
Compressed Σ-protocol theory
Attema, T.

Citation
Attema, T. (2023, June 1). Compressed Σ-protocol theory. Retrieved from
https://hdl.handle.net/1887/3619596
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3619596
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619596






2
Preliminaries

2.1 Basic Notation

We first introduce the basic notation used throughout this dissertation. For a
more detailed introduction to concepts such as groups, rings, fields, ideals, mod-
ules, homomorphisms, endomorphisms and tensor products, we refer the reader to
textbooks such as [Lan02].

By N, Z, R and R≥0 we denote the set of the positive integers, the integers, the
real numbers and the nonnegative real numbers, respectively. We write [a, b] =
{x ∈ R : a ≤ x ≤ b} for the set of real numbers bounded by a and b. For a set S,
2S = {A ⊆ S} denotes the powerset of S, containing all subsets of S. Moreover,
we adhere to the convention in cryptography by defining Zq := Z/qZ as the ring
of integers modulo q ∈ Z, i.e., Zq does not refer to the ring of q-adic integers.
Oftentimes q is prime, in which case the ring Zq is a field.

The set of bitstrings of length n ∈ N is denoted as {0, 1}n. Moreover, |x|
denotes the length of a bitstring x, i.e., |x| = n for all x ∈ {0, 1}n. The set of
arbitrarily long bitstrings is denoted as {0, 1}∗ = ∪n∈N{0, 1}n. Further, vectors
x = (x1, . . . , xn) are written in boldface.

A group G with group operation + is denoted as (G,+). If the group op-
eration is clear from context we simply write G. All groups in this work are
assumed to be abelian, i.e., the group operation is commutative. The group of
homomorphisms from G to H is denoted as Hom(G,H). Its group operation is
defined as the addition of homomorphisms, i.e., f + g : G→ H, x 7→ f(x) + g(x)
for f, g ∈ Hom(G,H). The set End(G) := Hom(G,G) contains the endomorphisms
of G. The composition of homomorphisms defines a second binary operation (mul-
tiplication), i.e., End(G) is a ring.1

Sometimes we use multiplicative notation for the group operation instead and
write (H, ·). If the group operation is written additively we denote the identity
element by 0, and if the group operation is written multiplicatively we denote the
identity element by 1.

Recall that an abelian group (G,+) is a Z-module, i.e., it has a well-defined

1Every ring is defined to contain a multiplicative unit, and all ring homomorphisms are defined
to map the multiplicative unit to the multiplicative unit.



28 Chapter 2 Preliminaries

multiplication by integers operation

· : Z×G→ G, (a, g) 7→ a · g .

More generally, let R be a commutative ring, then an R-module is an abelian
group (G,+) together with a ring homomorphism

ϕ : R → End(G), a 7→ ϕa .

In particular, the multiplication of g ∈ G by a ∈ R is defined as a · g := ϕa(g).
Further, M ⊗R N denotes the tensor product of two R-modules M and N .

The exponent q of an abelian group (G,+) is the smallest positive integer q ∈ N,
such that q · g = 0 for all g ∈ G. If no such integer q exist, we define q =∞. It is
easily seen that an abelian group (G,+) with exponent q is a Zq-module.

Let now (G1,+), (G2,+) and (H, ·) be groups of prime order q, hence they are
Zq-modules. Then a mapping e : G1×G2 → H is said to be a pairing if it is bilinear,
nondegenerate (i.e., e is not identically equal to the identity) and there exists an
efficient algorithm to compute e. The tuple (q,G1,G2,H, e) is also referred to as
a bilinear group.

Finally, we recall the definitions of negligible and noticeable functions.

Definition 2.1 (Negligible Function). A function η : N→ R is said to be negligi-
ble, denoted by η(λ) ≤ negl(λ), if for all c ∈ N there exists an Nc ∈ N such that
|η(λ)| ≤ λ−c for all λ ≥ Nc.

Definition 2.2 (Noticeable Function). A function η : N→ R is said to be notice-
able if there exists a c ∈ N and N ∈ N such that |η(λ)| ≥ λ−c for all λ ≥ N .

These definitions have straightforward adaptations to functions η : {0, 1}∗ → R
taking arbitrary bitstrings as input. For instance, a function η : {0, 1}∗ → R is
said to be negligible if for all c ∈ N there exists an Nc ∈ N such that |η(x)| ≤ |x|−c

for all |x| ≥ Nc.

2.2 Algorithms

Given a probabilistic algorithm A, we write y = A(x; r) for the output produced
by A on input x and randomness r. Sometimes the randomness is left implicit, i.e.,
we write y ← A(x) for the process of sampling the bits in r uniformly at random
and evaluating y = A(x; r). The randomness r is also referred to as the random
coins or the random tape of A. Note that a function is simply a deterministic
algorithm. An algorithm is said to be efficient or polynomial time if A(x) runs in
a number of steps that is polynomial in the input size |x|.

Definition 2.3 (Polynomial Time Algorithm). An algorithm A is a (strict) poly-
nomial time algorithm if there exists a polynomial p ∈ Z[X] such that, for all
inputs x and random coins r, A(x; r) runs in at most p(|x|) steps.

The following weaker, but oftentimes sufficient, notion of efficiency only requires
A(x) to run in a polynomial number of steps on expectation over the algorithm’s
randomness.



2.3 Arithmetic Circuits 29

Definition 2.4 (Expected Polynomial Time Algorithm). An algorithm A is an
expected polynomial time algorithm if there exists a polynomial p ∈ Z[X] such
that, for all inputs x, A(x) runs in an expected number of at most p(|x|) steps,
where the expectation is over the randomness r of A.

An algorithm B is said to have oracle, or black-box, access to another algorithmA
if B can invoke A on arbitrary inputs x and random coins r, which is denoted as
BA. The algorithm B is also said to be an oracle algorithm. If, for all inputs x,
random coins r and algorithms A, BA invokes A at most Q times, B is called a
Q-query oracle algorithm.

2.3 Arithmetic Circuits

The main model of computation used in this dissertation is the arithmetic cir-
cuit model. Arithmetic circuits model the evaluation of multivariate polynomials
f(X1, . . . , Xn) defined over a finite field F. They express a polynomial in terms
of the basic arithmetic operations: addition and multiplication. More precisely,
an arithmetic circuit is a directed acyclic graph. Its nodes are referred to as gates
and its edges as wires. The gates with indegree 0 are called the input gates. Input
gates have unbounded outdegree and are assigned a constant a ∈ F or a vari-
able Xi. The remaining gates are addition or multiplication gates. They have
indegree 2 and unbounded outdegree. As such, all wires naturally correspond to a
multivariate polynomial in F[X1, . . . , Xn], where n is the number of variable input
gates. An arithmetic circuit corresponding to the polynomial f(X1, . . . , Xn) has a
unique output gate with outdegree 0. Slightly abusing terminology, we also allow
an arithmetic circuit C to have multiple output gates. In this case the circuit C
corresponds to a vector of polynomials (f1, . . . , fs).

The evaluation of an arithmetic circuit entails assigning values to the n variables
X1, . . . , Xn and computing all wire values. For this reason, an arithmetic circuit
with s output gates can also be viewed as a mapping C : Fn → Fs.

The size |C| of an arithmetic circuit C is the number of wires it contains. It is
a measure for its computational complexity. There are many arithmetic circuits
corresponding to the same function f : Fn → Fs. A natural question is therefore
to find the smallest arithmetic circuit computing a given function.

The circuit satisfiability problem asks to decide whether a given arithmetic cir-
cuit C : Fn → F admits a satisfiable input x ∈ Fn, i.e., an input x such that
C(x) = 0. The circuit satisfiability problem is NP-complete,2 i.e., every prob-
lem in NP can be written as a circuit satisfiability problem, demonstrating its
versatility.

2.4 Probability Distributions

Let us now recall some basic discrete probability theory. In this work, we will not
require continuous probability theory.

2Recall that NP denotes the class of problems that admit an efficiently verifiable solution.



30 Chapter 2 Preliminaries

Definition 2.5 (Discrete Probability Space). A discrete probability space is a
tuple (Ω, p), containing a countable sample space Ω and a probability mass function
p : Ω→ [0, 1] such that

∑
ω∈Ω p(ω) = 1. A subset E ⊆ Ω is called an event. Every

event is associated to a probability via the probability measure

Pr: 2Ω → [0, 1], E 7→
∑
ω∈E

p(ω) .

Definition 2.6 (Random Variable). A random variable is a function X : Ω→ X
for some nonempty set X . Moreover, the probability distribution of X is the
function

DX : X → [0, 1], x 7→ Pr(X = x) :=
∑

ω∈X−1(x)

p(ω) .

For any x ∈ X and C ⊆ X , the events X−1(x) ⊆ Ω and X−1(C) ⊆ Ω are
simply denoted as X = x and X ∈ C, respectively. The support of a random
variable is supp(X) = {x ∈ X : Pr(X = x) > 0}. Further, X is said to be
uniformly distributed over X if X is a finite set and Pr(X = x) = 1/ |X | for all
x ∈ X . Sampling an element x from a distributionDX is denoted as x←R DX , i.e.,
Pr(x = y : x←R DX) = Pr(X = y) for all y ∈ X . IfDX is the uniform distribution
over some finite set X , we also write x ←R X instead of x ←R DX . For an
algorithm A : X → Y, A(X) denotes the random variable with Pr(A(X) = y) =
Pr
(
A(x) = y : x←R DX

)
, where the probability is also over the randomness of A.

Definition 2.7 (Statistical Distance). The statistical distance between two ran-
dom variables X0, X1 : Ω→ X is defined as

∆(X0, X1) = 1
2
∑
x∈X
|Pr(X0 = x)− Pr(X1 = x)| .

The statistical distance is also called the total variation distance.

Towards proving the security of cryptographic protocols, we are often interested
in algorithms D aiming to distinguish two random variables X0 and X1. For
instance, the inability of an adversary to distinguish the encryption of a secret
message from a uniformly random bitstring proves the security of the considered
encryption scheme.

In order to quantify how well an algorithm D can distinguish two random vari-
ables X0 and X1 let us consider the following distinguishing game. First, a bit
b ←R {0, 1} is sampled uniformly at random. Second, an element x ←R DXb

is
sampled from the distribution of Xb. Finally, the algorithm D, on input x, outputs
a bit b′ ∈ {0, 1}. The algorithm D wins the distinguishing game if b = b′. For
this reason, a probabilistic algorithm that always outputs a bit is also called a
distinguisher.

The advantage AdvD(X0, X1) of a distinguisher now measures how well D suc-
ceeds in winning this game. For instance, the advantage equals 1 if the distin-
guisher always wins, and it equals 0 if D ignores the input x and outputs a random
bit b′, thereby always winning with probability 1/2.



2.4 Probability Distributions 31

Definition 2.8 (Advantage of a Distinguisher). Let X0, X1 : Ω→ X be two ran-
dom variables and let D : X → {0, 1} be a (probabilistic) distinguisher. Then, the
advantage of D in distinguishing X0 and X1 is

AdvD(X0, X1) :=
∣∣Pr
(
D(X0) = 0

)
− Pr

(
D(X1) = 0

)∣∣ .
Moreover, the advantage of a class of distinguishers F is

AdvF (X0, X1) := sup
D∈F

AdvD(X0, X1) .

The following lemma shows that the distinguishing advantage of a family of
distinguishers is closely related to the statistical distance.

Lemma 2.1. Let X0, X1 : Ω→ X be random variables. Then

∆(X0, X1) = sup
D

AdvD(X0, X1) ,

where the supremum is over all distinguishers D.

Proof. See [CDN15, page 20].

We are now ready to define what it means for two families of random variables
to be statistically or computationally indistinguishable.

Definition 2.9 (Statistical Indistinguishability). Two families {Xs}s∈S and
{Ys}s∈S of random variables, indexed by a set of bitstrings S ⊆ {0, 1}∗, are said
to be statistically indistinguishable if the function

∆(s) := ∆(Xs, Ys)

is negligible in |s|. If ∆(s) = 0 for all s ∈ S, {Xs}s∈S and {Ys}s∈S are said to be
perfectly indistinguishable.

Definition 2.10 (Computational Indistinguishability). Let F be the class of poly-
nomial time distinguishers. Two families {Xs}s∈S and {Ys}s∈S of random vari-
ables, indexed by a set of bitstrings S ⊆ {0, 1}∗, are said to be computationally
indistinguishable if

∆(s) := AdvF (Xs, Xs)
is negligible in |s|.

2.4.1 Geometric Distribution

A random variable B with two distinct possible outcomes, denoted 0 (failure) and 1
(success), is said to follow a Bernoulli distribution with parameter p = Pr(B = 1).
Sampling from a Bernoulli distribution is also referred to as running a Bernoulli
trial. The probability distribution of the number X of independent and identical
Bernoulli trials needed to obtain a success is called the geometric distribution with
parameter p = Pr(X = 1). In this case Pr(X = k) = (1− p)k−1p for all k ∈ N and
we write X ∼ Geo(p). For two independent geometric distributions we have the
following lemma.



32 Chapter 2 Preliminaries

Lemma 2.2. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed.
Then,

Pr(X ≤ Y ) = p

p+ q − pq
≥ p

p+ q
.

Proof. It holds that

Pr(X ≤ Y ) =
∞∑

k=1
Pr(X = k) Pr(Y ≥ k) =

∞∑
k=1

(1− p)k−1p · (1− q)k−1

= p

∞∑
ℓ=0

(1− p)ℓ(1− q)ℓ = p

1− (1− p)(1− q)

= p

p+ q − pq
≥ p

p+ q
,

which completes the proof of the lemma.

2.4.2 Negative Hypergeometric Distribution

Consider a bucket containing ℓ green balls and N − ℓ red balls, i.e., a total of
N balls. In the negative hypergeometric experiment, balls are drawn uniformly
at random from this bucket, without replacement, until k green balls have been
found, or until the bucket is empty. The number of red balls X drawn in this
experiment is said to have a negative hypergeometric distribution with parameters
N, ℓ, k, which is denoted by X ∼ NHG(N, ℓ, k).

Lemma 2.3 (Negative Hypergeometric Distribution). Let N, ℓ, k ∈ N with
ℓ, k ≤ N , and let X ∼ NHG(N, ℓ, k). Then

E[X] ≤ kN − ℓ
ℓ+ 1 .

Proof. If ℓ < k, it clearly holds that Pr(X = N − ℓ) = 1. Hence, in this case,
E[X] = N − ℓ ≤ kN−ℓ

ℓ+1 , which proves the claim.
So let us now consider the case ℓ ≥ k. Then, for all 0 ≤ x ≤ N − ℓ,

Pr(X = x) =
(

x+k−1
x

)(
N−x−k
N−ℓ−x

)(
N

N−ℓ

) .

Hence,

E[X] =
N−ℓ∑
x=0

Pr(X = x) · x =
N−ℓ∑
x=1

x

(
x+k−1

x

)(
N−x−k
N−ℓ−x

)(
N

N−ℓ

)
= k

N − ℓ
ℓ+ 1

N−ℓ∑
x=1

x
k

(
x+k−1

x

)(
N−x−k
N−ℓ−x

)
N−ℓ
ℓ+1

(
N

N−ℓ

) = k
N − ℓ
ℓ+ 1

N−ℓ∑
x=1

(
x+k−1

x−1
)(

N−x−k
N−ℓ−x

)(
N

N−ℓ−1
)

= k
N − ℓ
ℓ+ 1

N−ℓ∑
x=1

Pr(Y = x− 1) = k
N − ℓ
ℓ+ 1 ,

where Y ∼ NHG(N, ℓ+ 1, k − 1). This completes the proof of the lemma.



2.5 Commitment Schemes 33

Remark 2.1. Typically, negative hypergeometric experiments are restricted to the
nontrivial case ℓ ≥ k. For reasons to become clear later, we also allow parameter
choices with ℓ < k resulting in a trivial negative hypergeometric experiment in
which all balls are always drawn.
Remark 2.2. The above negative hypergeometric experiment has a straightforward
generalization to buckets with balls of more than 2 colors. Namely, say the bucket
contains ℓ green balls and mi balls of color i for 1 ≤ i ≤ M . The experiment
proceeds as before, i.e., drawing until either k green balls have been found or the
bucket is empty. Let Xi be the number of balls of color i that are drawn in this
experiment. Then Xi ∼ NHG(ℓ + mi, ℓ, k) for all i. To see this, simply run the
generalized negative hypergeometric experiment without counting the balls that
are neither green nor of color i.

2.5 Commitment Schemes

Commitment schemes allow a party, also referred to as a prover, to commit to
(secret) input data. When a prover has made a commitment, the input data can
no longer be changed, i.e., the commitment is binding. Moreover, the commitment
itself does not reveal anything about the input data, i.e., it is hiding. Finally, at
some later point in time, the prover can reveal his input data and prove that this
was indeed the data it committed to before. This is called opening a commitment.
Commitment schemes are one the most important building blocks in cryptography.

The following gives a formal definition for commitment schemes. The binding
and hiding properties are not incorporated in this definition; we consider these as
desirable security properties.

Definition 2.11 (Commitment Scheme). A commitment scheme is defined by
a probabilistic polynomial time setup algorithm Setup, which takes as input
the (unary encoding of) a security parameter3 λ and outputs a public key
pk← Setup(1λ). Every public key defines a message set Mpk, a randomness
set Randpk, a commitment set Cpk and a deterministic function

compk : Mpk × Randpk → Cpk, (m; γ) 7→ compk(m; γ) .

To commit to a message m ∈Mpk, a prover samples γ ←R Randpk uniformly at
random and outputs the commitment P = compk(m; γ). A commitment is opened
by revealing the message m together with the commitment randomness γ. An
opening (m; γ) of a commitment P is verified by checking that compk(m; γ) = P .
Let us now formally define what it means for a commitment scheme to be binding
and hiding.

Definition 2.12 (Binding Commitment Scheme). A commitment scheme defined
by the setup algorithm Setup is (statistically) binding if, for every probabilistic

3The security parameter controls the expected amount of security a cryptographic primitive
offers, i.e., there exists a monotone function f such that the cost of breaking the primitive
instantiated with security parameter λ is at least f(λ). Typically, we require the function f
to grow faster than any polynomial p(X) ∈ Z[X].



34 Chapter 2 Preliminaries

algorithm A,

Pr

m0 ̸= m1 ∧ P0 = P1

∣∣∣∣∣∣∣∣∣
pk← Setup

(
1λ
)

(m0, γ0,m1, γ1)← A(pk)
P0 = compk(m0; γ0)
P1 = compk(m1; γ1)

 ≤ negl(λ) .

If the above probability equals 0, the commitment scheme is said to be perfectly
binding. If the above only holds for polynomial time algorithms A, the commit-
ment scheme is said to be computationally binding.

Definition 2.13 (Hiding Commitment Scheme). A commitment scheme defined
by the setup algorithm Setup is (statistically) hiding if, for every pair of proba-
bilistic algorithms (A1,A2),∣∣∣∣∣∣∣∣∣Pr

A2(pk, P ) = b

∣∣∣∣∣∣∣∣∣
pk← Setup

(
1λ
)

(m0,m1)← A1(pk)
b←R {0, 1}, γ ←R Randpk

P = compk(mb; γ)

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ negl(λ) .

If the above probability equals 1/2, the commitment scheme is said to be perfectly
hiding. If the above only holds for polynomial time algorithm pairs (A1,A2), the
commitment scheme is said to be computationally hiding.

Note that if the commitment scheme is perfectly hiding, then com(m; γ) and
com(m′; γ) are identically distributed for all m,m′ ∈Mpk, where γ ←R Randpk is
uniformly distributed.

A commitment scheme is said to be homomorphic if, for all public keys pk, the
setsMpk, Randpk and Cpk are groups, and the function compk : Mpk×Randpk → Cpk

is a group homomorphism. Typically, the group operations inMpk and Randpk are
written additively and the group operation in Cpk is written multiplicatively.

We say that a commitment scheme is a vector commitment scheme if the setup
algorithm additionally takes as input a dimension n and, for every public key
pk← Setup(1λ, n), the message set is an n-fold Cartesian product Mn

pk, i.e.,

compk : Mn
pk × Randpk → Cpk .

A vector commitment scheme thus allows a prover to commit to vectors of
arbitrary length n. If the commitment scheme is homomorphic and n′ < n,
we also write compk(m1, . . . ,mn′ ; γ) := compk(m1, . . . ,mn′ , 0, . . . , 0; γ) where
(m1, . . . ,mn′ , 0, . . . , 0) ∈ Mn

pk. Sometimes, if n′ > n, we abuse notation and
still write compk(m1, . . . ,mn′ ; γ). In this case, we implicitly assume that the com-
mitment scheme was actually instantiated with dimension at least n′.

A vector commitment scheme is said to be compact if the size of a commitment
is constant in n. Moreover, it is said to be compressing if the size of a commitment
is sublinear in n, i.e., the size of a commitment grows sublinearly in the dimension
n of the committed vector. In particular, any compact vector commitment scheme
is compressing. It is easily seen that a compressing commitment scheme can be at
most computationally binding.



2.6 Group-Based Cryptographic Assumptions 35

2.6 Group-Based Cryptographic Assumptions

The security of many cryptographic protocols is based on the intractability of
certain computational problems. In this section, we introduce and formalize the
group-based cryptographic hardness assumptions that are used in this dissertation.

One of the best-known computational problems used in cryptography is the
discrete logarithm (DL) problem. Let (G, ·) be a group of prime order q and let
g ̸= 1. Then g generates G, i.e., for all h ∈ G there exists an x ∈ Zq such that
gx = h. The exponent x is also called the discrete logarithm of h with respect to
generator g. The DL problem asks to find x given g and h. In suitable groups,
this problem is assumed to be intractable, i.e., polynomial-time algorithms succeed
with at most negligible probability in solving this problem. The following definition
formalizes the discrete logarithm assumption.

Definition 2.14 (Discrete Logarithm Assumption). Let G be a probabilistic poly-
nomial time algorithm that, on input a security parameter λ, outputs a prime q,
a group (G, ·) of order q and a generator g of G. The discrete logarithm (DL)
assumption holds for G if for all probabilistic polynomial time algorithms A

Pr
(
h = gx : (q,G, g)← G(1λ) ∧ h←R G ∧ x← A(q,G, g, h)

)
≤ negl(λ) .

The second group based hardness assumption is the decisional Diffie-Hellman
(DDH) assumption [Bon98]. This assumption states that it is hard for an adversary
to distinguish triples of the form (gx, gy, gxy) from those of the form (gx, gy, gz),
where x, y, z ←R Zq are sampled uniformly at random. The DL assumption is
implied by the DDH assumption, i.e., if the DDH assumption holds, so does the
DL assumption.

Definition 2.15 (Decisional Diffie-Hellman Assumption). Let G be a probabilis-
tic polynomial time algorithm that, on input a security parameter λ, outputs a
prime q, a group (G, ·) of order q and a generator g of G. The decisional Diffie-
Hellman (DDH) assumption holds for G if for all probabilistic polynomial time
algorithms A∣∣Pr

(
A(q,G, g, gx, gy, gxy) = 1

)
− Pr

(
A(q,G, g, gx, gy, gz) = 1

)∣∣ ≤ negl(λ) ,

where the probabilities are over (q,G, g)← G(1λ), x, y, z ←R Zq and A’s random-
ness.

We also refer to the algorithm G in definitions 2.14 and 2.15 as a prime order
group generator. In some settings, the algorithm G actually outputs a bilinear
group (q,G1,G2,H, e). In this case, we must specify in which of the groups G1,
G2 or H the DL or DDH assumption holds. In particular, if the DDH assumption
holds in both G1 and G2, we say that the symmetrical external Diffie-Hellman
(SXDH) assumption [BGM+05] holds. It is easily seen that, for a bilinear group
(q,G1,G2,H, e), the existence of an efficiently computable isomorphism ψ : G1 →
G2 contradicts the DDH assumption in G1, and vice-versa the existence of an
efficiently computable isomorphism ψ : G2 → G1 contradicts the DDH assumption
in G2. Hence, the SXDH assumption can only hold if there do not exist efficiently



36 Chapter 2 Preliminaries

computable isomorphisms between G1 and G2. This class of bilinear groups (or
pairings) is also referred to as Type III [GPS08].

The product N of two primes p and q is called an RSA-modulus. It is assumed
to be hard to find the prime factors p and q of N . Further, the group Z∗

N of
multiplicative units modulo N , also referred to as an RSA-group, has cardinality
ϕ(N) = (p− 1)(q− 1). From this it follows that, without knowledge of p and q, it
is intractable to find the order of the group Z∗

N ; if not, one could efficiently factor
RSA-moduli. For this reason, the group Z∗

N is also said to be of hidden order.
There exists a broad variety of hardness assumptions based on groups with

hidden order; we introduce two of them. First, the strong-RSA assumption [BP97]
states that it is hard to compute nontrivial roots in a group G with hidden order.
Second, the hidden order assumption states that it is hard to find the order of group
elements g ←R G sampled uniformly at random. The hidden order assumption is
implied by the strong-RSA assumption.

A disadvantage of RSA-groups is that their order is only hidden from parties
that are oblivious to the prime factors p and q of N . In practice, this means that
the RSA-group typically has to be generated by a trusted dealer. An alterna-
tive candidate for groups of hidden order are class groups of imaginary quadratic
number fields [Wes19; BFS20; BHR+21]. Class groups can be generated in a
transparent manner and thus do not require a trusted dealer.

Definition 2.16 (Strong-RSA Assumption). Let G be a probabilistic polynomial
time algorithm that, on input a security parameter λ, outputs a group (G, ·) (with
hidden order). The strong-RSA assumption holds for G if for all probabilistic
polynomial time algorithms A,

Pr
(
g = P x ∧ x > 1 : G← G(1λ) ∧ g ←R G ∧ (P, x)← A(G, g)

)
≤ negl(λ) .

Definition 2.17 (Hidden Order Assumption). Let G be a probabilistic polynomial
time algorithm that, on input a security parameter λ, outputs a group (G, ·) (with
hidden order). The hidden order assumption holds for G if for all probabilistic
polynomial time algorithms A,

Pr
(
gx = 1 ∧ x > 1 : G← G(1λ) ∧ g ←R G ∧ x← A(G, g)

)
≤ negl(λ) .

2.7 Lattices and Lattice Problems

A disadvantage of the group-based assumptions of the previous section is that,
once available, a quantum computer will be able to solve the corresponding com-
putational problems efficiently [Sho94]. Therefore, cryptographic primitives based
on these assumptions will in general not be secure against adversaries with ac-
cess to a quantum computer. By contrast, post-quantum cryptography studies the
design of cryptographic primitives based on computational problems that are in-
tractable even for quantum adversaries. One of the most promising areas in this
field of research is lattice-based cryptography, where the underlying problems are
so-called lattice problems. In this section, we introduce a number of variants of
the short integer solution (SIS) problem.



2.7 Lattices and Lattice Problems 37

A lattice Λ is a discrete additive subgroup of Rm. The lattice Λ is said to be
q-ary if qZm ⊆ Λ ⊆ Zm. For instance, for any A ∈ Zk×m

q the sets

Λq(A) = {y ∈ Zk : ∃x ∈ Zm Ax = y mod q} and
Λ⊥

q (A) = {x ∈ Zm : Ax = 0 mod q}

are q-ary lattices in Zk and Zm respectively. Finding a nonzero and “short” element
in the lattice Λ⊥

q (A) ⊆ Zm is referred to as the Short Integer Solution (SIS)
problem [Ajt96].
Definition 2.18 (SISq,k,m,β-Problem [Ajt96]). The SISq,k,m,β-problem is defined
as follows: Given a matrix A ←R Zk×m

q sampled uniformly at random, find a
nonzero vector s ∈ Zm, such that As = 0 mod q and ∥s∥2 ≤ β.

Let R = Z[X]/f(X) for a monic4 polynomial f(X) of degree d. The coefficient
embedding

ψ : R → Zd,

d∑
i=1

aiX
i−1 7→ (a1, . . . , ad)

is a group isomorphism. Hence, R corresponds to the lattice Zd. Moreover, every
ideal I ⊆ R corresponds to a sublattice ψ(I) ⊆ Zd. The lattice ψ(I) is said to be
a structured or ideal lattice.

For q ∈ N, we write Rq = R/qR = Zq[X]/
(
f(X)

)
. Further, to a1, . . . , am ∈ Rq,

we associate the following q-ary lattice

Λ⊥
q (a1, . . . , am) = {x ∈ Rm :

∑m
i=1 aixi = 0 mod q} .

The coefficient embedding ψ also equips the rings R and Rm with a geometry.
More precisely, we define ∥x∥ = ∥ψ(x)∥ for any x ∈ Rm and any norm ∥·∥ on Zdm.
Finding a nonzero and short element in the lattice Λ⊥

q (a1, . . . , am) ⊆ Rm is referred
to as the Ring-SIS (RSIS) problem [PR06; LM06].
Definition 2.19 (RSISq,m,β-Problem [Ajt96]). Let R = Z[X]/f(X) for a monic
polynomial f(X). The RSISq,m,β-problem over R is defined as follows: Given
a1, . . . , am ←R Rq sampled uniformly at random, find a nonzero vector s =
(s1, . . . , sm) ∈ Rm, such that

∑m
i=1 aisi = 0 mod q and ∥s∥2 ≤ β.

For A ∈ Rk×m
q , Λ⊥

q (A) = {x ∈ Rm : Ax = 0 mod q} corresponds to a q-ary
sublattice of Zdm. The set Λ⊥

q (A) ⊆ Rm is a finitely generated R-module. For
this reason, the corresponding lattice is also called a module lattice. Finding a
nonzero and short element in a lattice Λ⊥

q (A), for A ∈ Rk×m
q , is referred to as

the Module-SIS (MSIS) problem [LS15]. The MSIS-problem is a generalization of
both the SIS- and the RSIS-problem. It is assumed to be intractable, even for
quantum computers.
Definition 2.20 (MSISq,k,m,β-Problem [LS15]). Let R = Z[X]/f(X) for a monic
polynomial f(X). The MSISq,k,m,β-problem over R is defined as follows: Given a
matrix A←R Rk×m

q sampled uniformly at random, find a nonzero vector s ∈ Rm,
such that As = 0 mod q and ∥s∥2 ≤ β.

4Recall that a polynomial f(X) =
∑n

i=0 aiX
n is said to be monic if its leading coefficient an

equals 1.



38 Chapter 2 Preliminaries

The Gaussian heuristic states that the length λ1
(
Λ⊥

q (A)
)

= ∥s∥2 ∈ R≥0 of the
shortest vector s of a q-ary lattice Λ⊥

q (A), for A ∈ Rk×m
q , is approximately equal

to
√
m/(2πe)qk/m [MR09]. The quality of an algorithm χ for finding short vectors

in a lattice can be characterized by its root Hermite factor δ, which is defined such
that χ is expected to output basis vectors s with

∥s∥2 ≈ min(q, δdmqk/m) . (2.1)

In particular, smaller values of δ require better algorithms or a longer runtime.
Given the current state-of-the-art, a (quantum) algorithm with δ ≈ 1.0045 is as-
sumed to take at least 2128 operations [APS15; ESS+19], i.e., δ ≈ 1.0045 plausibly
provides 128-bit post-quantum security.

Micciancio and Regev [MR09] showed that, from Equation 2.1, it follows that
it is often suboptimal to apply the algorithm χ directly to the lattice of interest.
For simplicity, let us consider the SIS-problem, i.e., we consider a lattice Λq(A)
with A ∈ Zk×m

q , and aim to find a short vector in Λq(A). For large enough m, the
algorithm χ should be applied to a related lattice in Λq(A′) ⊆ Zm′ with

m′ =

√
k log2(q)
log2(δ) .

More precisely, if m > m′, let A′ ∈ Zk×m′

q be a submatrix of A obtained by
removing m−m′ columns of A. The short vector output by χ applied to Λq(A′)
can be appended with m−m′ zeros to obtain an element of Λq(A) with exactly the
same norm. Interestingly, for a fixed root Hermite factor δ, this approach outputs
shorter vectors than applying χ directly to Λq(A). In fact, the above approach is
expected to output vectors of length

∥s∥2 ≥ min
(
q, 22
√

k log δ log q
)
.

Note that this norm-bound is independent of the dimension m. Hence, when m is
large enough, the parameter m does not influence the hardness of the SIS-problem.
The same approach applied to the MSIS-problems, where A ∈ Rk×m

q , is expected
to output lattice elements s ∈ Λq(A) ⊆ Rm

q of norm

∥s∥2 ≥ min
(
q, 22
√

dk log δ log q
)
, (2.2)

where d is the degree the ring extension R = Z[X]/f(X) over Z.
In this work, we will mainly be interested in vectors that are short with respect

to the ℓ∞-norm. For this reason we also consider the following variant of the
MSIS-problem, where “shortness” is defined in terms of the ℓ∞-norm. Clearly, the
hardness of MSIS∞

q,k,m,β is implied by the hardness of MSISq,k,m,
√

dmβ .

Definition 2.21 (MSIS∞
q,k,m,β Problem). Let R = Z[X]/f(X) for a monic poly-

nomial f(X). The MSIS∞
q,k,m,β problem over R is defined as follows: Given a

matrix A←R Rk×m
q sampled uniformly at random, find a nonzero vector s ∈ Rm

such that As = 0 mod q and ∥s∥∞ ≤ β.



2.8 Interactive (Zero-Knowledge) Proofs 39

2.8 Interactive (Zero-Knowledge) Proofs

A binary relation R is a subset of the Cartesian product X×Y of two sets X and Y .
It describes a connection between elements of X and elements of Y . Unless stated
otherwise, we assume X and Y to be the set of arbitrary length bit strings {0, 1}∗,
and thus relations R to be subsets of {0, 1}∗ × {0, 1}∗.

Following standard terminology, a string w ∈ {0, 1}∗ is called a witness for the
statement x ∈ {0, 1}∗ if (x;w) ∈ R. The set of valid witnesses for a statement
x is denoted by R(x), i.e., R(x) = {w : (x;w) ∈ R}. A statement that admits
a witness is said to be a true or valid statement. The set of true statements is
denoted by LR, i.e., LR = {x : ∃w s.t. (x;w) ∈ R}. A binary relation is said to
be an NP relation if the validity of a witness w can be verified in time polynomial
in the size |x| of the statement x. In particular, for an NP relation, it holds that
the size |w| of a witness w ∈ R(x) is polynomial in |x|. From now on we assume
all relations to be NP relations.

An interactive proof Π = (P,V) aims for a prover P to convince a verifier V that
a statement x admits a witness, or even that the prover knows a witness w ∈ R(x).

Definition 2.22 (Interactive Proof). An interactive proof Π = (P,V) for rela-
tion R is an interactive protocol between two probabilistic machines, a prover P
and a polynomial time verifier V. Both P and V take as public input a statement
x ∈ {0, 1}∗, and additionally, P takes as private input a witness w ∈ R(x), which
is denoted as Π(x;w) or (P(w),V)(x). As the output of the protocol, V either
accepts or rejects the statement. Accordingly, we say the corresponding transcript
(i.e., the set of all messages exchanged in the protocol execution) is accepting or
rejecting.

An interactive proof Π is complete if the verifier V accepts honest executions with
a public-private input pair (x;w) ∈ R with large probability, i.e., the claims made
by honest provers are accepted with large probability. It is sound if the verifier
rejects false statements x /∈ LR with large probability, i.e., the claims made by
dishonest provers are rejected with large probability. Originally interactive proofs
were defined to be complete and sound [GMR85]. By contrast, we do not require
interactive protocols to satisfy these properties by definition, but consider them
as desirable security properties.

Definition 2.23 (Completeness). An interactive proof Π = (P,V) for relation R
is complete with completeness error ρ : N→ [0, 1] if for all (x;w) ∈ R,

Pr
(
(P(w),V)(x) = reject

)
≤ ρ(|x|) .

If ρ(|x|) = 0 for all x, (P,V) is said to be perfectly complete.

Definition 2.24 (Soundness). An interactive proof Π = (P,V) for relation R is
sound with soundness error σ : N→ [0, 1] if for all x /∈ LR and every prover P∗,

Pr
(
(P∗,V)(x) = accept

)
≤ σ(|x|) .

If this property only holds for (probabilistic) polynomial time (i.e., computation-
ally bounded) provers P∗, then Π is said to be computationally sound.



40 Chapter 2 Preliminaries

Let us consider some additional (desirable) properties of interactive proofs. We
assume that the prover P sends the first and the last message in any interactive
proof Π = (P,V). If this is not the case, the interactive proof can be appended
with an empty message. Hence, the number of communication rounds 2µ + 1 is
always odd. We also say Π is a (2µ + 1)-round protocol. We will refer to multi-
round protocols as a way of emphasizing that we are not restricting to 3-round
protocols.

Definition 2.25 (Public-Coin). An interactive proof (P,V) is public-coin if all of
V’s random choices are made public.

If a protocol is public-coin, the verifier only needs to send its random choices to
the prover. In this case, V’s messages are also referred to as challenges, and the
set from which V samples its messages uniformly at random is called the challenge
set.

We refer to a 3-round public-coin interactive proof as a Σ-protocol. Note that
often a Σ-protocol is required to be (perfectly) complete, special-sound and special
honest-verifier zero-knowledge (SHVZK) by definition. However, we do not require
a Σ-protocol to have these additional properties.

Definition 2.26 (Σ-Protocol). A Σ-protocol is a 3-round public-coin interactive
proof.

2.8.1 Knowledge Soundness

If an interactive proof is complete and sound, it “merely” allows a prover to con-
vince a verifier that a statement x admits a witness, i.e., x ∈ LR. It does not
necessarily convince a verifier that the prover “knows” a witness w ∈ R(x). In-
formally, a prover P∗ is said to know a witness w if it can compute this witness
efficiently. More precisely, knowledge of w requires the existence of an efficient
algorithm that, given x and oracle access to P∗, outputs a witness w ∈ R(x). For
a more elaborate discussion on the definition of knowledge we refer to [Gol04].

The above allows us to define what it means for an interactive proof to prove
knowledge of a witness w. This stronger notion of soundness is called knowledge
soundness and is formally defined in Definition 2.27.

Definition 2.27 (Knowledge Soundness). An interactive proof Π = (P,V) for
relation R is knowledge sound with knowledge error κ : N → [0, 1] if there exists
a positive polynomial q and an algorithm E , called a knowledge extractor, with
the following properties: The extractor EP∗(x), given input x and oracle access to
a (potentially dishonest) prover P∗, runs in an expected number of steps that is
polynomial in |x| and outputs a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥ ϵ(x,P∗)− κ(|x|)

q(|x|) ,

where ϵ(x,P∗) := Pr
(
(P∗,V)(x) = accept

)
.

If these properties only hold for probabilistic polynomial time (i.e., computa-
tionally bounded) provers P∗, then Π is said to be computationally knowledge
sound.



2.8 Interactive (Zero-Knowledge) Proofs 41

The extraction algorithm of Definition 2.27 only has oracle or black-box access
to P∗. For this reason, this is also referred to as black-box extraction. Moreover,
the efficiency of an extractor is oftentimes measured in the (expected) number of
times it invokes, or queries, P∗.

If ϵ(x,P∗) = Pr
(
(P∗,V)(x) = accept

)
> κ(|x|), then the success probability of

the knowledge extractor of Definition 2.27 is positive. Hence, ϵ(x,P∗) > κ(|x|)
implies that x admits a witness, i.e., x ∈ LR. It therefore follows that knowledge
soundness with knowledge error κ(|x|) implies soundness with soundness error
σ(|x|) = κ(|x|). Hence, knowledge soundness is indeed a stronger property than
soundness.
Remark 2.3. It is straightforward to verify that, in order to satisfy Definition 2.27,
it is sufficient to show that the required property holds for deterministic provers P∗.
Namely, let P∗ be an arbitrary probabilistic dishonest prover, and let P∗[r] be the
deterministic prover obtained by fixing P∗’s randomness to r. Then ϵ(x,P∗) =
Er[ϵ(x,P∗[r])], where Er denotes the expectation over the random choice of r.
Furthermore, if EP∗(x) is declared to run EP∗[r](x) for a random choice of r, then
the same holds for the success probability of the extractor:

Pr
(
(x; EP∗

(x)) ∈ R
)

= Er

[
Pr
(
(x; EP∗[r](x)) ∈ R

)]
.

It follows that in order to satisfy Definition 2.27, it is sufficient to show that the
required property holds for deterministic provers P∗. For this reason, we may
assume provers to be deterministic, in particular, we will consider the prover’s
first message to be deterministic. This will significantly simplify our analysis.

Definition 2.27 deviates from the more common textbook definition of know-
ledge soundness [Gol04; HL10] given in Definition 2.28. Instead of requiring the
existence of an extractor that runs in expected polynomial time and succeeds with
probability at least (ϵ(x,P∗)− κ(|x|))/q(|x|), the textbook definition requires the
existence of an extractor that, as long as ϵ(x,P∗) > κ(|x|), always succeeds, but
has an expected runtime that is inversely proportional to ϵ(x,P∗) − κ(|x|). In
particular, the latter extractor does not necessarily run in polynomial time. The
two definitions are known to be equivalent [Gol04, Proposition 4.7.4] and therefore
display a trade-off between the success probability and the expected runtime of
the extractor. We will be using Definition 2.27, since this formulation simplifies
our analysis. It is, for instance, much less obvious that it is sufficient to consider
only deterministic provers if one uses Definition 2.28 directly.

Definition 2.28 (Knowledge Soundness - Equivalent Definition). An interac-
tive proof Π = (P,V) for relation R is knowledge sound with knowledge er-
ror κ : N → [0, 1] if there exists a positive polynomial q and an algorithm E ,
called a knowledge extractor, with the following properties: The extractor EP∗(x),
given input x and oracle access to a (potentially dishonest) prover P∗ with
ϵ(x,P∗) := Pr

(
(P∗,V)(x) = accept

)
> κ(|x|), outputs a witness w ∈ R(x) in

an expected number of steps bounded by

q(|x|)
ϵ(x,P∗)− κ(|x|) .



42 Chapter 2 Preliminaries

Remark 2.4. By Definition 2.28 it is obvious that, in order to prove knowledge
soundness, it is enough to consider statements x ∈ {0, 1}∗ for which the prover P∗

succeeds with probability ϵ(x,P∗) > κ(|x|), i.e., there are no requirements on the
behavior of the extractor for statements x with ϵ(x,P∗) ≤ κ(|x|). By contrast,
Definition 2.27 requires extractors to be efficient for all statements x. This seems to
be a stronger requirement, however the equivalence between these two definitions
proves the contrary. Therefore, also towards satisfying Definition 2.27, it is enough
to consider statements x with ϵ(x,P∗) > κ(|x|). Since almost all our knowledge
extractors are efficient for all x, we typically do not have to distinguish between
statements x with ϵ(x,P∗) > κ(|x|) and statements x with ϵ(x,P∗) ≤ κ(|x|).
Remark 2.5. In principle one could allow the completeness, soundness and know-
ledge error to be functions of the statement x instead of its size |x|. Both versions
appear in literature, e.g., Goldreich [Gol04] defines these errors as functions of |x|,
whereas Hazay and Lindell [HL10] define them as functions of x.
Remark 2.6. Sometimes a slightly weaker definition of knowledge soundness is
used [BG92; Gol04; HL10]. This weaker definition decouples knowledge soundness
from soundness by only requiring the extractor to run in expected polynomial
time on inputs x ∈ LR, i.e., it does not require the protocol to be sound. The
reason is that in some applications the public input is guaranteed to be a true
statement, i.e., admitting a witness. In these applications it does not matter
how the protocol behaves on inputs x /∈ LR, i.e., the protocol does not need
to be sound. It is straightforward to show that a sound protocol satisfying this
weaker notion of knowledge soundness is also knowledge sound in the stronger
sense of Definition 2.27.

Definition 2.29 (Proof of Knowledge). An interactive proof Π = (P,V) that is
both complete with completeness error ρ(·) and knowledge sound with knowledge
error κ(·) is a Proof of Knowledge (PoK) if there exists a polynomial q such that
1− ρ(|x|) ≥ κ(|x|) + 1/q(|x|) for all x.

Definition 2.30 (Argument of Knowledge). An interactive proof Π = (P,V)
that is both complete with completeness error ρ(·) and computationally knowledge
sound with knowledge error κ(·) is an Argument of Knowledge (AoK) if there exists
a polynomial q such that 1− ρ(|x|) ≥ κ(|x|) + 1/q(|x|) for all x.

Sometimes the alternative, nonequivalent, notion of knowledge soundness pre-
sented in Definition 2.31 is used [Cra96; HM98; Unr12]. In this alternative notion,
the knowledge extractor is required to run in strict polynomial time instead of
expected polynomial time. However, its success probability is allowed to be pro-
portional to

(
ϵ(x,P∗) − κ(|x|)

)c for an arbitrary constant c ≥ 1, whereas Def-
inition 2.27 requires the success probability of the extractor to be proportional
to ϵ(x,P∗) − κ(|x|). For some interactive proofs this degradation of the success
probability indeed allows the construction of strict, instead of expected, polynomial
time knowledge extractors. Note that, since the success probability of the extrac-
tor degrades exponentially in c, this alternative definition only gives a meaningful
notion of knowledge soundness if the exponent c is indeed constant.



2.8 Interactive (Zero-Knowledge) Proofs 43

Definition 2.31 (Knowledge Soundness - Alternative Notion). An interactive
proof Π = (P,V) for relation R is said to satisfy the alternative notion of know-
ledge soundness with knowledge error κ : N→ [0, 1] if there exists a positive poly-
nomial q, a constant c ≥ 1 and an algorithm E , called a knowledge extractor, with
the following properties: The extractor EP∗(x), given input x and oracle access
to a (potentially dishonest) prover P∗, runs in an expected number of steps that
is polynomial in |x| and, if ϵ(x,P∗) > κ(|x|), outputs a witness w ∈ R(x) with
probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥
(
ϵ(x,P∗)− κ(|x|)

)c

q(|x|) ,

where ϵ(x,P∗) := Pr
(
(P∗,V)(x) = accept

)
.

2.8.2 Special-Soundness

We recall the notion of (general) special-soundness. It is typically easier to prove
that an interactive proof is special-sound than to prove that it is knowledge sound.
Note that we require special-sound protocols to be public-coin.

Definition 2.32 (k-out-of-N Special-Soundness). Let k,N ∈ N. A 3-round
public-coin interactive proof Π for relation R, with challenge set of cardinality
N ≥ k, is k-out-of-N special-sound if there exists a polynomial time algorithm
that, on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk)
with common first message a and pairwise distinct challenges c1, . . . , ck, outputs
a witness w ∈ R(x). We also say Π is k-special-sound and, if k = 2, it is simply
said to be special-sound.

In order to generalize k-special-soundness to multi-round protocols, we introduce
the notion of a tree of transcripts.

Definition 2.33 (Tree of Transcripts). Let k = (k1, . . . , kµ) ∈ Nµ. A k-tree of
transcripts for a (2µ + 1)-round public-coin interactive proof Π is a set of K =∏µ

i=1 ki transcripts arranged in the following tree structure. The nodes in this
tree correspond to the prover’s messages and the edges to the verifier’s challenges.
Every node at depth i has precisely ki children corresponding to ki pairwise distinct
challenges. Every transcript corresponds to exactly one path from the root node
to a leaf node. For a graphical representation we refer to Figure 2.1. We refer to
the corresponding tree of challenges as a k-tree of challenges.

Definition 2.34 (k-out-of-N Special-Soundness). Let k = (k1, . . . , kµ),
N = (N1, . . . , Nµ) ∈ Nµ. A (2µ + 1)-round public-coin interactive proof Π for
relation R, where V samples the i-th challenge from a set of cardinality Ni ≥ ki

for 1 ≤ i ≤ µ, is k-out-of-N special-sound if there exists a polynomial time algo-
rithm that, on input a statement x and a k-tree of accepting transcripts, outputs
a witness w ∈ R(x). We also say Π is k-special-sound.

In contrast to the extractor E of Definition 2.27 that has only oracle access
to the prover, the special-soundness algorithm obtains the transcripts directly.
For this reason, it is nontrivial to show that special-soundness implies knowledge



44 Chapter 2 Preliminaries

a

z1
1 zk1

1

z1,1
2 z1,k2

2 zk1,1
2 zk1,k2

2

z1,1,...,1
µ z

1,1,...,kµ
µ zk1,k2,...,1

µ z
k1,k2,...,kµ
µ

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2

Figure 2.1: (k1, . . . , kµ)-tree of transcripts [ACK21].

soundness. While it is well known that for 3-round protocols special-soundness
implies knowledge soundness, previously there was no known generalization to
2µ+1-round protocols. In Chapter 6 we show that, also for multi-round protocols,
special-soundness tightly implies knowledge soundness.

2.8.3 Zero-Knowledge

In many applications, the prover P wishes to convince the verifier V without re-
leasing any information besides the veracity of the claim. In particular, a protocol
execution should not reveal any additional information about the secret witness
w ∈ R(x), even if the verifier behaves maliciously. An interactive proof Π = (P,V)
that satisfies this security property is said to be zero-knowledge and also called a
zero-knowledge proof (ZKP).

In Definition 2.35 this security property is formalized by means of a so-called
simulator. A simulator takes as input the public statement x and outputs proto-
col transcripts that are distributed statistically close to transcripts generated by
interactions with the honest prover P. The existence of a simulator shows that a
(potentially dishonest) verifier V∗ can generate transcripts without interacting with
the honest prover P, i.e., the interactions with P do not reveal any information
that V∗ could not have obtained on its own.

Definition 2.35 (Zero-Knowledge). An interactive proof Π = (P,V) for rela-
tion R is said to be (statistical) zero-knowledge (ZK) if, for every (potentially
dishonest) polynomial time verifier V∗, there exists a polynomial time simulator
S∗ such that the following families of random variables are statistically indistin-
guishable:

• {viewP
V∗(x;w) : (x;w) ∈ R}, where viewP

V∗(x;w) describes P’s messages and



2.8 Interactive (Zero-Knowledge) Proofs 45

V∗’s random tape when evaluating (P,V∗) on input (x;w);

• {S∗(x) : (x;w) ∈ R}.

If these families of random variables are only computationally indistinguishable,
Π is said to be computationally zero-knowledge.

Remark 2.7. Sometimes it is convenient to make the statistical distance between
the distributions of Definition 2.35 explicit. In this case, we say Π is δ-statistical
zero-knowledge, for some δ : N→ [0, 1], if

∆
(
viewP

V∗(x;w),S∗(x)
)
≤ δ(|x|) ∀(x;w) ∈ R.

We also consider a weaker notion of zero-knowledge: honest-verifier zero-
knowledge. This notion only requires the existence of a simulator for the hon-
est verifier V, i.e., a simulator that outputs transcripts distributed statistically
close to transcripts of honest executions of Π. Typically, a prover cannot distin-
guish between interactions with honest and dishonest verifiers, therefore in most
applications this weaker security property does not suffice. However, there ex-
ist generic transformations that transform certain classes of HVZK interactive
proofs, such as public-coin ones, into zero-knowledge interactive proofs [OVY93;
Dam93; DGO+95]. Alternatively, public-coin interactive proofs can be made non-
interactive by applying the Fiat-Shamir transform [FS86]. In this transforma-
tion, the verifier’s messages (challenges) are replaced by random oracle queries.
In the Fiat-Shamir mode, honest-verifier zero-knowledge does suffice. For these
reasons, it is often enough to show that an interactive proof is honest-verifier
zero-knowledge.

Definition 2.36 ((Special) Honest-Verifier Zero-Knowledge). An interactive proof
Π = (P,V) for relation R is said to be (statistical) honest-verifier zero-knowledge
(HVZK) if there exists a polynomial time simulator S such that the following
families of random variables are statistically indistinguishable:

• {viewP
V (x;w) : (x;w) ∈ R}, where viewP

V (x;w) describes P’s messages and
V’s random tape when evaluating Π = (P,V) on input (x;w);

• {S(x) : (x;w) ∈ R}.

If ∆
(
viewP

V (x;w),S(x)
)

= 0 for all (x;w) ∈ R, Π is said to be perfectly HVZK.
If these families of random variables are only computationally indistinguishable,
Π is said to be computationally HVZK. Further, if the simulator proceeds by
first sampling the verifier’s messages uniformly at random, Π is said to be special
honest-verifier zero-knowledge (SHVZK).

Finally, we consider yet another relaxation of the zero-knowledge property. For
some interactive proofs Π = (P,V), honest executions do reveal information about
the secret witness w ∈ R(x), but only if the prover P aborts during the protocol
execution. These protocols admit a simulator that can simulate non-aborting tran-
scripts and are said to be non-abort honest-verifier zero-knowledge (NA-HVZK).
It is typically straightforward to transform an NA-HVZK interactive proof into



46 Chapter 2 Preliminaries

one that is HVZK. Moreover, in the non-interactive Fiat-Shamir instantiation of
a public-coin interactive proof, aborting executions are never published, and the
weaker notion of NA-HVZK suffices. In the literature NA-HVZK is often simply
referred to as HVZK. We use a different notation to emphasize the difference.

Definition 2.37 (Non-Abort Honest-Verifier Zero-Knowledge). An interactive
proof Π = (P,V) for relation R is said to be (statistical) non-abort honest-verifier
zero-knowledge (NA-HVZK) if there exists a polynomial time simulator S such
that the following families of random variables are statistically indistinguishable:

• {NA-viewP
V (x;w) : (x;w) ∈ R}, where NA-viewP

V (x;w) describes P’s messages
and V’s random tape when evaluating Π = (P,V) on input (x;w), condi-
tioned on P not aborting;

• {S(x) : (x;w) ∈ R}.

If the simulator proceeds by first sampling the verifier’s messages uniformly at
random, then Π is said to be non-abort special honest-verifier zero-knowledge
(NA-SHVZK).

Remark 2.8. Definition 2.37 allows the abort probability of an honest prover to
depend on the secret witness w ∈ R(x). However, the generic transformations
from NA-HVZK to HVZK typically require the abort probability to be essentially
independent of the witness w. Moreover, also in the non-interactive Fiat-Shamir
mode, it is preferable to have an abort probability independent of the witness;
otherwise, the non-interactive proof might be susceptible to side-channel attacks,
e.g., timing attacks. For this reason, in addition, we typically require that the
abort probability of an honest prover is essentially independent of the witness w.

2.9 Non-Interactive Proofs in the Random Oracle Model

In the random oracle model (ROM), algorithms have oracle access to a function
RO : {0, 1}∗ → {0, 1}η, called a random oracle, sampled uniformly at random from
the set of functions with domain {0, 1}∗ and codomain {0, 1}η for some η ∈ N. A
random oracle RO is implicitly instantiated by lazy sampling, i.e., every time the
random oracle is queried on a new input x ∈ {0, 1}∗, the evaluation RO(x) ∈ {0, 1}η

is sampled uniformly at random and fixed from that point onward. In particular, if
the random oracle is queried on the same input x as before, possibly by a different
algorithm, it will return the same output RO(x).

A random oracle RO : {0, 1}∗ → {0, 1}η outputs bitstrings of length η. However,
the codomain of a random oracle is adapted easily. For instance, if one requires
bitstrings of length η′ ≤ η, the evaluation RO(x) can be truncated to its first η′

bits and, if one requires bitstrings of length k · η, simply define

RO′ : {0, 1}∗ → {0, 1}k·η, x 7→ RO(1∥x)∥ · · · ∥RO(k∥x) ,

where i∥x denotes the bitstring x prepended with the bit decomposition of i ∈ N.
In fact, the random oracle RO : {0, 1}∗ → {0, 1}η can be adapted to output ele-
ments in any finite set Y. Therefore, we allow the codomain of a random oracle



2.9 Non-Interactive Proofs in the Random Oracle Model 47

to be an arbitrary finite set Y. Moreover, for convenience, we sometimes leave
the codomain Y implicit and write RO for the set of all random oracles. Fur-
ther, to avoid technical difficulties, we sometimes limit the domain from {0, 1}∗

to {0, 1}≤u, the finite set of all bitstrings of length at most u, for a sufficiently
large u ∈ N.

An algorithm A with oracle access to a random oracle RO, which is denoted as
ARO, is called a random oracle algorithm. The algorithm A is said to be a Q-query
random oracle algorithm if, for all inputs x, random tapes r and random oracles
RO, ARO makes at most Q queries to RO.

The Fiat-Shamir transformation (Section 2.9.2) allows public-coin interactive
proofs Π = (P,V) to be made non-interactive in the random oracle model. The
high level idea is that the verifier’s challenges are replaced by random oracle
queries. This way the prover can generate a proof for knowledge of a witness
w ∈ R(x) without interacting with the verifier. The resulting protocol is called a
non-interactive random oracle proof (NIROP). Vice versa, a non-interactive ran-
dom oracle proof also corresponds to an interactive proof, obtained by replacing
the random oracle queries with challenges sampled by the verifier.

Definition 2.38 (Non-Interactive Random Oracle Proof). A non-interactive ran-
dom oracle proof (NIROP) for relation R is a pair Π = (P,V) of (probabilistic)
random-oracle algorithms, a prover P and a polynomial time verifier V, such that:
Given (x;w) ∈ R and access to a random oracle RO, the prover PRO(x;w) outputs
a proof π. Given x ∈ {0, 1}∗, a purported proof π, and access to a (random)
oracle RO, the verifier VRO(x, π) outputs 0 to reject or 1 to accept the proof.

Remark 2.9. Standard techniques for “domain separation” allow multiple random
oracles RO1, . . . ,ROk to be constructed from a single one [BR93], e.g., by defining
ROi(x) := RO(i∥x) for all 1 ≤ i ≤ k. For this reason, if required or convenient,
we allow the prover P and the verifier V of a NIROP Π = (P,V) to have ac-
cess to multiple independent random oracles RO1, . . . ,ROk, possibly with different
codomains.

The following definition is a natural adaptation of the completeness property for
interactive proofs. Note that here, besides P’s and V’s randomness, the probability
is over the randomness of the random oracle RO.

Definition 2.39 (Completeness - NIROP). A non-interactive random oracle proof
Π = (P,V) for relation R is complete with completeness error ρ : N→ [0, 1] if, for
all (x;w) ∈ R,

Pr
(
(PRO(w),VRO)(x) = reject : RO←R RO

)
≤ ρ(|x|) .

If ρ(|x|) = 0 for all x, (P,V) is said to be perfectly complete.

Similarly, the soundness property of interactive proofs can be adapted to a
soundness property for non-interactive random oracle proofs. Note that the
soundness error σ(|x| , Q) is allowed to depend on the query complexity Q of the
prover P∗ attacking the considered NIROP. For many NIROPs, it is indeed the
case that the success probability of a cheating prover P∗ increases with the number
of random oracle queries Q admitted to the prover P∗.



48 Chapter 2 Preliminaries

Definition 2.40 (Soundness - NIROP). A non-interactive random oracle proof
Π = (P,V) for relation R is sound with soundness error σ : N × N → [0, 1] if for
all x /∈ LR and every Q-query prover P∗,

Pr
(
(P∗,RO,VRO)(x) = accept : RO←R RO

)
≤ σ(|x| , Q) .

If this property only holds for (probabilistic) polynomial time (i.e., computation-
ally bounded) provers P∗, then Π is said to be computationally sound.

Also the knowledge soundness definition can be adapted to non-interactive ran-
dom oracle proofs. As before, knowledge soundness requires the existence of an
extractor E that, given input x and oracle access to a prover P∗, aims to output
a witness w ∈ R(x). However, a crucial difference with Definition 2.27, for in-
teractive proofs, is that now the prover P∗ attacking the considered NIROP is a
random oracle algorithm, instead of a “normal” algorithm. Giving the knowledge
extractor E oracle access to the random oracle algorithm P∗ means that E can
invoke P∗,RO for any random oracle RO. More precisely, E observes all the random
oracle queries made by P∗ and is free to decide how to answer these queries. We
also say that E implements RO for P∗. Hence, instead of extracting a witness
by controlling the verifier’s challenge, an extractor for NIROPs aims to output a
witness by controlling the random oracle responses.

Definition 2.41 (Knowledge Soundness - NIROP). A non-interactive random
oracle proof Π = (P,V) for relation R is knowledge sound with knowledge error
κ : N × N → [0, 1], if there exists a positive polynomial q and an algorithm E ,
called a knowledge extractor, with the following properties: The extractor EP∗(x),
given input x and oracle access to a (potentially dishonest) Q-query random oracle
prover P∗, runs in an expected number of steps that is polynomial in |x| and Q
and outputs a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥ ϵ(x,P∗)− κ(|x| , Q)

q(|x|) ,

where ϵ(x,P∗) = Pr
(
VRO(x,P∗,RO(x)) = accept : RO←R RO

)
.

It is easy to see that any cheating strategy for the interactive proof corresponding
to a NIROP gives a cheating strategy for the NIROP itself that succeeds with
exactly the same probability. Hence, κIP(|x|) ≤ κNI(|x| , Q) for all x ∈ {0, 1}∗ and
Q ∈ N, where κIP(|x|) and κNI(|x| , Q) are the knowledge errors of the interactive
and non-interactive proofs, respectively. For this reason we also refer to the ratio

κNI(|x| , Q)
κIP(|x|)

as the security loss of the NIROP. We are typically interested in how this security
loss scales as a function of Q.

Finally, let us consider the zero-knowledge property. As for interactive proofs,
a non-interactive random oracle proof Π = (P,V) is said to be zero-knowledge if
there exists a simulator that aims to output a proof π that is indistinguishable



2.9 Non-Interactive Proofs in the Random Oracle Model 49

from honestly generated proofs. To this end, it is given as input a statement x and
oracle access to a random oracle RO. However, in contrast to honest provers, the
simulator is allowed to reprogram the random oracle RO : {0, 1}∗ → Y at arbitrary
inputs. Let L = {(x1, y1), . . . , (xk, yk)} ⊆ {0, 1}∗ × Y with pairwise distinct xi,
then we write RO[L] for the random oracle that is reprogrammed in L, i.e.,

RO[L](x) =
{
yi, if ∃i s.t. xi = x,

RO(x), otherwise.

This zero-knowledge property for non-interactive random oracle proofs is formal-
ized in the following definition. It is easily seen that replacing the challenges of an
honest-verifier zero-knowledge interactive proof by random oracle queries results
in a NIROP that is zero-knowledge.

Definition 2.42 (Zero-Knowledge - NIROP). A non-interactive random ora-
cle proof Π = (P,V) for relation R is said to be (statistical) zero-knowledge if
there exists a polynomial time random oracle simulator S such that, for every
distinguisher D : {0, 1}∗ → {0, 1}, the two families {X(x;w) : (x;w) ∈ R} and
{Y (x;w) : (x;w) ∈ R} of distributions defined as

• X(x;w) = DRO[L](π), where (π, L)← SRO(x) and RO←R RO;

• Y (x;w) = DRO(π), where π ← PRO(x;w) and ROR ← RO;

are statistically indistinguishable. If the above only holds for polynomial time
distinguishers D, Π is said to be computationally zero-knowledge.

2.9.1 Adaptive Knowledge Soundness

Thus far, knowledge soundness has been defined with respect to static or non-
adaptive provers P∗ attacking the considered (non-)interactive proof for a fixed
statement x. However, in many practical scenarios the dishonest provers are free
to choose the statement x adaptively. Hence, in these cases static security is not
sufficient. For interactive proofs, it is well known that static knowledge soundness
implies adaptive knowledge soundness. However, this does not carry over to non-
interactive proofs. For instance, it is easy to see that the static Fiat-Shamir
transformation (see Definition 2.44) is in general not adaptively sound.

For this reason, let us formalize adaptive knowledge soundness for non-
interactive random oracle proofs. An adaptive prover Pa attacking the considered
NIROP is given oracle access to a random oracle RO and outputs a statement x
of fixed length |x| = n together with a proof π. As in the static definition, adap-
tive knowledge soundness requires the existence of a knowledge extractor. How-
ever, formalizing the requirements of this extractor introduces some subtle issues.
Namely, because Pa chooses the statement x adaptively, it is not immediately clear
for which statement the extractor should extract a witness. For instance, granting
the extractor the same freedom of adaptively choosing the statement x, for which
it needs to extract a witness w, renders knowledge extraction trivial; the extractor
could simply output an arbitrary statement-witness pair (x;w). For this reason,
we require the extractor to output statement-witness pairs (x;w) corresponding



50 Chapter 2 Preliminaries

to the valid pairs (x, π) output by the adaptive prover Pa. To formalize these re-
quirements, we also write (x, π, v), with v ∈ {0, 1} indicating whether π is a valid
proof for statement x. Given this notation, the extractor should output a triple
(x, π, v) with the same distribution as the triples (x, π, v) produced by Pa; further-
more, if π is a valid proof for statement x, i.e., v = 1, then the extractor should
additionally aim to output a witness w ∈ R(x). As before, the success probability
of the extractor is allowed to depend on the success probability of Pa. Finally, to
ensure that the knowledge extractor can be used in compositional settings, where
the NIROP is deployed as a component of a larger protocol, the prover Pa is also
allowed to additionally output arbitrary auxiliary information aux ∈ {0, 1}∗, and
the extractor is then required to simulate the tuple (x, π, aux, v), rather than the
triple (x, π, v). The following definition formalizes adaptive knowledge soundness
along these lines. For alternative definitions see, e.g., [Unr17; DFM+19].

Definition 2.43 (Adaptive Knowledge Soundness - NIROP). A non-interactive
random oracle proof (P,V) for relation R is adaptively knowledge sound with
knowledge error κ : N × N → [0, 1], if there exists a positive polynomial q and
an algorithm E , called a knowledge extractor, with the following properties: The
extractor, given input n ∈ N and oracle access to any adaptive Q-query random
oracle prover Pa that outputs statements x with |x| = n, runs in an expected
number of steps that is polynomial in n and Q and outputs a tuple (x, π, aux, v;w)
such that {(x, π, aux, v) : (x, π, aux)← Pa,RO ∧ v ← VRO(x, π)} and {(x, π, aux, v) :
(x, π, aux, v;w)← EPa(n)} are identically distributed and

Pr
(
v = accept ∧ (x;w) ∈ R : (x, π, aux, v;w)← EPa

(n)
)
≥ ϵ(Pa)− κ(n,Q)

q(n) ,

where ϵ(Pa) = Pr
(
VRO(x, π) = 1 : (x, π) ← Pa,RO). Here, E implements RO

for Pa; in particular, E can arbitrarily program RO. Moreover, the randomness is
over the randomness of E , V, Pa and RO.

Remark 2.10. We note that, while the tuple (x, π, aux, v) is required to have the
same distribution for Pa and E(n), by default the respective executions of Pa

and E(n) give rise to two different probability spaces. Looking ahead though, we
remark that the extractor that we eventually construct (Section 6.6) first does an
honest run of Pa by faithfully simulating the answers to Pa’s random oracle queries
(this produces the tuple (x, π, aux, v) that E(n) eventually outputs and which so
trivially has the right distribution), and then, if π is a valid proof, E(n) starts
rewinding Pa and reprogramming the random oracle to try to find enough valid
proofs to compute a witness. Thus, in this sense, we can then say that E(n) aims
to find a witness w ∈ R(x) for the statement x output by Pa.

2.9.2 Fiat-Shamir Transformation

The Fiat-Shamir transformation [FS86] turns a public-coin interactive proof into a
non-interactive random oracle proof (NIROP). The general idea is to compute the
i-th challenge ci as a hash (i.e., the output of a random oracle which in practice
is a hash function) of the i-th prover message ai and (some part of) the previous
communication transcript. For a Σ-protocol, the challenge c is computed as c =



2.10 Secret-Sharing Schemes 51

H(a), or as c = H(x, a), where the former is sufficient for static security, where the
statement x is given as input to the dishonest prover, and the latter is necessary
for adaptive security, where the dishonest prover can choose the statement x for
which it wants to forge a proof.

For multi-round public-coin interactive proofs, there is some degree of freedom
in the computation of the i-th challenge. For concreteness and simplicity, we
consider a particular version where all previous prover messages are hashed along
with the current message. As for Σ-protocols, we consider a static and an adaptive
variant of this version of the Fiat-Shamir transformation. In contrast to the static
variant, the adaptive Fiat-Shamir transformation includes the statement x in all
hash function evaluations. If it is not made explicit which variant is used, the
considered result holds for both variants.

Let Π = (P,V) be a (2µ + 1)-round public-coin interactive proof, where the
challenge from the i-th round is sampled from set Ci. For simplicity, we consider µ
random oracles ROi : {0, 1}≤u → Ci that map into the respective challenge spaces.

Definition 2.44 (Fiat-Shamir Transformation). Let Π = (P,V) be a public-coin
interactive proof. The static Fiat-Shamir transformation FS[Π] = (Pfs,Vfs) is the
NIROP where PRO1,...,ROµ

fs (x;w) runs P(x;w), but instead of asking the verifier
for the challenge ci on message ai, the challenges are computed as

ci = ROi(a1, . . . , ai−1, ai) ; (2.3)

the output is then the proof π = (a1, . . . , aµ+1). On input a statement x and a
proof π = (a1, . . . , aµ+1), VRO1,...,ROµ

fs (x, π) accepts if, for ci as above V accepts the
transcript (a1, c1, . . . , aµ, cµ, aµ+1) on input x.

If the challenges are computed as

ci = ROi(x, a1, . . . , ai−1, ai) ; (2.4)

the resulting NIROP is referred to as the adaptive Fiat-Shamir transformation.

By means of reducing the security of other variants of the Fiat-Shamir trans-
formation to Definition 2.44, appropriately adjusted versions of our results also
apply to other variants of doing the “chaining” (Equations 2.3 and 2.4) in the Fiat-
Shamir transformation, for instance when ci is computed as ci = ROi(i, ci−1, ai),
or ci = ROi(x, i, ci−1, ai), where c0 is the empty string.

2.10 Secret-Sharing Schemes

A secret-sharing scheme allows a secret to be distributed amongst a set of players,
such that sufficiently small subsets of players do not have any information about
the secret, while large enough subsets are able to reconstruct the secret. A secret-
sharing scheme is said to be linear if its secret space is a finite field F and every
share can be computed as the linear combination of the secret s ∈ F and a number
of random field elements. Because a more general treatment is not required in this
dissertation, we will restrict ourselves to linear secret-sharing schemes (LSSSs) for
which each share is a single field element. For a more general definition, in terms



52 Chapter 2 Preliminaries

of error correcting codes and allowing shares to consist of multiple field elements,
we refer to [CDN15]. Further, a packed LSSS, also called a ramp scheme, considers
secret vectors x ∈ Fm, i.e. this notion generalizes the secret space dimension from
m = 1 to arbitrary m ∈ N.

Definition 2.45 (Packed Linear Secret-Sharing Scheme). Let m,n, t ∈ N and F
a finite field. A linear secret-sharing scheme S for sharing m-dimensional vectors
x ∈ Fm amongst a set of n players is defined by a matrix M ∈ Fn×(m+t). A secret
sharing of x ∈ Fm is computed by sampling a vector r←R Ft uniformly at random
and outputting the share vector

[x; r]S = M

(
x
r

)
∈ Fn .

If the scheme S is clear from context, we simply write [x; r].

Every player in a linear secret-sharing scheme S thus corresponds to one row
of the matrix M . For all k-subsets5 A ⊆ {1, . . . , n} of players, MA ∈ Fk×(m+t) is
defined to be the matrix consisting of the rows of the players in A. Hence,

MA

(
x
r

)
∈ Fk

is the vector containing the shares of the players in A. The privacy property of
a secret-sharing scheme states that sufficiently small subsets A are not able to
deduce any information about the secret vector x ∈ Fm from their shares. These
subsets are also referred to as unqualified, and the set of all unqualified subsets is
referred to as the adversary structure.

Definition 2.46 (Secret Sharing - Privacy). Let m,n, t, p ∈ N with p ≤ n and F a
finite field. A linear secret-sharing scheme S, defined by the matrix M ∈ Fn×(m+t),
is said to have p-privacy if for every p-subset A ⊆ {1, . . . , n}, the distribution{

MA

(
x
r

)
∈ Fp : r←R Ft

}
is independent of x ∈ Fm.

The reconstruction property of a secret-sharing scheme states that sufficiently
large subsets of players are able to reconstruct the secret given their shares. These
subsets are also referred to as qualified, and the set of all qualified subsets is referred
to as the access structure. In this dissertation, the definitions are restricted to
threshold access structures, i.e., an access structure containing all subsets of a
certain minimal cardinality. For a treatment of more general access structures we
refer to [CDN15].

Definition 2.47 (Secret Sharing - Reconstruction). Let m,n, t, r ∈ N with
r ≤ n and F a finite field. A linear secret-sharing scheme S, defined by the

5A k-subset is a subset of cardinality k.



2.10 Secret-Sharing Schemes 53

matrix M ∈ Fn×(m+t), is said to have r-reconstruction if, for every r-subset
A ⊆ {1, . . . , n}, x ∈ Fm is uniquely determined by

MA

(
x
r

)
∈ Fr .

It can be shown that an LSSS with r-reconstruction, for every r-subset A ⊆
{1, . . . , n} admits a matrix UA ∈ Fm×r such that

UAMA

(
x
r

)
= x ∈ Fm ,

for all x and r [CDN15]. Hence, also the reconstruction of a secret from its shares
is a linear operation.

If the secret space dimension m of S equals 1, every subset A ⊆ {1, . . . , n} of
players is either qualified or unqualified [CDN15, Theorem 6.8]. In this case, there
exists a k ∈ N such that S has k-reconstruction and (k−1)-privacy, and S is called
a k-out-of-n or a (k, n)-secret-sharing scheme. Note that the above does not hold
for arbitrary m ∈ N. More precisely, if m > 1, there might exist subsets A that
are neither qualified nor unqualified.

The component-wise product

[x; rx]S ∗ [y; ry]S ∈ Fn

of two share-vectors turns out to be a linear secret sharing of the component-wise
product x ∗ y ∈ Fm of the two secret vectors, however, with respect to a different
LSSS Ŝ. Namely, let M̂ ∈ Fn×(m+t)2 be such that its i-th row is the tensor product
of the i-th row of M with itself. Then it is easily seen that

[x; rx]S ∗ [y; ry]S = M

(
x
rx

)
∗M

(
y
ry

)
= M̂

((
x
rx

)
⊗
(

y
ry

))
.

Since the vector x⊗ y contains the component-wise product x ∗ y as a subvector,
the above equation shows that [x; rx]S ∗ [y; ry]S is indeed a secret sharing of x ∗y
with respect to the LSSS Ŝ defined by M̂ . The scheme S is said to have product-
reconstruction if Ŝ has the reconstruction property. In this case, S is also said to
be multiplicative.

Definition 2.48 (Secret Sharing - Product-Reconstruction). Let m,n, t, R ∈ N
with R ≤ n and F a finite field. A linear secret-sharing scheme S, defined by
the matrix M ∈ Fn×(m+t), is said to have R-product-reconstruction if the secret-
sharing scheme Ŝ, defined as above by the matrix M̂ , has R-reconstruction.

2.10.1 Shamir Secret-Sharing

Shamir’s scheme [Sha79] is perhaps the best-known example of a linear secret
sharing scheme. Its secret space is a finite field F with at least n + 1 elements6,

6When additionally taking the point at infinity into account, this requirement can be relaxed
to |F| ≥ n. For more details see [CDN15].



54 Chapter 2 Preliminaries

where n is the number of players. Instantiated with privacy parameter 1 ≤ p ≤ n,
it is defined by the Vandermonde matrix

M =


1 α1 · · · αp

1
1 α2 · · · αp

2
...

... . . . ...
1 αn · · · αp

n

 ∈ Fn×p+1 ,

where α1, . . . , αn ∈ F \ {0} are pairwise distinct. A Shamir secret shar-
ing [s; r] of s ∈ F thus corresponds to n evaluations of the polynomial
f(X) = s+ r1X + · · · rpX

p ∈ F[X] of degree at most p, i.e.,

[s; r] = M

(
s
r

)
= (f(α1), . . . , f(αn)) ∈ Fn .

By Lagrange interpolation it follows that the polynomial f(X) is uniquely deter-
mined by any set containing at least p + 1 of its evaluations. Hence, this instan-
tiation of Shamir’s secret-sharing scheme has (p + 1)-reconstruction. Moreover,
again by Lagrange interpolation, for any s ∈ F and any p-subset A ⊆ {1, . . . , n},
the mapping

L : Fp → Fp, r 7→MA

(
s
r

)
is bijective. Therefore, it follows that this scheme has p-privacy, i.e., it is a (p+1)-
out-of-n secret sharing scheme.

Further, observe that the component-wise product of two share-vectors equals

[s1; r1] ∗ [s2; r2] = (f(α1), . . . , f(αn)) ∗ (g(α1), . . . , g(αn)) = (h(α1), . . . , h(αn)) ,

for polynomials f(X), g(X) and h(X) = f(X)g(X). Hence, since h(X) is of degree
at most 2p, this secret-sharing scheme has (2p+ 1)-product-reconstruction, i.e., if
2p+ 1 ≤ n, it is multiplicative.

In the above, the secret s ∈ F is allocated to the constant coefficient of the
secret-sharing polynomial f(X), i.e., s = f(0). Equivalently, the secret can be
allocated to any other evaluation f(α) of f(X). In this case, to secret share s,
f(X) is sampled uniformly at random from the set F[X]≤p of polynomials of degree
at most p, under the condition that f(α) = s. The shares then correspond to n
evaluations of f(X) in points α1, . . . , αn ∈ F \ {α}. This variant has exactly the
same properties as before.

Furthermore, Shamir’s scheme can easily be adjusted to accommodate secrets
of larger dimension m. In this packed secret-sharing variant, to share a vec-
tor x ∈ Fm, the polynomial f(X) is sampled uniformly at random from the set
F[X]≤m+p−1 of polynomials of degree at most m + p − 1, under the condition
that

(
f(1), . . . , f(m)

)
= x. The secret shares correspond to n evaluations of f(X)

in pairwise distinct points α1, . . . , αn ∈ F \ {1, . . . ,m}, where we assume that
|F| ≥ n + m. Shamir’s packed secret-sharing scheme for sharing m-dimensional
vectors x ∈ Fm, instantiated with privacy parameter p, has (m+p)-reconstruction,
p-privacy and (2m+ 2p− 1)-product-reconstruction. In particular, player subsets
of cardinality k, with p < k < m+ p, are neither qualified nor unqualified.



2.10 Secret-Sharing Schemes 55




