
p
≤ w(C, ζ) · ∥x∥p ∀x ∈ Gn, ∀c, c′ ∈ C with c ̸= c′ .

Now that all the required notation has been introduced, we are ready to present
our Σ-protocol Πb for relation Sn. This generalization of basic Σ-protocol Σb

from Section 3.2 allows a prover to prove knowledge of a short preimage of P with
respect to homomorphism Ψn. It is described in Protocol 6 and its main properties
are summarized in Theorem 3.7.

Theorem 3.7 (Basic Σ-Protocol for Short Preimages). The Σ-protocol Πb for
relation

Sn = {(P,Ψn, α; x) : Ψn(x) = P ∧ ∥x∥p ≤ α} ,

described in Protocol 6, is complete with completeness error ρ, it is 2-out-of-|C|
special-sound with soundness slack 2w(C, ζ)β/α and approximation factor ζ and it
is δ-statistical non-abort special honest-verifier zero-knowledge (SHVZK). More-
over, the communication costs are:

• P → V: 1 element of Gn with norm at most β and 1 element of H;

• V → P: 1 element of C ⊆ R.

Proof. Completeness: This property follows directly, because (D,F) is β-bounded
and has abort probability ρ, and Ψn is an R-module homomorphism.

Special-Soundness: Let (A, c, z) and (A, c′, z′) be two accepting transcripts with
common first message A and distinct challenges c ̸= c′ ∈ C. Define
z̄ = a(z− z′) ∈ Gn, where a is such that a(c − c′) = ζ ∈ R. Note that
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such an a exists, because C is ζ-exceptional. Then it is easily seen that
Ψ(z̄) = P ζ . Moreover,

∥z̄∥p = ∥a(z− z′)∥p ≤ w(C, ζ) ∥z− z′∥p ≤ 2w(C, ζ)β ,

which proves the required norm bound on extracted preimages.
Non-Abort SHVZK: Transcripts are simulated as follows. Let F ′ be the algorithm

corresponding to the V -hiding property of (D,F). Given a challenge c, the
simulator runs F ′. If F ′ outputs ⊥, the simulator returns (⊥, c,⊥). Else,
the simulator sets z← F ′, computes the first message as A = Ψ(z) ·P−c and
outputs (A, c, z). By the V -hiding property the output distributions of F and
F ′ have statistical distance at most δ, and A can be derived deterministically
from the values c, z and P . Therefore, δ-statistical non-abort SHVZK follows,
which completes the proof of theorem.

Protocol 6 Basic Σ-Protocol Πb for Relation Sn.

Parameters: n ∈ N, ring R, R-modules (G,+) and (H, ·),
ζ-exceptional subset C ⊆ R with |C| ≥ 2,
V = {cx ∈ Gn : ∥x∥p ≤ α ∧ c ∈ C} and
(V, δ)-hiding and β-bounded pair (D,F)
with abort probability ρ ∈ [0, 1]

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H), α ∈ R≥0

Prover’s Private Input: x ∈ Gn

Prover’s Claim: Ψn(x) = P ∧ ∥x∥p ≤ α

Prover P Verifier V

r←R D
A = Ψn(r) A−−−−−−−−−→

c←R C ⊆ R
c←−−−−−−−−−

If F(cx; r) = ⊥ : Abort

Else : z = r + cx z−−−−−−−−−→ ∥z∥p

?
≤ β

Ψn(z) ?= A · P c

Remark 3.3. The set V in Σ-protocol Πb depends on the public parameter α.
Therefore, the set V , the distribution-algorithm pair (D,F) and its properties
should technically be parameterized by α. However, to avoid an even more cum-
bersome notation, we decided to omit this parameterization.
Remark 3.4. Our definitions require the approximation factor ζ to be a fixed
element of the ring R. However, in some settings it is beneficial to allow for
arbitrary approximation factors in some fixed subset Ω ⊆ R. In this case the
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extractor does not output a preimage of P ζ , but it outputs a preimage of Pω

for some ω ∈ Ω. Hence, the extractor is free to choose an approximation factor
ω ∈ Ω. In some instantiations, this relaxation allows for a smaller soundness
slack. However, it introduces additional difficulties when composing the Σ-protocol
with other protocols, such as a compression mechanism. These difficulties can be
handled, but in most settings the required adjustments negate the benefits of this
additional relaxation, which is why we do not consider it further.

The Σ-protocol Σb of Section 3.2 is actually a specific instantiation of Σ-protocol
Πb. It can be derived by setting V = Gn, C = Zq, D as the uniform distribution
over Gn and

F : Gn ×Gn, (v; r) 7→ v + r .

Then (D,F) is perfectly V-hiding with abort probability 0. Finally, note that,
since this instantiation does not require the witness to be small, we do not need
to consider a norm. Hence, Πb is indeed a generalization of Σb.

3.3.1.1 From Non-Abort SHVZK to SHVZK

Rejection sampling, and therefore also our abstraction of rejection sampling, in
general does not allow to simulate the first message for aborting transcripts (see,
e.g., the simulator in the proof of Theorem 3.7). For this reason, Σ-protocol Πb

provides only non-abort SHVZK. In the non-interactive Fiat-Shamir mode this is
not a problem, because the prover simply does not output aborting transcripts.
But, when using the Σ-protocol interactively, we have to apply an additional mea-
sure in order to guarantee SHVZK. In [DOT+21] it was recently shown how to deal
with this problem for the purpose of constructing a lattice-based multi-signature
scheme. However, this is a more challenging task than enhancing an interactive
proof from non-abort SHVZK to standard SHVZK. Therefore, their solution re-
quires to either rely on random oracles or trapdoor commitments. We observe
that in our case to go from non-abort SHVZK to standard SHVZK, it suffices
to replace the first message by a statistically hiding and computationally binding
commitment scheme. The cost of this transformation is that the special-soundness
property is only preserved under the (computational) assumption that the com-
mitment scheme is binding, i.e., the resulting protocol is only computationally
special-sound. Alternatively, one could instantiate this approach with a computa-
tionally hiding and statistically binding commitment scheme. This would preserve
the unconditional special-soundness, but would result in computational SHVZK.

Lemma 3.2 (Non-Abort SHVZK to SHVZK). Let Π be a complete, 2-out-of-N
special-sound and non-abort special honest-verifier zero-knowledge Σ-protocol. Fur-
ther, let com be a statistically hiding and computationally binding commitment
scheme. Then there exists a Σ-protocol Π′ that is complete, computationally 2-out-
of-N special-sound, under the assumption that the commitment scheme is binding,
and special honest-verifier zero-knowledge.

Proof. The idea is simply to replace the first message of the protocol by a com-
mitment to the first message. More precisely, Σ-protocol Π′ proceeds as follows.
First, the prover computes the first message A according to Π. Further, the prover
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samples randomness γ for the commitment scheme and sends C = com(A; γ) to
the Verifier, who responds with a challenge c. In the last round the prover com-
putes z according to the second prover’s message in Π, depending on A and the
challenge c. If Π does not abort, the prover sends A, γ, and z to the verifier. The
verifier accepts if A, γ is a valid opening of the commitment C, and (A, c, z) is an
accepting transcript for Π. It is left to show that Π′ indeed satisfies the required
properties.

Completeness: This property follows immediately.
Computational Special-Soundness: Let (C, c,A, γ, z) and (C, c′, A′, γ′, z′) be two

accepting transcripts. Then, either we have that A′ = A and we can rely on
the 2-out-of-N special-soundness of Π, or the prover broke the computational
binding property of com by finding two valid and distinct openings A, γ and
A′, γ′ for commitment C.

SHVZK: Given a challenge c, the simulator runs the simulator for the underly-
ing protocol Π. If the underlying simulator returns (⊥, c,⊥), the simulator
samples randomness γ and outputs (com(0; γ), c,⊥). If the underlying simu-
lator returns (A, c, z), then the simulator samples randomness γ and outputs
(com(A; γ), c, A, γ, z). SHVZK follows by the statistical hiding property of
com and the non-abort SHVZK property of the underlying protocol Π.

Remark 3.5. Applying this transformation to Σ-protocol Πb, the prover does not
have to send A, because the verifier can first compute A as Ψ(z) · P−c and then
verify if A, γ is indeed a valid opening of commitment C. Therefore, if A has
a larger bit-size than the commitment C and its randomness γ combined, the
transformation of Πb actually has smaller communication costs than the original
Σ-protocol Πb.

3.3.2 A Compression Mechanism

As before, we observe that the final message of Σ-protocol Πb is a witness for
statement (A · P c,Ψn, β) with respect to relation

Sn = {(P,Ψn, α; x) : Ψn(x) = P ∧ ∥x∥p ≤ α} .

Moreover, the verifier accepts if and only if the final message is a valid witness.
Hence, the final message is a trivial interactive proof for relation Sn, and our
goal is to replace this trivial interactive proof by a more efficient one. This more
efficient interactive proof does not have to be zero-knowledge.

The compression mechanism is thus an interactive proof for relation Sn that
is not zero-knowledge. Since it is not required to be zero-knowledge, rejection
sampling can be avoided. In particular, there is no need for a (V, δ)-hiding and
β-bounded distribution-algorithm pair (D,F). For this reason, the compression
mechanism Πc for Sn is a straightforward adaptation of compression mechanism Σc

of Section 3.2.2. It is presented in Protocol 7 and its properties are summarized
in Theorem 3.8. Note that, as before, the compression mechanism reduces the
dimension of the witness from n down to n/2. However, in contrast to Section 3.2.2,
here compression comes at the cost of increasing the soundness slack.
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Theorem 3.8 (Compression Mechanism). The compression mechanism Πc for
relation Sn, described in Protocol 7, is a perfectly complete and 3-out-of-q special-
sound Σ-protocol with soundness slack2

6 · w(C, ζ)3 ·
(
w(C)2 + w(C)3) · (1 + w(C)p

)1/p

and approximation factor ζ3. Moreover, the communication costs are:

• P → V: 1 element of Gn/2 with norm at most
(
1 + w(C)

)
α and 2 elements

of H;

• V → P: 1 element of C ⊆ R.

Protocol 7 Compression Mechanism Πc for relation Sn.

Parameters: n ∈ 2N, ring R, R-modules (G,+) and (H, ·),
ζ-exceptional subset C ⊆ R with |C| ≥ 3

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H), α ∈ R≥0

Prover’s Private Input: x = (xL,xR) ∈ Gn

Prover’s Claim: Ψn(xL,xR) = P ∧ ∥x∥p ≤ α

Prover P Verifier V

A = Ψn(0,xL)
B = Ψn(xR, 0) A,B−−−−−−−−−→

c←R C ⊆ R
c←−−−−−−−−−

z = xL + cxR ∈ Gn/2

z−−−−−−−−−→ ∥z∥p

?
≤
(
1 + w(C)

)
· α

Ψn(cz, z) ?= A · P c ·Bc2

Proof. Recall that

∥·∥p : Gn → R≥0, x = (x1, . . . , xn) 7→ ∥x∥p = (|x1|p + ·+ |xn|p)1/p
.

for some p ∈ R≥1 ∪ {∞}, and that w(C) and w(C, ζ) are independent of the
dimension n. Let us now prove that Πc has the desired completeness and special-
soundness properties.

Completeness: This property follows, since Ψn is a homomorphism and

∥z∥p = ∥xL + cxR∥p ≤ ∥xL∥p + w(C) ∥xR∥p

≤
(
1 + w(C)

)
∥x∥p

≤
(
1 + w(C)

)
α ,

2For p = ∞, we define
(

1 + w(C)p
)1/p

= w(C).



3.3 Proving Knowledge of Short Preimages 81

where we use that

∥xL∥p ≤ ∥(xL,xR)∥p = ∥x∥p and ∥xR∥p ≤ ∥(xL,xR)∥p = ∥x∥p .

Special-Soundness: Let (A,B, c1, z1), (A,B, c2, z2) and (A,B, c3, z3) be three ac-
cepting transcripts with common first message (A,B) and pairwise distinct
challenges c1, c2, c3 ∈ C. Further, let

(a1, a2, a3) =
(
c2

3 − c2
2, c

2
1 − c2

3, c
2
2 − c2

1
)
,

then  1 1 1
c1 c2 c3
c2

1 c2
2 c2

3

a1
a2
a3

 = c̃

0
1
0

 ,

where c̃ = (c1 − c2)(c1 − c3)(c2 − c3) ∈ R.
Let a be such that a · c̃ = ζ3, which exists because C is ζ-exceptional, and let

z̄ = a ·
3∑

i=1
ai(cizi, zi) ∈ Gn .

Then

Ψ(z̄) =
(

Ψ(c1z1, z1)a1 ·Ψ(c2z2, z2)a2 ·Ψ(c3z3, z3)a3
)a

=
(
Aa1+a2+a3 · P c1a1+c2a2+c3a3 ·Bc2

1a1+c2
2a2+c2

3a3
)a

= P a·c̃ = P ζ3
,

i.e., z̄ is a preimage of P ζ3 with respect to homomorphism Ψn. Let us now
bound the norm of the extracted preimage z̄. It holds that

∥z̄∥p ≤ w(C, ζ)3 ·
3∑

i=1
∥ai(cizi, zi)∥p

≤ w(C, ζ)3 ·
3∑

i=1
2 · w(C)2 · ∥(cizi, zi)∥p .

Now observe that, for all i,

∥(cizi, zi)∥p
p = ∥cizi∥p

p + ∥zi∥p
p ≤ w(C)p ∥zi∥p

p + ∥zi∥p
p =

(
1 + w(C)p

)
∥zi∥p

p .

Hence,

∥z̄∥p ≤ 2 · w(C)2 · w(C, ζ)3 ·
3∑

i=1

(
1 + w(C)p

)1/p · ∥zi∥p

≤ 6 · w(C)2 · w(C, ζ)3 ·
(
1 + w(C)

)
·
(
1 + w(C)p

)1/p · α

= 6 · w(C, ζ)3 ·
(
w(C)2 + w(C)3) · (1 + w(C)p

)1/p · α ,

which proves the required norm bound and completes the proof.
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3.3.3 The Compressed Σ-Protocol for Short Preimages

It is easily seen that Σ-protocol Πb and compression mechanism Πc are composable
(Definition 3.1). Assuming that n = 2µ for some µ ∈ N, the compressed Σ-protocol
Πcomp for proving knowledge of a short preimage is thus defined as the recursive
composition

Πcomp = Πc ⋄ · · · ⋄Πc︸ ︷︷ ︸
µ times

⋄Πb .

For simplicity, we applied the compression mechanism µ times, i.e., until the di-
mension of the witness has been reduced to 1. However, depending on bit-size of
elements in the R-modules G and H, a different number of compressions might be
required to minimize the communication costs.

Most properties of Πcomp follow directly from Lemma 3.1. What remains is to
determine the soundness slack and approximation factor of the recursive composi-
tion Πcomp. However, it is easily seen that the soundness slack and approximation
factors accumulate multiplicatively under recursive composition. In general, if
Π1 has soundness slack τ1 and approximation factor ζ1 and Π2 has soundness
slack τ2 and approximation factor ζ2, then Π2 ⋄Π1 has soundness slack τ1 · τ2 and
approximation factor ζ1 · ζ2.

Protocol 8 provides a complete description of compressed Σ-protocol Πcomp for
relation Sn, its properties are summarized in Theorem 3.9.

Note that the soundness slack τn grows exponentially in the number of rounds
and therefore polynomially in the dimension n of the secret witness x ∈ Gn.
Since the interactive proof Πcomp has to be instantiated such that it is hard to
find preimages of norm at most τn · α, even though the prover claims to know a
preimage of norm at most α, larger soundness slack typically implies larger protocol
parameters and larger communication costs. For this reason, while the number
of elements communicated is logarithmic in the dimension n, the communication
costs of Πcomp, expressed in the number of bits transmitted, are typically not
logarithmic in n. For instance, in Section 5.6, we show that an appropriate lattice-
instantiation of compressed Σ-protocol Πcomp has polylogarithmic communication
complexity.

Theorem 3.9 (Compressed Σ-Protocol for Short Preimages). Let n = 2µ for
some µ ∈ N. Then the compressed Σ-protocol

Πcomp = Πc ⋄ · · · ⋄Πc︸ ︷︷ ︸
µ times

⋄Πb ,

for relation Sn, described in Protocol 8, is complete with completeness error ρ, it
is (2, 3, . . . , 3)-out-of-(|C|, . . . , |C|) special-sound with soundness slack

τ = 2 · 6µ · w(C, ζ)3µ+1 ·
(
w(C)2 + w(C)3)µ ·

(
1 + w(C)p

)µ/p · β/α

and approximation factor ζ3µ+1, and it is δ-statistical non-abort special honest-
verifier zero-knowledge.

Moreover, it has 2µ+3 communication rounds and the communication costs are:
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Protocol 8 Compressed Σ-Protocol Πcomp for Relation Sn.

Parameters: n = 2µ ∈ N, ring R, R-modules (G,+) and
(H, ·), ζ-exceptional subset C ⊆ R with
|C| ≥ 3, V = {cx ∈ Gn : ∥x∥p ≤ α ∧ c ∈ C}
and (V, δ)-hiding and β-bounded pair (D,F)
with abort probability ρ ∈ [0, 1]

Public Input: P ∈ H, Ψn ∈ Hom(Gn,H), α ∈ R≥0

Prover’s Private Input: x ∈ Gn

Prover’s Claim: Ψn(x) = P ∧ ∥x∥p ≤ α

Prover P Verifier V

r←R D
A0 = Ψn(r) A0−−−−−−−−−→

c0 ←R C
If F(c0x; r) = ⊥ : Abort c0←−−−−−−−−−

Else :
x1 = (x1

L,x1
R) = r + c0x

Q1 = A0P
c0

A1 = Ψn(0,x1
L)

B1 = Ψn(x1
R, 0) A1,B1−−−−−−−−−→

c1 ←R C
c1←−−−−−−−−−

x2 = x1
L + c1x1

R ∈ Gn/2 Q2 = A1Q1
c1B

c2
1

1

...
...

...

Aµ = Ψ2(0,xµ
L)

Bµ = Ψ2(xµ
R, 0) Aµ,Bµ−−−−−−−−−→

cµ←−−−−−−−−− cµ ←R C
z = xµ

L + cµxµ
R ∈ G Qµ = AµQµ

cµB
c2

µ
µ

z−−−−−−−−−→

∥z∥p

?
≤
(
1 + w(C)

)µ · β
Ψ1(z) ?= Qµ

The homomorphisms Ψℓ, for ℓ ∈ {1, 2, 4, . . . , 2µ−1}, are defined recursively:

Ψℓ : Gℓ → H, y 7→ Ψ2ℓ(cµ−log(ℓ)y,y) .
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• P → V: 1 element of G with norm at most
(
1+w(C)

)µ
β and 2µ+1 elements

of H;

• V → P: µ+ 1 element of C ⊆ R.

3.3.4 Enlarging the Challenge Set

In Chapter 6, we show that k-out-of-N special-sound interactive proofs are know-
ledge sound with knowledge error

Er(k; N) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
,

where k = (k1, . . . , kµ) and N = (N1, . . . , Nµ). In fact, k-out-of-N special-sound
interactive proofs typically admit a cheating strategy with success probability
Er(k; N), i.e., this knowledge error is optimal. If this knowledge error is not
small enough it must be reduced.

A standard approach for reducing the knowledge error is to run t instances
of the same interactive proof in parallel. The verifier accepts if and only if the
prover succeeds in all t instances. In Section 6.5, we show that this approach
indeed reduces the knowledge error from Er(k; N) down to Er(k; N)t. For instance,
let us consider a (2, . . . , 2)-out-of-(2, . . . , 2) special-sound interactive proof with
2 log2(n) + 1 rounds, i.e., the verifier sends log2 n challenges sampled from a set of
cardinality two. This interactive proof has knowledge error

1−
(

1− 1
2

)log2 n

= 1− 1
n
.

Now let t be the number of parallel repetitions required to reduce the knowledge
error down to 2−λ. Then,

t ≥ −λ
log2(1− 1

n )
≥ λ · n .

A similar analysis applies to the (2, 3, . . . , 3)-out-of-(|C|, . . . , |C|) special-sound
compressed Σ-protocol Πcomp of Theorem 3.9. More precisely, if the size of the
challenge set C is constant in n+λ, then the required number of parallel repetitions
is linear in n. Therefore, after parallel repetition, the communication complexity
becomes superlinear in n, which completely defeats the purpose of compressing
the linear communication complexity of the basic Σ-protocol.

Hence, in some scenarios, parallel repetition does not allow for a sufficient know-
ledge error reduction while maintaining a sublinear communication complexity.
For this reason, we introduce an alternative approach. Instead of repeating the
interactive protocol, we aim to increase the size of the challenge set C in order to
decrease the knowledge error. Let us now describe this approach.

Recall that our goal is to construct an interactive proof for proving knowledge
of a short preimage of the R-module homomorphism Ψ: Gn → H. To increase the
size of the challenge set C, we extend the scalar ring R of the modules Gn and H
to an extension S of R. More precisely, we consider the tensor products S ⊗R Gn
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and S ⊗R H, also referred to as base extensions over S. These base extensions are
S-modules and the mapping

ΨS : S ⊗R Gn → S ⊗R H , such that s⊗ x 7→ s⊗Ψ(x) ,

is a well-defined S-module homomorphism [AM69, p.27].
Let us assume that s1, . . . , sd ∈ S is an R-basis of S. Then every element of

S ⊗R Gn has a unique representation of the form s1 ⊗ x1 + · · · + sd ⊗ xd, with
x1, . . . ,xd ∈ Gn. Moreover, x is a Ψ-preimage of P ∈ Gn if and only if s1 ⊗ x is a
ΨS -preimage of s1⊗P . Finally, if s1⊗x1 + · · ·+sd⊗xd is a ΨS -preimage of s1⊗P ,
it follows that x1 is a Ψ-preimage of P . Hence, proving knowledge of a (short)
Ψ-preimage can be reduced to proving knowledge of a (short) ΨS -preimage.

Note that an element x ∈ S ⊗R Gn is not an n-dimensional vector. Instead it
is of the form

x =
d∑

i=1
si ⊗ xi =

d∑
i=1

si ⊗ (xi,L,xi,R) ∈ S ⊗R Gn .

However, also x has naturally defined left and right parts, i.e.,

xL =
d∑

i=1
si ⊗ xi =

d∑
i=1

si ⊗ xi,L ∈ S ⊗R Gn/2 and

xR =
d∑

i=1
si ⊗ xi =

d∑
i=1

si ⊗ xi,R ∈ S ⊗R Gn/2 .

For this reason, the compressed Σ-protocols are easily seen to also apply to the
base extended homomorphism ΨS .

Instantiating compressed Σ-protocol Πcomp for ΨS allows the challenge sets to
be chosen as subsets of S instead of R. Appropriately chosen ring extensions
therefore allow for larger challenge sets. For instance, the ring Z only contains
exceptional subsets (Definition 3.3) of cardinality two, while the ring extension
Z[ωp], for a prime p and a primitive p-th root of unity ωp, contains the exceptional
subset {

ωk
p − 1
ωp − 1 : 1 ≤ k ≤ p

}
of cardinality p.

Let us now return to our simplified example of a (2, . . . , 2)-out-of-(2, . . . , 2)
special-sound interactive proof. Although we focus on this simple example, the
analysis below has a straightforward generalization to arbitrary k-out-of-N special-
sound interactive proofs.

Suppose that by choosing an appropriate degree d ring extension, the challenge
sets can be enlarged to challenge sets of cardinality d, i.e., the base extended
interactive proof is (2, . . . , 2)-out-of-(d, . . . , d) special-sound and has knowledge
error

1−
(

1− 1
d

)log2 n

.
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Moreover, the base extension increases the communication costs by a factor d.
Before we continue our analysis, we derive the following lemma.

Lemma 3.3. Let N ∈ N and 0 ≤ x ≤ 1/(4N), then

1− (1− x)N ≥ 2Nx
3 .

Proof.

1− (1− x)N = Nx−
N∑

i=2

(
N

k

)
(−x)i ≥ Nx−

∞∑
i=2

(Nx)i

= Nx− (Nx)2

1−Nx = Nx
1− 2Nx
1−Nx ≥

2Nx
3 ,

where the final inequality follows because Nx ≤ 1/4.

From Lemma 3.3 it follows that the knowledge error of a (2, . . . , 2)-out-of-
(d, . . . , d) special-sound interactive proof with 2 log2(n)+1 rounds and d ≥ 4 log2 n
satisfies

1−
(

1− 1
d

)log2 n

≥ 2 log2(n)
3d .

Hence, to reduce the knowledge error down to 2−λ, the degree d of the ring exten-
sion must be such that

d ≥ 2
3 · 2

λ · log2 n .

In other words, the degree scales logarithmically in the input dimension n, but
exponentially in the security parameter λ. Hence, besides parallel repetition, also
base extension results in undesirable (communication) costs. More precisely, using
parallel repetition, the communication costs scale linearly in the dimension n of the
witness x. And, using base extension, the communication costs scale exponentially
in the security parameter λ.

However, it turns out that, by combining the two techniques, the knowledge error
can be sufficiently reduced with only a limited increase of communication costs.
More precisely, taking t = λ parallel repetitions of the (2, . . . , 2)-out-of-(d, . . . , d)
interactive proof with degree d = 2 log2(n), results in knowledge error(

1−
(

1− 1
d

)log2 n
)t

≤
(

log2 n

d

)t

= 2−λ .

Moreover, the prover has to send O(λ · log2
2 n) elements to the verifier, i.e., the

communication complexity of the t-fold parallel repetition of the degree d base
extended interactive proof is polylogarithmic in n.

Altogether, one should choose the ring extension S and the challenge set C ⊆ S
as a function of n, such that the knowledge error of the base extended interactive
proof is constant in n and the degree of the ring extension is at most polylogarithmic
in n. Then, O(λ) parallel repetitions are required to decrease the knowledge
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error down to 2−λ and the communication complexity only increases with a factor
O
(
λ · polylog(n)

)
with respect to the basic interactive proof.

In theory the size of the challenge set can also grow exponentially in the degree
d of the ring extension, e.g., if R and S are fields and the soundness slack is
irrelevant. This would change the above trade-off significantly. In fact, in this
case the knowledge error can be made negligible by using merely base extension,
and no parallel repetitions are required. However, when taking the soundness
slack and approximation factor into account, “good” challenge sets typically grow
linearly in the degree of the ring extension. For this reason, our analysis has been
restricted to this specific situation. Finding good challenge sets, resulting in small
soundness slack and an appropriate approximation factor, is a difficult task on its
own. In Chapter 5, we will give some concrete examples and for more details we
refer to [LS18; ACX21].
Remark 3.6. The degree d base extended interactive proof allows a prover to prove
knowledge of d different Ψ-preimages simultaneously without increasing the costs.
More precisely, if S has basis s1, . . . , sd ∈ S over R, then proving knowledge
of the Ψ-preimages of P1, . . . , Pd ∈ H is equivalent to proving knowledge of the
ΨS -preimage of

s1 ⊗ P1 + s2 ⊗ P2 + · · ·+ sd ⊗ Pd ∈ S ⊗R H .

Remark 3.7. The compressed Σ-protocols of Section 3.2 allow a prover to prove
knowledge of a preimage for a homomorphism between groups of prime exponent
q ≥ 3. Because the compression mechanism is 3-out-of-q special-sound, these
interactive proofs require q ≥ 3. By using the base extension techniques, the
compressed Σ-protocols of Section 3.2 can be adapted to work for groups with
arbitrary (not necessarily prime) exponent m ≥ 2.

3.4 Compact Commitments and Linear Forms

Perhaps the most prominent application of our compressed Σ-protocols is prov-
ing knowledge of a commitment opening satisfying an arbitrary linear constraint.
More precisely, compressed Σ-protocol are oftentimes instantiated with a homo-
morphism of the form

Ψ = (com, L) : Gn × Rand→ H×G, (x; γ) 7→
(
com(x; γ), L(x)

)
,

where com : Gn × Rand → H is a vector commitment scheme. Hence, both the
commitment scheme com and the function L are homomorphisms. Moreover, the
set Rand, from which the commitment randomness is sampled, is assumed to be
an abelian group.

The resulting compressed Σ-protocol thus allows a prover to prove knowledge of
an opening (x; γ) to some commitment P satisfying the linear constraint L(x) = y
for some public value y ∈ G. If G = Zq, the homomorphism L : Zn

q → Zq is a
linear form. For this reason, we also refer to the above functionality as opening a
linear form. Moreover, we will also refer to homomorphisms L : Gn → G as linear
forms. All the result in this section hold verbatim when we replace linear forms by
affine forms, where we recall that an affine form is a linear form plus a constant.
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Compressed Σ-protocols require the prover to send a logarithmic number of
elements in the codomain of Ψ to the verifier. Therefore, to achieve a logarithmic
communication complexity, we additionally require the commitment scheme to be
compact, i.e., the size of a commitment P = com(x; γ) should be independent of, or
constant in, the dimension n of x ∈ Gn. In strong-RSA and lattice based platforms,
due to their soundness slack, the communication complexity is polylogarithmic
instead of logarithmic.

In this section, we will take a closer look at these compressed Σ-protocol in-
stantiations. For simplicity, we ignore the norm bounds and restrict ourselves
to the compressed Σ-protocols of Section 3.2 and assume (G,+) and (H, ·) to be
Zq-modules. However, by using the techniques from Section 3.3, the constructions
of this section are easily generalized towards short preimages.

In Section 3.4.1, we reduce the communication costs of the naive compressed
Σ-protocol instantiation with roughly a factor two. In Section 3.4.2, we show how
to amortize the costs of opening many linear forms L1, . . . , Ls : Gn → G. These
reduction and amortization approaches are only computationally special-sound.
In Section 3.4.3, we show how to achieve the same functionality with unconditional
special-soundness, without increasing the communication costs. Finally, in Sec-
tion 3.4.4, we construct an interactive proof for proving knowledge of openings to
many different commitments satisfying different linear constraints.

3.4.1 Opening Linear Forms on Committed Vectors

The compressed Σ-protocol for opening a linear form L : Gn → G on a compactly
committed vector x ∈ Gn is an interactive proof for relation

Rcom = {(P, y; x, γ) : com(x; γ) = P ∧ L(x) = y} . (3.4)

This protocol is a straightforward instantiation of compressed Σ-protocol Σcomp

of Section 3.2.3. However, since the homomorphism (com, L) has domain
Gn × Rand, it is not of the form Ψn : Gn → H required by Σcomp. For this reason,
one minor adaptation is required. Namely, the prover P simply sends the masked
commitment randomness to the verifier after receiving the first challenge in the Σ-
protocol. More precisely, the first steps of the compressed Σ-protocol for relation
Rcom proceed as follows:

• The prover samples r ←R Gn and ρ ←R Rand uniformly at random, and
sends A = com(r; ρ) and t = L(r) to the verifier;

• After receiving the challenge c ∈ Zq, the prover sends ϕ = ρ+ cγ.

Now observe that z = r + cx is a preimage of (A · P c, t+ cy) with respect to the
homomorphism

Ψ(·, ϕ) : Gn → H×G, x 7→
(
com(x;ϕ), L(x)

)
.

This homomorphism is of the required form and thus the compression mecha-
nism applies as before. Assuming that n = 2µ is a power-of-two, the resulting
compressed Σ-protocol has communication costs:

• P → V: 2µ+ 1 elements of G, 2µ− 1 elements of H and 1 element of Rand;
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• V → P: µ elements of Zq.

Note that, since Ψ has codomain G×H, the prover must also send logarithmi-
cally many G-elements. By contrast, in protocol Σcomp for proving knowledge of
preimages of Ψn : Gn → H, the prover sends a constant number of G-elements and
logarithmically many H-elements.
Remark 3.8. Typically the commitment randomness is sampled from Rand = Gs

for some s ∈ N. In this case, the homomorphism (com, L) : Gn+s → H × G
is already of the form required by compressed Σ-protocol Σcomp, and the above
adaptation can be omitted.

The aforementioned approach describes the naive compressed Σ-protocol in-
stantiation for opening linear forms on compactly committed vectors. Let us now
describe a more efficient technique for achieving exactly the same functionality.
This technique was introduced by Bünz et al. [BBB+18].

Before we describe this improvement, recall that a vector commitment scheme
allows a prover to commit to input vectors of arbitrary dimension. More precisely,
by convention,

com(x; γ) = com(x, 0, . . . , 0; γ)

for any number of zeros. If the number of zeros is clear from context, we simply
write com(x, 0; γ), where now 0 represents a 0-vector with the appropriate dimen-
sion. Hence, if com is a homomorphic vector commitment scheme, a committed
vector x ∈ Gn can always be appended with a vector y ∈ Gm:

com(x; γ) · com(0,y; 0) = com(x, 0; γ) · com(0,y; 0) = com(x,y; γ) .

The improved compressed Σ-protocol can now be described as follows. Instead
of asking the prover to prove knowledge of a preimage of (P, y) with respect to
Ψ = (com, L), the verifier asks to prove knowledge of a preimage of P ·com(0, cy; 0)
with respect to the homomorphism

Ψ′ : Gn × Rand→ H, (x; γ) 7→ com(x, c · L(x); γ) .

Note that, if (x, γ) is a preimage of Ψ, then it is also a preimage of Ψ′, i.e., an
honest prover can complete both tasks. This technique reduces relation Rcom to
the relation

{(P ; x, γ) : com(x, c · L(x); γ) = P} ,

where the linear form is incorporated into the commitment. Since the codomain
of Ψ′ is H instead of H × G, this technique reduces3 the communication costs by
roughly a factor two.

The reduction is an interactive proof for relation Rcom, denoted by Πr and de-
scribed in Protocol 9. Its main properties are summarized in Theorem 3.10. Note
that Πr is clearly not zero-knowledge. However, since the prover only sends one
message, the composition of Πr with an appropriate instantiation of compressed Σ-
protocol Σcomp is easily seen to be special honest-verifier zero-knowledge. Moreover,

3Technically, the improvement depends on the bit-size of elements in G and H. Here we assume
G- and H-elements to be of the same size.
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the special-soundness property only holds if the commitment scheme is binding,
i.e., the cost of this reduction is a degradation from unconditional to computa-
tional special-soundness. In most practical applications, the commitment scheme
is required to be binding anyway. For this reason, this degradation in security is
almost always acceptable.

Protocol 9 Interactive Proof Πr for Incorporating the Linear Form Into the Com-
mitment.

Parameters: n ∈ N, prime q, groups (G,+) and (H, ·)
with exponent q, L ∈ Hom(Gn,G) and
com : Gn × Rand→ H (homomorphic)

Public Input: P ∈ H, y ∈ G
Prover’s Private Input: x ∈ Gn, γ ∈ Rand

Prover’s Claim: com(x; γ) = P ∧ L(x) = y

Prover P Verifier V

c←R Zq
c←−−−−−−−−−

x,γ−−−−−−−−−→ com
(
x, c · L(x); γ

)
?=

P · com(0, c · y; 0)

Theorem 3.10 (Incorporating the Linear Form Into the Commitment). The in-
teractive proof Πr for relation Rcom, described in Protocol 9, is perfectly complete
and computationally 2-out-of-q special-sound, under the assumption that the com-
mitment scheme is binding. Moreover, the communication costs are:

• P → V: n elements of G and 1 element of Rand;

• V → P: 1 element of Zq.
Proof. Note that Πr only has two communication rounds. By appending this
protocol with an empty first message, from the prover to the verifier, it becomes
a Σ-protocol. For this reason, we will also refer to Πr as a Σ-protocol. Let us now
show that Πr has the desired completeness and special-soundness properties.

Completeness: This property follows immediately.

Special-Soundness: Let (c,x, γ) and (c′,x′, γ′) be two accepting transcripts with
distinct challenges c ̸= c′ ∈ Zq.
Then

com
(
x, cL(x); γ

)
· com

(
x′, c′L(x′); γ′)−1

= com
(
x− x′, cL(x)− c′L(x′); γ − γ′)

= com
(
0, (c− c′)y; 0) .
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Hence, either we have found two distinct openings(
x− x′, cL(x)− c′L(x′); γ − γ′) and

(
0, (c− c′)y; 0

)
for the same commitment, breaking its binding property, or x = x′, γ = γ′

and cL(x) − c′L(x′) = (c − c′)y. In the latter case it follows that L(x) = y
and

com(x; γ) = com(x, 0; γ) = com
(
x, cL(x); γ

)
· com(0, cy; 0)−1 = P .

Hence, (x; γ) is a witness for statement (P, y) with respect to relation Rcom,
which completes the proof of the theorem.

Let us finally describe the improved interactive proof for opening linear forms
on compactly committed vectors. This interactive proof is simply the composition
Σcomp ⋄ Πr of the reduction Πr with an appropriate instantiation of compressed
Σ-protocol Σcomp. The properties of this protocol are described in Theorem 3.11.
Note in particular that, instead of 2µ+1 elements, the prover only sends 2 elements
of G to the verifier. Hence, in comparison to the naive approach, the total number
of elements sent by the prover has been reduced from 4µ+ 1 down to 2µ+ 2.

Theorem 3.11 (Compressed Σ-Protocol for Opening a Linear Form). Let n = 2µ

for some µ ∈ N. Then the compressed Σ-protocol Σcomp ⋄ Πr for relation Rcom is
perfectly complete, computationally (2, 2, 3, . . . , 3)-out-of-(q, . . . , q) special-sound,
under the assumption that the commitment scheme is binding, and special honest-
verifier zero-knowledge (SHVZK). Moreover, it has (2µ+2) communication rounds
and the communication costs are:

• P → V: 2 elements of G, 2µ− 1 elements of H and 1 element of Rand;

• V → P: µ+ 1 elements of Zq.

3.4.2 Amortization - Opening Many Linear Forms

The previous section demonstrated how to efficiently open a linear form on a
compactly committed vector. Moreover, by the amortization technique of Sec-
tion 3.4.2, we know how to extend this functionality to opening one linear form
on many different commitments, without increasing the communication costs. In
this section, we consider the task of opening many different linear forms on one
commitment. More precisely, our goal is to construct a communication-efficient
interactive proof for relation

Rs
com = {(P, y1, . . . , ys; x, γ) : com(x; γ) = P ∧ Li(x) = yi ∀1 ≤ i ≤ s} .

There are several ways to realize this functionality. For instance, one could
generalize the reduction of Section 3.4.1 and consider a commitment

com(x, c · L1(x), . . . , c · Ls(x); γ) ,
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where c ∈ Zq is a challenge sampled uniformly at random by the verifier. Hence,
the linear forms are incorporated in different slots of the committed vector.
Composing this reduction with an appropriate instantiation of compressed Σ-
protocol Σcomp would already result in an interactive proof for relation Rs

com with
communication complexity logarithmic in n+ s.

However, we apply a different reduction and incorporate all the linear forms in
a single slot of the commitment. Our reduction uses a “polynomial amortization
trick” (known, e.g., from MPC). After composing this reduction with a compressed
Σ-protocol, one obtains an interactive proof for relation Rs

com with communication
costs independent of s. Hence, the communication costs for opening many linear
forms are exactly the same as for opening a single linear form. As before, the cost
of this reduction is a degradation from unconditional to computational special-
soundness. Moreover, the reduction is (s+ 1)-out-of-q special-sound.

For completeness, the reduction, denoted by ΠR, is described in Protocol 10 and
its properties are summarized in Theorem 3.12.

Protocol 10 Interactive Proof ΠR for Incorporating Many Linear Forms Into the
Commitment.

Parameters: n, s ∈ N, prime q, groups (G,+) and (H, ·)
with exponent q, L1, . . . , Ls ∈ Hom(Gn,G)
and com : Gn × Rand→ H (homomorphic)

Public Input: P ∈ H, y1, . . . , ys ∈ G
Prover’s Private Input: x ∈ Gn, γ ∈ Rand

Prover’s Claim: com(x; γ) = P ∧ Li(x) = yi ∀1 ≤ i ≤ s

Prover P Verifier V

c←R Zq
c←−−−−−−−−−

x;γ−−−−−−−−−→ com
(

x,
∑s

i=1 c
i · Li(x); γ

)
?=

P · com
(

0,
∑s

i=1 c
i · yi; 0

)

Theorem 3.12 (Incorporating Many Linear Forms Into the Commitment). The
interactive proof ΠR for relation Rs

com, described in Protocol 10, is perfectly com-
plete and computationally (s+1)-out-of-q special-sound, under the assumption that
the commitment scheme is binding. Moreover, the communication costs are:

• P → V: n elements of G and 1 element of Rand;

• V → P: 1 element of Zq.

Proof. Completeness: This property follows immediately.
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Special-Soundness: Let (c0,x0, γ0), . . . , (cs,xs, γs) be s+ 1 accepting transcripts
with pairwise distinct challenges c0, . . . , cs ∈ Zq.
For 0 ≤ k ≤ s, let us write fk(·) =

∑s
i=1 c

i
kLi(·). Then, for all k ̸= ℓ,

com(xk, fk(xk); γk) · com(xℓ, fℓ(xℓ); γℓ)−1

= com(xk − xℓ, fk(xk)− fℓ(xℓ); γk − γℓ)

= com
(

0,
s∑

i=1
(ci

k − ci
ℓ)yi; 0

)
.

Hence, either we have found two distinct openings for the same commitment,
breaking its binding property, or xk = xℓ, gammak = γℓ and

fk(xk)− fℓ(xℓ) =
s∑

i=1
(ci

k − ci
ℓ)yi , (3.5)

for all 0 ≤ k, ℓ ≤ s. In the latter case, let x = x0 = · · · = xs and
γ = γ0 = · · · = γs, then it is easily seen that com(x; γ) = P . Moreover,
let Q(X) =

∑s
i=1(Li(x)− yi)Xi ∈ G[X]. Then, by Equation 3.5

Q(ck) = fk(x)−
s∑

i=1
ci

k · yi = fℓ(x)−
s∑

i=1
ci

ℓ · yi = Q(cℓ) ,

for all 0 ≤ k, ℓ ≤ s. Since the s+ 1 evaluation points ck are pairwise distinct
and Q is a polynomial of degree at most s with constant term 0, it follows
that Q(X) = Q(0) = 0 is identically zero, i.e., Li(x) = yi for all 1 ≤ i ≤ s.
Hence, (x; γ) is a witness for statement (P, y1, . . . , ys) with respect to rela-
tion Rs

com, which completes the proof of the theorem.

3.4.3 Opening Linear Forms with Unconditional Soundness

The interactive proofs of the previous two sections reduce the communication costs
of opening linear forms on a compactly committed vector. However, these reduc-
tions are only computationally special-sound. In this section, we describe an al-
ternative approach with roughly the same communication costs and unconditional
special-soundness.

First observe that, since q is prime and thus Zq is a field, the Zq-module Gn is a
vector space admitting a Zq-basis b1, . . . ,bm ∈ Gn. Note that the Zq-dimension m
of Gn is not necessarily equal to n. For simplicity, let us assume that G = Zq. Then
m = n and a basis b1, . . . ,bn ∈ Gn can be computed efficiently. Moreover, there
exists an efficient algorithm to express elements of Gn = Zn

q as linear combinations
of these basis vectors. Therefore, in this case, proving knowledge of a commitment
opening (x; γ) ∈ Gn × Rand is equivalent to proving knowledge of a preimage of
the homomorphism

Ψ: Zn
q × Rand→ H, (y; γ) 7→ com(B · y; γ) ,
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where
B =

(
b1 · · · bn

)
∈ Gn×n .

We now observe that proving that a committed vector x ∈ Gn satisfies L(x) = y,
for some linear form L and scalar y, is equivalent to proving that x lies in the affine
subspace AL,y = {z ∈ Gn : L(z) = y} . We assume (without loss of generality) that
y = 0 and L ̸= 0. Then VL := AL,0 ⊂ Gn is a linear subspace of dimension n− 1.
Both prover and verifier use the same deterministic algorithm to compute a basis
v1, . . . ,vn−1 ∈ Gn for VL and set

Ψ′ : Zn−1
q × Rand→ H, (y; γ) 7→ com(B′ · y; γ) ,

where
B′ =

(
v1 · · · vn−1

)
∈ Gn×n−1 .

By black-box application of the compressed Σ-protocol for proving knowledge
of Ψ′-preimages, the prover shows that it knows a Ψ′-preimage (y; γ) of P . Let
x = B′ · y ∈ Gn, then (x; γ) is an opening of commitment P . Moreover, x lies in
the linear subspace VL and therefore L(x) = y = 0.

Hence, opening the linear form L on a committed vector is reduced to prov-
ing knowledge of a Ψ′-preimage. As before, since the homomorphism Ψ′ has
codomain H instead of H × G, this approach reduces the communication costs
by roughly a factor two. However, in contrast to the reduction of Section 3.4.1,
this reduction is unconditionally special-sound. Moreover, this reduction reduces
the dimension of the secret witness from n down to n − 1. In general, opening s
linearly independent linear forms on the same commitment, reduces the dimension
of the witness from n down to n− s. For this reason, this unconditionally secure
approach even results in (slightly) smaller communication costs.

Although this view may be superior from a conceptual standpoint, it does in-
crease the computational costs for both the prover and the verifier. Both have
to compute a basis for VL, and the prover has to express the secret witness x as
a Zq-linear combination of the basis vectors. If G = Zq this can be done effi-
ciently. However, if the discrete logarithm problem is hard in G, there does not
exist an efficient algorithm for expressing arbitrary witnesses x as Zq-linear com-
bination of basis vectors. For these reasons, our protocols will be based on the
computationally special-sound reductions of Section 3.4.1 and Section 3.4.2.

3.4.4 Compactification

So far, we have shown how to handle two different amortization scenarios effi-
ciently:

1. opening one linear form on many compact commitments (Section 3.2.4);
2. opening many linear forms on one compact commitment (Section 3.4.2).

For both cases, we presented a protocol with roughly the same communication
costs as opening one linear form on one compact commitment. More precisely, in
the first case the communication costs are exactly the same, and in the second case
the verifier has to send one additional challenge to the prover. A straightforward
combination of these techniques results in an interactive proof for opening many
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linear forms on many compact commitments, without increasing the communica-
tion costs.

However, in many practical applications these amortization techniques do not
suffice. For instance, in Section 7.2, we will see that to prove that a committed
vector x satisfies a nonlinear constraint, the vector x needs to be appended with
auxiliary information aux ∈ Gt for some t ∈ N. This auxiliary information lin-
earizes the nonlinear constraint. More precisely, if the committed vector (x, aux)
satisfies certain linear constraints, it follows that x satisfies the required nonlinear
constraint. For more details we refer to Section 7.2. Now, from a practical ap-
plication perspective, it is likely that the prover is already committed to x before
the start of the interactive proof. The prover can be committed to x in a single
compact commitment, but it can also be committed to the coefficients of x individ-
ually. The latter is relevant in practical situations with a natural dynamic, where
provers deliver committed data in subsequent transactions, and only periodically
prove some property on the compound information.

In order to deal with each of these scenarios, we need some further utility en-
hancements. It turns out that this is just a matter of “technology,” i.e., plug and
play with our compressed Σ-protocols and their basic theory suffices. We consider
the following two extreme cases:

Case 1: Opening a linear form Li on a compact commitment Pi = com(xi; γi) for
1 ≤ i ≤ s. Because the prover does not wish to reveal the “cross-terms”
Li(xj) for i ̸= j, this is different from the standard amortization scenarios.

Case 2: Opening a linear form L(x) evaluated on an input vector x = (x1, . . . , xn)
dispersed over n different commitments Pi = com(xi; γi).

Besides these extreme cases one can consider hybrid scenarios in which the
secret-vector-of-interest x = (x1, . . . ,xs) is dispersed over s compact commitments
to vectors xi ∈ Gni . The methods described below both carry over to hybrid
scenarios. The optimal approach depends on specific properties of the scenario.
Namely, the communication complexity of the “Case 1 enhancement” is linear
in the number of commitments, whereas the communication complexity of the
“Case 2 enhancement” is quadratic in the (maximum) dimension of the committed
vectors. Both enhancements reduce the situation to that of a prover with a single
compact commitment to all relevant data (i.e., input data and auxiliary data). For
this reason, these techniques are referred to as compactification.

Case 1. To further emphasize the practical relevance of this case, let us consider
the commit-and-proof scenario, where a prover is already committed to the secret
input vector x in a compact commitment P = com(x, γ) and wishes to prove
that x satisfies some nonlinear constraint. To handle this scenario, the prover
sends a commitment Q = com(0, aux; ρ) to the required auxiliary information aux
to the verifier, and both the prover and verifier compute the new commitment
P ′ := P · Q = com(x, aux; γ + ρ) to the vector x appended with the auxiliary
data aux. Subsequently, the prover opens the required linear forms on commit-
ment P ′ for proving that x satisfies the given nonlinear constraint (for more details
see Section 7.2). Additionally, the prover must show that input x and the auxiliary
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information aux “live on different coefficients” of the appended vector (x, aux), i.e.,
it must show that the opening (0, aux; ρ) of commitment Q starts with the appro-
priate number of zeros. If this is not the case, a dishonest prover could simply
use the auxiliary information to modify the coefficients of x. Note that proving
that the i-th coefficient of a committed vector equals zero boils down to opening
the linear form L(x) = xi. Combined with the amortization technique for opening
many linear forms on a single commitment, we are therefore exactly in the Case 2
scenario (with s = 2);

• opening a linear form Li on Pi = com(xi; γi) for 1 ≤ i ≤ s.
The straightforward approach for handling this case, simply invokes s different

compressed Σ-protocols for the commitments. This would clearly incur a multi-
plicative factor s loss in the communication efficiency. We show how to avoid this
loss.

For simplicity, we restrict ourselves to the case s = 2, but this compactification
technique has a straightforward generalization to arbitrary s. More precisely, let
us consider the two linear forms L1, L2 : Gn → G and two compact commitments
P1 = com(x1; γ1) and P2 = com(x2; γ2) to x1,x2 ∈ Gn. The goal is to efficiently
open L1(x1) and L2(x2) in zero-knowledge. In particular, the cross-terms L1(x2)
and L2(x1) are to remain secret.

The main idea is to build a shell around the compact commitments that allows
the prover to mask linear form evaluations that are not supposed to be revealed,
i.e., the cross-terms. Thereby, the problem can be reduced to a standard amorti-
zation scenario, where the entire “matrix” of linear form evaluations(

L1(x1) L1(x2)
L2(x1) L2(x2)

)
is revealed. More precisely, intended evaluations, on the diagonal of this matrix,
will return the correct value and unintended evaluations will return a random, i.e.,
masked, value.

Let us now consider the details of our solution. The relation is somewhat re-
laxed by allowing the prover to append the committed vectors x1 and x2 with
two additional (random) coefficients u,w ∈ G. However, it is essential that first
coefficient u is only used to equip commitment P1 with a shell, and the second co-
efficient w is only used to equip commitment P2 with a shell. Shelled commitments
com(x1, u, 0; γ′′

1 ) to x1 and com(x2, 0, w; γ′′
2 ) to x2 are obtained by multiplying

P1 and P2 with shells com(0, u, 0; γ′
1) and com(0, 0, w; γ′

2), respectively.
We show how to prove knowledge of “shelled” openings (x1, u, 0; γ1) and

(x2, 0, w; γ1) of the initial commitments P1 and P2, such that L1(x1) = y1 and
L2(x2) = y2. More precisely, our compactification technique is an interactive
proof for relation:

Rshell =

(P1, P2, y1, y2; x1,x2, u, w, γ1, γ2) :
P1 = com(x1, u, 0; γ1)∧
P2 = com(x2, 0, w; γ2)∧
L1(x1) = y1 ∧ L2(x2) = y2

 .

In particular, there is no constraint on the shells u and w. This is essential
because the shells will be used to mask the cross-terms L1(x2) and L2(x1) that
are to remain secret.
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Next, we describe how this relation can be reduced to the standard amortization
scenario where cross terms are revealed. To this end, let ρ ∈ Z∗

q be a challenge,
sampled uniformly at random by the verifier, and let us consider the following
linear forms:

Lρ
1 : Gn+2 → G, (x, a, b) 7→ L1(x) + ρ · b ,

Lρ
2 : Gn+2 → G, (x, a, b) 7→ L2(x) + ρ · a .

Then(
Lρ

1(x1, u, 0) Lρ
1(x2, 0, w)

Lρ
2(x1, u, 0) Lρ

2(x2, 0, w)

)
=
(

y1 L1(x2) + ρ · w
L2(x1) + ρ · u y2

)
, (3.6)

i.e., the cross-terms L1(x2) and L2(x1) are masked by the elements ρ ·w and ρ ·u,
respectively. If the prover chooses the shells u,w ∈ G uniformly at random, then
the masks ρ · w and ρ · u are uniformly distributed, and the distribution of the
evaluations Lρ

1(x2, 0, w) and Lρ
2(x1, u, 0) is independent of the secret vectors x1

and x2.
Hence, if a prover appends the commitments to the secret vectors x1 and x2

with uniformly random shells u,w ∈ G, the case 1 scenario can be reduced to a
standard amortization scenario where the prover opens all four linear form eval-
uations. To this end, the prover sends commitments R1 = com(0, u, 0; ρ1) and
R2 = com(0, 0, w; ρ2), to uniformly random shells u,w ∈ G, to the verifier. More-
over, by means of a standard Σ-protocol, the prover shows that R1 and R2 are
1-dimensional commitments to u and v. Note that the communication costs of
this standard Σ-protocol do not depend on n. Subsequently, after receiving a chal-
lenge ρ←R Z∗

q , the prover opens the linear forms Lρ
1 and Lρ

2, as defined above,
on the shelled commitments Q1 = P1 · R1 and Q2 = P2 · R2, i.e., by invoking the
appropriate compressed Σ-protocol it proves that Equation 3.6 holds.

The compactification protocol Πshell for relation Rshell is described in Pro-
tocol 11. Its main properties are summarized in Theorem 3.13. Interac-
tive proof Πshell has essentially the same communications costs as compressed
Σ-protocol Σcomp for opening one linear form on one compact commitment. Hence,
we have indeed avoided the multiplicative factor two loss of the naive approach.

Note that, in contrast to all interactive proofs presented before, Πshell requires
the commitment scheme to be perfectly hiding. The reason is that, for Πshell to be
perfectly special honest-verifier zero-knowledge, the first message containing the
commitments R1 = com(0, u, 0; ρ1) and R2 = com(0, 0, w; ρ2) should not reveal
any information about the masks u and w. The protocol can also be instantiated
with statistically or computationally hiding commitment schemes, this would affect
the zero-knowledge property accordingly.

Theorem 3.13 (Compactification Protocol for Shelled Commitments). Let
n+ 2 = 2µ for some µ ∈ N. Then the interactive proof Πshell for relation Rshell,
described in Protocol 11, is perfectly complete, computationally (2, 2, 3, . . . , 3)-out-
of-(q, q − 1, q, . . . , q) special-sound, under the assumption that the commitment
scheme is binding, and special honest-verifier zero-knowledge (SHVZK), under the
assumption that the commitment scheme is perfectly hiding. Moreover, it has
(2µ+ 7) communication rounds and the communication costs are:
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• P → V: 6 elements of G, 2µ+ 3 elements of H and 3 elements of Rand;

• V → P: µ+ 3 elements of Zq.

Proof. First, observe that the amortized compressed Σ-protocol, invoked by inter-
active proof Πshell, uses both the amortization technique from Section 3.2.4, over
the two commitments, and the amortization technique from Section 3.4.2, over
the two linear forms. Therefore, the compressed Σ-protocol is perfectly complete,
computationally (3, . . . , 3)-out-of-(q, . . . , q) special-sound, under the assumption
that the commitment scheme is binding, and special honest-verifier zero-knowledge
(SHVZK). Moreover, it has (2µ+2) communication rounds and the communication
costs are:

• P → V: 2 elements of G, 2µ− 1 elements of H and 1 element of Rand;

• V → P: µ+ 1 elements of Zq.

From this the communication costs of Πshell follow. Let us now prove the remaining
properties.

Completeness: This property follows immediately.

Special-Soundness: Suppose we are given an accepting (1, 2, 3, . . . , 3)-tree of tran-
scripts, i.e., all transcripts in this tree start with the same messages

(R1, R2, A1, A2, c, z1, z2, ϕ1, ϕ2) .

Further we have two distinct challenges ρ ̸= ρ′ ∈ Z∗
q , corresponding to the

two different (1, 1, 3, . . . , 3)-trees of accepting transcripts.
By the (3, . . . , 3)-out-of-(q, . . . , q) special-soundness of the compressed Σ-
protocol that is invoked, for both ρ and ρ′, openings of the commit-
ments P1 ·R1 and P2 ·R2 can be computed given these trees (under the
assumption that the commitment scheme is binding). Hence, either we have
found distinct openings for the same commitments, breaking the binding
property of com, or the commitment openings found for ρ and ρ′ coincide.
Let us assume the latter and write (z̄1, ū, w̄

′, γ̄1) and (z̄2, ū
′, w̄, γ̄2) for the

openings of P1 · R1 and P2 · R2, respectively. Then, by the same special-
soundness property,

Lρ
1(z̄1, ū, w̄

′, γ̄1) = Lρ′

1 (z̄1, ū, w̄
′, γ̄1) = y1 ,

Lρ
2(z̄2, ū

′, w̄, γ̄2) = Lρ′

2 (z̄2, ū
′, w̄, γ̄2) = y2 .

Therefore, by definition of Lρ
1, Lρ′

1 , Lρ
2 and Lρ′

2 , it is easily seen to follow that
w̄′ = ū′ = 0, L1(z̄1) = y1 and L2(z̄2) = y2.
Hence, the pair (z̄1, ū, 0, γ̄1) and (z̄2, 0, w̄, γ̄2) is a witness for statement
(P1 ·R1, P2 ·R2, y1, y2) with respect to relation Rshell.
The desired special-soundness property of Πshell now follows from the special-
soundness of the Σ-protocol used to prove knowledge of appropriate openings
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of R1 and R2. More precisely, this Σ-protocol shows that the prover knows an
opening of R1 with zeros everywhere except in the first shell coefficient, and
an opening of R2 with zeros everywhere except in the second shell coefficient.
Combined with the previously extracted witness for (P1 ·R1, P2 ·R2, y1, y2),
this corresponds to a witness for statement (P1, P2, y1, y2).

SHVZK: Transcript for statements (P1, P2, y1, y2) that admit a witness are sim-
ulated as follows. Sample µ + 3 challenges (c, ρ, c0, . . . , cµ) and elements
z1, z2, y1,2, y2,1 ←R G and γ′

1, γ
′
2, ϕ1, ϕ2 ←R Rand uniformly at random.

Then compute R1 = com(0; γ′
1), R2 = com(0; γ′

2), A1 = com(0, z1, 0;ϕ1) ·
R−c

1 and A2 = com(0, 0, z2;ϕ2) ·R−c
2 .

Then, since ρ ̸= 0 and (P1, P2, y1, y2) admits a witness, the public statement
(P1 · R1, P1 · R1, y1, y1,2, y2,1, y2) for the amortized compressed Σ-protocol
admits a witness. Therefore, it is possible to run the SHVZK simulator for
this protocol, given this statement and the µ+ 1 challenges sampled before,
to obtain a protocol transcript tr. The SHVZK simulator for Πshell then
outputs transcript

(R1, R2, A1, A2, c, z1, z2, ϕ1, ϕ2, ρ, y1,2, y2,1, tr) .

Because ρ ̸= 0 and the commitment scheme is perfectly hiding, simulated
transcripts have exactly the same distribution as honestly generated ones,
which completes the proof of theorem.

Interactive proof Πshell shows how to handle the case 1 compactification scenario
if s = 2, i.e., opening linear form evaluations L1(x1) and L2(x2) given compact
commitments to x1 and x2. This technique has a straightforward generalization to
arbitrary s, where the matrix of linear form evaluations is an s×smatrix containing
s public values on the diagonal and s2 − s secret values, the cross-terms. Hence,
in general, commitments must be appended with s2 − s different shells. For this
reason, the communication costs grow quadratically in s. However, this quadratic
loss in communication efficiency is additive, i.e., the communication costs are in
O(s2 + logn). By contrast, the communication costs of the naive approach are
in O(s logn). The optimal approach thus depends on specific properties of the
application scenario.

Case 2. Let us now consider the case where the prover has n individual commit-
ments Pi = com(xi; γi) to the coefficients of x = (x1, . . . , xn) ∈ Gn, and wishes to
prove that L(x) = y for some public linear form L : Gn → G and y ∈ G. Hence, in
this case the relevant information is dispersed over many different commitments.
Our goal is thus to construct an interactive proof for relation

Rd = {(P1, . . . , Pn, y; x, γ1, . . . , γn) : com(xi; γi) = Pi ∧ L(x) = y} .

To bring about the desired starting point of the compressed Σ-protocols, our ap-
proach is to compactify all the coefficients xi into one single compact commit-
ment P .
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Protocol 11 Compactification Protocol Πshell for Shelled Commitments.

Parameters: n+ 2 = 2µ ∈ N, prime q, groups (G,+) and
(H, ·) with exponent q, L1, L2 ∈ Hom(Gn,G)
and com : Gn × Rand→ H (homomorphic)

Public Input: P1, P2 ∈ H, y1, y2 ∈ G
Prover’s Private Input: x1,x2 ∈ Gn, u,w ∈ Gn, γ1, γ2 ∈ Rand

Prover’s Claim: com(x1, u, 0; γ1) = P1 ∧ L1(x1) = y1 ∧
com(x2, 0, w; γ2) = P2 ∧ L2(x2) = y2

Prover P Verifier V

u′, w′, a1, a2 ←R G
γ′

1, γ
′
2, ψ1, ψ2 ←R Rand

R1 = com(0, u′, 0; γ′
1)

R2 = com(0, 0, w′; γ′
2)

A1 = com(0, a1, 0;ψ1)
A2 = com(0, 0, a2;ψ2)

R1,R2,A1,A2−−−−−−−−−→
z1 = a1 + cu′ c←−−−−−−−−− c←R Zq

z2 = a2 + cw′

ϕ1 = ψ1 + cγ′
1

ϕ2 = ψ2 + cγ′
2

z1,z2,ϕ1,ϕ2−−−−−−−−−→ com
(
0, z1, 0;ϕ1) ?= A1 ·Rc

1

com
(
0, 0, z2;ϕ2) ?= A2 ·Rc

2
ρ←−−−−−−−−− ρ←R Z∗

q

y1,2 = L1(x2) + ρ · (w+w′)
y2,1 = L2(x1) + ρ · (u+ u′) y1,2,y2,1−−−−−−−−−→

Run an amortized compressed Σ-protocol for proving knowledge of openings
(x1, u+ u′, 0; γ1 + γ′

1) and (x2, 0, w + w′; γ2 + γ′
2) of commitments P1 · R1 and

P2 ·R2, respectively, such that:

Lρ
1(x1, u, w

′) = y1 , Lρ
1(x2, u

′, w) = y1,2 ,
Lρ

2(x1, u, w
′) = y2,1 , Lρ

2(x2, u
′, w) = y2 ,

where

Lρ
1(x, a, b) := L1(x) + ρ · b and Lρ

2(x, a, b) := L2(x) + ρ · a .

The first component of our interactive proof is a standard (amortized) Σ-protocol
for proving knowledge of the openings (xi; γi) of the commitments Pi. Let us recall
this Σ-protocol:

1. The prover samples r ←R G and γ ← Rand uniformly at random and sends
A = com(r; ρ) to the verifier;
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2. After receiving a challenge c ←R Zq, sampled uniformly at random by the
verifier, the prover sends z = r +

∑n
i=1 c

ixi and ϕ = ρ+
∑n

i=1 c
iγi;

3. The verifier checks that com(z;ϕ) = A ·
∏n

i=1 P
ci
i .

Note that communication costs of this Σ-protocol are independent of n.
We now observe that z = r+

∑n
i=1 c

ixi is a linear form Lc evaluated in the secret
vector (x, r) containing all the relevant coefficients x1, . . . , xn. For this reason, in
our interactive proof Πd for relation Rd the prover appends the first message of
this Σ-protocol with a compact commitment P = com(x, r; γ) to (x, r). After
receiving the verifier’s challenge c, the prover additionally invokes a compressed
Σ-protocol to prove knowledge of an opening (x; r) of P that satisfies L(x) = y
and Lc(x, r) = r +

∑n
i=1 c

ixi = z.
Interactive proof Πd for relation Rd is described in Protocol 12 and its main

properties are summarized in Theorem 3.14.

Protocol 12 Compactification Protocol Πd for Dispersed Commitments.

Parameters: n+ 1 = 2µ ∈ N, prime q, groups (G,+) and
(H, ·) with exponent q, L ∈ Hom(Gn,G)
and com : Gn × Rand→ H (homomorphic)

Public Input: P1, . . . , Pn ∈ H, y ∈ G
Prover’s Private Input: x = (x1, . . . , xn) ∈ Gn, γ1, . . . , γs ∈ Rand

Prover’s Claim: com(xi; γi) = Pi ∀i ∧ L(x) = y

Prover P Verifier V

r ←R G
ρ, γ ←R Rand
A = com(r; ρ)
P = com(x, r; γ)

A,P−−−−−−−−−→
c←−−−−−−−−− c←R Zq

z = r +
∑n

i=1 c
ixi

ϕ = ρ+
∑n

i=1 c
iγi

z,ϕ−−−−−−−−−→ com
(
z;ϕ) ?= A ·

∏n
i=1 P

ci

i

Run an amortized compressed Σ-protocol for proving knowledge of a commitment
opening (x, r; γ) of P such that:

L(x) = y and Lc(x, r) := r +
∑n

i=1 c
ixi = z .

Theorem 3.14 (Compactification Protocol for Dispersed Commitments). Let
n + 1 = 2µ for some µ ∈ N. Then the interactive proof Πd for relation Rd, de-
scribed in Protocol 12, is perfectly complete, computationally (n+ 1, 3, 2, 3, . . . , 3)-
out-of-(q, . . . , q) special-sound, under the assumption that the commitment scheme
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is binding, and special honest-verifier zero-knowledge (SHVZK), under the assump-
tion that the commitment scheme is perfectly hiding. Moreover, it has (2µ + 5)
communication rounds and the communication costs are:

• P → V: 3 elements of G, 2µ+ 1 elements of H and 2 elements of Rand;

• V → P: µ+ 2 elements of Zq.

Proof. First observe that the amortized compressed Σ-protocol, invoked by in-
teractive proof Πd, amortizes the costs of opening the two linear forms by us-
ing the amortization technique from Section 3.4.2. Therefore, this compressed
Σ-protocol is perfectly complete, computationally (3, 2, 3 . . . , 3)-out-of-(q, . . . , q)
special-sound, under the assumption that the commitment scheme is binding, and
special honest-verifier zero-knowledge (SHVZK). Moreover, it has (2µ + 2) com-
munication rounds and the communication costs are:

• P → V: 2 elements of G, 2µ− 1 elements of H and 1 element of Rand;

• V → P: µ+ 1 elements of Zq.

From this the communication costs of Πd follow. Let us now prove the remaining
properties.

Completeness: This property follows immediately.

Special-Soundness: Suppose we are given an accepting (1, 3, 2, 3, . . . , 3)-tree of
protocol transcripts, i.e., all transcripts in the this tree start with the
same messages (A,P, c, z, ϕ). By the (3, 2, 3, . . . , 3)-out-of-(q, . . . , q) special-
soundness of the compressed Σ-protocol that is invoked, an opening (z̄, r̄; γ̄)
of P can be computed given this tree (under the assumption that the com-
mitment scheme is binding). Moreover, this opening satisfies L(z̄) = y and
Lc(z̄, r̄) = z.
An (n+ 1, 3, 2, 3, . . . , 3)-tree of accepting transcripts corresponds to n+ 1 of
these trees with common first message (A,P ) and pairwise distinct challenges
c0, . . . , cn ∈ Zq. Hence, this tree corresponds to tuples

(A,P, ci, zi, ϕi) and (z̄i, r̄i; γ̄i) ,

such that

com(z̄i, r̄i; γ̄i) = P ∧ L(z̄i) = y ∧ Lci
(z̄i, r̄i) = zi ∀0 ≤ i ≤ n .

Therefore, we have either found distinct openings for the same commit-
ment P , breaking the binding property of com, or (z̄i, r̄i; γ̄i) = (z̄j , r̄j ; γ̄j)
for all i ̸= j. Let us assume the latter and write (z̄, r̄; γ̄) := (z̄i, r̄i; γ̄i).
The remainder of the proof now follows from the standard extraction proce-
dure for the amortized Σ-protocol. More precisely, let

V =


1 c0 · · · cn

0
1 c1 · · · cn

1
...

... . . . ...
1 cn · · · cn

n

 ∈ Z(n+1)×(n+1)
q ,
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be the invertible Vandermonde matrix defined by the pairwise distinct chal-
lenges c0, . . . , cn. Further, letz̃0

...
z̃n

 = V −1

z0
...
zn

 ∈ Gn+1 and

ϕ̃0
...
ϕ̃n

 = V −1

ϕ0
...
ϕn

 ∈ Randn+1 .

Then, com
(
z̃i; ϕ̃i

)
= Pi for all 1 ≤ i ≤ n. Moreover, since Lci(z̄, r̄) = zi,

it follows that z̄ = (z̃1, . . . , z̃n). Finally, recall that L(z̄) = y, i.e.,
(z̄, ϕ̃1, . . . , ϕ̃n) is a witness for (P1, . . . , Pn, y), which proves the required
special-soundness property.

SHVZK: Transcript for statements (P1, . . . , Pn, y) that admit a witness are sim-
ulated as follows. Sample µ + 2 challenges (c, c0, . . . , cµ) and z ←R G
and γ, ϕ ←R Rand uniformly at random, and compute P = com(0; γ)
and A = com(z;ϕ) ·

∏n
i=1 P

−ci

i .
Then, since (P1, . . . , Pn, y) admits a witness and com is perfectly hiding, the
public statement (P, y, z), for the invoked compressed Σ-protocol, admits
a witness. Therefore, it is possible to run the SHVZK simulator for this
protocol, given the statement (P, y, z) and the µ + 1 challenges (c0, . . . , cµ)
sampled before, to obtain a protocol transcript tr. The SHVZK simulator for
Πd then outputs transcript

(A,P, c, z, ϕ, tr) .

Because the commitment scheme is perfectly hiding, simulated transcripts
have exactly the same distribution as honestly generated ones, which com-
pletes the proof of theorem.




